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Abstract—In this paper we study the problem of min-
imizing a submodular function f : 2V ! R that is
guaranteed to have a k-sparse minimizer. We give a deter-
ministic algorithm that computes an additive ✏-approximate
minimizer of such f in eO(poly(k) log(|f |/✏)) parallel depth
using a polynomial number of queries to an evaluation
oracle of f , where |f | = maxS✓V |f(S)|. Further, we give
a randomized algorithm that computes an exact minimizer
of f with high probability using eO(|V |·poly(k)) queries and
polynomial time. When k = eO(1), our algorithms use either
nearly-constant parallel depth or a nearly-linear number
of evaluation oracle queries. All previous algorithms for
this problem either use ⌦(|V |) parallel depth or ⌦(|V |2)
queries.

In contrast to state-of-the-art weakly-polynomial and
strongly-polynomial time algorithms for SFM, our algo-
rithms use first-order optimization methods, e.g., mirror
descent and follow the regularized leader. We introduce
what we call sparse dual certificates, which encode informa-
tion on the structure of sparse minimizers, and both our
parallel and sequential algorithms provide new algorith-
mic tools for allowing first-order optimization methods to
efficiently compute them. Correspondingly, our algorithm
does not invoke fast matrix multiplication or general linear
system solvers and in this sense is more combinatorial than
previous state-of-the-art methods.

Index Terms—submodular function minimization, con-
vex optimization, sparsity, query complexity, parallel com-
plexity

I. INTRODUCTION

Submodular function minimization (SFM) is a foun-
dational problem in combinatorial optimization. Sub-
modular functions encompass a wide range of functions
that appear naturally in practical applications, including
graph cut functions, matroid rank functions, set coverage
functions, and utility functions from economics. Since
seminal work of Edmonds in 1970 [Edm70], SFM has
served as a central tool in many areas such as theoretical
computer science, operations research, game theory, and
recently, machine learning. We refer interested readers

The full version of this paper can be found on arXiv at https://arxiv.
org/abs/2309.16632.

to surveys [McC05], [Iwa08] for a more comprehensive
account of the rich history of SFM.

Throughout this paper we consider a standard setting
for SFM. We are given a set function f : 2V ! R, where
V is an n-element finite set, known as the ground set,
and f is submodular, i.e.,

f(S [ {i})� f(S) � f(T [ {i})� f(T ),

for all S ✓ T ✓ V with i /2 T . Furthermore, we
assume that f is accessed only through an evaluation
oracle which when queried at any S ✓ V outputs
f(S) in time EO. We let |f | def

= maxS✓V |f(S)| and
f
⇤ def
= minS✓V f(S) and consider the problem of com-

puting an ✏-approximate minimizer, i.e., S ✓ V with
f(S)  f

⇤ + ✏.
Since seminal work of Grötschel, Lovász, and

Schrijver [GLS81] showed that SFM can be solved in
polynomial time, there have been multiple advances in
SFM over the last few decades [Sch00], [IFF01], [FI03],
[Iwa03], [Vyg03], [Orl09], [IO09], [CJK14], [LJJ15],
[CLSW17]. In this paper, we focus on algorithms that
solve SFM to high accuracy with a polynomial query
complexity, meaning that they solve the problem with
a number of queries to an evaluation oracle that scale
weakly-polynomially (poly(n, log(|f |/✏))) [GLS81] or
strongly-polynomially (poly(n)) [GLS84], [GLS88].1
Current state-of-the-art SFM algorithms in these
regimes are weakly-polynomial eO(n2 log(n|f |/✏))-
query, polynomial-time algorithms [KTE88], [NN89],
[Vai89], [BV04], [LSW15], [JLSW20], strongly-
polynomial eO(n3)-query, polynomial-time algorithms
[LSW15], [DVZ21], [Jia22], and a strongly-polynomial

1When f is integer valued, any ✏ < 1 approximate solution
is optimal; a variety of the prior work consider only this setting.
Throughout the paper we do not distinguish between prior work which
consider exactly solving SFM integer valued f (with a dependence on
|f |) and those that work in the more general setting we consider in
this paper.
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eO(n2)-query, exponential-time algorithm [Jia22] (see
Section I-C for more details)2.

On the hardness side, however, the current state-
of-the-art lower bounds exclude algorithms making
fewer than ⌦(n log n) queries in the strongly-polynomial
regimes [CGJS22] and fewer than ⌦(n) queries in the
weakly-polynomial regime [Har08], [CLSW17]. Conse-
quently, there are large, ⌦(n) gaps, between these lower
bounds and the best known upper bounds. Unfortunately,
obtaining nearly-linear (or provably near-optimal) query
complexity algorithms for SFM has been elusive.

In light of these developments, it is natural to
ask, what additional structural assumptions may be
needed to enable faster algorithms? One recent line
of work has explored the complexity of decomposable
SFM [JBS13], [NJJ14], [EN15], [ENV17], [KBP19],
[AKM+21], [DJL+22], that is the special case where
f(S) =

P
i
fi(S \ Ti) for submodular fi and sparse Ti

given an oracle for evaluating the individual fi over Ti.
A different line of work [CLSW17], [ALS20] considers
the complexity of approximate SFM when the minimizer
is k-sparse, which we refer to as k-sparse SFM for
brevity.3 We refer to an SFM algorithm as approx-
imate, if its query complexity is pseudo-polynomial,
i.e., O(poly(n, |f |/✏)). The state-of-the-art approximate
k-sparse SFM algorithm has a query complexity of
eO(k(|f |/✏)2), when f is integer valued and ✏ < 1.

In both of these cases, sparsity plays a prominent role.
In the specific context of SFM, while various polyhedral
and geometric properties of submodular functions have
been extensively studied and heavily exploited since
the 1970s [Edm70], these properties are mostly global,
involving the entire set V altogether. On the other hand,
assuming k-sparsity of the minimizer allows one to take
a glimpse into local properties of submodularity, e.g., to
understand the role a small number of elements play for
the minimization of the function.

Moreover, sparsity of the minimizer is a natural as-
sumption in convex optimization and submodular func-
tion minimization problems. In particular, sparsity arises
in signal processing, feature selection, compressed sens-
ing, etc. where the solution is often expected to be sparse,
i.e., have a small number of non-zero elements [Don06],
[MAH+12], [LWR20]. Sparsity is also common in cases
where a regularizer is added to the objective function
to encourage sparsity. One example of such a setup is
the problem of finding an optimal dataset for speech

2Throughout the paper we use eO(·) to hide O(poly(logn)) factors.
3This problem is distinct from that of computing the minimum value

k-sparse set for a submodular function.

recognition tasks [LB11]. This problem can be written
as f(S) + �|S|, where f is a submodular objective, and
therefore it is expected that the size of the minimiz-
ing set is much smaller than the ground set for large
values of the regularization coefficient �. Consequently,
understanding how the complexity of algorithms depends
on the sparsity leads to better insight into more refined
combinatorial and geometric structures of the problems.
Therefore, the central question we ask in this paper is:

Can we leverage sparsity to improve upon
state-of-the-art polynomial query complexities?

k-sparse SFM is also interesting in light of recent work
[BS20] seeking to clarify the parallel depth of SFM, i.e.,
the number of parallel rounds of queries to the evaluation
oracle required for a query-efficient algorithm. The state-
of-the-art parallel depth lower bounds are ⌦(n/ log n)
in the strongly-polynomial regime [CGJS22], which
matches the upper bound in [Jia22] up to a factor of
log2 n, and e⌦(n1/3) in the weakly-polynomial regime
[CCK21]. These polynomial parallel depth lower bounds
crucially rely on the minimizers being dense for the
constructed submodular functions, and highly parallel
algorithms might be possible when the submodular func-
tion admits a sparse minimizer. Therefore, we also ask:
Can we improve the parallel complexities for k-sparse
SFM? Besides being interesting from an algorithmic
perspective, obtaining improved parallel algorithms for
k-sparse SFM could aid lower bound development by
showing how hard-instances for lower bounds must have
dense minimizers.

A. Challenges and Additional Motivations
Beyond intrinsic interest in improving the complexity

of k-sparse SFM, this problem is also an interesting
testbed for new techniques and a number of larger open
problems on SFM. Here we briefly elaborate on these
challenges and motivations for studying k-sparse SFM.

State-of-the-art SFM algorithms typically leverage the
Lovász extension [Lov83] of f , a convex function f̂ :
[0, 1]V ! R that agrees with f on the hypercube’s
vertices, i.e., f̂(~1S) = f(S) for all S ✓ V . It is
known that f̂ can be evaluated efficiently and minimiz-
ing f̂ suffices for SFM. Consquently, SFM algorithms
can be readily obtained by applying convex optimiza-
tion methods to the Lovász extension. Indeed, state-
of-the-art weakly-polynomial SFM algorithms [LSW15],
[JLSW20] follow this approach by using cutting plane
methods, a class of weakly-polynomial convex opti-
mization methods, to obtain ✏-approximate minimizers
in eO(n log(1/✏)) parallel rounds of eO(n) queries per
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round. State-of-the-art strongly-polynomial SFM algo-
rithms [LSW15], [DVZ21], [Jia22] carefully apply these
weakly-polynomial cutting plane methods iteratively.

With the k-sparsity assumption on the solutions, a
natural approach would be to apply these continuous
optimization methods to minimize f̂ over S

V

k

def
= �V

k
\

[0, 1]V , where �V

k

def
= {x 2 RV

�0| kxk1  k} is the
interior of the simplex scaled up by k; this suffices
for k-sparse SFM since ~1S⇤ 2 S

V

k
for the k-sparse

minimizer S
⇤ ✓ V . Unfortunately, while changing

the domain from [0, 1]V to S
V

k
is known to improve

the performance of certain pseudo-polynomial convex
optimization methods (as in [CLSW17], [ALS20]), it
is not known to improve the performance of weakly-
polynomial convex optimization algorithms (e.g., state-
of-the-art cutting plane method [JLSW20]) by more than
logarithmic factors. Furthermore, without using more of
the structure f̂ it seems unlikely that this change of
domain would affect the weakly-polynomial complexity
by more than logarithmic factors, since one could scale
a hard convex optimization problem to fit inside S

V

k

without changing problem parameters by more than a
polynomial factor.

These challenges call for the development of new
optimization techniques that better utilize structures of
the Lovász extension and sparsity of the domain, which
might lead to applications for a broader range of open
problems on SFM. We note several of these additional
motivations below.

a) Strongly-polynomial time O(n3�c)-query algo-
rithm for SFM: One of the most important motivations
is towards improving strongly-polynomial time SFM
algorithms. The current best query complexity here is
O(n3 log log n/ log n) given in [Jia22], but this approach
seems unlikely to provide further improvement given the
stagnation of progress on obtaining a better approxima-
tion factor for the shortest vector problem, on which the
algorithm in [Jia22] crucially relies.

Other state-of-the-art strongly-polynomial time SFM
algorithms with eO(n3) query complexities in [LSW15],
[DVZ21] learn precedence constraints of the form, if
p 2 V is in a minimizer then so is q (e.g., [IFF01],
[IO09], [LSW15], [DVZ21]). In the worst case, these
algorithms might make eO(n2) queries to learn only a
single coordinate that must be in a minimizer (or not), or
for many coordinates p 2 V a single q 2 V that must be
in any minimizer containing p. This worst-case behavior
is a key barrier towards obtaining strongly-polynomial
time algorithms with O(n3�c) query complexities for
constant c > 0. However, this worst-case behavior

is sparse, and k-sparse SFM algorithms which better
exploit local properties of submodular functions might
be useful to get around the aforementioned barrier in
this case and lead to a smaller query complexity.

b) SFM versus continuous optimization: Given
the challenges of adapting weakly-polynomial convex
optimization algorithms to leverage sparsity, obtaining
weakly- and strongly-polynomial algorithms for k-sparse
SFM could highlight differences between general convex
optimization and SFM. Consequently, k-sparse SFM is
a natural proving grounds for designing SFM algorithms
that go beyond using the boundedness and convexity of
the Lovász extension.

c) Combinatorial algorithms and iteration costs:
The use of cutting plane methods in state-of-the-art SFM
algorithms comes with certain inherent costs. Key among
them is that all known cutting plane methods apply
general linear system solvers or matrix multiplication
methods, making these methods somewhat intrinsically
non-combinatorial. This is inherent as ultimately the
problems they solve are more general than that of solving
arbitrary linear systems.

Since, as argued above, obtaining better query com-
plexities for weakly- and strongly-polynomial k-sparse
SFM suggests departing from cutting plane methods,
the problem could be an interesting one to see where
more combinatorial methods or ones with lower iteration
costs can shine. State-of-the-art pseudo-polynomial SFM
algorithms leverage optimization machinery which does
not use linear system solves and correspondingly have
runtimes that are within polylogarithmic factors of their
query complexity [CLSW17], [ALS20]. Though there
have been efforts in using alternative optimization meth-
ods to solve SFM, e.g., [DVZ21], the query complexities
of such methods are much higher than the state-of-the-
art. Correspondingly, k-sparse SFM is an interesting
setting to see whether such methods can outperform
cutting plane methods.

B. Our Results

Our main results include two algorithms which im-
prove, respectively, the parallel depth and query com-
plexities of polynomial-time k-sparse SFM algorithms.

a) Parallel depth for k-sparse SFM: In the parallel
model for SFM (in the weakly-polynomial regime), the
algorithm can submit up to poly(n, log(|f |/✏)) parallel
queries to the evaluation oracle in each round, and its
parallel depth is defined to be the number of rounds
needed to find the minimizer in the worst case. Our main
result for this model is the following theorem.
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Theorem I.1 (Parallel k-sparse SFM). There is a de-
terministic parallel algorithm for k-sparse SFM with
parallel depth eO(k7 · log(|f |/✏)) and runtime eO(n2 ·
k
7 log(|f |/✏) · EO+ poly(n) · log(|f |/✏)).

When the sparsity k = eO(1), the parallel depth in
Theorem I.1 is eO(1). To the best of our knowledge, this
is the first nearly-constant parallel depth result for SFM,
beyond the trivial n

k-query algorithm that queries all
k-sparse sets in a single round (which does not have
polynomial query complexity whenever k = !(1)).

Our result is in stark contrast to the best known
weakly-polynomial parallel depth of eO(n) for general
SFM [LSW15]. It is important to emphasize here that
eO(1)-sparsity is also necessary for obtaining a nearly-
constant parallel depth. The work of [CCK21] implies
that e⌦(k1/3) parallel depth is required for any weakly-
polynomial algorithm for k-sparse SFM.

b) Query complexity for k-sparse SFM: While the
algorithm in Theorem I.1 achieves a nearly-constant
parallel depth when the sparsity is nearly-constant, even
in this setting its query complexity is ⌦(n2). In light of
the question of designing SFM algorithms with nearly-
linear query complexity, our second main result is a pair
of algorithms which improve the weakly- and strongly-
polynomial query complexities for k-sparse SFM. (It re-
mains open as to whether the parallel depth of strongly-
polynomial k-sparse SFM can be similarly improved.)

Theorem I.2 (Weakly-polynomial k-sparse SFM). There
is a randomized algorithm that outputs an ✏-approximate
minimizer for k-sparse SFM whp. in eO((n·poly(k)·EO+
poly(n)) log(|f |/✏)) time.

Theorem I.3 (Strongly-polynomial k-sparse SFM).
There is a randomized algorithm that outputs an exact
minimizer for k-sparse SFM whp. in eO(n·poly(k) ·EO+
poly(n)) time.

We include both theorems above because the poly(k)
in Theorem I.2 is slightly better than that in Theorem I.3
(see full version for more details). The algorithms in
Theorems I.2 and I.3 have nearly-linear query com-
plexities when the sparsity k = eO(1). Previously, the
only nearly-linear weakly-polynomial query complexity
results for SFM were obtained when the submodular
function f can be decomposed as f(S) =

P
i
fi(S) and

each fi depends only on eO(1) coordinates [AKM+21],
[DJL+22]. However, this is different and the techniques
for solving it seem tailored to its structure.

Our algorithms for Theorems I.1-I.3 depart from the
use of cutting plane methods and do not rely on linear

system solves as a sub-procedure. In this sense, they
are more combinatorial than state-of-the-art weakly-
polynomial time [LSW15], [JLSW20] and strongly-
polynomial time SFM algorithms [LSW15], [DVZ21],
[Jia22]. Somewhat surprisingly, our algorithms combine
first-order methods, which have been primarily used for
pseudo-polynomial SFM algorithms (e.g., [CLSW17],
[ALS20]), and arc finding, a technique central to many
strongly-polynomial SFM algorithms (e.g., [LSW15],
[DVZ21]), to obtain very efficient weakly- and strongly-
polynomial time algorithms. Previous combination of
these two techniques only appeared in [DVZ21], but the
resulting algorithm has query complexity and parallel
depth at least a factor of n

2 larger than the state-
of-the-art algorithms based on cutting plane methods.
The proofs of Theorems I.2 and I.3 additionally invoke
various sampling techniques, which crucially allows us
to save the additional factor of n from querying an entire
subgradient of the Lovász extension in each iteration.

C. Related Work
SFM is a central combinatorial optimization problem

with extensive applications. The problem of maximizing
a submodular function has also been widely studied, but
is very different and has seemingly different structure,
algorithms, and history (see, e.g., [KG14] for a survey
on this topic).

a) Strongly-, weakly-, and pseudo- polynomial al-
gorithms for SFM: As discussed in the intro, a fun-
damental result for SFM is that it can be solved ef-
ficiently, in all three regimes of weakly-, strongly-,
and pseudo-polynomial. The first weakly- and strongly-
polynomial time SFM algorithms were given in the sem-
inal work of Grötschel, Lovász, and Schrijver [GLS81],
[GLS84], [GLS88]. The first pseudo-polynomial algo-
rithm for SFM was given in a seminal work of Cun-
ningham [Cun85]. Since then, there has been a long
line of work on designing better algorithms for SFM
in all three regimes [Sch00], [IFF01], [FI03], [Iwa03],
[Vyg03], [Orl09], [IO09], [CJK14], [LJJ15], [LSW15],
[CLSW17], [DVZ21]. The state-of-the-art algorithms for
these regimes are shown in Table I.

b) Parallel SFM: For the parallel complexity
of SFM discussed earlier in the intro, the cur-
rent best weakly-polynomial algorithm has parallel
depth O(n log nM) [LSW15] and the current best
strongly-polynomial algorithms [Jia22] have paral-
lel depth O(n log n) (with exponential runtime) or
O(n2 log log n/ log n) (with polynomial runtime). In
concurrent work [CGJS23], a superset of the authors
give a eO(n1/3

/✏
2/3)-round poly(n)-time algorithm for
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Paper Year Running Times Remarks

[JLSW20] 2020 O(n2 lognM · EO+ n
3 lognM) current best weakly &

O(n3 log2 n · EO+ n
4 log2 n) strongly runtime

[ALS20] 2020
eO(nM2 · EO+ poly(n)) current best pseudo-poly
eO(kM2 · EO+ poly(n)) current best sparse pseudo-poly

[Jia22] 2021 O(n3 log logn/ logn · EO+ poly(n)) current best strongly
O(n2 logn · EO+ exp(n)) query complexity

TABLE I: State-of-the-art weakly-, strongly-, and pseudo-polynomial algorithms for submodular function mini-
mization. k is the sparsity and parameter M = |f |/✏.

obtaining an ✏-approximate minimizer, and a 2-round
n
O(M)-time algorithm for computing an exact mini-

mizer. As discussed in the intro, lower bounds for paral-
lel SFM have also been studied recently (see Table II).

Paper Year Parallel Depth Accuracy
[BS20] 2020 ⌦(logn/ log logn) exact

[CCK21] 2021 e⌦(n1/3) |f |/poly(n)
[CGJS22] 2022 ⌦(n/ logn) exact

TABLE II: Parallel depth lower bounds for query-
efficient SFM. In the “Accuracy” column, “exact” means
the algorithm is required to compute an exact minimizer,
and “|f |/poly(n)” means the algorithm is allowed to out-
put any approximate minimizer with an additive accuracy
of |f |/poly(n).

c) Structured SFM: Given the aforementioned
nearly n-factor gap between the state-of-the-art query
complexity upper and lower bounds for SFM, there have
been exciting recent results on improving the query com-
plexity of SFM assuming more fine-grained structures of
the submodular functions. In particular, for the problem
of decomposable SFM discussed prior to Section I-A, it
is known that f can be minimized in weakly-polynomial
time using eO(n) total queries to the evaluation oracles
of each individual fi [AKM+21], [DJL+22].

II. OUR APPROACH

Here we provide an overview of our approach towards
proving Theorems I.1-I.3. We first give some context and
motivation, and then we cover the key components of our
approach in Sections II-A-II-C.

To situate our approach, recall that previous state-of-
the-art weakly- and strongly-polynomial time SFM algo-
rithms all apply the general continuous optimization tool
of cutting plane methods [Lev65], [New65], [Sho77],
[YN76], [Kha80], [KTE88], [NN89], [Vai89], [BV04],
[LSW15], [JLSW20]. Cutting plane methods are known
to compute ✏-approximate minimizers of bounded con-
vex functions on Rn in eO(n log(1/✏)) iterations where
each iteration consists of a subgradient computation,

which typically takes eO(1) depth, O(n) queries to
the evaluation oracle of f , and ⌦(n2) additional work
[JLSW20] involving linear algebraic operations such as
a linear system solve.

In this paper we seek to improve upon these methods
for k-sparse SFM both in terms of performance and to
avoid general linear algebraic primitives (to obtain, in
some sense, a more combinatorial algorithm). However,
as discussed in Section I-A, it is unclear how to sub-
stantially improve cutting plane methods just using the
assumption that their is a sparse optimal solution.

Consequently, we depart from previous state-of-the-art
weakly- and strongly-polynomial SFM algorithms and
instead use first-order methods4 such as mirror descent
(see Section 4.2 in [B+15]) and (stochastic) follow-the-
regularized-leader (referred to as “lazy mirror descent”
in Section 4.4 of [B+15]) to minimize the Lovász exten-
sion. These methods have performance depending more
on problem geometry, e.g., the domains B

V
1 versus S

V

k
,

than cutting plane methods. Also, implementing them
often does not require linear system solves and therefore
they typically have much smaller iteration costs.

Unfortunately, these desirable features of first-order
methods have a cost. In contrast to cutting plane meth-
ods, when applied to non-smooth convex objectives like
the Lovász extension, their convergence rate depends
polynomially on the accuracy rather than polyloga-
rithmically. Therefore, it is natural to use such meth-
ods for pseudo-polynomial SFM algorithms [CLSW17],
[ALS20], but less clear how to leverage them to obtain
improved weakly- or strongly- polynomial SFM algo-
rithms.

Fortunately, recent advances in weakly- and strongly-
polynomial SFM algorithms provide hope for overcom-
ing this limitation. Work of [LSW15], [DVZ21] provide
different ways to incorporate learned precedence con-

4Technically speaking, cutting-plane methods also only use first-
order information. However, following the conventions of the optimiza-
tion literature, we do not refer to cutting plane methods as first-order
methods.
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straints, i.e., if an element is in a minimizer then what
other elements must also be in that minimizer, to reduce
the scale of the problem. For example, [DVZ21] showed
that it suffices to solve SFM approximately to a relative
accuracy of O(1/n3), in a primal-dual sense, repeatedly
to obtain a strongly-polynomial algorithm for SFM.

Despite the above hope for improving k-sparse SFM
via first-order methods, there are a number of natural
hurdles in the way. For example, the O(1/n3)-error
requirement in [DVZ21] is prohibitively expensive for
first-order methods to outperform cutting plane methods.
Additionally, learning and updating precedence con-
straints need to be made sufficiently efficient.

Nevertheless, we are able to follow this broad ap-
proach by introducing and leveraging a central con-
cept of this paper we call sparse dual certificates (see
Section 4.3 in the full version for more details). In
particular, we demonstrate how to carefully apply first-
order methods to 1/poly(k)-accuracy to compute sparse
dual certificates and, building upon [DVZ21], how these
certificates can be used to efficiently deduce precedence
constraints. Our parallel and sequential algorithms differ
in their specific implementations of these strategies. We
believe the notion of sparse dual certificates and our
algorithmic techniques for computing and using them
for k-sparse SFM might have broader applications to
improving weakly- or strongly- polynomial time SFM
algorithms.

a) Section organization: To illustrate our approach
and our key insights, we subdivide the remainder of
this section. In Section II-A, we provide the general
framework we use to iteratively decrease the scale of the
k-sparse SFM problem. Section II-B and Section II-C,
we provide the key ideas in our parallel and sequential
algorithms respectively.

A. Framework
Building on a long line of work [IFF01], [IO09],

[LSW15] (and in particular, [DVZ21]), our algorithms
for minimizing a submodular function f : 2V ! R
works by maintaining a set of precedence constraints
indicating elements that must or must not be in any k-
sparse minimizer, as well as for each p 2 V a set of
elements Sp that must be in any k-sparse minimizer S⇤

containing p. We call these precedence constraints arc
constraints5 and their collection a ring family.

Given these arc constraints, we consider an induced
submodular extension f

] consistent with the ring family.

5Our definition of arc constraints is only with respect to k-sparse
minimizers and is therefore different from the standard one in the
literature. See Section 4.1 in the full version for more details.

f
] is essentially the complement of a submodular exten-

sion studied in [DVZ21]; it is crucial that we work with
f
] since sparsity is not preserved under complements.

The extension f
] has many desirable properties. For

example, minimizing f
] suffices for minimizing f and

any arc constraints learned for f
] apply to f . Beyond

consistency and submodularity, the key property we use
about f ] is that the marginal vector6

u 2 RV defined as
up

def
= f

]({p}) � f
](;) for any coordinate p 2 V does

not increase as we add arc constraints.
By maintaining the ring family and the extension f

],
and leveraging their properties, k-sparse SFM reduces to
the problem of learning new arc constraints so that we
can either

1) decrease the scale of kuk1 by more than a constant
factor, or

2) learn enough arc constraints so that the k-sparse
minimizer is clear.

In particular, if kuk1  "/|V |, then due to submodular-
ity the largest set consistent with every arc constraint
will be an "-approximate minimizer for the original
submodular function. Note how k-sparsity helps for our
purposes: if the set of elements Sp that must be in
every k-sparse minimizer containing p has more than k

elements, then p cannot be in any k-sparse minimizer and
can therefore be discarded. This allows us to maintain at
most k arc constraints from any element p 2 V , which
significantly decreases the cost of manipulating the arc
constraints and the submodular extension f

].
In both our parallel and sequential settings, we use

kuk1 as a potential function and design efficient parallel
and sequential subprocedures to find arc constraints to
decrease kuk1 by a constant factor. Each setting has
its distinct challenges and our techniques differ corre-
spondingly. However, there is one common technique
underlying these two different implementations, based
on the notion of a sparse dual certificate (see Section
4.3 in the full version for details).

a) Sparse dual certificates: Sparse dual certificates
are generalizations of standard dual solutions to SFM
[Edm70] that better capture the sparsity assumptions on
the minimizers of the submodular function. In our frame-
work, sparse dual certificates bridge the gap between the
task of finding arc constraints and the pseudo-polynomial
convergence rate of first-order methods. In particular, we
show how to use sparse dual certificates to deduce arc
constraints (see Section 4.3 in the full version). We also

6The formal notation we define and use for the marginal vector in
Section 3 of the full version is uf] . Here we drop the subscript and
use u instead for simplicity.
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develop various algorithmic techniques to compute these
certificates by running first-order methods up to only
1/poly(k) accuracy (see Sections 5 and 6 respectively in
the full version for our parallel and sequential algorithms
for computing sparse dual certificates).

B. Parallel Algorithm
To motivate our parallel algorithm, consider minimiz-

ing the Lovász extension f̂ of the induced function
f
] : 2V ! R with a k-sparse minimizer and let

f
⇤ def

= minS✓V f
](S) = minS✓V f(S). As discussed

above, it suffices to learn arc constraints so that we can
decrease kuk1 by a constant factor after updating the
ring family. We may assume that minp2V up � 0 as
by submodularity adding any p with up < 0 to any
set decreases its value and therefore p must be in every
minimizer.

As a warm-up for this goal, perhaps the first natural
question is: under these assumptions how efficiently
can we compute a � kuk1-approximate minimizer for
a given � = 1/poly(k)? The question of deducing arc
constraints seems harder than this problem since it in-
volves proving something about all k-sparse minimizers
at that accuracy threshold. For this warm-up question,
let us even assume for now that f

⇤ � �⌦(kuk1), as
the problem is in some sense easier otherwise and will
be addressed towards the end of this subsection.

A natural approach to this warm-up problem, as al-
luded to earlier, is to apply standard first-order methods
such as mirror descent to the Lovász extension f̂ of f

]

over the domain S
V

k
. By submodularity, u entrywise

upper bounds the subgradients of f̂ . If somehow the
subgradients were also entrywise lower bounded by
�kuk1, then standard analysis of mirror descent with
an entropy regularizer (see Theorem 4.2 of [B+15])
applied to f̂ over S

V

k
would compute an � kuk1-

approximate minimizer in eO(��2) iterations. Further-
more, since each iteration of this method can be imple-
mented in O(1) depth, this would yield a eO(��2) depth
algorithm as desired.

Unfortunately, it is not necessarily the case that every
subgradient of f̂ is entrywise lower bounded in magni-
tude by �kuk1. In fact, its most negative entry can be
as negative as f⇤�(n�1) kuk1, ruling out showing that
mirror descent converges in eO(poly(k, ��1)) iterations.

To overcome this issue, we show that the structure
of k-sparse solutions allows us to truncate subgradients.
We prove that if we run mirror descent methods with
every subgradient coordinate of value  f

⇤ � k kuk1
set to f

⇤ � k kuk1, then this still approximately min-
imizes the Lovász extension f̂ and computes sparse

dual certificates. Running mirror descent with these
truncated subgradients yields a deterministic algorithm
which computes a � kuk1-approximate minimizer in
eO(poly(k)/�2) depth and eO(n · poly(k)/�2) evaluation
oracle queries.

The solution to this warm-up problem is the key in-
gredient in our parallel algorithm. In particular, assuming
f
⇤  �kuk1, we show that the sparse dual certificate

obtained by running the warm-up algorithm over S
k+1
V

with accuracy O(kuk1/k) suffices to conclude an el-
ement that must be in every k-sparse minimizer, i.e.,
a dimensionality reduction. As dimensionality reduction
can occur at most k times, this gives a eO(poly(k))-depth
eO(n · poly(k))-query algorithm.

On the other hand, when f
⇤ � �kuk1, then we

consider each of the induced submodular functions fp

where an element p is always included and run the same
algorithm on each such function. Note that each fp, once
shifted to evaluate 0 at the new emptyset (or the singleton
{p}), has minimum value �⌦(up). Consequently, when
this is done for p with up near kuk1, the procedure finds
an element which must be in any k-sparse minimizer
containing p. Importantly, this can be done in parallel for
each individual p! This conveys the main ideas behind
the parallel algorithm.

C. Sequential Algorithm
In the previous section we outlined the main ideas of

our parallel algorithm in Theorem I.1. Unfortunately, that
algorithm has a rather high query complexity. In every
round of decreasing kuk1, the algorithm might solve n

different induced SFM problems, corresponding to the
inclusion of each element p 2 V , causing the query
complexity to scale quadratic in n instead of linear.

In the literature on using ring families for weakly- and
strongly-polynomial SFM, there is a standard technique
for alleviating the need to apply the algorithm to n

different SFM problems to deduce arcs. In [LSW15],
[DVZ21] and early SFM algorithms (see [LSW15] for
a discussion of the history), the algorithm obtains a
suitable dual certificate for the original function. This
dual certificate is then modified by moving individual
elements to the start of each permutation, and it is argued
that this modification can be used to deduce arcs. In other
words, rather than running n optimization methods to
deduce n dual certificates, these methods deduce one set
of dual certificates and consider n different modifications
of it.

In our sequential algorithm we follow a similar ap-
proach, but it brings about a variety of challenges, each
of which requires algorithmic and analytic insights to
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overcome. The first challenge is that truncated subgra-
dients, which are used in our parallel algorithm, do
not seem amenable to this technique; it is unclear how
to deduce arcs just by moving elements to the front
after the truncation, which may lose critical information
that makes this work. [LSW15], [DVZ21] consider the
elements of the dual certificate that decrease significantly
when moving a certain element to the start of each per-
mutation. However, truncation does not seem to allow for
a similar approach, as all components that are negative
past a threshold are truncated to the same value.

To overcome this challenge, we provide a first-
order method for computing ✏-approximate minimizers
(and their associated sparse dual certificates) using true
(rather than truncated) subgradients. As discussed in
Section II-B, this is difficult as the entries of the subgra-
dient can vary by ⌦(n kuk1). Correspondingly, standard
analysis of iterative first-order methods, e.g., mirror
descent and FTRL (Follow-the-Regularized-Leader), re-
quire ⌦(n2) iterations, which would naively make a pro-
hibitive ⌦(n3) queries! It is therefore imperative that we
use a different technique (other than truncation as in the
parallel setting) to either reduce the number of iterations
or the cost per iteration; we do both. In particular, we
use stochastic FTRL7 (Follow-the-Regularized-Leader)
where in each iteration we sample a random 1-sparse
unbiased estimator of the subgradient. We show how this
can be implemented using eO(1) evaluation queries per
iteration and that the total number of iterations is suitably
bounded.

Making the above approach work requires a number
of insights. First, the number of iterations of stochastic
FTRL is straightforwardly boundable in terms of the
square of the `1 norm of the stochastic estimates of
the subgradient (analogous to as it was done for mirror
descent in the parallel setting). However, unfortunately
any sampling scheme in the worst case could have an
`1-norm of ⌦(n kuk1), again leading to ⌦(n2) itera-
tions. To get around this, we instead perform a more fine-
grained analysis of the convergence of FTRL in terms
of “local norms” (see Section 6.1 in the full version for
details). This is a known optimization method analysis
technique and our analysis is inspired from and perhaps
most closely resembles [CJST19]; this technique was
not used in previous work on SFM that uses sampling
[CLSW17], [HRRS19], [ALS20].

The next challenge is to actually implement sampling
using eO(1) queries per iteration so that the local norms

7We choose stochastic FTRL rather than stochastic mirror descent
to facilitate the attainment of with high probability success guarantees.

of the samples are suitably small. Sampling i 2 V with
probability proportional to |(gxt)i| and then outputting
sign(gxt)i · kgxtk1 would have the desired local norm
bound. Additionally, sampling by this is essentially what
is done in some of the sampling-based SFM methods
[CLSW17], [HRRS19], [ALS20] (albeit for a different
norm analysis particularly relevant for pseudopolynomial
SFM algorithms). However, these papers implement this
sampling by somewhat complex dynamic data structure
which could be challenging to analyze in our setting.
Instead, we provide a simple straightforward sampling
procedure which we call vSampling. This sampling
scheme picks i 2 V proportional to an upper bound vi

for |(gxt)i| so that
P

i2I
vi for consecutive coordinates I

can be evaluated using only O(1) queries. This sampling
can be implemented using O(log n) queries by a simple
(static) binary tree data structure and we prove it has the
desired expected local-norm bounds.

Another challenge we face is that our stochastic
FTRL analysis merely yields a subgradient y that is
a suitable dual certificate in expectation, whereas we
need the guarantee to hold with high probability in
order to correctly deduce arc-constraints. To this end,
we show that kyk1 is small with high probability8, and
apply the Azuma-Hoeffding concentration inequality for
martingales to show that averaging over poly(k) such
subgradients yields a suitable dual certificate with high
probability. Showing that no entry of y is too negative
carries much of the difficulty in the analysis. For this
step, we apply a novel analysis of our optimization
method, which uses submodularity structure and couples
the iterates of FTRL with iterates of an instantiation
of the multiplicative weights algorithm. For details see
Section 6.1 of the full version.

The above method computes an implicit representation
of eO(n · poly(k)) permutations such that the average of
the subgradients they induce is a dual certificate of SFM
from which either arcs or coordinates in the minimizer
can be deduced. However, naively writing down the
gradients that average out to the certificate would require
⌦(n2)-queries. Furthermore, deducing an arc for a single
coordinate, through the operation of moving a set of
elements to the beginning of each permutation (which we
often refer to as move-to-front for simplicity), would also
naively require ⌦(n2)-queries, which is prohibitively ex-
pensive. To overcome this limitation, we provide efficient
methods to sample from these permutations and their
associated subgradients. More specifically, we design a

8Throughout this paper, with high probability means that the prob-
ability is 1� n

�C for some constant C > 0.
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method which first draws eO(n · poly(k)) samples from
the subgradients as a preprocessing step, and then uses
the samples to deduce several arcs. The preprocessing
step enables an efficient implementation of the move-
to-front operations due through an importance sampling
technique. Each arc deduced requires eO(poly(k)) addi-
tional samples. For more details, see Section 6.3 of the
full version.

This summarizes the main ingredients for obtaining
our eO(n · poly(k) log(|f |/✏))-query result. Somewhat
surprisingly, a more careful amortized cost analysis re-
veals that this algorithm is in fact a strongly-polynomial
time algorithm that makes eO(n · poly(k)) queries. This
stems, partially, from a more fine-grained analysis of the
size of subgradients and how many arcs are deduced
each time we compute an ✏-approximate minimizer (and
its corresponding dual certificate).

This discussion omits a variety of details which are
deferred to the full version. The use of randomness and
the loss of parallelism in this sequential algorithm is
interesting and we leave it as an open problem to see to
what degree a deterministic eO(poly(k) log(1/✏))-depth
and eO(n · poly(k) log(1/✏))-work weakly-polynomial
time algorithm (and a strongly-polynomial time analog)
can be achieved.
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[DVZ21] Daniel Dadush, László A. Végh, and Giacomo Zambelli.
Geometric rescaling algorithms for submodular function
minimization. Mathematics of Operations Research,
46(3):1081–1108, 2021.

[Edm70] Jack Edmonds. Submodular functions, matroids, and
certain polyhedra. Edited by G. Goos, J. Hartmanis, and
J. van Leeuwen, page 11, 1970.

[EN15] Alina Ene and Huy Nguyen. Random coordinate descent
methods for minimizing decomposable submodular func-
tions. In International Conference on Machine Learning,
pages 787–795. PMLR, 2015.

[ENV17] Alina Ene, Huy Nguyen, and László A Végh. Decom-
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