
Sparsifying Sums of Norms
Arun Jambulapati

Computer Science & Engineering

Univesity of Washington

Seattle, USA
jmblpati@alumni.stanford.edu

James R. Lee
Computer Science & Engineering

University of Washington

Seattle, USA
jrl@cs.washington.edu

Yang P. Liu
Mathematics

Stanford University

Palo Alto, USA
yangpliu@stanford.edu

Aaron Sidford
MS&E

Stanford University

Palo Alto, USA
sidford@stanford.edu

Abstract—For any norms #1 , . . . ,#< on R= and #(G) :=
#1(G)+ · · ·+#<(G), we show there is a sparsified norm #̃(G) =
F1#1(G)+· · ·+F<#<(G) such that |#(G)�#̃(G)| 6 ⌘#(G) for all
G 2 R= , where F1 , . . . ,F< are non-negative weights, of which
only $(⌘�2

= log(=/⌘)(log =)2.5) are non-zero. Additionally, we
show that such weights can be found with high probability in
time $(<(log =)$(1) +poly(=))), where) is the time required
to evaluate a norm #

8
(G), assuming that #(G) is poly(=)-

equivalent to the Euclidean norm. This immediately yields
analogous statements for sparsifying sums of symmetric
submodular functions. More generally, we show how to
sparsify sums of ?th powers of norms when the sum is
?-uniformly smooth.1

Index Terms—Randomness in Computing

I. I�����������
Consider a collection #1 , . . . ,#< : R= ! R+ of semi-

norms2 on R= and the semi-norm defined by

#(G) := #1(G) + · · · + #<(G) .

It is natural to ask whether # can be sparsified in the
following sense. Given nonnegative weights F1 , . . . ,F< ,
define the approximator #̃(G) := F1#1(G)+· · ·+F<#<(G).
We say that #̃ is B-sparse if at most B of the weights {F8}
are non-zero, and that #̃ is an ⌘-approximation of # if it
holds that

|#(G) � #̃(G)| 6 ⌘#(G) , 8G 2 R=
. (I.1)

A prototypical example occurs for cut sparsifiers of
weighted graphs. In this case, one has an undirected
graph ⌧ = (+ , ⇢, 2) with nonnegative weights {24 : 4 2 ⇢},
with = = |+ | and #(G) :=

Õ
DE2⇢ 2DE |GD � GE |. A weighted

cut sparsifier is given by nonnegative edge weights {F4 :

We thank anonymous reviewers for several helpful comments. James
R. Lee is supported in part by NSF CCF-2007079 and a Simons
Investigator Award. Yang P. Liu is supported by a Google Research
Ph.D. Fellowship. Aaron Sidford is supported in part by a Microsoft
Research Faculty Fellowship, NSF CCF-1844855, NSF CCF-1955039, a
PayPal research award, and a Sloan Research Fellowship.

1This paper is an extended abstract. The full paper can be accessed
at https://arxiv.org/abs/2305.09049.

2A semi-norm # is nonnegative and satisfies #(⌫G) = |⌫|#(G) and
#(G + H) 6 #(G) + #(H) for all ⌫ 2 R, G , H 2 R= , though possibly
#(G) = 0 for G < 0.

4 2 ⇢}. Defining #̃(G) :=
Õ
DE2⇢ FDE2DE |GD�GE |, the typical

approximation criterion is that

|#(G) � #̃(G)| 6 ⌘#(G) , 8G 2 {0, 1}+ , (I.2)

where G 2 {0, 1}+ naturally indexes cuts in ⌧. A straight-
forward ✓1 variant of the discrete Cheeger inequality
shows that (I.2) is equivalent to (I.1) in the setting of
weighted graphs.

Benczúr and Karger [BK96] showed that for every
graph ⌧ and every ⌘ > 0, one can construct an B-sparse ⌘-
approximate cut sparsifier with B 6 $(⌘�2

= log =). Their
result addresses the case when each #8 is a 1-dimensional
semi-norm of the form #8(G) = 2DE |GD�GE |. We show that
one can obtain similar sparsifiers in substantial generality.

Further, we show how to compute such sparsifiers
efficiently when the semi-norm # is appropriately well-
conditioned. Say that # is (A , ')-rounded if it holds that
AkGk2 6 #(G) 6 'kGk2 for all G 2 ker(#)?, where
ker(#) := {G 2 R= : #(G) = 0}.
Theorem I.1. Consider a collection #1 , . . . ,#< of semi-

norms on R=
and #(G) := #1(G) + · · · + #<(G). For every

⌘ > 0, there is an $(⌘�2
= log(=/⌘)(log =)2.5)-sparse ⌘-

approximation of # . Further, if the semi-norm # is (A , ')-
rounded, then weights realizing the approximation can be

found in time $(<(log =)$(1) + =$(1))(log(<'/A))$(1)Teval
with high probability if each #8 can be evaluated in time Teval.

Application to symmetric submodular functions. A
function 5 : 2+ ! R+ is submodular if

5 (([{E})� 5 (() > 5 ()[{E})� 5 ()), 8(✓) ✓ + , E 2 +\) .

A submodular function is symmetric if 5 (() = 5 (+ \ () for
all (✓ + .

Consider submodular functions 51 , . . . , 5< : {0, 1}+ !
R+ and denote �(() := 51(() + · · · + 5<((). Given nonneg-
ative weights F1 , . . . ,F< , define �̃(() := F1 51(() + · · · +
F< 5<((). We say that �̃ is an B-sparse ⌘-approximation for �

if it holds that at most B of the weights {F8} are non-zero
and

|�(() � �̃(()| 6 ⌘�(() , 8(✓ + .

https://arxiv.org/abs/2305.09049

Motivated by the ubiquity of submodular functions in
machine learning and data mining, Rafiey and Yoshida
[RY22] established in this setting that, even if the 58 are
asymmetric, for every ⌘ > 0, there is an $(⌫=2/⌘2)-sparse
⌘-approximation for �, where = := |+ | and ⌫ is the
maximum number of vertices in the base polytope of
any 58 . In the case ⌫ 6 $(1), their result is tight for
(directed) cuts in directed graphs [CKP+17].

However, for symmetric submodular functions, the
situation is better. For such functions 5 : 2+ ! R+ with
5 (;) = 0, the Lovász extension [Lov83] of 5 is a semi-
norm on R+ (see Section III-B1). Therefore, Theorem I.1
immediately yields an analogous sparsification result in
this setting. In comparison to [RY22], in this symmetric
setting, we have no dependence on ⌫, and the quadratic
dependence on = improves to nearly linear.

Corollary I.2 (Symmetric submodular functions). If

51 , . . . , 5< : 2+ ! R+ are symmetric submodular functions

with 51(;) = · · · = 5<(;) = 0, and �(() := 51(()+ · · · + 5<((),
then for every ⌘ > 0, there is an $(⌘�2

= log(=/⌘)(log =)2.5)-
sparse ⌘-approximation of � where = = |+ |.

Additionally, if the functions 58 are integer-valued with

max
82[<],(✓+ 58(() 6 ', then the weights realizing the

approximation can be found in time $(<=(log =)$(1) +
poly(=))Teval log$(1)(<'), with high probability, assuming

each 58 can be evaluated in time Teval.

The deduction of Corollary I.2 from Theorem I.1
appears in Section III-B1.

Sums of higher powers. In the setting of graphs, spectral

sparsification [ST11], a notion stronger than (I.2), has been
extensively studied. Given semi-norms #1 , . . . ,#< on R= ,
define a semi-norm via their ✓2-sum as

#(G)2 := #1(G)2 + · · · + #<(G)2 .
If F1 , . . . ,F< are nonnegative weights and #̃(G)2 :=
F1#1(G)2 + · · · +F<#<(G)2, we say that #̃2 is an B-sparse

⌘-approximation for #
2 if it holds that at most B of the

weights {F8} are non-zero and��
#(G)2 � #̃(G)2

�� 6 ⌘#(G)2 , 8G 2 R=
. (I.3)

When ⌧ = (+ , ⇢, 2) is a weighted graph and each
#8(G) is of the form p

2DE |GD � GE | for some DE 2 ⇢, (I.3)
is called an ⌘-spectral sparsifier of ⌧. In this setting, a
sequence of works [ST11], [SS11], [BSS12] culminates
in the existence of $(=/⌘2)-sparse ⌘-approximations for
every ⌘ > 0. These results generalize [Rud99], [BSS14] to
the setting of arbitrary 1-dimensional semi-norms, where

#1(G) = |h01 , Gi |, . . . ,#<(G) = |h0< , Gi |, 01 , . . . , 0< 2 R=
.

(I.4)
We establish the existence of near-linear-size sparsifiers

for sums of powers of a substantially more general class

of higher-dimensional norms. Recall that a semi-norm #

on R= is said to be ?-uniformly smooth with constant (if
it holds that

#(G + H)? + #(G � H)?
2 6 #(G)? +#((H)? , G , H 2 R=

.

(I.5)
Note that when #8(G) = |h08 , Gi |, then # is 2-uniformly
smooth with constant 1. We say that two semi-norms
#- and #. are -equivalent if there is a number ⌫ > 0
such that #.(I) 6 ⌫#-(I) 6 #.(I) for all I 2 R= .
Every norm is 1-uniformly smooth with constant 1 by
the triangle inequality, so the next theorem generalizes
Theorem I.1.

Theorem I.3 (Sums of ?th powers of uniformly smooth
norms). Consider ? > 1 and semi-norms #1 , . . . ,#< on R=

.

Denote #(G)? := #1(G)? + · · · + #<(G)? , and suppose that

for some numbers , (> 1 the semi-norm # is -equivalent

to a semi-norm which is min(? , 2)-uniformly smooth with

constant (. Then for every ⌘ 2 (0, 1), there is an $(B)-sparse

⌘-approximation to #
?

such that

B 6
8>><
>>:

2?

⌘2 =
�
(#= log(=/⌘)�? (log =)2 1 6 ? 6 2

2?
(
?
?

2

⌘2

⇣
=+?

2

⌘
?/2 �

#= log(=/⌘)�2 (log =)2 ? > 2 .

Above, we use #= 6 $(
p

log =) [Kla23] to denote the KLS

constant on R=
(see Theorem II.3 below).

Note that for #(G) to be min(? , 2)-uniformly smooth
with constant $((), it suffices that each #8 is min(? , 2)-
uniformly smooth with constant ([Fig76]. To see
the relevance of this theorem in the case ? = 2,
note that by John’s theorem, every 3-dimensional
semi-norm is

p
3-equivalent to a Euclidean norm

(which is 2-uniformly smooth with constant 1). So if
�1 , . . . ,�< 2 R3⇥= and #̂1 , . . . , #̂< are arbitrary norms
on R3, then taking #8(G) := #̂8(�8G), we obtain an
$(3⌘�2

=(log(=/⌘))2(log =)3)-sparse ⌘-approximation to
#

2, substantially generalizing the setting of (I.4) (albeit
with an extra 3(log(=/⌘))$(1) factor in the sparsity).

Unlike in the setting of graph sparsifiers where spectral
sparsification is a strictly stronger notion (due to the
equivalence of (I.2) and (I.1)), the notions of approxi-
mation guaranteed by Theorem I.1 and Theorem I.3 for
? > 1 are, in general, incomparable. For example, even if
k�̃Gk2 ⇡ k�Gk2 for all G 2 R= , it is not necessarily true
that k�̃Gk1 ⇡ k�Gk1 for all G 2 R= .

Let us now discuss some consequences of Theorem I.3.

Dimension reduction for ✓? sums. Fix 1 6 ? 6 2 and
a subspace - ✓ ✓

<

?
with dim(-) = =. It is known that

for any ⌘ > 0, there is a subspace -̃ ✓ ✓
3

?
with 3 6

$(⌘�2
= log(=)(log log =)2) such that the ✓? norms on -

and -̃ are (1 + ⌘)-equivalent [Tal95]. For ? = 1, this can
be improved to 3 6 $(⌘�2

= log =) [Tal90].
Consider the following more general setting. Suppose

/1 , . . . , /< are each ?-uniformly smooth Banach spaces
with their smoothness constants bounded by (. Let us
write (/1�· · ·�/<)? for the Banach space / = /1�· · ·�/<
equipped with the norm

kGk/ :=
⇣
kGk?

/1
+ · · · + kGk?

/<

⌘1/?
.

Theorem I.3 shows the following: For any =-dimensional
subspace - ✓ / and ⌘ > 0, there are indicies 81 , . . . , 83 2
{1, . . . ,<} with 3 6 $(((/⌘)�2

=(log(=/⌘))?(log =)2+?/2)
and a subspace -̃ ✓ (/81 � · · · � /83

)? that is (1 + ⌘)-
equivalent to -. The aforementioned results for subspaces
of ✓<

?
correspond to the setting where each /8 is 1-

dimensional. The case ? > 2 of Theorem I.3 similarly
generalizes [BLM89].

Application to spectral hypergraph sparsifiers. Consider
a weighted hypergraph � = (+ , ⇢, 2), where {24 : 4 2 ⇢}
are nonnegative weights. To every hyperedge 4 2 ⇢, one
can associate the semi-norm #4(G) := p

24 maxD ,E24 |GD �
GE |, and the hypergraph energy

#(G)2 :=
’
42⇢

#4(G)2 .

Soma and Yoshida [SY19] formalized the notion of
spectral sparsification for hypergraphs; it coincides with
the notion of approximation expressed in (I.3). In this
setting, a sequence of works [SY19], [BST19], [KKTY21b],
[KKTY21a], [JLS23], [Lee23] culminates in the existence of
$(⌘�2

=(log =)2)-sparse ⌘-approximations to #
2 for every

⌘ > 0.
One can obtain a similar result via an application of

Theorem I.3, as follows. We can express each hyperedge
norm as #4(G) = k�4Gk1, where �4 : R= ! R(|4 |2)
is defined by (�4G)DE = GD � GE for all {D , E} 2 �

4

2
�
.

The ✓1 norm on R3 is -equivalent to the ✓dlog 3e norm
with = $(1), and the ✓? norm on R= is 2-uniformly
smooth with constant (6 $(p?) [Han56]. Applying
Theorem I.3 with (6 $(

p
log =) and 6 $(1)

yields $(⌘�2
=(log(=/⌘))2(log =)4)-sparse ⌘-approximators

in this special case, nearly matching the known results
on spectral hypergraph sparsification. Additionally, The-
orem I.3 can be applied to give nontrivial sparsification
results in substantially more general settings, as the next
example shows.

Example I.4 (Sparsification for matrix norms). Consider
a matrix generalization of this setting: - 2 R3⇥3, and
matrices (1 , . . . , (< with (8 2 R38⇥3, and)1 , . . . ,)< with
)8 2 R3⇥48 . Define #8(-) := k(8-)8 k>? , where k · k>?
denotes the operator norm. Then the semi-norm given by

#(-) := (k(8-)8 k2
>?
+· · ·+k(<-)< k2

>?
)1/2 can be sparsified

down to $((3/⌘)2(log(3/⌘))2(log 3)4) terms. This follows
because the Schatten ?-norm of an operator is 2-uniformly
smooth with constant $(p?) [BCL94], and for rank 3

matrices, the Schatten ?-norm is $(1)-equivalent to the
operator norm when ? ⇣ log 3.

Further results and open questions for sums of squared
norms. The rank of a hypergraph � is defined as the
quantity A := max42⇢ |4 |. The best-known result for
spectral hypergraph sparsification is due to [JLS23],
[Lee23]: For every ⌘ > 0, there is an $(⌘�2 log(A) ·= log =)-
sparse ⌘-approximation to #2. In the full paper, we obtain
the following generalization.

Theorem I.5 (Sums of squares of ✓? norms). Consider a

family of operators {�8 : R= ! R:8 : 8 2 [<]}, and 2 6
?1 , . . . , ?< 6 ?. Suppose that #1 , . . . ,#< are semi-norms on

R=
and that #8(G) is -equivalent to k�8Gk?8 for all 8 2 [<].

Then for every ⌘ > 0, there is an $((3/⌘)2?= log(=/⌘))-
sparse ⌘-approximation to #

2
where #(G)2 := #1(G)2 + · · · +

#<(G)2.

In particular, if :1 , . . . , :< 6 A, then each k�8Gk1
is $(1)-equivalent to k�8Gk? for ? ⇣ log A, and thus
Theorem I.5 generalizes the aforementioned result for
spectral hypergraph sparsifiers. One should note that, for
any fixed ? > 2, Theorem I.5 is tight for methods based
on independent sampling, by the coupon collector bound.
(Although it is known that in some settings [BSS12] the
log(=) factor can be removed by other methods.)

It is a fascinating open question whether the assump-
tion of ?-uniform smoothness can be dropped from
Theorem I.3. In the full version, we show that it is possible
to obtain a non-trivial result for sums of ?th powers of
general norms for ? 2 [1, 2].
Theorem I.6 (General sums of ?th powers). If #1 , . . . ,#<

are arbitrary semi-norms on R=
, 1 6 ? 6 2, and #(G)? :=

#1(G)? + · · · + #<(G)? , then for every ⌘ > 0, there is an

B-sparse ⌘-approximation to #
?

with

B . ⌘�2
⇣
=

2�1/? log(=/⌘)(log =)1/2 + = log(=/⌘)?(log =)2+?/2
⌘
.

Note that in the ? = 2 case, applying Theorem I.3
directly for =

p
= , (= 1, ? = 2 results in a worse

sparsity bound of $(⌘�2
=

2 log(=/⌘)2(log =)3).

II. I��������� �������� ��� ������� �����

Let us now fix semi-norms #1 , . . . ,#< on R= and
define #(G) := #1(G) + · · · + #<(G) for all G 2 R= , as in
the setting of Theorem I.1. Our method for constructing
sparsifiers is simply independent sampling: Consider
a probability distribution ⌧ = (⌧1 , . . . , ⌧<) 2 (0, 1]<

on {1, . . . ,<}, and then sample " indices 81 , . . . , 8"
independently from ⌧ and take

#̃(G) := 1
"

✓
#81(G)
⌧81

+ · · · + #8<
(G)

⌧8<

◆
.

We have E[#81(G)/⌧81] = #(G), and therefore E[#̃(G)] =
#(G) for any fixed G.

In order for these unbiased estimators to be suitably
concentrated, it is essential to choose a suitable distribu-
tion ⌧. To indicate the subtlety involved, we recall two
choices for the case of graphs. Suppose that ⌧ consists
of edges {D1 , E1}, . . . , {D< , E<} and #8(G) = |GD8 � GE8

|
for each 8 2 [<]. Benczúr and Karger [BK96] define ⌧8
to be inversely proportional to the largest : such that
the edge {D8 , E8} is contained in a maximal induced :-
edge-connected subgraph. Spielman and Srivastava [SS11]
define ⌧8 as proportional to the effective resistance across
the edge {D8 , E8} in ⌧.

Let ⇠ denote the probability measure on R= whose den-
sity is proportional to 4�#(G). We will take ⌧8 proportional
to the average of #8(G) under this measure:

⌧8 :=

Ø
R=
#8(G) 4�#(G)

3GØ
R=
#(G) 4�#(G)

3G

. (II.1)

To motivate this choice of ⌧ = (⌧1 , . . . , ⌧<), let us now
explain the general framework for analyzing sparsification
by i.i.d. random sampling and chaining.

Symmetrization. For any norm # on R= , we use the
notation ⌫# := {G 2 R= : #(G) 6 1}. Our goal is to
control the maximum deviation

Emax
G2⌫#

��
#̃(G) � E[#̃(G)]

��
.

By a standard symmetrization argument, to bound this
quantity by $(⇣), it suffices to prove that for every fixed

choice of indices 81 , . . . , 8" , we have

E
⌘1 ,...,⌘"

1
"

"’
9=1

⌘8
#89

(G)
⌧8 9

6 ⇣

✓
max
G2⌫#

#̃(G)
◆1/2

, (II.2)

where ⌘1 , . . . , ⌘" 2 {�1, 1} are uniformly random signs.

Chaining and entropy estimates. If we define +G :=
1
"

(⌘1#81(G)/⌧81 + · · · + ⌘"#8"
(G)/⌧8"), then {+G : G 2

R=} is a subgaussian process, and Emax{+G : G 2 ⌫# }
can be controlled via standard chaining arguments (see
the full paper for background on subgaussian processes,
covering numbers, and chaining upper bounds). Define
the distance

3(G , H) :=
⇣
E |+G �+H |2

⌘1/2
=

1
"

©≠
´
"’
9=1

✓
#89

(G) � #89
(H)

⌧8 9

◆2™Æ
¨

1/2

.

and let K (⌫# , 3, A) denote the minimum number such
that ⌫# can be covered by balls of radius A in the
metric 3. Then Dudley’s entropy bound asserts that

Emax
G2⌫#

+G .
π 1

0

q
logK (⌫# , 3, A) 3A , (II.3)

Our goal, then, is to choose sampling probabili-
ties ⌧1 , . . . , ⌧< so as to make the covering numbers
K (⌫# , 3, A) suitably small.

In order to get a handle on the distance 3, let us define

N1(G) := max
92["]

#89
(G)

⌧8 9
,

� := max{N1(G) : G 2 ⌫# } .
Then we can bound

3(G , H) 6 "�1/2
q
N1(G � H) ©≠

´
1
"

"’
9=1

|#8
9
(G)�#8

9
(H)|

⌧8
9

™Æ
¨

1/2

6 "�1/2
q
N1(G � H)

✓
2 max
G2⌫#

#̃(G)
◆1/2

.

Using this in (II.3) allows us to bound EmaxG2⌫# +G by

"
�1/2

✓
max
G2⌫#

#̃(G)
◆1/2 π 1

0

q
logK (⌫# , (N1)1/2

, A) 3A

= "
�1/2

✓
max
G2⌫#

#̃(G)
◆1/2 π p

�

0

q
logK (⌫# ,N1

, A
2) 3A ,

(II.4)

where we have used that the last integrand vanishes
above

p
� since ⌫# ✓ �⌫N1 .

Dual-Sudakov inequalities. In order to bound the
entropy integral (II.4), let us recall the dual-Sudakov
inequality (see [PTJ85] and [LT11, (3.15)]) which allows
one to control covering numbers of the Euclidean ball.
Let ⌫=2 denote the Euclidean ball in R= . Then for any
norm # on R= , it holds thatq

logK (⌫=2 ,# , A) . 1
A

E [#(©)] , (II.5)

where © is a standard =-dimensional Gaussian.
An adaptation of the Pajor-Talagrand proof of (II.5) (see

Lemma II.2) allows one to show that for any norms #
and #̂ on R= ,

logK (⌫# , #̂ , A) . 1
A

E
h
#̂(`)

i
, (II.6)

where ` has density proportional to 4
�#(G)

3G. A closely
related estimate was proved by Milman and Pajor [MP89];
see the remarks after (II.13). As this fact is simple and
essential to our approach, we provide a proof here. We
begin with a useful fact which bounds the measure of
shifts of convex sets.

Lemma II.1 (Shift Lemma). Suppose # is a norm on R=
.

Define the probability measure ⇠ on R=
by

3⇠(G) / exp(�#(G)) .
Then for any symmetric convex body , and I 2 R=

,

⇠(, + I) > exp(�#(I))⇠(,) . (II.7)

Proof. For any I 2 R= , it holds that

⇠(, + I) =
Ø
,

exp(�#(G + I)) 3GØ
,

exp(�#(G)) 3G
⇠(,) .

Now we boundπ
,

exp(�#(G + I)) 3G =
π
,

E
�2{�1,1}

exp(�#(�G + I)) 3G

>
π
,

exp
✓
� E

�2{�1,1}
#(�G + I)

◆
3G

>
π
,

exp (�(#(G) + #(I))) 3G

= exp(�#(I))
π
,

exp(�#(G)) 3G ,

where the equality uses symmetry of , , the first inequal-
ity uses convexity of exp(G), and the second inequality
uses the traingle inequality for # . ⇤

Lemma II.2. Let # and #̂ be norms on R=
. Define the

probability measure ⇠ on R=
so that

3⇠(G) / exp(�#(G)) .
Then for any ⌘ > 0,

log
⇣
K (⌫# , #̂ , ⌘)/2

⌘
6

2
⌘

π
#̂(G) 3⇠(G) .

Proof. By scaling #̂ , we may assume that ⌘ = 1. Suppose
now that G1 , . . . , G" 2 ⌫# and G1 + ⌫

#̂
, . . . , G" + ⌫

#̂
are

pairwise disjoint. To establish an upper bound on ", let
⌫ > 0 be a number we will choose later and write

1 > ⇠
©≠
´

ÿ
92["]

⌫(G9 + ⌫
#̂
)™Æ
¨
=

’
92["]

⇠
�
⌫G9 + ⌫⌫

#̂

�
(II.7)
>

’
92["]

4
�⌫#(G9)⇠(⌫⌫

#̂
)

> "4
�⌫⇠(⌫⌫

#̂
) ,

where (II.7) used Lemma II.1 and the last inequality used
G1 , . . . , G" 2 ⌫# .

Now choose ⌫ := 2
Ø
#̂(G) 3⇠(G) so that Markov’s

inequality gives

⇠(⌫⌫
#̂
) = ⇠

⇣
{G : #̂(G) 6 ⌫}

⌘
> 1/2 .

Combining with the preceding inequality yields the
upper bound �

log("/2)� 6 ⌫ . ⇤

Applying this with #̂ = N1 yields

logK (⌫# ,N1
, A) . 1

A

E [N1(`)] = 1
A

E max
92["]

#89
(`)

⌧8 9
.

(II.8)
At this point, it is quite natural to hope that #9(`) is

concentrated around its mean, in which case the choice
⌧ 9 / E[#9(`)] seems appropriate. Indeed, this is the first
point at which we will employ convexity in an essential
way. The density 4

�#(G) is log-concave, and therefore `
is a log-concave random variable. By recent progress on
the KLS conjecture, we know that Lipschitz functions of
isotropic log-concave vectors concentrate tightly around
their mean.

Let #= denote the KLS constant in dimension =. In the
past few years there has been remarkable progress on
bounding #= [Che21], [KL22], [JLV22], [Kla23]. In partic-
ular, Klartag and Lehec established that #= 6 $((log =)5),
and the best current bound is #= 6 $(

p
log =) [Kla23].

Exponential concentration and the KLS conjecture. The
next lemma expresses a classical connection between ex-
ponential concentration and Poincaré inequalities [GM83].
Say that ! : R= ! R is !-Lipschitz if k!(G) � !(H)k2 6
!kG � Hk2 for all G , H 2 R= .

Theorem II.3. There is a constant 2 > 0 such that the

following holds. Suppose ^ is a random variable on R=
whose

law is isotropic and log-concave. Then for every !-Lipschitz

function ! : R= ! R and C > 0,

P (|!(^) � E[!(^)]| > C) 6 24�2C/(#=!) .

This implies the following consequence.

Corollary II.4. There is a constant 2 > 0 such that the

following holds. Consider a semi-norm N on R=
and a random

vector ` whose distribution is symmetric and log-concave. Then

for any C > 0,

P
���N(`) � E[N(`)]

�� > C

�
6 2 exp

✓
� 2

#=

C

E[N(`)]

◆
.

Proof. Define the covariance matrix � := E[``>] and
let ^ := �

�1/2`. Then the law of ^ is log-concave and
isotropic by construction. Thus Theorem II.3 gives the
desired result once we confirm the Lipschitz bound

N(�1/2
G) 6 2E[N(`)] · kGk2 . (II.9)

To this end, let N⇤ denote the dual norm to N and
write

N(�1/2
G) = sup

N⇤(F)61
hF ,�

1/2
Gi

= sup
N⇤(F)61

h�1/2
F , Gi 6 kGk2 sup

N⇤(F)61
k�1/2

Fk2 .

Then we have

k�1/2
Fk2 = hF ,�Fi1/2 =

⇣
E[hF , `i2]

⌘1/2

6 2E[|hF , `i |]
6 2N⇤(F)E[N(`)]

where the penultimate inequality follows from standard
facts on moments of log-concave variables: hH , `i is
symmetric and log-concave. ⇤

With this in hand, a union bound gives

E max
92["]

#89
(`)

E[#89
(`)] . #= log" .

To make ⌧ a probability measure, we take ⌧ 9 :=
E[#9(`)]/E[#(`)] for 9 = 1, . . . ,<, and then (II.8) be-
comes

logK (⌫# ,N1
, A) . 1

A

(#= log")E[#(`)]

=
1
A

=#= log(") , (II.10)

where the last inequality uses E[#(`)] = =, which follows
from a straightforward integration using that the law of
` has density proprtional to 4

�#(G). Thus we have
π p

�

p
�/=2

q
logK (⌫# ,N1

, A
2) 3A

.
�
=#= log"

�1/2
π p

�

p
�/=2

1
A

3A .
�
=#= log"

�1/2 log = .

(II.11)

Standard volume arguments in R= allow us to control
the rest of the integral:

π 1/=2

0

q
logK (⌫N1 ,N1

, A
2) 3A . 1 ,

and thereforeπ p
�/=2

0

q
logK (⌫# ,N1

, A
2) 3A

6
p
�
π 1/=2

0

q
logK (⌫N1 ,N1

, A
2) 3A .

p
� .

Plugging this and (II.11) into (II.4) gives

Emax
G2⌫#

+G

. "�1/2
✓
max
G2⌫#

#̃(G)
◆1/2 ⇣p

� + �
=#= log"

�1/2 log =
⌘
.

Finally, observe that (II.10) gives the bound � .
=#= log("), resulting in

Emax
G2⌫#

+G .
✓
=#= log(")(log =)2

"

◆1/2 ✓
max
G2⌫#

#̃(G)
◆1/2

.

Choosing " ⇣ ⇣�2
=(log =)2#= log(=/⇣) yields our de-

sired goal (II.2).

Modifications for sums of ?th powers. In order to apply
these methods to sums of ?th powers #(G)? = #1(G)? +
· · · + #<(G)? for 1 6 ? 6 2, we use the natural analog of
(II.1):

⌧8 :=

Ø
R=
#8(G)? 4�#(G)?

3GØ
R=
#(G)? 4�#(G)?

3G

. (II.12)

Note that if ? = 2 and one defines #8(G) := |(�G)8 | for
a matrix � 2 R<⇥= , then ⌧8 are exactly the leverage
scores of � (up to scaling by =). For ? > 2, we choose ⌧8
proportional to

Ø
R=
#8(G)? 4�#(G)2

3G.
The main hurdle in this setting is that we only establish

the analog of (II.6) for ?-uniformly smooth norms. It
turns out however that if ` has the law whose density
is proportional to 4

�#(G)? and # is ?-uniformly smooth,
then for any norm #̂ ,

(logK (⌫# , ⌫
#̂
, A))1/? . 1

A

E[#̂(`)] . (II.13)

A closely-related estimate is mentioned in [MP89, Eq. (9)],
where instead the distribution of ` is uniform on ⌫# .
General norms and block Lewis weights. To obtain
Theorem I.6 for general norms, we must resort to a
dimension-dependent version of (II.13). Moreover, we
need to augment the sampling probabilities in (II.12) in
order to effectively bound the diameter diam(⌫# ,N1).
For this, as well as for sums of squares of ✓? norms (The-
orem I.5), in the full paper we formulate a generalization
of ✓? Lewis weights, motivated by the construction of
weights in [KKTY21a], [JLS23], [Lee23].

For a collection of vectors 01 , . . . , 0: 2 R= , the ✓? Lewis
weights [Lew78], [Lew79] result from consideration of
the optimization

max{|det(*)| : �(*) 6 1} , (II.14)

where � is the norm on linear operators * : R= ! R=

defined by

�(*) =

:’
8=1

k*08 k?2

!1/?

.

Let us now consider a substantial generalization of this
setting where (1 [· · · [(< = {1, . . . , :} is a partition of
the index set. Given ?1 , . . . , ?< > 2 and @ > 1, we define
the norm

�(*) :=
©≠≠
´
<’
9=1

©≠
´
’
82(9

k*08 k?92
™Æ
¨

@/?9™ÆÆ
¨

1/@

,

One can establish properties of the corresponding opti-
mizer of (II.14), leading to the following generalization
of the Lewis weights.

Definition II.5 (Block norm). Consider any
?1 , . . . , ?< , @ 2 [1,1], and a partition (1 [· · · [(< = [:].
For ?9 < 1, define

N9(D) := ©≠
´
’
82(9

|D8 |?9™Æ
¨

1/?9

,

and for ?9 = 1, take N9(D) := max{|D8 | : 8 2 (9}. Define
N(D) := k(N1(D), . . . ,N<(D))k@ .
Lemma II.6. Consider ?1 , . . . , ?< 2 [2,1] and @ 2 [1,1).
Let N1 , . . . ,N< and N be as in Definition II.5. Fix � 2
L(R=

,R:) with rank(�) = =, and denote for 9 = 1, . . . ,<,

� 9(*) := N9

�k*�>
41k2 , . . . , k*�>

4: k2
�

Then there is a nonnegative diagonal matrix , such that for

* = (�>
,�)�1/2

, the following are true:

(1) It holds that

�1(*)@ + · · · + �<(*)@ =
(
= 1 6 @ 6 2
=
@/2

@ > 2 .

(2) For all G 2 R=
,

N9(�G) 6 � 9(*)k*�1
Gk2 6 � 9(*)N(�G) .

III. ����������
A. Computing the sampling weights via homotopy

We now present an algorithm constructing a sparsifier
for #(G) = #1(G) + · · · + #<(G) that runs in time =

$(1)

plus the time required to do <(log =)$(1) + =
$(1) total

evaluations of norms #8(H) for various 8 2 [<] and H 2 R= .
It employs a homotopy-type method that has been used
for efficient sparsification in multiple settings (see, e.g.,
[MP12], [KLM+17], [JSS18], [AJSS19]).

o compute reasonable overestimates of the sampling
weights {⌧8} from (II.1), one approach is to simply sample
from the probability measure ⇠ with density proportional
to 4�#(G), evaluate the #8 at the sample, and use a scaling
of the average evaluation of #8 as the estimate of ⌧8 .
Sampling from a log-concave distribution, especially those
induced by norms, is a well-studied task, and can be
done in =

$(1) log$(1)(='/A) time if # is (A , ')-rounded;
see [CV18], [JLLV21] and Theorem III.3, Corollary III.4.
If a norm evaluation can be performed in time Teval,
this would naively require time <=$(1) log$(1)(='/A)Teval,
whereas we would like our algorithms to run in nearly
“input-sparsity time,” as expressed before.

We first observe that one need only sample from a
distribution with density / 4

�#̃(G) for some norm #̃ that
is $(1)-equivalent to #(G). Given this fact, for simplicity
let us assume that # is a genuine norm that is (A , ')-
rounded in the sense that AkGk2 6 #(G) 6 'kGk2 for all
G 2 R= . Define the family of norms #C(G) := #(G)+ CkGk2.

For C = ', it holds that #'(G) is 2-equivalent to the
norm 'kGk2, and sampling from the distribution with
density / 4

�'kGk2 is trivial. Therefore we can construct an
=(log =)$(1)-sparse 1/2-approximation #̃'(G) to #'(G).

Now assuming we have an =(log =)$(1)-sparse 1/2-
approximation #̃C to #C for A 6 C 6 ', we construct
a sparsifier for #

C/2(G) by sampling from the measure
with density / 4

�#̃C (G). This works because #̃C is 2-
equivalent to #C , which is 2-equivalent to #

C/2. After
$(log('/A)) iterations, we arrive at sparse norm #̃ that
is $(1)-equivalent to # , and then by sampling from
the distribution with density / 4

�#̃(G), we are able to
construct a sparse ⌘-approximation to # itself. To handle
the case when # is a seminorm we modify this approach
to instead obtain #̃(G) such that #̃(G) + ⌘AkGk2 is an ⌘-
approximation to #⌘A and argue that this suffices for #̃
to be an $(⌘)-approximation of # .

B. Details and analysis

We first present an efficient algorithm for sampling in
the case ? = 1. Consider semi-norms #1 , . . . ,#< on R=

and suppose that each #8 can be evaluted in time Teval,
and that #(G) := #1(G)+ · · · +#<(G) is (A , ')-rounded for
0 < A 6 '.

Theorem III.1 (Efficient sparsification). If # is (A , ')-
rounded, then for any ⌘ > =�$(1)

, there is an algorithm run-

ning in time (<(log =)$(1) + =$(1))(log(<'/A))$(1)Teval that

with high probability produces an $(=⌘�2 log(=/⌘)(log =)2.5)-
sparse ⌘-approximation to # .

Suppose now that #̃ is a semi-norm on R= that is
 -equivalent to # , and let ⇠ be the probability measure
with density proportional to 4

�#̃(G)
3G.

Lemma III.2 (Sampling to sparsification). For ⌘ > 1,

there is an algorithm that, given $(⌘#= log(< + =)) in-

dependent samples from ⇠ and ⌘ > 0, computes with

probability at least 1� (<+=)�⌘ , an B-sparse ⌘-approximation

to # in time $(<#= log(= + <) + B)Teval, where B 6
$(2⌘�2

=⌘�2 log(=/⌘)(log =)2.5).
Proof. Let ^1 , . . . ,^: 2 R= be independent samples from
⇠. Denote, for 8 = 1, . . . ,<,

�8 := 3
2

1
:

(#8(^1) + #8(^2) + · · · + #8(^:))
�8 := E[#8(^1)] .

Since ⇠ is log-concave, Corollary II.4 asserts there is a
constant 2 > 0 such that

P
���
#8(G9) � �8

�� > C

�
6 2 exp

✓
� 2C

#=�8

◆

Consequently, for some : . ⌘#= log(< + =), it holds that

P (�8 6 �8 6 2�8 , 8 = 1, . . . ,<) > 1 � (< + =)�⌘ .

Thus (as discussed in the full paper) with high probability
sampling proprotional to �8 yields the desired sparse
approximation. ⇤

The preceding lemma shows that sampling from a
distribution with 3⇠(G) / 4

�#̃(G) suffices to efficiently
sparsify a semi-norm # that is -equivalent to #̃ . A
long line of work establishes algorithms that sample
from a distribution that is close to uniform on any well-
conditioned convex body � ✓ R= , given only membership
oracles to �. In the following statement, let ⌫=2 denote
the Euclidean unit ball in R= .

Theorem III.3 ([JLLV21, Theorem 1.5], [CV18, Theorem
1.2]). There is an algorithm that, given a convex body � ✓ R=

satisfying A · ⌫=2 ✓ � ✓ ' · ⌫=2 and ⌘ > 0, samples from a

distribution that is within TV distance ⌘ from the uniform

measure on � using $(=3(log ='

⌘A)$(1)) membership oracle

queries to �, and (=(log ='

⌘A))$(1)
additional time.

When # is a norm, one obtains immediately an
algorithm for sampling from the measure ⇠ on R= with
density 3⇠(G) / 4

�#(G)
3G using evaluations of #(G).

Corollary III.4. There is an algorithm that, given an (A , ')-
rounded norm # on R=

and ⌘ > 0, samples from a distribution

that is within TV distance ⌘ from the measure ⇠ with density

proportional to 4
�#(G)

3G using $(=3(log ='

⌘A)$(1)) evaluations

of #(G), and (=(log ='

⌘A))$(1)
additional time.

Proof. Note that if ` has law ⇠, then the density of #(`) is
proportional to 4�⌫⌫=�1. Let , be a sample from the latter
distribution. The algorithm is as follows: Sample a point
^ from the uniform measure on ⌫# using Theorem III.3,
and then output the point ,^/#(^). ⇤

Combining Lemma III.2 and Corollary III.4, we see
that if one can sample from the distribution induced by
a sparsifier, then one can efficiently sparsify and if one
can efficiently sparsify, then one can can perform the
requisite sampling.

This chicken-and-egg problem has arisen for a variety
of sparsification problems and there is a relatively simple
and standard solution introduced in [MP12] that has been
used in a range of settings; see e.g., [KLM+17], [JSS18],
[AJSS19]).

Instead of simply sampling proportional to 4
�#(G)

directly, we first sample proportional to the density
exp(�(#(G)+CkGk2)), where C is chosen large enough that
the sampling problem is trivial. This gives a sparsifier
for #(G) + CkGk2 which, in turn, can be used to efficiently
sparsify #(G) + C/2kGk2. Iterating allows us to establish
Theorem III.1.

Proof of Theorem III.1. Recall our assumption that AkGk2 6
#(G) 6 'kGk2 for all G 2 ker(#)?. For C > 0,

denote #C(G) := #(G) + CkGk2. Note that #' is 2-
equivalent to 'kGk2, and consequently by sampling from
3⇠(G) / exp(�'kGk2) using Corollary III.4, we can use
Lemma III.2 to obtain an $̃(=)-sparse 1/2-approximation
to #'.

Now for any C 2 [⌘A , '], suppose #̃C is an $̃(=)-
sparse 1/2-approximation to #C . Note that #̃C is (C/2, 4')-
rounded. Thus, using Corollary III.4, we can compute
a sample from the distribution with density / 4

�#̃C (G)

in time (= log('/A))$(1)Teval. We can ignore the total
variation error in Corollary III.4 as long as it is less than
<

�$(1) and charge it to the failure probability. Since #
C/2 is

2-equivalent to #C , which is 2-equivalent to #̃C , we can use
Lemma III.2 to obtain an $̃(=)-sparse 1/2-approximation
to #

C/2.
After $(log('/(⌘A))) iterations, one obtains an $̃(=)-

sparse 1/2-approximation to #⌘A . A final application of
Lemma III.2 obtains an $(=⌘�2 log(=/⌘)(log =)2.5)-sparse
⌘-approximation to #⌘A . To conclude, note that for all
G 2 ker(#)?, #⌘A is (1 + ⌘)-equivalent to # . Moreover, in
#⌘A(G) = #(G)+⌘AkGk2, only the summand ⌘AkGk2 fails to
vanish on ker(#). This can be removed from #⌘A to obtain
a (1+2⌘)-approximation to # with the same sparsity. The
result then follows by applying this procedure with a
smaller value of ⌘. ⇤

Remark III.5 (Algorithm for 1 < ? 6 2). We note that it is
possible to extend Theorem III.1 to the setting of 1 < ? 6 2
under a mild additional assumption. Specifically, we need
to assume that each semi-norm #8 is itself -equivalent
to a ?-uniformly smooth semi-norm N8 with constant S? ,
and that we have oracle access to N8 .

For any weights F1 , . . . ,F< > 0, the semi-
norm #F(G) := (F1#1(G)? + · · · + F<#<(G)?)1/?
is then -equivalent to the semi-norm NF(G) :=
(F1N1(G)? + · · · + F<N<(G)?)1/? , where each N8 is ?-
uniformly smooth with constant S? . Since the ✓? sum
of ?-uniformly smooth semi-norms is also ?-uniformly
smooth quantiatively (see [Fig76]), it holds that #F is
 -equivalent to a semi-norm NF that is ?-uniformly
smooth with constant $(S?). One can then proceed
along similar lines using the interpolants

#C(G) :=
⇣
#(G)? + CkGk?2

⌘1/?
,

which are similarly -equivalent to the ?-uniformly

smooth norm NC(G) =
⇣
N(G)? + CkGk?2

⌘1/?
, since k · k2

is ?-uniformly smooth with constant 1 for any 1 6 ? 6 2.

1) Sparsifying symmetric submodular functions: First re-
call that the Lovász extension �̄ is a semi-norm. This
follows because �̄ can be expressed as

�̄(G) =
π 1

�1
�({8 : G8 6 C}) 3C .

Note that the integral is finite because �(;) = �(+) = 0,
and clearly �̄(2G) = 2�̄(G) for all 2 > 0. Also because
� is symmetric we have �(G) =

Ø 1
�1 �({8 : G8 6 C}) 3C =Ø 1

�1 �({8 : G8 > C}) 3C = �(�G). Finally, it is a standard fact
that � is submodular if and only if �̄ is convex. Thus, �̄
is indeed a semi-norm.

Proof of Corollary I.2. We assume that ⌘ > <�1/2, else the
desired sparsity bound is trivial.

Let 5̄1 , . . . , 5̄< denote the respective Lovász extensions
of 51 , . . . , 5< , and let �̄ denote the Lovász extension of
�. Define �̃(G) := �̄(G) + <

�4kGk2 and 5̃8(G) := 5̄8(G) +
<

�5kGk2 so that �̃(G) = 5̃1(G) + · · · + 5̃<(G). Clearly each 5̃8

is (<�5
,$(='))-rounded as 5̃8(G) 6 2kGk1' 6 2'

p
=kGk2.

Thus Theorem III.1 yields weights F 2 R<

+ with the
asserted sparsity bound and such that������̃(G) �

<’
8=1

F8 5̃8(G)
����� 6 ⌘�̃(G) , 8G 2 R=

.

Additionally, the unbiased sampling scheme of Sec-
tion II guarantees that E[F1 + · · · +F<] = =, so

Õ
<

8=1 F8 6
2= with probability at least 1/2. Assuming this holds,
let us argue that

��
�(() �Õ

82[<] F8 58(()
�� 6 2⌘�(() for all

(✓ + . Indeed,������(() �
<’
8=1

F8 58(()
����� 6 ⌘�̃(() +

< +

<’
8=1

F8

!
<

�5kGk2 6 ⌘�(() + <�3
.

This is at most 2⌘�(() if �(() > 1, since we assumed that
⌘ > <�1/2.

If, on the other hand, �(() = 0, then we conclude that all
58(() = 0 for all 8 2 supp(F). This is because the weights
given by the independent sampling procedure are at least
1/" > 1/<, and each function 58 is integer-valued. Thus
F1 51(() + · · · + F< 5<(() = 0 as well. ⇤

R���������
[AJSS19] AmirMahdi Ahmadinejad, Arun Jambulapati, Amin Saberi,

and Aaron Sidford. Perron-Frobenius theory in nearly
linear time: Positive eigenvectors, M-matrices, graph ker-
nels, and other applications. In Timothy M. Chan, editor,
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2019, San Diego, California, USA,

January 6-9, 2019, pages 1387–1404. SIAM, 2019. 7, 8
[BCL94] Keith Ball, Eric A. Carlen, and Elliott H. Lieb. Sharp

uniform convexity and smoothness inequalities for trace
norms. Invent. Math., 115(3):463–482, 1994. 3

[BK96] András A. Benczúr and David R. Karger. Approximating
s-t minimum cuts in (=2) time. In Proceedings of the Twenty-

eighth Annual ACM Symposium on the Theory of Computing

(Philadelphia, PA, 1996), pages 47–55. ACM, New York, 1996.
1, 4

[BLM89] J. Bourgain, J. Lindenstrauss, and V. Milman. Approxima-
tion of zonoids by zonotopes. Acta Math., 162(1-2):73–141,
1989. 3

[BSS12] Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava.
Twice-Ramanujan sparsifiers. SIAM J. Comput., 41(6):1704–
1721, 2012. 2, 3

[BSS14] Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava.
Twice-Ramanujan sparsifiers. SIAM Rev., 56(2):315–334,
2014. 2

[BST19] Nikhil Bansal, Ola Svensson, and Luca Trevisan. New
notions and constructions of sparsification for graphs and
hypergraphs. In David Zuckerman, editor, 60th IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2019,

Baltimore, Maryland, USA, November 9-12, 2019, pages 910–
928. IEEE Computer Society, 2019. 3

[Che21] Yuansi Chen. An almost constant lower bound of the
isoperimetric coefficient in the KLS conjecture. Geom. Funct.

Anal., 31(1):34–61, 2021. 5
[CKP+17] Michael B. Cohen, Jonathan Kelner, John Peebles, Richard

Peng, Anup B. Rao, Aaron Sidford, and Adrian Vladu.
Almost-linear-time algorithms for Markov chains and new
spectral primitives for directed graphs. In STOC’17—

Proceedings of the 49th Annual ACM SIGACT Symposium

on Theory of Computing, pages 410–419. ACM, New York,
2017. 2

[CV18] Ben Cousins and Santosh S. Vempala. Gaussian cooling
and >

⇤(=3) algorithms for volume and gaussian volume.
SIAM J. Comput., 47(3):1237–1273, 2018. 7, 8

[Fig76] T. Figiel. On the moduli of convexity and smoothness.
Studia Math., 56(2):121–155, 1976. 2, 8

[GM83] M. Gromov and V. D. Milman. A topological application of
the isoperimetric inequality. Amer. J. Math., 105(4):843–854,
1983. 5

[Han56] Olof Hanner. On the uniform convexity of !? and ;
? . Ark.

Mat., 3:239–244, 1956. 3
[JLLV21] He Jia, Aditi Laddha, Yin Tat Lee, and Santosh S. Vempala.

Reducing isotropy and volume to KLS: an >⇤(=3#2) volume
algorithm. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT

Symposium on Theory of Computing, Virtual Event, Italy, June

21-25, 2021, pages 961–974. ACM, 2021. 7, 8
[JLS23] Arun Jambulapati, Yang P. Liu, and Aaron Sidford. Chain-

ing, group leverage score overestimates, and fast spectral
hypergraph sparsification. In Barna Saha and Rocco A.
Servedio, editors, Proceedings of the 55th Annual ACM

Symposium on Theory of Computing, STOC 2023, Orlando,

FL, USA, June 20-23, 2023, pages 196–206. ACM, 2023. Full
version at arXiv:2209.10539. 3, 6

[JLV22] Arun Jambulapati, Yin Tat Lee, and Santosh S Vempala. A
slightly improved bound for the KLS constant. Available
at arXiv: 2208.11644, 2022. 5

[JSS18] Arun Jambulapati, Kirankumar Shiragur, and Aaron Sid-
ford. Efficient structured matrix recovery and nearly-linear
time algorithms for solving inverse symmetric m-matrices.
arXiv, arxiv:1812.06295, 2018. 7, 8

[KKTY21a] Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and
Yuichi Yoshida. Spectral hypergraph sparsifiers of nearly
linear size. In 62nd IEEE Annual Symposium on Foundations

of Computer Science, FOCS 2021, Denver, CO, USA, February

7-10, 2022, pages 1159–1170. IEEE, 2021. 3, 6
[KKTY21b] Michael Kapralov, Robert Krauthgamer, Jakab Tardos,

and Yuichi Yoshida. Towards tight bounds for spectral
sparsification of hypergraphs. In Samir Khuller and
Virginia Vassilevska Williams, editors, STOC ’21: 53rd

Annual ACM SIGACT Symposium on Theory of Computing,

Virtual Event, Italy, June 21-25, 2021, pages 598–611. ACM,
2021. 3

[KL22] Bo’az Klartag and Joseph Lehec. Bourgain’s slicing problem
and KLS isoperimetry up to polylog. Geom. Funct. Anal.,
32(5):1134–1159, 2022. 5

[Kla23] Bo’az Klartag. Logarithmic bounds for isoperimetry and
slices of convex sets. Available at arxiv:2303.14938, 2023. 2,
5

[KLM+17] Michael Kapralov, Yin Tat Lee, Cameron Musco, Christo-
pher Musco, and Aaron Sidford. Single pass spectral
sparsification in dynamic streams. SIAM J. Comput.,
46(1):456–477, 2017. 7, 8

https://arxiv.org/abs/2209.10539
https://arxiv.org/abs/2208.11644
https://arxiv.org/pdf/2303.14938.pdf

[Lee23] James R. Lee. Spectral hypergraph sparsification via
chaining. In Barna Saha and Rocco A. Servedio, editors,
Proceedings of the 55th Annual ACM Symposium on Theory

of Computing, STOC 2023, Orlando, FL, USA, June 20-23,

2023, pages 207–218. ACM, 2023. Full version at arXiv:
2209.04539. 3, 6

[Lew78] D. R. Lewis. Finite dimensional subspaces of !? . Studia

Math., 63(2):207–212, 1978. 6
[Lew79] D. R. Lewis. Ellipsoids defined by Banach ideal norms.

Mathematika, 26(1):18–29, 1979. 6
[Lov83] L. Lovász. Submodular functions and convexity. In

Mathematical programming: the state of the art (Bonn, 1982),
pages 235–257. Springer, Berlin, 1983. 2

[LT11] Michel Ledoux and Michel Talagrand. Probability in Banach

spaces. Classics in Mathematics. Springer-Verlag, Berlin,
2011. Isoperimetry and processes, Reprint of the 1991
edition. 4

[MP89] Vitali Milman and Alain Pajor. Cas limites dans des iné-
galités du type de Khinchine et applications géométriques.
C. R. Acad. Sci. Paris Sér. I Math., 308(4):91–96, 1989. 4, 6

[MP12] Gary L. Miller and Richard Peng. Iterative approaches to
row sampling. arXiv, arxiv:1211.2713v1, 2012. 7, 8

[PTJ85] Alain Pajor and Nicole Tomczak-Jaegermann. Remarques
sur les nombres d’entropie d’un opérateur et de son
transposé. C. R. Acad. Sci. Paris Sér. I Math., 301(15):743–746,
1985. 4

[Rud99] M. Rudelson. Random vectors in the isotropic position. J.

Funct. Anal., 164(1):60–72, 1999. 2
[RY22] Akbar Rafiey and Yuichi Yoshida. Sparsification of de-

composable submodular functions. In Thirty-Sixth AAAI

Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth

Conference on Innovative Applications of Artificial Intelligence,

IAAI 2022, The Twelveth Symposium on Educational Advances

in Artificial Intelligence, EAAI 2022 Virtual Event, February

22 - March 1, 2022, pages 10336–10344. AAAI Press, 2022. 2
[SS11] Daniel A. Spielman and Nikhil Srivastava. Graph sparsifi-

cation by effective resistances. SIAM J. Comput., 40(6):1913–
1926, 2011. 2, 4

[ST11] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsi-
fication of graphs. SIAM J. Comput., 40(4):981–1025, 2011.
2

[SY19] Tasuku Soma and Yuichi Yoshida. Spectral sparsification
of hypergraphs. In Timothy M. Chan, editor, Proceedings

of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2019, San Diego, California, USA, January

6-9, 2019, pages 2570–2581. SIAM, 2019. 3
[Tal90] Michel Talagrand. Embedding subspaces of !1 into ;

#

1 .
Proc. Amer. Math. Soc., 108(2):363–369, 1990. 3

[Tal95] M. Talagrand. Embedding subspaces of !? in ;
#

?
. In

Geometric aspects of functional analysis (Israel, 1992–1994),
volume 77 of Oper. Theory Adv. Appl., pages 311–325.
Birkhäuser, Basel, 1995. 3

https://arxiv.org/pdf/2209.04539.pdf
https://arxiv.org/pdf/2209.04539.pdf

	Introduction
	Importance sampling for general norms
	algorithms
	Computing the sampling weights via homotopy
	Details and analysis
	Sparsifying symmetric submodular functions

	References

