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Abstract—For any norms Ni,...,Ny on R" and N~(x) =
N1(x)+- -+ Ny (x), we show there is a sparsified norm N(x) =
wiN1(x)+- - -+wy Ny (x) such that [N(x)—N(x)| < eN(x) for all
x € R", where wy, ..., w;, are non-negative weights, of which
only O(e2nlog(n/e)(logn)>°) are non-zero. Additionally, we
show that such weights can be found with high probability in
time O(m(log 7)) +poly(n))T, where T is the time required
to evaluate a norm N;(x), assuming that N(x) is poly(n)-
equivalent to the Euclidean norm. This immediately yields
analogous statements for sparsifying sums of symmetric
submodular functions. More generally, we show how to
sparsify sums of pth powers of norms when the sum is
p-uniformly smooth.!

Index Terms—Randomness in Computing

I. INTRODUCTION

Consider a collection Ni,..., N, : R" - R, of semi-
norms? on R” and the semi-norm defined by

N(x):= Ni(x)+ -+ Np(x).

It is natural to ask whether N can be sparsified in the
following sense. Given nonnegative weights w1, ..., wy,,
define the approximator N(x) := wiNi(x)+- - -+ Wy Ny (x).
We say that N is s-sparse if at most s of the weights {w;}
are non-zero, and that N is an e-approximation of N if it
holds that

IN(x) - N(x)| € eN(x), VxeR". (1.1)

A prototypical example occurs for cut sparsifiers of
weighted graphs. In this case, one has an undirected
graph G = (V, E, c) with nonnegative weights {c, : e € E},
with n = |V| and N(x) := },,peE Cuv|Xu — Xo|. A weighted
cut sparsifier is given by nonnegative edge weights {w, :
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e € E}. Defining N(x) := ¥,er WuoCuv|Xy—Xy|, the typical
approximation criterion is that

IN(x)-N(x)| < eN(x), Vxe{0,1}", (12

where x € {0,1}" naturally indexes cuts in G. A straight-
forward {; variant of the discrete Cheeger inequality
shows that (I.2) is equivalent to (I.1) in the setting of
weighted graphs.

Bencztr and Karger [BK96] showed that for every
graph G and every ¢ > 0, one can construct an s-sparse -
approximate cut sparsifier with s < O(e?nlogn). Their
result addresses the case when each N; is a 1-dimensional
semi-norm of the form N;(x) = ¢y, |x, —x»|. We show that
one can obtain similar sparsifiers in substantial generality.

Further, we show how to compute such sparsifiers
efficiently when the semi-norm N is appropriately well-
conditioned. Say that N is (r, R)-rounded if it holds that
rllx]lz < N(x) < R|x]2 for all x € ker(N)‘, where
ker(N) := {x € R" : N(x) = 0}.

Theorem 1.1. Consider a collection Ni,..., Ny, of semi-
norms on R" and N(x) := Ni(x) + -+ + Ny (x). For every
e > 0, there is an O(e %nlog(n/e)(logn)>>)-sparse e-
approximation of N. Further, if the semi-norm N is (r, R)-
rounded, then weights realizing the approximation can be
found in time O(m(logn)°® + n°W)(log(mR /1)) D Teya
with high probability if each N; can be evaluated in time Teya).

Application to symmetric submodular functions. A
function f : 2V — R, is submodular if

f(8U{oh)=f(S) > f(TU{w})-f(T),

A submodular function is symmetric if f(S) = f(V' \S) for
allSc V.

Consider submodular functions fi, ..., fi : {0, 1}V —
R, and denote F(S) := f1(S) + -+ - + fu(S). Given nonneg-
ative weights wy, ..., w,,, define 13(5) =wf1(S)+ -+
Wy fru(S). We say that F is an s-sparse e-approximation for F
if it holds that at most s of the weights {w;} are non-zero
and

VSCTCV,veV\T.

|F(S) — E(S)| < eF(S), VSCV.
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Motivated by the ubiquity of submodular functions in
machine learning and data mining, Rafiey and Yoshida
[RY22] established in this setting that, even if the f; are
asymmetric, for every ¢ > 0, there is an O(Bn?/&?)-sparse
e-approximation for F, where n := |V| and B is the
maximum number of vertices in the base polytope of
any f;. In the case B < O(1), their result is tight for
(directed) cuts in directed graphs [CKP*17].

However, for symmetric submodular functions, the
situation is better. For such functions f : 2V — R, with
f(@) = 0, the Lovész extension [Lov83] of f is a semi-
norm on RV (see Section III-B1). Therefore, Theorem 1.1
immediately yields an analogous sparsification result in
this setting. In comparison to [RY22], in this symmetric
setting, we have no dependence on B, and the quadratic
dependence on n improves to nearly linear.

Corollary 1.2 (Symmetric submodular functions). If
fioeeos fm: 2V > R, are symmetric submodular functions
with f1(0) = -+ = fu(0) =0, and F(S) := fi(S)+---+ fu(S),
then for every e > 0, there is an O(e~2nlog(n/¢)(log n)>°)-
sparse e-approximation of F where n = |V|.

Additionally, if the functions f; are integer-valued with
maXie[m),scv fi(S) < R, then the weights realizing the
approximation can be found in time O(mn(logn)°M +
poly(11))Teval log® P (mR), with high probability, assuming
each f; can be evaluated in time Teyal.

The deduction of Corollary 1.2 from Theorem I.1
appears in Section III-B1.

Sums of higher powers. In the setting of graphs, spectral
sparsification [ST11], a notion stronger than (I.2), has been
extensively studied. Given semi-norms Ny, ..., N, on R”,
define a semi-norm via their f-sum as

N(x)?:= Ni(x)> + - + Ny (x)?.

If wy,..., wy are nonnegative weights and N (x)? :=
w1 Ny (x)? + - - - + 0, Ny ()2, we say that N2 is an s-sparse
e-approximation for N? if it holds that at most s of the
weights {w;} are non-zero and

IN(x)? - N(x)?| < eN(x)*, VxeR". (13)

When G = (V,E,c) is a weighted graph and each
Ni(x) is of the form +/c,»|xy — x»| for some uv € E, (1.3)
is called an e-spectral sparsifier of G. In this setting, a
sequence of works [ST11], [SS11], [BSS12] culminates
in the existence of O(n/¢?)-sparse e-approximations for
every ¢ > 0. These results generalize [Rud99], [BSS14] to
the setting of arbitrary 1-dimensional semi-norms, where

Ni(x) = [{a1, X)|, ..., Niw(x) = Kam, ¥}, a1,...,
(L4)

We establish the existence of near-linear-size sparsifiers
for sums of powers of a substantially more general class

of higher-dimensional norms. Recall that a semi-norm N
on R” is said to be p-uniformly smooth with constant S if
it holds that

N(x+y)P + N(x —y)?
2

< N(x)P +N(Sy)*, x,yeR".

(L5)
Note that when N;(x) = |[{a;, x)|, then N is 2-uniformly
smooth with constant 1. We say that two semi-norms
Nx and Ny are K-equivalent if there is a number A > 0
such that Ny(z) < ANx(z) < KNy(z) for all z € R".
Every norm is 1-uniformly smooth with constant 1 by
the triangle inequality, so the next theorem generalizes
Theorem IL.1.

Theorem 1.3 (Sums of pth powers of uniformly smooth
norms). Consider p > 1 and semi-norms Ny, ..., Ny on R".
Denote N(x)P := Ni(x)? + -+ + Ny (x)?, and suppose that
for some numbers K, S > 1 the semi-norm N is K-equivalent
to a semi-norm which is min(p, 2)-uniformly smooth with
constant S. Then for every ¢ € (0,1), there is an O(s)-sparse
e-approximation to N¥ such that

Kg—zzp” (Syulog(n/e))” (logn)?

1<p<2
S <\ ko2 P2
S (252)" (o log(n /o) Glog P p > 2.

Above, we use P, < O(y/logn) [Kla23] to denote the KLS
constant on R" (see Theorem I1.3 below).

Note that for N(x) to be min(p, 2)-uniformly smooth
with constant O(S), it suffices that each N; is min(p, 2)-
uniformly smooth with constant S [Fig76]. To see
the relevance of this theorem in the case p = 2,
note that by John's theorem, every d-dimensional
semi-norm is Vd-equivalent to a Euclidean norm
(which is 2-uniformly smooth with constant 1). So if
A1, ..., A, € RPM and N1,...,Nm are arbitrary norms
on R4, then taking N;(x) := I\AI,-(Aix), we obtain an
O(de~2n(log(n/¢))*(logn)®)-sparse ¢-approximation to
N2, substantially generalizing the setting of (L4) (albeit
with an extra d(log(n/ €))°M factor in the sparsity).

Unlike in the setting of graph sparsifiers where spectral
sparsification is a strictly stronger notion (due to the
equivalence of (1.2) and (I.1)), the notions of approxi-
mation guaranteed by Theorem 1.1 and Theorem 1.3 for
p > 1 are, in general, incomparable. For example, even if
|Ax|l» ~ ||Ax]|» for all x € R", it is not necessarily true
that || Ax|1 ~ ||Ax]|| for all x € R".

Let us now discuss some consequences of Theorem 1.3.

a,, € R"Dimension reduction for £, sums. Fix 1 < p < 2 and

a subspace X C L with dim(X) = n. It is known that
for any ¢ > 0, there is a subspace X C f;f with d <
O(e72nlog(n)(loglog n)?) such that the {, norms on X



and X are (1 + ¢)-equivalent [Tal95]. For p = 1, this can
be improved to d < O(e™2nlogn) [Tal90].

Consider the following more general setting. Suppose
Z1,...,Zy are each p-uniformly smooth Banach spaces
with their smoothness constants bounded by S. Let us
write (Z1®- - -®Zy,)p for the Banach space Z = Z1®---@Z,,
equipped with the norm

1/p
Il == (11, + -+ + 11, )

Theorem 1.3 shows the following: For any n-dimensional
subspace X C Z and ¢ > 0, there are indicies 71,...,i7 €
{1,...,m} with d < O((S/e)2n(log(n/e))P (log n)**P/?)
and a subspace X ¢ (Ziy ® -+ ® Zj,)p that is (1 + ¢)-
equivalent to X. The aforementioned results for subspaces
of 7' correspond to the setting where each Z; is 1-
dimensional. The case p > 2 of Theorem 1.3 similarly
generalizes [BLMS89].

Application to spectral hypergraph sparsifiers. Consider
a weighted hypergraph H = (V,E, c), where {c. : e € E}
are nonnegative weights. To every hyperedge e € E, one
can associate the semi-norm N, (x) := /c, max, vee |Xy —
Xy|, and the hypergraph energy

N(x)? = Z N, (x)2.
e€E

Soma and Yoshida [SY19] formalized the notion of
spectral sparsification for hypergraphs; it coincides with
the notion of approximation expressed in (1.3). In this
setting, a sequence of works [SY19], [BST19], [KKTY21b],
[KKTY21a], [JLS23], [Lee23] culminates in the existence of
O(e2n(logn)?)-sparse e-approximations to N? for every
> 0.

One can obtain a similar result via an application of
Theorem 1.3, as follows. We can express each hyperedge
norm as N,(x) = ||AcX||l, Where A, : R" — rR()
is defined by (AcX)uo = x4 — x, for all {u,v} € (5).
The {- norm on R? is K-equivalent to the {1554 norm
with K = O(1), and the {, norm on R" is 2-uniformly
smooth with constant S < O(y/p) [Han56]. Applying
Theorem 1.3 with S < O(ylogn) and K < O(1)
yields O(e2n(log(n/¢))*(log n)*)-sparse e-approximators
in this special case, nearly matching the known results
on spectral hypergraph sparsification. Additionally, The-
orem 1.3 can be applied to give nontrivial sparsification
results in substantially more general settings, as the next
example shows.

Example 1.4 (Sparsification for matrix norms). Consider
a matrix generalization of this setting: X € R?, and
matrices Sq,...,S, with S; e R%*4 and Ty, ..., T, with
T; € R*™¢ . Define N;j(X) := ISi XTillop, where || - |lop
denotes the operator norm. Then the semi-norm given by

N(X) := (||SiX"_Fi||§p+~ <+ +]|Su X T ||?,)"/? can be sparsified
down to O((d/¢)*(log(d/¢))*(log d)f) terms. This follows
because the Schatten p-norm of an operator is 2-uniformly
smooth with constant O(/p) [BCL94], and for rank d
matrices, the Schatten p-norm is O(1)-equivalent to the
operator norm when p =< logd.

Further results and open questions for sums of squared
norms. The rank of a hypergraph H is defined as the
quantity r := maxccg |e|]. The best-known result for
spectral hypergraph sparsification is due to [JLS23],
[Lee23]: For every ¢ > 0, there is an O(e~2log(r)-n logn)-
sparse e-approximation to N2. In the full paper, we obtain
the following generalization.

Theorem L.5 (Sums of squares of ¢, norms). Consider a
family of operators {A; : R" — Rk : i € [m]}, and 2 <
Pi,---,Pm < p. Suppose that N1, ..., Ny, are semi-norms on
R"™ and that N;(x) is K-equivalent to ||A;x||,, for all i € [m].
Then for every ¢ > 0, there is an O((K3/¢)?>pnlog(n/e))-
sparse e-approximation to N2 where N(x)? := N1(x)?> +--- +
Ny (x)2.

In particular, if kq,...,k,; < r, then each ||Aix|w
is O(1)-equivalent to [|A;x||, for p < logr, and thus
Theorem L5 generalizes the aforementioned result for
spectral hypergraph sparsifiers. One should note that, for
any fixed p > 2, Theorem L5 is tight for methods based
on independent sampling, by the coupon collector bound.
(Although it is known that in some settings [BSS12] the
log(n) factor can be removed by other methods.)

It is a fascinating open question whether the assump-
tion of p-uniform smoothness can be dropped from
Theorem 1.3. In the full version, we show that it is possible
to obtain a non-trivial result for sums of pth powers of
general norms for p € [1,2].

Theorem 1.6 (General sums of pth powers). If Ny, ..., Ny,
are arbitrary semi-norms on R", 1 < p < 2, and N(x)? :=
Ni(x)P + -+ 4+ Ny(x)F, then for every & > 0, there is an
s-sparse e-approximation to NV with

sse? (n2_1/p log(n/e)(log n)'/? + nlog(n/e)’ (log n)2+”/2) .

Note that in the p = 2 case, applying Theorem 1.3
directly for K = v/n,S = 1,p = 2 results in a worse
sparsity bound of O(e=2n?log(n/¢)*(logn)?).

II. IMPORTANCE SAMPLING FOR GENERAL NORMS

Let us now fix semi-norms Ni,...,N, on R" and
define N(x) := Nqi(x) +--- + Ny, (x) for all x € R", as in
the setting of Theorem 1.1. Our method for constructing
sparsifiers is simply independent sampling: Consider
a probability distribution p = (p1,...,pn) € (0,1]™



on {1,...,m}, and then sample M indices i1,...,im

independently from p and take
Niy(x)
M Pir

N in (%)
pim

We have E[N;,(x)/pi;] = N(x), and therefore E[N(x)] =
N(x) for any fixed x.

In order for these unbiased estimators to be suitably
concentrated, it is essential to choose a suitable distribu-
tion p. To indicate the subtlety involved, we recall two
choices for the case of graphs. Suppose that G consists
of edges {u1,v1},...,{tm, vm} and Ni(x) = |xy, — xy,]
for each i € [m]. Benczir and Karger [BK96] define p;
to be inversely proportional to the largest k such that
the edge {u;,v;} is contained in a maximal induced k-
edge-connected subgraph. Spielman and Srivastava [SS11]
define p; as proportional to the effective resistance across
the edge {u;,v;} in G.

Let u denote the probability measure on R" whose den-
sity is proportional to eN®). We will take p; proportional
to the average of N;(x) under this measure:

./R" Ni(x) e NW gy
pi = .
./[R" N(x)eN® dy

N(x) = —

(IL1)

To motivate this choice of p = (p1,...,pm), let us now
explain the general framework for analyzing sparsification
by ii.d. random sampling and chaining.

Symmetrization. For any norm N on R”, we use the
notation By = {x € R" : N(x) < 1}. Our goal is to
control the maximum deviation

[E max ’N(x) - [E[N(x)]| .
X€BN
By a standard symmetrization argument, to bound this

quantity by O(6), it suffices to prove that for every fixed
choice of indices i1, ..., i, we have

M Nl]()
SMMZ

]
where ¢1, ...

1/2
<0 (mgx N(x)) , (I1.2)

,em € {—1,1} are uniformly random signs.

Chaining and entropy estimates. If we define V, =
% (e1N; (x)/piy + - + emNiy, (x)/ piy), then {Vy @ x €
R"} is a subgaussian process, and Emax{Vy : x € By}
can be controlled via standard chaining arguments (see
the full paper for background on subgaussian processes,
covering numbers, and chaining upper bounds). Define
the distance

=1

1/2
d(x,y) = (rElvx ) 1 (i(Nw(x) Nz,(}/)) )

and let K(By, d, r) denote the minimum number K such
that By can be covered by K balls of radius r in the
metric d. Then Dudley’s entropy bound asserts that

[EmaxVXS/ \JIog K(Bn,d,r)dr,
X€EBN 0

Our goal, then, is to choose sampling probabili-
ties p1,...,pm so as to make the covering numbers
K(Bn,d,r) suitably small.
In order to get a handle on the distance d, let us define
N i]' (x)

N®(x) := max ,
jeMl - Pi;

x = max{N>(x):x € BN}.

(IL3)

Then we can bound

1/2
M
_ [ 1 INi; (x)=Ni; ()|
d(x,]/) < M 1/2 N°°(x —y) Mz %)

j=t

1/2
< M_l/Z,/N‘x’(x -vy) (ngx N(x)) .
XEDN

Using this in (I1.3) allows us to bound E maxyep, Vx by

12
M2 (maxNI(x)) / \/10g7<(BN,(N°°)1/2r”) dr
0

XEBN

1/2
=2 ) [ Jfog o, 2y,
x€BN 0
(I.4)

where we have used that the last integrand vanishes
above v« since By C kBye.

Dual-Sudakov inequalities. In order to bound the
entropy integral (IL4), let us recall the dual-Sudakov
inequality (see [PT]85] and [LT11, (3.15)]) which allows
one to control covering numbers of the Euclidean ball.
Let B} denote the Euclidean ball in R". Then for any
norm N on R”, it holds that

Jlog K (B!, N, ) < %[E [N(9)],

where g is a standard n-dimensional Gaussian.

An adaptation of the Pajor-Talagrand proof of (IL.5) (see
Lemma I1.2) allows one to show that for any norms N
and N on R”,

(IL5)

log K(Bx, N, 1) < %[E [N(Z)] ) (IL6)
where Z has density proportional to e ™N®) dx. A closely
related estimate was proved by Milman and Pajor [MP89];
see the remarks after (I1.13). As this fact is simple and
essential to our approach, we provide a proof here. We
begin with a useful fact which bounds the measure of

-shifts of convex sets.



Lemma II.1 (Shift Lemma). Suppose N is a norm on R”.
Define the probability measure p on R" by

du(x) o< exp(=N(x)).
Then for any symmetric convex body W and z € R",
u(W +z) > exp(=N(z)) p(W).
Proof. For any z € R", it holds that
fw exp(—=N(x +z))dx
fw exp(—N(x)) dx

(IL.7)

pW +2) =

pW).

Now we bound

/ exp(-N(x +z))dx = / E
w w oe{-1,

> - E N d
/Wexp( velEiny (ox+z)) b

> / exp (~(N(x) + N(2))) dx
w

I exp(—N(ox + z)) dx

:exp(—N(z))/Wexp(—N(x))dx,

where the equality uses symmetry of W, the first inequal-
ity uses convexity of exp(x), and the second inequality
uses the traingle inequality for N. o

Lemma IL2. Let N and N be norms on R". Define the
probability measure p on R" so that

du(x) o< exp(=N(x)).
Then for any € > 0,

log (‘K(BN,N, g)/z) < % / N (x) du(x).

Proof. By scaling N, we may assume that ¢ = 1. Suppose
now that x1,...,xm € By and x1 + By, ..., xm + By are
pairwise disjoint. To establish an upper bound on M, let
A > 0 be a number we will choose later and write

1> y( U Axj+Bg) | = Z u (Axj +ABy)
jeM] jelM]

(IL7)
> e N (ABy)

jelM]
> Me " u(ABy),
where (I1.7) used Lemma II.1 and the last inequality used
X1,...,XM € Bn.
Now choose A :=
inequality gives

u(ABg) = ({x N < /\}) >1/2.

Combining with the preceding inequality yields the
upper bound

2/N(x)dy(x) so that Markov’s

(log(M/2)) < A. o

Applying this with N = N yields

- 1 - 1 N;,(Z)

log K(Bn, N®,r) < —E[N®(Z)] = - Emax .

r rojelMl - pi
(IL.8)

At this point, it is quite natural to hope that N;(Z) is
concentrated around its mean, in which case the choice
pj « E[N;(Z)] seems appropriate. Indeed, this is the first
point at which we will employ convexity in an essential
way. The density e V&) is log-concave, and therefore Z
is a log-concave random variable. By recent progress on
the KLS conjecture, we know that Lipschitz functions of
isotropic log-concave vectors concentrate tightly around
their mean.

Let 1, denote the KLS constant in dimension #. In the
past few years there has been remarkable progress on
bounding v, [Che21], [KL22], [JLV22], [KIa23]. In partic-
ular, Klartag and Lehec established that 1, < O((logn)),
and the best current bound is 1, < O(y/logn) [Kla23].

Exponential concentration and the KLS conjecture. The
next lemma expresses a classical connection between ex-
ponential concentration and Poincaré inequalities [GM83].
Say that ¢ : R* — R is L-Lipschitz if ||¢(x) — @(y)|l2 <
Lllx = y|l2 for all x,y € R".

Theorem I1.3. There is a constant ¢ > O such that the
following holds. Suppose X is a random variable on R" whose
law is isotropic and log-concave. Then for every L-Lipschitz
function ¢ : R"™ - R and t > 0,

P (|p(X) - E[(X)]| > t) < 2e~ct/WnD)

This implies the following consequence.

Corollary I1.4. There is a constant ¢ > 0 such that the
following holds. Consider a semi-norm N on R" and a random
vector Z whose distribution is symmetric and log-concave. Then
for any t >0,

c t
P (IN(Z)-E[N(Z)]| > t) < 2ex (———) .

l =1 <205, Exam)
Proof. Define the covariance matrix A := E[ZZT] and
let X := A7Y/2Z. Then the law of X is log-concave and
isotropic by construction. Thus Theorem IL.3 gives the
desired result once we confirm the Lipschitz bound

N(AY?x) < 2E[N(Z)] - ||x]|2 - (I1.9)

To this end, let N* denote the dual norm to N and
write

N(AY2x) = sup (w, AMY?x)
N*(w)<1

= sup (AY?w,x) <|lx|l2 sup [|AV*w],.
N (w)<1 N (w)<1



Then we have

||A1/2w||2 — <ZU, Aw>1/2 — ([E[(ZU, Z>2])1/2
2E[[(w, Z)]]
2N (w) E[N(Z)]

where the penultimate inequality follows from standard
facts on moments of log-concave variables: (y,Z) is
symmetric and log-concave. O

<
<

With this in hand, a union bound gives

Ni.(Z
E max l]( )

— <y, logM.
jelm] E[N;(Z)] Ynlog

To make p a probability measure, we take p; :=
E[N;(Z)]/E[N(Z)] for j = 1,...,m, and then (IL8) be-
comes

log K(Bx, N, ) 5 +(fylog M) EIN(2)]

= “nulog(M), (IL10)

where the last inequality uses E[N(Z)] = n, which follows
from a straightforward integration using that the law of
Z has density proprtional to e™N®). Thus we have

Vi
/ Jlog KBy, N, 12) dr
V2

Vi
< (nyy logM)l/zf Lar < (nyy logM)l/zlogn.
V2 T
(IL11)

Standard volume arguments in R” allow us to control
the rest of the integral:

1/n?
/ Jlog K(By, N=,12)dr 5 1,
0

and therefore
Vic/n?
/ \/logW(BN,N‘X’,rZ) dr
0

1/n?
< \/E/ \/10g7((BNoo,N°°,r2)dr < Vx.
0

Plugging this and (II.11) into (I1.4) gives

E max Vy
X€BN

1/2
< M2 (maxN(x)) (\/E+ (nn logM)l/2 logn) .

x€BN

Finally, observe that (I.10) gives the bound x <
niy, log(M), resulting in

(m/)n log(M)(log 1)? )1/2 (

EmaxV, <
XEBN

M

X€EBN

1/2
max N(x)) .

Choosing M = 672n(logn)*, log(n/d) yields our de-
sired goal (II.2).

Modifications for sums of pth powers. In order to apply
these methods to sums of pth powers N(x)” = Nq(x)” +
-+ Ny (x)P for 1 < p <2, we use the natural analog of
(IL.1):
‘ Jon Ni(x)P 6N dx
T NG e N dx

Note that if p = 2 and one defines N;(x) := |(Ax);| for
a matrix A € R"™", then p; are exactly the leverage
scores of A (up to scaling by n). For p > 2, we choose p;
proportional to /[R“ Ni(x)P e N gy,

The main hurdle in this setting is that we only establish
the analog of (I1.6) for p-uniformly smooth norms. It
turns out however that if Z has the law whose density
is proportional to e ™™ and N is p-uniformly smooth,
then for any norm N,

(IL12)

(log K (BN, By, r)'? < %[E[N(Z)]. (I1.13)

A closely-related estimate is mentioned in [MP89, Eq. (9)],
where instead the distribution of Z is uniform on By.

General norms and block Lewis weights. To obtain
Theorem L6 for general norms, we must resort to a
dimension-dependent version of (I1.13). Moreover, we
need to augment the sampling probabilities in (I1.12) in
order to effectively bound the diameter diam(By, N®).
For this, as well as for sums of squares of ¢, norms (The-
orem L5), in the full paper we formulate a generalization
of ¢, Lewis weights, motivated by the construction of
weights in [KKTY21a], [JLS23], [Lee23].

For a collection of vectors a1, ..., ar € R", the ¢, Lewis
weights [Lew78], [Lew79] result from consideration of
the optimization

max{|det(U)| : a(U) < 1},

where «a is the norm on linear operators U : R" — R”

defined by
k
> luaill;
i=1

Let us now consider a substantial generalization of this
setting where S U---US,, ={1,...,k} is a partition of
the index set. Given p1,...,pm = 2 and g > 1, we define
the norm

(IL.14)

1/p
all) =

" alpi\/1
aU):=| > | > Iy ,

j=1 \i€S;

One can establish properties of the corresponding opti-
mizer of (I.14), leading to the following generalization
of the Lewis weights.



Definition II.5 (Block norm). Consider any
P1,---,Pm,q € [1, ], and a partition S; U---U S, = [k].
For pj < oo, define
1/p;
Nj(u) = Z [u;]Pi ,

lES,‘

and for p; = oo, take Nj(u) := max{|u;| : i € S;}. Define
N@) = (M), ..., Nu@))ll,-

Lemma II.6. Consider p1,...,pm € [2,00] and g € [1, c0).
Let Ni,..., Ny and N be as in Definition I1.5. Fix A €
L(R", R¥) with rank(A) = n, and denote forj=1,...,m,

aj(U) = Nj(IlUA erll2, ..., IUATell2)

Then there is a nonnegative diagonal matrix W such that for
U = (ATWA)2, the following are true:
(1) It holds that

n 1<g<2
q4... q—
ar (DT + -+ ay,, (U) {nq/z 152,

(2) For all x € R",
Ni(Ax) < aj)IU x|z < aj(U)N(Ax).

III. ALGORITHMS
A. Computing the sampling weights via homotopy

We now present an algorithm constructing a sparsifier
for N(x) = Ni(x) + --- + N(x) that runs in time n°®
plus the time required to do m(logn)®® + n°W total
evaluations of norms N;(y) for various i € [m] and y € R”.
It employs a homotopy-type method that has been used
for efficient sparsification in multiple settings (see, e.g.,
[MP12], [KLM*17], [JSS18], [AJSS19]).

o compute reasonable overestimates of the sampling
weights {p;} from (IL.1), one approach is to simply sample
from the probability measure y with density proportional
to e N evaluate the N; at the sample, and use a scaling
of the average evaluation of N; as the estimate of p;.
Sampling from a log-concave distribution, especially those
induced by norms, is a well-studied task, and can be
done in n°® logo(l)(nR/r) time if N is (r, R)-rounded;
see [CV18], [JLLV21] and Theorem III.3, Corollary III.4.
If a norm evaluation can be performed in time Tgyal,
this would naively require time mn©®® logo(l)(nR [1)Teval,
whereas we would like our algorithms to run in nearly
“input-sparsity time,” as expressed before.

We first observe that one need only sample from a
distribution with density o e™N®) for some norm N that
is O(1)-equivalent to N(x). Given this fact, for simplicity
let us assume that N is a genuine norm that is (r, R)-
rounded in the sense that r||x|l» < N(x) < R||x||2 for all
x € R". Define the family of norms N(x) := N(x)+t|x||2.

For t = R, it holds that Ng(x) is 2-equivalent to the
norm R||x|]2, and sampling from the distribution with
density oc e RII¥ll2 js trivial. Therefore we can construct an
n(log n)°W-sparse 1/2-approximation Ng(x) to Ng(x).

Now assuming we have an n(logn)°M-sparse 1/2-
approximation Nt to Ny for r < t < R, we construct
a sparsifier for N;/>(x) by sampling from the measure
with density o« e M), This works because N; is 2-
equivalent to N;, which is 2-equivalent to N;j. After
O(log(R/r)) iterations, we arrive at sparse norm N that
is O(1)-equivalent to N, and then by sampling from
the distribution with density o« e™N(™, we are able to
construct a sparse e-approximation to N itself. To handle
the case when N is a seminorm we modify this approach
to instead obtain N(x) such that N(x) + er||x]||, is an &-
approximation to N, and argue that this suffices for N
to be an O(¢)-approximation of N.

B. Details and analysis

We first present an efficient algorithm for sampling in
the case p = 1. Consider semi-norms Ny, ..., N, on R"
and suppose that each N; can be evaluted in time 7gval,
and that N(x) := N1(x)+---+ Ny, (x) is (r, R)-rounded for
0<r<R

Theorem III.1 (Efficient sparsification). If N is (r,R)-
rounded, then for any e > n=CW, there is an algorithm run-
ning in time (m(log n)°® + n°W)(log(mR /r)° Ve that
with high probability produces an O(ne=?log(n/e)(log n)*°)-
sparse e-approximation to N.

Suppose now that N is a semi-norm on R”" that is
K-equivalent to N, and let u be the probability measure
with density proportional to e V&) dx.

Lemma IIL2 (Sampling to sparsification). For h > 1,
there is an algorithm that, given O(hy,log(m + n)) in-
dependent samples from u and € > 0, computes with
probability at least 1 —(m +n)~", an s-sparse e-approximation
to N in time O(my,log(n + m) + 5)Teval, where s <
O(K?e2ne 2 log(n/e)(log n)*>).

Proof. Let X3, ..., Xk € R" be independent samples from
u. Denote, fori=1,...,m,

= 5L (NI + NiKa) + -+ Ni(X)
o; == E[N;(X1)].

Since u is log-concave, Corollary II.4 asserts there is a
constant ¢ > 0 such that
ct
Pyo; )

Consequently, for some k < hip, log(m + n), it holds that

P (iNi(xj) - Uz‘l > t) < 2exp (—

IP’(GI'<T,'<20i,i:1,...,m)>1—(m+n)_h.



Thus (as discussed in the full paper) with high probability
sampling proprotional to 7; yields the desired sparse
approximation. O

The preceding lemma shows that sampling from a
distribution with du(x) o e N®) suffices to efficiently
sparsify a semi-norm N that is K-equivalent to N. A
long line of work establishes algorithms that sample
from a distribution that is close to uniform on any well-
conditioned convex body A C R", given only membership
oracles to A. In the following statement, let B} denote
the Euclidean unit ball in R".

Theorem II1.3 ( [JLLV21, Theorem 1.5], [CV18, Theorem
1.2]). There is an algorithm that, given a convex body A C R"
satisfying r - By € A C R-BJ and ¢ > 0, samples from a
distribution that is within TV distance ¢ from the uniform
measure on A using O(n3(log “2)°W) membership oracle
queries to A, and (n(log “2))OW) additional time.

When N is a norm, one obtains immediately an
algorithm for sampling from the measure u on R" with
density du(x) oc e "N dx using evaluations of N(x).

Corollary IIL.4. There is an algorithm that, given an (r, R)-
rounded norm N on R" and & > 0, samples from a distribution
that is within TV distance € from the measure p with density
proportional to e™N®) dx using O(n3(log 22 )°W) evaluations
of N(x), and (n(log 22))°W) additional time.

Proof. Note that if Z has law y, then the density of N(Z) is
proportional to e=*A"~1. Let A be a sample from the latter
distribution. The algorithm is as follows: Sample a point
X from the uniform measure on By using Theorem II1.3,
and then output the point AX/N(X). O

Combining Lemma II.2 and Corollary II1.4, we see
that if one can sample from the distribution induced by
a sparsifier, then one can efficiently sparsify and if one
can efficiently sparsify, then one can can perform the
requisite sampling.

This chicken-and-egg problem has arisen for a variety
of sparsification problems and there is a relatively simple
and standard solution introduced in [MP12] that has been
used in a range of settings; see e.g., [KLM*17], [JSS18],
[AJSS19]).

Instead of simply sampling proportional to e~
directly, we first sample proportional to the density
exp(—(N(x)+t||x||2)), where ¢t is chosen large enough that
the sampling problem is trivial. This gives a sparsifier
for N(x)+t||x||> which, in turn, can be used to efficiently
sparsify N(x) +t/2||x||2. Iterating allows us to establish
Theorem IIL.1.

N(x)

Proof of Theorem III.1. Recall our assumption that r||x|| <
N(x) < R|x|l for all x € ker(N)*. For t > 0,

denote N;(x) := N(x) + t||x||. Note that Nr is 2-
equivalent to R||x||, and consequently by sampling from
du(x) o exp(—R||x||2) using Corollary II1.4, we can use
Lemma II1.2 to obtain an O(n)-sparse 1/2-approximation
to Ng.

Now for any t € [er,R], suppose N; is an O(n)-
sparse 1/2-approximation to N;. Note that N; is (t/2,4R)-
rounded. Thus, using Corollary III.4, we can compute
a sample from the distribution with density oc ¢=Ni¥)
in time (nlog(R/r))°D7g.. We can ignore the total
variation error in Corollary II1.4 as long as it is less than
m~OW and charge it to the failure probability. Since N, is
2-equivalent to N;, which is 2-equivalent to N, we can use
Lemma II1.2 to obtain an é(n)—sparse 1/2-approximation
to N t/2- 5

After O(log(R/(er))) iterations, one obtains an O(n)-
sparse 1/2-approximation to N,. A final application of
Lemma II1.2 obtains an O(ne~2log(n/¢)(log n)*°)-sparse
e-approximation to N,,. To conclude, note that for all
x € ker(N)*, N is (1 + €)-equivalent to N. Moreover, in
N, (x) = N(x)+er||x||2, only the summand er||x|| fails to
vanish on ker(N). This can be removed from N, to obtain
a (142¢)-approximation to N with the same sparsity. The
result then follows by applying this procedure with a
smaller value of e¢. O

Remark IIL5 (Algorithm for 1 < p < 2). We note that it is
possible to extend Theorem III.1 to the setting of 1 < p <2
under a mild additional assumption. Specifically, we need
to assume that each semi-norm N; is itself K-equivalent
to a p-uniformly smooth semi-norm JN; with constant Sp,
and that we have oracle access to ;.

For any weights wj,...,w,, > 0, the semi-
norm Ngp(x) =  (@iN1(x)? + - + Wy Ny (x)P) /7
is then K-equivalent to the semi-norm W,(x) :=
(Wi M (x)P + -+ Wy Ny (x)P)/P, where each N is p-
uniformly smooth with constant S,. Since the £, sum
of p-uniformly smooth semi-norms is also p-uniformly
smooth quantiatively (see [Fig76]), it holds that N, is
K-equivalent to a semi-norm N, that is p-uniformly
smooth with constant O(S,). One can then proceed
along similar lines using the interpolants

Niw) = (NG + i)
which are similarly K-equivalent to the p-uniformly

p\YP
N ()P +t||x||2) , since || - ||,

smooth norm N (x) = (
is p-uniformly smooth with constant 1 for any 1 < p < 2.

1) Sparsifying symmetric submodular functions: First re-
call that the Lovasz extension F is a semi-norm. This
follows because F can be expressed as

F(x) = /Oo F({i:x; < t})dt.

(ee]



Note that the integral is finite because F(0) = F(V) =0,
and clearly F(cx) = cF(x) for all ¢ > 0. Also because
F is symmetric we have F(x) = /_0:0 F({i:x; <t})dt =
/_O:o F({i:x; > t})dt = F(—x). Finally, it is a standard fact
that F is submodular if and only if F is convex. Thus, F
is indeed a semi-norm.

Proof of Corollary 1.2. We assume that ¢ > m~1/2, else the
desired sparsity bound is trivial.

Let fi,..., fu denote the respective Lovész extensions
of fi,..., fu, and let [ denote the Lovész extension of
F. Define F(x) := F(x) + m™*||x||, and fi(x) := fi(x) +
m=3||x||2 so that F(x) = fi(x)+--- + fu(x). Clearly each f;
is (m™5, O(nR))-rounded as f;(x) < 2||x[lwR < 2RVn||x||>.
Thus Theorem IIL.1 yields weights w € R7' with the
asserted sparsity bound and such that

f(x)—Zwiﬁ(x) <ef(x), VxeR".
i=1

Additionally, the unbiased sampling scheme of Sec-
tion II guarantees that E[wq +- -+ wy,] =n, so X7, w; <
2n with probability at least 1/2. Assuming this holds,
let us argue that |F(S) — ie[m] w,'fi(S)| < 2¢F(S) for all
S C V. Indeed,

m
F(S) = ) wifi(S)
i=1 i=1
This is at most 2¢F(S) if F(S) > 1, since we assumed that
e>m2,

If, on the other hand, F(S) = 0, then we conclude that all
fi(S) =0 for all i € supp(w). This is because the weights
given by the independent sampling procedure are at least
1/M > 1/m, and each function f; is integer-valued. Thus

w1 f1(S) + -+ + Wy fu(S) = 0 as well. O
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