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Abstract—We give a new framework for solving the fundamen-
tal problem of low-rank matrix completion, i.e., approximating a
rank-r matrix M € R™*" (where m > n) from random observa-
tions. First, we provide an algorithm which completes M on 99%
of rows and columns under no further assumptions on M from
~ mr samples and using ~ mr? time. Then, assuming the row
and column spans of M satisfy additional regularity properties,
we show how to boost this partial completion guarantee to a
full matrix completion algorithm by aggregating solutions to
regression problems involving the observations.

In the well-studied setting where M has incoherent row and
column spans, our algorithms com(plete M to high precision from
mr2t°) observations in mr>*°) time (omitting logarithmic
factors in problem parameters), improving upon the prior state-
of-the-art [JN15] which used ~ mr® samples and =~ mr’
time. Under an assumption on the row and column spans of
M we introduce (which is satisfied by random subspaces with
high probability), our sample complexity improves to an almost
information-theoretically optimal ms'*°) and our runtime
improves to mr?t°, Our runtimes have the appealing property
of matching the best known runtime to verify that a rank-
r decomposition UV agrees with the sampled observations.
We also provide robust variants of our algorithms that, given
random observations from M + N with |N|g < A, complete
M to Frobenius norm distance ~ r*-5A in the same runtimes as
the noiseless setting. Prior noisy matrix completion algorithms
[CP10] only guaranteed a distance of ~ /nA.

Index Terms—matrix completion, stochastic optimization

I. INTRODUCTION

Matrix completion is a fundamental and well-studied prob-
lem in both the theory and practice of computer science,
machine learning, operations research, and statistics. Broadly,
the matrix completion problem asks to recover a matrix
M € R™*™ from a small (i.e., sublinear) number of randomly
revealed, and potentially noisy, entries. This problem was
originally studied in the context of collaborative filtering
[RSO5] (see e.g., the Netflix challenge [SNO7]) and has since
found a myriad of applications in diverse settings such as
signal processing [LLR95], [SYO7], genetics [ND14], social
network analysis [MJGP19], and traffic engineering [GC12].

a) Structural assumptions.: In the absence of additional
assumptions, matrix completion is impossible. Unless there
is structure among the entries of M, then all of M must be
revealed for recovery (as otherwise unrevealed entries can be
arbitrary). Correspondingly, there has been a long line of work
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developing algorithms for matrix completion under different
structural assumptions on M. Perhaps the most prevalent and
natural assumption placed on M is that it is low-rank. This
assumption is well-motivated for the matrices arising in collab-
orative filtering or signal processing, for example, as discussed
in [CR12]. Furthermore, rank-r matrices M € R™*™ can
be represented in O((m + n)r)-space simply by storing its
rank-r factorization. Consequently, naive parameter-counting
arguments suggest it may be possible to recover M using
O((m + n)r) observations.

However, the assumption that M is low-rank alone is
insufficient to enable algorithms for matrix completion that
use o(mn) observations. If M has a single non-zero entry,
then it has rank-1, and yet Q(mn) observations are required
to recover the nonzero entry (and consequently M) with con-
stant probability. Correspondingly, works on low-rank matrix
completion place different additional structural assumptions
that preclude such sparse obstacles to solving the problem.

The setting where M has incoherent row and column spans
is particularly well-studied [CR12]. A dimension-r subspace
of R? is p-incoherent if no projection of a basis vector
has squared norm more than £°, i.e., the subspace is well-
spread over coordinates; we use “incoherent subspace” without
a parameter to mean a O(1)-incoherent subspace.! Letting
UXVT be a singular value decomposition (SVD) of M, and
assuming U,V span incoherent subspaces (and an entrywise
bound on UVT), [Recl1] refined results of [CT10], [CR12],
[KMO10], and demonstrated that there are polynomial-time
algorithms completing M from O((m + n)r) observations.

The parameters used in the definition of incoherence are mo-
tivated by the fact that they are satisfied with high probability
by random rank-r matrices. Consequently, prior work showed
that matrix completion is information-theoretically possible so
long as the structure of M is “suitably-random.” However,
it is perhaps unclear whether incoherence is the correct or
best notion of “suitably-random,” aside from the post-hoc
justification that it allows for efficient matrix completion.

b) Performance of matrix completion algorithms.: De-
spite a plethora of work on matrix completion when e.g., M

"Throughout O hides polylogarithmic factors in m, n, the inverse failure
probability, and the relative accuracy.



has incoherent row and column spans (discussed below and in
greater detail in Section I-B), many surprisingly fundamental
algorithmic questions remain unresolved. A number of key
open problems relate to the runtime and robustness of existing
matrix completion algorithms.

The aforementioned works of [CT10], [CR12], [Recll1]
developed polynomial-time algorithms for completing a rank-
r matrix M € R™*" with O(1)-incoherent row and column
spans from a near-optimal number of observations. These
algorithms were based on semidefinite programming (SDP)
for nuclear norm minimzation. The runtimes of state-of-the-art
SDP solvers [JKL*20], [HIST22] have a substantial polyno-
mial overhead over the number of observations, inhibiting their
practical application. Motivated by this shortcoming, another
line of work [KMO10], [Har14], [JN15], [YPCC16] developed
iterative first-order methods, based on alternating minimization
or gradient descent, whose runtimes depend linearly on the di-
mension max(m,n). However, the state-of-the-art algorithms
with such runtime guarantees still incur fairly substantial
overheads in problem parameters. Prior to our work, the best
runtime for incoherent low-rank matrix completion was by
[IN15], whose algorithm ran in time O((m + n)r’).> A
contemporaneous work of [YPCC16] yielded an incomparable
runtime of O((m + n)rtx®), where  is the multiplicative
range of M’s singular values.

Another parameterization of the performance of matrix
completion algorithms, which is rife with open problems, is
the degree to which they can handle noise in the observations.
In the setting where M is low-rank and has incoherent row
and column spans, suppose that instead of observing random
entries of M, the observations we see are of M + N for a
noise matrix N satisfying |N|l < A. We are unaware of
any information-theoretic barriers to recovering a matrix M
satisfying [|[M — M||p = O(A) with no further assumptions.
However, state-of-the-art polynomial-time algorithms are only
able to achieve a Frobenius norm recovery guarantee of
O(y/min(m,n)A), which loses a dimension-dependent factor.
While other matrix completion algorithms in the literature
also demonstrate robustness to noise, their guarantees either
require additional assumptions on the noise such as sparsity,
e.g., [CGI17], [YPCCI16], or break down for large A, e.g.,
[KMOO09], [GAGG13], [Har14], [HW14].

These open problems regarding the complexity of matrix
completion give rise to the following key questions which
motivate our work.

1) What type of matrix completion is possible when the
only structure is a rank bound?

2) Are there alternative structural assumptions to incoher-
ent subspaces which enable faster algorithms, improved
sample complexities, and better noise tolerance?

2A more recent work [CGJ17] claims an improved runtime over [JN15].
However, to obtain this result [CGJ17] assumes a sublinear-time exact singular
value decomposition subroutine (which does not currently exist), and it is
unclear how to recover the runtime claim of the paper without such an
assumption [Che22].

3) Under the well-studied structural assumption of inco-
herent subspaces, to what extent can we improve upon
the runtimes and error tolerance of existing matrix
completion algorithms?

A. Our results

We provide a new algorithmic framework for matrix com-
pletion and technical tools that address the shortcomings raised
by each of Questions 1, 2, and 3. The cornerstone of our
framework is a new iterative method that answers Question 1
by obtaining (perhaps surprisingly) nontrivial matrix comple-
tion guarantees with no structural assumptions beyond a rank
bound. We believe this result is of independent interest, and
we state it first.

a) Partial matrix completion without structure.: As al-
ready noted, fully completing low-rank M from partial ob-
servations is impossible without further assumptions due to
the possibility of sparse, large entries. However, when M is
low-rank, such entries are necessarily rare (see Lemma 6 for
a formal statement) and thus one could still hope to recover
a large portion of M. We demonstrate this in the following
theorem (where Mg 1 denotes the submatrix indexed by
S C[m],T C[n].

Theorem 1 (informal, see Corollary 2). Let m > n,> let
M € R™*™ be rank-r, and let N € R™*™ satisfy |N||z < A.
There is an algorithm which, given 6(7111“‘0(1)7“) random
observations from M + N, runs in time O(m'*t°Mr?) and,
with high probability, outputs a rank-rm°Y) factorization of
M € R™*™ so that there exist S C [m] and T C [n] with
|S| > 0.99m, |T| > 0.99n, and

< A.

e,

ST

In other words, on a very large subset of coordinates,
Theorem 1 recovers M up to the optimal error threshold up to
constants. Additionally, since ~ mr samples are information-
theoretically necessary to perform nontrivial (full) matrix
completion [CT10], the sample complexity of Theorem 1 is
almost-optimal. As a corollary, in the case when A = 0,
Theorem 1 shows that matrix completion can be solved exactly
on all but 1% of rows and columns (assuming a bounded bit
complexity).

The runtime stated in Theorem 1 has the appealing property
that it is what we call almost-verification time. Consider
the natural problem of verifying a rank-r factorization of
M, that is the problem of verifying that UV = M on
mr observed entries given an explicit rank-r factorization of
M = UV, for U € R™*",V € R**". The best known
running time for this problem is O(mr?) (even when using
fast multiplication). Up to subpolynomial factors, our runtime
in Theorem 1 matches this natural bottleneck to improved
runtimes for matrix completion.

3All of our results handle m < n symmetrically via transposition, so we
often assume m > n for ease of exposition.



The guarantees of Theorem 1 are to the best of our knowl-
edge new, and seem particularly striking in light of the long
history of matrix completion algorithms. It is worth noting
that there has been work which broadly aims to complete a
submatrix from observations. Perhaps the most closely-related
result is due to recent, similarly-titled work of [KHK22],
which studies a different notion of partial matrix completion.
[KHK?22] shows that if M is rank-r and has bounded entries,
and the distribution of observed entries is supported on a
subset U C [m] x [n], then one can recover M to constant
average entrywise error on a subset of [m]x [n] with cardinality
at least |U| (for a suitable relaxed notion of average error).
For instance, if the algorithm of/[\KHKZZ] is in/st\antiated for
U = [m] x [n], then it outputs M satisfying ||[M — M|z <
€[[M||2 using O((m + n)re=2) observations. Notably, their
complexity depends inverse-polynomially on the accuracy (and
hence inhibits exact completion). In contrast, our Theorem 1
achieves exact completion (albeit only on a large submatrix),
and works under the standard, i.i.d. observation model.

b) Matrix completion beyond incoherence.: Equipped
with our new partial matrix completion subroutine, we turn to
Question 2 and ask under what structural assumptions we can
leverage it to solve (full) matrix completion efficiently. Given
the generality of our partial matrix completion algorithm, it
is natural to ask whether we can first run partial completion,
and then recover the matrix on the small subset of rows and
columns on which our partial completion method fails.

When analyzing this iterative process of recovering rows
and columns of the target matrix which were dropped by our
partial completion method, the standard structural assumption
of incoherence turns out to be a lossy notion of “suitably-
random.” Instead, we define a new structural assumption on
subspaces which we call subspace regularity, that serves as a
proxy for randomness.

Definition 1 (Regular subspace). We say a subspace V C R?
is (o, B)-regular if for all ad-sparse v € RY, |y, v|, >

ﬁ||”||2

Note that Definition 1 implies [|IIyv|l, < (1 — 8%)|v]|,,
a condition which bears resemblance to incoherence (by
bounding the relative weight of any small set of coordinates
in the subspace). Intuitively, Definition 1 imposes that the
restriction of V' to a sufficiently large set of coordinates is still
well-conditioned (made formal by Lemma 2). We prove that
uniformly random subspaces are («, 3)-regular for constant c,
B, with exponentially small failure probability, in Appendix A.
Subspace regularity is not directly comparable to incoherence
without losing r factors in the parameter settings (see Fact 2),
because a d x r basis matrix for an incoherent subspace can
be entirely supported on an O(%) fraction of rows. However,
Definition 1 is naturally compatible with our partial matrix
completion method: roughly speaking, we require that the
non-dropped rows and columns (e.g., (S,7) in Theorem 1)
are representative enough of the remaining matrix to recover
dropped subsets. This representativeness is captured by the
conditioning requirement in Definition 1. Our main (full)

matrix completion result under subspace regularity is the
following.

Theorem 2 (informal, see Corollary 3). Let m > n, let
M € R™*™ be rank-r and have (2(1),$(1))-regular row
and column spans, and let N € R™*" satisfy |[N||z < A.
There is an algorithm which, given @(mrl""’(l)) random
observations from M +N, runs in time O(mr2+"(1/)2 and with
high probability outputs a rank-r factorization of Ml € R™*™
so that
-, =005,
F

The sample complexity of Theorem 2 is optimal up to
subpolynomial factors [CT10] in the noiseless case (captured
by our result by taking A — 0); these subpolynomial factors
arise due to iterate rank blowup issues discussed in Sec-
tion I-C. Moreover, the algorithm of Theorem 2 runs in almost-
verification time for the number of observations. Finally, in
the noisy case, A > 0, the overhead of Theorem 2’s recovery
guarantee only scales with the rank r, as opposed to the prior
state-of-the-art [CR12] whose overhead scaled polynomially
with the problem’s dimensionality.

Even under subspace regularity, the “fixing” step used to
obtain Theorem 2 we briefly described is quite technically
involved. One of the main difficulties is that after running
partial matrix completion, we do not necessarily know which
rows and columns S, T have been completed. Our fixing al-
gorithm circumvents this issue by carefully finding a small set
of rows and columns which approximately span the row and
column space of M in a well-conditioned fashion, satisfying
a “representative” condition we state in Definition 6. We then
show that we can use these representative rows and columns,
alongside held-out random observations of the matrix, to
robustly recover the rows and columns that were incorrectly
completed by the partial completion algorithm. Putting these
pieces together yields a fixing algorithm which recovers the
subsets our partial completion method is inaccurate on, but
increases error by a poly(r) factor. By carefully interleaving
this fixing operation with repeated applications of our partial
completion iterative method, we geometrically decrease the
error of our overall algorithm. We give a detailed overview of
our approach in Section I-C.

c) Matrix completion with incoherence.: Finally, we re-
turn to Question 3, i.e., matrix completion under the well-
studied assumption of incoherence. We demonstrate that a
small modification of our algorithm in Theorem 2 implies
an analogous result under incoherence. In light of Fact 2
(which converts a subspace incoherence bound into a regular-
ity bound), this is immediate up to poly(r) losses in the sample
complexity and runtime. We give a tighter characterization
of the lossiness due to assuming incoherence by introducing
Definition 4, which subsumes both subspace regularity and
incoherence. Leveraging this characterization, our techniques
imply the following result for incoherent matrix completion
(losing a single r factor in runtime and samples over Theo-
rem 2).



Corollary 1 (informal, see Corollasy ). Let m > n, let
M € R™*™ pe rank-r and have O(1)-incoherent row and
column spans, and let N € R™*™ satisfy |N||p < A. There is
an algorithm which, given 6(mr~2+"(1)) random observations
from M + N, runs in time O(mr3t°(1) and with high
probability outputs a rank-r factorization of M € R™*"™ so
that
v, =0 5w 8)
F

Even with this additional r factor overhead, our results
compare favorably to existing work on incoherent matrix com-
pletion. As mentioned previously, the state-of-the-art runtime
for incoherent matrix completion (with polylogarithmic depen-
dence on problem conditioning) was O(mr”) [JN15], which
our Corollary 1 dramatically improves upon. While the sample
complexity of Corollary 1 is a factor of r larger than the
sample complexity required by matrix completion algorithms
based on semidefinite programming, all incoherent matrix
completion methods in the literature which run in time nearly-
linear in m = max(m,n) use Q(mr?) observations (and
often more), which we match up to subpolynomial factors.
Additionally, none of the existing polynomial-time algorithms
(even the slower semidefinite programming approaches!) were
known to yield dimension-independent recovery guarantees
for noisy incoherent matrix completion. We summarize how
Corollary 1 compares to prior work on matrix completion
under incoherence below.

Algorithm | Samples | Runtime Error
[Recl1] mr Q(m®) N/A
[CP10] mr Q(m*) VnA
[HW14] mrd mri3 *
[SL16] mr’ k? m2rért N/A
[IN15] mr® mr’ N/A

[YPCC16] mr2k? mrtk® *

Corollary 1 | mr2to() | mg3te(D) | pLo+o(1) A

Figure 1. Comparison of algorithms for completing rank-r M € R™X"
with O(1)-incoherent row and column spans, assuming m > n. We let A
upper bound the (Frobenius norm) noise level, x denote the multiplicative
range of M’s singular values, and hide polylogarithmic factors. For [Recl11],
[CP10], current SDP solvers with m constraints use Q(m®) time [JKLT20],
[HIST22]. We use % to mean additional assumptions are made on the noise
beyond a Frobenius norm bound.

B. Related work

The literature on matrix completion is vast and a full survey
is beyond our scope. For conciseness, we only consider the
most relevant work here. Much of the algorithmic work on
matrix completion falls into three categories, two of which
we have already discussed in some depth. First, there is
work on solving matrix completion using SDPs such as
nuclear norm minimization, e.g., [CT10], [CP10], [CR12],
[Recl1], [DC20]. These algorithms typically attain strong
statistical guarantees, but have superlinear runtimes in the
problem dimensionality. Second, there is the line of work
on formally analyzing nonconvex methods such as alternat-
ing minimization, e.g., [KMO10], [Harl4], [HW14], [JN15],

[ZWL15], [SL16], [CGI17], [ZW19]. While these achieve
runtimes which are linear in the dimension of the problem,
all prior results incurred large polynomial factors of r or
other problem parameters in their runtime (and sometimes
their sample complexity as well). We also remark that many of
these papers consider notions of robust matrix completion, but
tend to consider the setting where the noise matrix is sparse as
opposed to norm-bounded, which is the setting we consider.

Finally, there is also the line of work on analyzing convex
methods such as gradient descent for matrix completion. In
many of those works, the objective is to demonstrate the
more qualitative result that the optimization landscape for
matrix completion has no spurious local minima [SQW15],
[DSRO15], [GLMI16], [JKNI16], [ZDG18], [ZCZ22]. Con-
sequently, their quantitative guarantees tend to be some-
what loose compared to results using convex programming
or nonconvex methods. Additionally, because these methods
are based on gradient descent, they tend to have runtimes
which scale polynomially with the condition number of the
underlying matrix. In contrast, our algorithms run in time
which is polylogarithmic in the condition number. One notable
exception is [ZCZ22]; however, this paper only proves local
convergence results for their method.

C. Overview of approach

In this section, we overview the two main components
of our matrix completion algorithms: our iterative method
for partial matrix completion (given in Section III) and our
recovery algorithm for the missing row and column subsets
which our iterative method fails to give guarantees on (given in
Section 1V). Throughout this discussion we let M* := R?*"
be a rank-r* matrix which we wish to recover to disambiguate
from iterates denoted as M; we also let m = n for simplicity.
We delay discussion of the noise-robustness of our matrix
completion algorithms to the end of the section.

1) Partial matrix completion:

a) Short-flat decompositions.: Our partial matrix com-
pletion algorithm is motivated by a recent approach to sparse
recovery developed in [KLL*22]. This approach iteratively
makes progress towards recovering a sparse target vector x*
by taking projected gradient steps. The key observation of
[KLL*22] is that in the sparse recovery setting, the gradient
of the least-squares objective is decomposable into an {5-
bounded component (the signal direction towards x*) and
an /.-bounded component (the noise), termed a “short-flat
decomposition.” The algorithm of [KLL*22] carefully used
truncation onto the set of sparse vectors (which enjoys a
bounded /;-to-¢5 ratio), along with the ¢;-¢,, Holder’s in-
equality, to bound how much the flat noise component inhibits
progress.

We now give a first attempt at executing this strategy for
matrix completion, noting that the set of low-rank matrices is
a spectral analog of the set of sparse vectors. Let M € R™*™
be a current iterate, assume it is rank-r* (for simplicity), and
let Q C [n] x [n] be a uniformly random set of indices with
|| ~ pn?, where p is the observation probability. Suppose



we are promised |[M — M*||. < 1. A natural descent step
balancing the goals of making progress towards M* and main-
taining that our iterate has low rank takes D < [M* —M]q, to
be the observed difference matrix, lets G be the rank-O(r*)
truncation of the SVD of D, and updates M’ <— M + %G for
an appropriate step size 7 > 0. If D sufficiently approximates
M* — M in the operator norm (up to ~ (r*)~2), it is
straightforward to adapt arguments of [KLL22] to show that
this step makes substantial progress in decreasing distance to
M*, e.g., |[M' — M*||g < % The intuition for this argument
is that

1D_M*—M+(1[M*—M]Q—(M*—M)>. (L1)
P \p

=Y

In this decomposition, note that X is low-rank and exactly
in the signal direction M* — M, so if we could remove the
influence of Y then the rank-2r* truncation of X (indeed,
even no truncation at all) would exactly take us towards M*.
Moreover, if we could bound the operator norm of the noise
component Y, then applying perturbation arguments such
as Weyl’s theorem shows that Y cannot affect the progress
direction by too much after truncating D’s SVD. Furthermore,
assuming the random samples (2 are independently drawn,* it
is straightforward to see that Y is mean-zero, so we can hope
to control its operator norm using concentration bounds such
as the matrix Bernstein inequality. This argument parallels the
strategy of [KLL'22], where we may think of X as the short
progress component and Y as the flat noise component (each
in a singular value sense).

b) Bounding the difference matrix.: Unfortunately, with-
out further assumptions, the operator norm of Y may be too
large. A hard example is when M* = wu' and M = vo'
where u, v have entries in +n~2 differing in only one coor-
dinate. In this example, a randomly sampled Y (after debiasing
via rescaling by the inverse sampling probability ~ n, as in
(I.1)) will have constant rank and operator norm. A natural way
to prove an operator norm bound on such a randomly sampled
matrix is via the matrix Bernstein inequality, which shows that
we obtain the desired bounds if the difference M —M* has row
and column norms bounded by ~ n~2 and entries bounded
by ~ v/r* - n~! (see Lemma 7); these conditions fail in our
hard example as it has one row and column norm which is too
large. Nevertheless, Markov’s inequality shows that in general,
only a constant fraction of rows and columns of the difference
matrix can have norms which are too large; these subsets can
then be estimated from observations and dropped (carried out
in Section III-A).

This leaves the issue of large entries, a second obstacle for
our matrix Bernstein argument. With no assumptions on the
row and column spans of M*, it is possible that M — M*
has a few large entries missed by our random observations
which can ruin our bound on Y. We first show that due to

4We show how to lift this assumption by splitting samples and using them
iteratively as holdouts in Lemma 1.

the rank bound on M — M*, these large entries must be
localized to small (unknown) subsets of rows and columns
(Lemma 6). We then introduce a new measure of progress
(Definition 2) where we say two matrices are close if their
difference has small Frobenius norm on a large submatrix,
which allows us to exclude these small unknown subsets with
large entries. Finally, we are able to prove our iterative method
makes progress in this modified notion of distance, and thus
achieves partial completion. We give a complete statement of
the guarantees of our partial matrix completion method in
Proposition 1, and demonstrate how to use it recursively to
obtain Theorem 1 in Section III-C.

c) Mitigating rank blowup.: One technical issue which
arises in our partial completion method is that, roughly speak-
ing, the rank of our iterate M increases by a constant factor
in each iteration. Our earlier argument relied on a rank bound
on M, so this rank blowup is problematic. If our progress
measure were |[M —M?*| (i.e., an exact distance bound),
we could simply truncate the SVD of M to project it onto
the set of low-rank matrices, which affects our progress by a
constant factor. However, our guarantee is with respect to a
modified notion of distance, so this does not hold. Instead, we
show that we can make substantially more progress by taking
slightly more samples, cutting the modified distance measure
by a factor of ~ exp(+/log(r*)) = (r*)°(!) in each iteration,
so that in = \/log(r*) iterations we have made a polynomial
factor progress. This results in only a (7*)°(!) factor blowup in
the rank of our iterate, and we then apply our fixing procedure
(discussed next) to reduce the rank. For our self-contained
partial completion result (Theorem 1), which is performed in
one shot without a fixing step, the corresponding overhead is
a factor of n°(1),

2) From partial completion to full completion:

a) Finding a representative subset.: Our distance mea-
sure in our partial completion algorithm (see e.g., Theorem 1)
allows for the subsets on which we make progress to be
unknown, but this causes issues when used for full completion.
Indeed, our partial completion method made no assumptions
about the regularity of M”*, but to recover dropped subsets
(as well as subsets excluded by our distance measure) we
need to impose structural assumptions. For simplicity in the
following discussion, assume M* has (€(1),Q(1))-regular
row and column spans for appropriate constants (Definition 1).
We also assume for simplicity that M, the output of our
partial completion method, satisfies [M]a g = [M*|a 5
for |Al,|B| > 0.99n exactly, i.e., we have run the partial
completion method to high accuracy. Finally, we ignore the
effect of explicitly dropped rows and columns, as these can
be recovered analogously to the (unknown) excluded subsets
in our distance measure.

Our high-level strategy is to identify a set T of =~ r
columns of M, such that M = M* exactly on these columns,
and the column space of M7, spans the column space of
M. We call such a set 1" “representative” with respect to
(M, M*), defined formally in Definition 6 (which includes
additional parameters when M 44 g is only close to M7, 5,

*



rather than exactly equal). We begin with a preprocessing
phase in Section IV-A, where we drop any rows and columns
upon which we observe empirical errors. This guarantees that
on the remaining submatrix, the difference matrix M — M*
has at most % nonzero entries per row or column (else
they would have been dropped).

We next provide a structural fact that any rank-r* matrix
with such bounded row and column sparsity must have all of
its errors localized to a 1% x 1% submatrix (see Lemma 13
for a formal statement which handles noise). In the noiseless
case, this fact follows straightforwardly from a Gram-Schmidt
argument (Lemma 14). This implies that a majority of the
remaining columns of M and M* (after preprocessing) are
actually identical, and are thus valid to include in a representa-
tive subset. We further develop a tester for verifying whether a
given column j € [n] should be included in our representative
subset, by drawing ~ r* random columns of our iterate M and
checking whether column M. ; is contained in the span of these
random columns. This test is motivated by the observation
that if M.; contains a sparse error (and hence should not be
included), with constant probability our random sample will
dodge this error due to our preprocessing step, and hence M.
will not be contained in its span. By repeating our tester a
small number of times, we can ensure the subset of columns
we include is representative.

b) Regression with a representative subset.: Once we
have determined a representative subset 7', it suffices to use our
regularity assumptions to argue that &~ r* random observations
of any column of M* uniquely determine how it can be
completed as a linear combination of M. = MJ,. In the
noiseless case, this means that we can simply solve roughly
n regression problems in r* x 7* matrices to fully complete
the matrix. Our formal definition of a representative subset
contains a quantitative bound ensuring M’} spans the column
space of M* in a well-conditioned manner. This allows for
us to argue about the generalization error of our regression
subroutines under noise.

We remark that if after our partial completion subroutine,
we knew which row and column subsets A, B our iterate was
close to M* on, we could directly skip to this regression step
for recovering poorly-behaved subsets. Handling the potential
of sparse errors on unknown subsets of our iterate in a noise-
tolerant way constitutes the bulk of our technical development
in Section IV.

3) Robust matrix completion: Finally, we discuss how our
framework extends to the noisy setting in a natural way.
In general, our fixing step in Section IV takes as input M
with the guarantee that M is A-close to M* on a submatrix
(see Definition 2), after excluding an %-fraction of rows and
columns explicitly dropped by our iterative method, and an
additional §-fraction due to our distance measure (where « is
a subspace regularity parameter). Assuming A is sufficiently
larger than ||N||z, where we receive observations from M*+N
(i.e. N is the noise), our fixing step learns any excluded
rows and columns to a comparable distance to the average
undropped row or column, and yields a standard distance

guarantee (rather than a partial one). However, this stronger
standard distance guarantee comes at the cost of a poly(r*)
overhead over the initial distance promise A, and is stated
formally in Proposition 3. This overhead is due to lossiness
when converting between operator norm distance guarantees
(which naturally arises in analyzing the generalization error of
our regression step), and Frobenius norm distance guarantees
(which our iterative method yields). By ensuring that all
matrices encountered throughout are low-rank, this lossiness
only has r*-dependent factors.

Our robust matrix completion results stated in Theorem 2
and Corollary 1 follow by applying the guarantees of Proposi-
tion 1 (our partial matrix completion algorithm) and Proposi-
tion 3 (our fixing step) recursively. By running Proposition 1
for a small number of steps to control the blowup of our
iterate’s rank, and applying Proposition 3 to reduce the rank
and recover dropped subsets, we can make multiplicative
distance progress towards our noise threshold A > |NJ||g.
The error overhead incurred by our algorithms is then due to
a final application of Proposition 3.

II. PRELIMINARIES

a) General notation.: Throughout [n] := {i € N |
i < n}. When S C T and T is clear from context, we let
S¢ =T\ S. We say v € R? is s-sparse if it has at most s
nonzero entries. Applied to a vector, [|-||,, is the ¢, norm. The
Frobenius, operator, and trace norms of a matrix are denoted
[[[[gs [Illop> and |||, and correspond to the 2-norm, co-norm,
and 1-norm of the singular values of a matrix. The all-zeroes
and all-ones vectors of dimension d are denoted O, and 1.

b) Matrices.: Matrices are denoted in boldface. We equip
R™*" with the inner product (A, B) := Tr(A"B). The d x d
identity matrix is denoted I;, and the all-zero m X n matrix
is denoted 0,,,x,,. The ordered singular values of M € R™*"
with m > n are denoted {o;(M) };¢[,,), Where 0 is largest and
o, is smallest; when M € R#*4 jg symmetric, we similarly
define {\;(M)};c(q. When ¢ is larger than the rank of M,
0;(M) := 0. The number of nonzero entries of M is denoted
nnz(M), and the largest absolute value among its entries is
denoted |[M|| ... For 7 > 0, M € R™*", we let M=" be
such that Mi—jT is the median of —7,7, and M,;. We say
M € R™*™ is given as a rank-r factorization if we have
explicit access to U € R™*", V € R™*” with M = UV .
For symmetric positive semidefinite A,B € RY*¢ we use
A =~, B to denote exp(—¢)B < A = exp(e)B. When A
is symmetric positive definite we let x(A) be the ratio of
its largest and smallest eigenvalues. We define 7n,y(M) as
the amount of time it takes to compute Muv for any v; note
Tov(M) = O(nnz(M)), and if M € R™*™ is given as a
rank-r factorization then 7y (M) = O((m + n)r).

¢) Submatrices.: For M € R™*™ and subsets S C [m)],
T C [n], the matrix Mg 1 denotes the |S| x |T'| submatrix
of M restricted to rows S and columns 7. When A = {i}
for i € [m], we abbreviate this as M, g, and similarly define
M ; for j € [n]. For M € R"™*™ we write M 4, as shorthand
for M 4 ;) and M. for My, p. The i™ row and j® column




of M are similarly denoted M;. and M.;. When dimensions
are clear, the matrix which is all-zeroes except for a one in
the (i, 7)™ entry is E;; and e; is the i standard basis vector.
We say that N is a y-submatrix of M € R™*™ if N = Mg ¢
for S C [m], T C [n] with |S| > m — ymin(m,n) and
|T| > n — ymin(m,n). We say that M is s-row column
sparse (RCS) if each row and column of M has as most s
nonzero entries. When Q C [m] x [n] is a set of index pairs,
Mg, zeroes out all entries in M indexed by €2¢ (we similarly
define vq for vectors v € R? and Q C [d)]).

d) Comparing matrices.: We introduce two nonstandard
notions of closeness between matrices. These notions will be
used primarily in stating the guarantees of our subroutines in
Sections III and IV respectively, to deal with subsets or sparse
error patterns out of our control.

Definition 2 (Closeness on a submatrix). We say M, M’ €
R™*™ are A-close on a ~y-submatrix if there exist subsets
A C [m], B C [n] satisfying |A| > m — ymin(m,n), |B| >
n — ymin(m,n), and

w1, <

Definition 3 (Closeness away from an RCS matrix). We say
M, M’ € R™*™ are A-close away from an s-RCS matrix if
M-M' =X+Y, for some ||X|g <A, and s-RCS Y.

We note that in Definition 2, the sets A, B are unknown;
similarly, in Definition 3, the factorization X, Y is unknown.
Our analysis will only use these definitions as existential
statements.

e) Observation model.: For M € R™*™  we specialize
the notation Mg, <— O,(M) to mean 2 C [m] x [n] contains
each (i,7) € [m] x [n] with probability p (sampled indepen-
dently), and Mg is the sum of the observations M;;E;; for
(i,7) € Q. When an algorithm requires the ability to query
M € R™*" with O,, for various p (specified in the algorithm
description), we list the input as Ojy ;j(M), which also gives
access to O,1](Mg,r) for S C [m], T C [n].

We note that this observation model (querying O,, possibly
multiple times independently) is compatible with the standard
model in the literature (which only allows for a one-shot set of
realized observations), up to a small loss in parameters. This
is made formal through the following lemma, which shows
how to simulate K draws from O, given one-time access to
Okp.

Lemma 1. Let {pi}repr) € (0,1) satisfy p < p < & for
all k € [K], and let M € R™*™. We can simulate sequential
access to O, (M) for all k € [K] with access to Ok ,(M).

Proof. The probability that the entry is revealed in any of the
independent, sequential queries is

Drot = 1 — H (1 *pk) < Kp.
ke[K]

The conclusion then follows from two observations. First,
letting ¢ > p satisfy 1 — (1 — ¢)¥ = Kp, if O, reveals

an entry we can efficiently simulate how many of K calls to
O, would have revealed that entry conditioned on at least one
call resulting in a reveal. Second, given access to O, we can
simulate O,, for any p; < g by rejecting a revealed entry
with the appropriate probability. O

In other words, Lemma 1 allows us to draw observations
from a matrix a single time, and then split the samples in a
way that simulates multiple sequential accesses to the matrix.

f) Subspaces.: For a subspace V' C R? of dimension 7,
we denote its orthogonal complement by V. We let IT, €
R?x4 be the projection matrix onto V. We let By € RI*"
denote an arbitrary matrix satisfying BVBJ = IIy and
B! By = I.. We say UEV ' is the singular value decom-
position (SVD) of M if U,V have orthonormal columns and
3} is nonnegative and diagonal; when this is not unique, we
take an arbitrary SVD. We recall our definition of a regular
subspace in Definition 1. We will mainly use this definition
through the following equivalence.

Lemma 2. Ler V C RY have dimension r, and let {bi}icla C
R" be rows of an (arbitrary) choice of By. V is («, B)-regular
if and only if for every S C [d] with |S| > (1 — a)d,

B <> bib) <T,.
i€s
Proof. First observe that ||[IIyv|3 + |[TIy, v||5 = |v||5 and
[Ty o3 = v Hyv = | Bywlf3 for all v € R Consequently,
V' is (a,B) regular if and only if || 37,y bivil|3 < (1 —
B%) Hv||§, for all ad-sparse v € R%. This is equivalent to the
condition that for all 7' C [d] with |T'| < «d and (not necessar-
ily sparse) v € R, || 32, 7 bivi]|3 < (1—-5%) 3, cp vZ. Equiv-
alently, for every T' C [d] with |T'| < ad, the matrix By, must
have operator norm < /1 — 32,50 ), . bib] = (1—B)L,.
Since 3,5 bib] =L — > g bib] and 3o,y bib] =1,
the result follows. O

We also introduce a notion of a standard subspace in
Definition 4, which is more compatible with the aformentioned
incoherence assumption in the matrix completion literature.
This definition is used to streamline the application of the
tools from Section IV.

Definition 4 (Standard subspace). We say a subspace V C R?
of dimension r is («, 8, u)-standard if it is («, B8)-regular and
there exists a subset S C [d] with |S| > (1 — §)d such that
forallie S, |[Tlye;|, < /5.

The following fact is immediate by Markov’s inequality,
2
[TIyeill, = [IByeilly, and [By g = r.

Fact 1. If a subspace V. C R is («, 3)-regular, then it is
(a, B, %)-standard.

Thus, whenever we mention a subspace being (a, 3, u)-
standard, we may assume p < % Finally, for comparison
to the matrix completion literature, we also give the defini-
tion of incoherence which is typically used to parameterize
algorithms.



Definition S (Incohererent subspace). We say a subspace V. C
R? of dimension r is p-incoherent if |[ILye;||, < \/EF for all
i€ [d].

The following is then immediate from the characterization
in Lemma 2.

Fact 2. If a subspace V. C R% is u-incoherent, it is (ﬁ, %, H)-
standard.

Proof. Note that [|3, g bib] [lop < |S¢| maxiege ||bl|\§ and
apply Weyl’s perturbation theorem. O

We introduce the notion of a standard subspace primarily
for technical convenience as it captures the parameters of
both subspace regularity and incoherence. We will prove
a result (Theorem 3) in terms of all of these parameters
«, B, and then deduce our results for subspace regularity
and incoherence by combining Theorem 3 with Fact 1 and
Fact 2 respectively.

g) Concentration.: We use the following concentration
inequalities and their scalar specializations.

Fact 3 (Matrix Chernoff, Theorem 5.1.1 [TrolS5]). Let
{X.i}ic[n) be independent, d x d positive semidefinite, matrix-
valued random variables satisfying ||XiH0p < R with proba-
bility 1 for all i € [n], and let X denote their sum. For any
e € (0,1), letting A_ := Ain (EX) and Ay := Apax (EX),

62 _
Pr i (X) < (1 0A_] < dexp (— - ) ,

3R

Fact 4 (Matrix Bernstein, Theorem 1.6.2 [Trol5]). Let
{Xi}iem) be independent, dy x dy matrix-valued random
variables satisfying EX; = 04,xa, and || X|,, < R with
probability 1 for all i € [n], let X denote their sum, and let

Pr P (X) > (14 0] < dexp (—62“) |

o =max | | Y EXX[|[ || D] EX/X;
i€[n] op i€[n] op
Then for all 6 € (0,1),

Pr (X > t] <3,

for t := max (Qleog (dl —(l;d2>7 %log (dl ;d2)> .

III. PARTIAL MATRIX COMPLETION

In this section, we give a novel subroutine for making
partial progress towards a target low-rank matrix M* € R™*"
(whose rank is denoted r*), from which we can query noisy
observations. In particular, the method we develop in this
section only assumes the target matrix is low-rank, without any
requirement of subspace regularity in the vein of Definition 1.
However, our guarantees are with respect to a weaker notion
of progress, which involves explicitly dropping or excluding
a small number of poorly-behaved rows and columns.

The main result of this section is the following Propo-
sition 1, which gives a guarantee on Algorithm 2 (which
builds upon Algorithm 1, a preprocessing subroutine which
we explain shortly). Our Algorithm 2 takes as parameters Yrop
and 7,44, as well as a matrix M which is A-close to M* on
a ~y-submatrix. It then explicitly drops roughly a ~ fraction
of rows and columns which it makes no guarantees on, adds
Yadd to the submatrix parameter, and triples the rank of M.
In return, it cuts the distance on a (7 + ~yaqq)-submatrix by a
factor of /4.

Proposition 1. Let A >0, ¥,%da,0 € (0,1), and £ > 1.
Let M := M* + N € R™*"™ for m > n, M* which is rank-
r*, and N satisfying |N|p < £;. If rank-r M € R™*"
is A-close to M* on a vy-submatrix_and given as a rank-
r factorization, Algorithm 2 returns M € R™*" as a rank-
3(r + r*) factorization and S C [m), T C [n] satisfying the
following with probability > 1 — 6.

1) |S| > m — Ydrop™s T| > (1 _’Ydrop)n’ Sfor Ydrop =
max (4007 log(m), 10°0*(7y + Yaaa))-

2) Mg is %—close to Mg ona (Y + Yada)-submatrix.

Algorithm 2 uses O(mnp(r+r*)) time and one call to C’)p(ﬁ)
where for a sufficiently large constant,

_ (r+7) y+%da, o(m
p—O( . log (f) .

2
n Yadd

In Section III-A, we begin by analyzing Algorithm 1
(Filter), a preprocessing step for setting aside roughly a vaqq
fraction of poorly-behaved rows and columns from empirical
observations. In Section III-B, we then use the control that
this preprocessing step affords over the remaining rows and
columns to analyze our main iterative step, Algorithm 2
(Desc), and prove Proposition 1. Finally, to illustrate a typical
use case of Proposition 1 for partial matrix completion (which
reflects its use in our final algorithm), we give a self-contained
result in Section III-C only relying on recursive use of Algo-
rithm 1, without the use of subspace regularity assumptions.

A. Row and column removal

The first step is to remove some rows and columns whose
norm in M — M is too large. This is useful because we would
like to use M — M to guide the direction of our steps but we
only have partial observations of it. The rows and columns
with large norms can ruin the spectral concentration of the
empirical observations, so removing them allows us to prove
spectral closeness between the empirical and true difference
matrices. Before analyzing our removal algorithm, we state a
simple concentration inequality we will use in its proof about
the error of empirical norm estimates.

Lemma 3. Let p,§ € (0,1), let v € R have |[v|| < T and
let © € RY have each entry ¥; independently set to v; with
probability p, and O otherwise. Then with probability > 1 — 0,

3072 log 2 >
— )

1
2 ~112
Iollz =2 1%l

1 2
< max (5 0l



Proof. By Fact 3 with (scalar) x; < %f;i?, 0O Ezie[d] 2y =
[]|2, with probability > 1 — 4,

112 T 2
< —|v]l4 4/ 31og .

The conclusion follows depending on which of \/% [lvlly

2
\nmz— !

Q

T

f 301log 2 5 is larger. O

We are now ready to state and analyze our removal process,
which for logarithmically many iterations simply drops the
largest rows and columns of the difference matrix, estimated
from empirical observations. Our analysis proceeds in two
phases. The goal of the first phase is to decrease the Frobenius
norm of the true difference matrix until it is below a certain
threshold, which we argue we continually make progress by
concentration of the empirical observations. The second phase
applies Markov’s inequality to bound the number of large rows
and columns once the Frobenius norm is below this threshold.

We remark that the assumed upper bound on 7 in the fol-
lowing statement is for convenience in simplifying logarithmic
terms and is not saturated in our eventual parameter settings
(whereas the p bound reflects its eventual setting). Further, the
parameter ~y,qq Will eventually be set to be sufficiently small
when iterating upon our algorithm, as it reflects the growth of
the number of rows and columns we do not make guarantees
on. To build intuition (following discussion in Section I-C), the
reader may think of w Yadd as small constants, 7 &~ A - g,
p~A- f’ and p~ -

Lemma 4. Let A,T,p > 0 and v, Yadd, P, 0 € (0,1). Assume
M € R™ ™ js A-close to M on a ~y-submatrix, and that
m > n. Finally, assume that

An 8A
T < » P2
“Yadd 200yn log(=)
100m n 5
2
p > 607~ log ( v ) max (AZ’ p?> .

With probability > 1 — §, Algorithm 1 returns S C [m], T C
[n] satisfying the following.

. |S‘ > m — YdropTt 2z (1 - 'Ydrop)n» for Ydrop =

400 log(m).
e Forallie S, |[M— M];} < p, and for all j € T,
M- MI5|| <p
<r

. [M—M]STT < 2A.
’ F

Proof. Throughout for convenience, we denote

—~1=<
D! = {M—M}

S X T

and @, := |D}|3.

Also, by applying Lemma 3 with § « fgg‘fn < (ern)(i 1)

we assume throughout the proof (giving the failure probability

by a union bound) that for all iterations 0 < ¢ < ¢4« and all
1€S, ey,

1 o2 A2
rie — DI, 2 \ < max (G IDIL I 5.
2 A2
< max —H[D:]H s — |,
10 27 29n
as well as (corresponding to the last round of Algorithm 1),
foralli € S; and j €T}

Cjt — H

max max ?

. p*
- H[ tmax H ‘ < max (10 H I:Dtmax]i:H;’ ]_0) ’
2

2 2 )
§max<H[DZ 1L >
10 maxdigllg 10

(II1.2)
By definition, ®; < mn7?, and ®, is nonincreasing. Next,
consider an iteration ¢ where ®, > 4AZ. By the closeness
assumption, there are Ay C Sy, Bf C T} with |Af|,|Bf| <

vyn, and

* N 3 ik 3
> IDik3 + D2 Dz = 5 ID; I} = S

=y JEBY

Cj - H [D:max]:j 9

Now if ZﬂeA* I[D7}]:: H2 > 3®,, by removing the yn largest
rows by 7; ¢, (III 1) yields

4 3 A2 T
q)t+1 S 1—=--= @t—i—’yn—g 7®t+A2§095®t
5 8 yn — 10

Otherwise, 3 . I[D7],]13 > 2@, and so again @y <
0.95®,. Inducting, we thus have

Dy, <AA%
Therefore, by Markov’s inequality there are at most % rows
in Sy and %2 columns in T3, with norm more than
\/'% <finD; .Ifarowie€ S, had norm more than
pin Dy, (IIL.2) ensures it will be removed, and a similar
argument holds for columns. Finally, the number of dropped
rows and columns in the first ¢, iterations is at most 2&2%
by our parameter choices; here we note that without loss of
generality, Yaada > %, so - < m?2. The last condition follows

since we showed P, Sa 4A? and then dropped entries. [

max

Lemma 4 does not give control over entries where ﬁ;M is
large. However, below we show that the entries where M — M
is large must be contained in a small number of rows and
columns. We begin by observing a structural fact about entries
from distinct rows and columns.

Lemma 5. Let M € R™*"™ be rank-r and let
{(ik, J) Yeer) C [m] x [n] be such that {iy.} e[ are distinct
and {ji}rex) are distinct. Then 3y ¢ ey (M, j | < [[M]|.



Algorithm 1: Filter(Oj, 1]( ), M, 7, 0, A, 7Y, Vadd, P, )

1 Input: O 1 (ﬁ) M e R™ " 7 p A >0,
Y5 Yadds P, 5 € (07 ]-)

S() “— [m],TO — [n]

tmax ¢ [201og 0771

Ydrop £ 400’}/ log(m)

for 0 <t < tyax do

D, + O, (M - M5 )

for i € S; do riy + LD

for j € T; do c;; < 5 |[[Dd]4]3

Sir1 <S¢\ Ay where A; C Sy corresponds to the
~n indices ¢ with largest r; ;

Tiv1 < T\ By where By C T; corresponds to the
~n indices j with largest c; ;

-TE-CREE - 2 I R I )

[y
=)

11 end

12D+ O,(M - M]§TT
BforiesS,, ||D H2
uforjeTy,  do ¢« o ||D_]||2
15 5« S, \ A where A C S,

do 7;

corresponds to the

max

2™ indices ¢ with largest r;
16 T <— T}, \ B where B C T, . corresponds to the
Ydrop 7

indices j with largest c;
17 return (S, T)

Proof. Letting UXV T be an SVD of M where columns of
U, V are {ug}ep), {ve}iepr) respectively,

Z |M'Lk:]k| < Z Z |0-E|‘u‘€|7fk|v‘€|Jk

ke[K] ke[K] Lelr]
<Yl 5 3 el +5 3 Tl
efr] ke (K] ke[K
<ol 5 O B3 X fu?
- 2 t2 J
Le(r] i€[m] j€[n]
= [|M]l,, -

O

Using Lemma 5, we can show that not too many distinct
rows and columns of the difference between a pair of low-rank
matrices which are close on a submatrix can contain very large
entries.

Lemma 6. Assume rank-r M € R™*" and rank-r* M* €
R™*™ qre A-close on a y-submatrix, and m > n. There are
sets A C [m] and B C [n] such that ||[M — M*|a gl ... < T,

AV
T

AVr+r*
—

[[m] \ Al < yn +

and |[n] \ B| < yn +

Proof. By assumption, there are Ay C [m], By C [n] with
[ Aol = m —n, [Bo| = (1 —)n and [[[M — M*] 4, 5, |5 <

A. Let {(ig, jr)}reix] € Ao x Bo be maximal such that
{ir}rer) and {jr}re[x) contain no duplicates, and |[M —
M*);, ;.| > 7 for all k € [K]. By Lemma 5,

K7 < [[[M =M ag,Bo |

SV [[[M = M4, g < AVr + 1%,

So, K < Aiviw and we may set A < Ag \ {ix}re[x] and
B < Bo \ {jx}reix]- O
B. Proof of Proposition 1

We begin by introducing the tools we use to analyze our
algorithm which proves Proposition 1. The first is a guarantee
on an approximate k-SVD procedure from [MM15].

Proposition 2 (Theorem 1, Theorem 6, [MM15]). Let M €
R™*" k€ [min(m,n)], and €, € (0,1). There is an
algorithm Power(M, k, €,0) which runs in time

log m+" )

€

0 ((nnz(M)k + (m +n)k?) -

and outputs U € R™*" with orthonormal columns such that,
with probability > 1 — 6,

|(I, —UUT) MH < (1+€)ors1(M).

The second is a bound on the operator norm error of
revealing entries independently at random.

Lemma 7. Let M € R™ ", pd € (0,1), and suppose
M. < 7 and maxieg M, < p, mayeqay [M]l, <

p. Let M be obtained by mcludlng each (i,j) € [d] x [d] in a
set S with probability p, and setting Ml = + Z(i,j)es M, E;;.

Then with probability > 1 — 6, Nr <t for
0]

p
2
t := max il
/P

max

lo mtn) A lo mtn
S\ e U '
Proof. For all (i,7) €

X)) {(; ~1) MyE;  with probability p,
—M;;Eij

[m] x [n], define the random matrix

with probability 1 — p

By definition, all EX =
Z(w m]x[n] X(i,j) = M — M, so we may apply Fact 4.
First of all clearly it suffices to choose R = %. Further, we

bound o:
1 2
(p (1) +1p> M; E
@iemixi) \ NP
— (1 - 1) > IML |5 < r
p 10|l Hit = p

i1€[m]
and a similar calculation for the other term shows o =
suffices. For ¢ in the lemma statement,

Opyxn, and

o
N

#2 )
— 1 <)
202 | 21t | —
p+3p

Pr {HM M . >t] (m +n) exp <_



O

The third is a bound on the Frobenius norm of a matrix
which is close to an operator norm ball.

Lemma 8. Ler A, B € R™*™ satisfy ||A]|
b. If A + B is rank-r,

A+ Bl <

op — < aand ”BHF S

2(ra? 4+ b?).

Proof. Let the singular values of M := A+B be {0 };c[,1- By
construction, the distance from M to the set of m x n matrices
with operator norm at most a is bounded by b, and this distance
squared is Zle[r] 1y,5a(0;—a)?, so Zle ] 1y,54(0;—a)* <
b2. The conclusion then follows from

Zo’ <Z a+1g>ao'l

i€lr]

Ml = a)?) < 2(ra®+b%).

O

The last is a simple fact on singular values of a perturbed
low-rank matrix.

Lemma 9. If A € R™*" is rank-r and B € R™*"™ satisfies

HB“F S b) 02r+1(A+B) S %

Proof. Let V. C R™ span the image of A, and let U C R™ be
the top-r left singular vector space of IIy, B = IIy, (A +
B). Since |IIy, Bz < b, the largest singular value of
IMyuyvy, (A +B)is < % By the min-max principle for
singular values, we have the claim (as U UV has dimension-
2r). O

Algorithm 2: Desc(Oy, 1]( ), ML, ALY, Yadd, 0, £)

1 Input: O, 1]( ) for M = M* + N € R™*" where
M* is rank-r* and ||[N||z < 2%1,, M € R™*™ which
is A-close to M* on a «y-submatrix, given as a rank-r
factorization M = UV T, A >0, v, a4, 6 € (0, 1),

(>1

AVrEr* A
2 (7—7 p) < YaddT ’ 202\/(7+"/add)")
3 (S,T) +
Filter(Ojo,1 ) M, 7, p, LIA, 7, Yada ’w

C]§OOm)7 3)

’Y+’Yadd log( 6%“
4 )5 - Oq([M — MJ57}) for g + e
5 U « Power(X, 2(r 4+ 1*),0.1, g) (see Proposition 2)
s (U, V') « (U, V) with columns of U, %XTIAJ
appended respectively
7 return (U, V' S T)

15(r+r*)¢log &2

Now we assemble the pieces and prove Proposition I,
our main iterative method guarantee. To a large extent, the
proof strategy in Proposition 1 is patterned off the short-flat
decomposition analysis of the iterative method in [KLL™22].
Specifically, we show how to decompose the difference ma-
trix (on a large submatrix) into a Frobenius-norm bounded

component and an operator-norm bounded component, which
allows us to bound the effect of the error on the submatrix via
Lemma 8. We restate the result here for convenience to the
reader.

Proposition 1. Let A > 0, 7,7%d,0 € (0,1), and ¢ > 1.
Let M := M* + N € R™*" for m > n, M* which is rank-

r*, and N satisfying |N|z < TM If rank-r M € R™*"
is A-close to M* on a ~y-submatrix_and given as a rank-
r factorization, Algorithm 2 returns M € R™*" as a rank-
3(r + r*) factorization and S C [m), T C [n] satisfying the
following with probability > 1 — 4.

1) |S| > m — Ydrop™ ‘T| > (1 _'Ydrop)n, f()}’ VYdrop =
max (4007 log(m), 10°C(y + Yada))-
2) Mg is —-close to Mg ona (v 4 Yada)-submatrix.

Algorithm 2 uses O(mnp(r+r*)) time and one call to Op(ﬁ)
where for a sufficiently large constant,

_ (T+T*)£2 Y + Yadd o /Mm
p—0< - ——— log (K) .

n Yadd

Proof. Throughout, we denote (in accordance with the guar-
antees of Lemma 4):

) A AVr+r*
= , T = .
2067/ (7 + Yada)n Yadd™

We also denote X’ := UUT X, and let

M:=M + éx’ =u(v)T

be the matrix whose low-rank factorization is the output of
Al&o\rithm 2. By the assumed bound on N, M is 1.1A-close
to M on a ~y-submatrix, and hence we may apply Lemma 4
with the chosen parameters. Further, since M is A-close to
M* on a 7-submatrix, Lemma 6 applied to [M — M*|g
produces A C S, B C T by deleting < (v + 7Yada)n TOWS
and columns, so [M — M*]4 g is entrywise in [—7,7]. We
define M° to be equal to M* on A x B and equal to M on
(SxT)\ (Ax B), i.e. (Where rows and columns are permuted
so A x B is on the top left)

Mz = (e Maro ).
: Ms\a,s Ms\a1\B

We will prove ||[M° — M] srlle < é , and then the conclusion

follows as Mg = M 1 except on (¥ 4 7ada)n rows and

columns by Lemma 6, and S,T drop < ~gopn rows and

columns by Lemma 4. To begin, we summarize our strategy.

We decompose [M° — M]g 1 into three parts:

[Mo _ M] on= <[M° -Mlgr - {1\71 - M] §;>
(o ) s
+ 1 X — X/]S,T

q



We will bound each of the terms in (II.3) (the first in
Frobenius norm and the latter two in operator norm), and then
apply Lemma 8. First, we claim that for all (i,7) € A x B,

M° - M, - [M - MJ;

M° — M]; ;

This is because [M° — M]4 p is entrywise in [—7, 7] by

definition, so projecting an entry of [M — M]g 1 onto [—, 7]

only decreases the distance. Hence, we bound the first term of

(II.3) in A x B and outside separately: since [M° — M]g

vanishes outside A x B, we can bound |[[M° — M]¢ ,—[M—
<r ’

Mg 7l by

<r

| -5],,

+H[ﬁ—M}

F S\A,T ||g
<r

2

i

ST\B||p (IIL.4)

< INJlp + (VISVAT+ VIT VB ) o
A

A
< 24/ + + — < .
<2 (7 %dd)np 204 — 104

Next, by Lemma 7, the entrywise bound on [ﬁ - M]
the row/column bounds on [M — M]g 7,

<7 and

<r
. (IL5)

H [ﬁ B M] T B %XS’T

A
< —F,
op  10VT 1L
with probability > 1 — g. Finally, note that
1 o
QXSyT = [M° — M]S,T
M-M|  ~[M°-M
+ <{ s [ }S,T>

+ (1X57T _ [ﬁ — M] = )
q ST

<r

(I1L6)

so it is the sum of a rank-(r + r*) matrix, a Frobenius norm
bounded matrix (by (IIL.4)), and an operator norm bounded
matrix (by (IIL.5)). Therefore,

1 —~ <r 1
O2(r4r+)+1 (XS,T> < H [M - M} — —Xs.1
q S, T q op
+ 02(r+r*)+1 (E)
< A n A
T 10T+l 10y ol
A

[ —
T 5r el
for E := [M° — M]g -

+ ([ﬁ—ME’TT—[MO—M]ST)

)

Above, the first inequality followed by Weyl’s perturbation
theorem, and the second followed from Lemma 9 and (II1.4),
(IIL.5). By Proposition 2 we then have that

1 . 1.1A
op

with probability > 1 — g. The decomposition (II1.3) shows
we can write [M° — M] s, as the sum of a Frobenius norm
bounded matrix (the contribution of (III.4)) and an operator
norm bounded matrix (the contributions of (II1.5) and (IIL.7)).
Further, since [M° — M]s,7 = [M* —M]4,p — ; X§ r is the
sum of a rank-(r + r*) matrix and a rank-2(r + r*) matrix, it
is rank 3(r 4 7*). Hence,

s, |

A
]

} S, T

follows by applying Lemma 8 with A = [ﬁfM] §TT — %ng
and B = [M°—-M]g 1 — [1/\\/1 - M]ETT The failure probability
comes from a union bound over Lemma 4, Lemma 7, and
Proposition 2. We use Lemma 1 to upper bound the reveal
probability, since Line 3 requires O(log(7™)) calls to Oy
for the specified ¢/, and Line 4 requires one call to O, for
q=0(q).

Finally, we discuss runtime. The runtime of Lines/% and 4
are bottlenecked by computing O(mnp) entries of M — M,
where p is specified in the statement of Proposition 1; a
Chernoff bound implies the number of revealed entries will be
within a constant factor of its expectation within the failure
probability budget. Since M is given as a rank-r factorization
and entries of M are given, this cost is O(mnp - r). The
runtime cost of Power is specified by Proposition 2 to be
O(mng - (r + r*)log %), where Ty (X) = O(nnz(X)) =
O(mng), and this does not dominate. The runtime cost of
computing X "U is O(mr?) using X = UV " and also does
not dominate. O

C. Partial matrix completion via Desc

In this section, we give a simple recursive application of
Desc to give a self-contained result on partial matrix comple-
tion. For simplicity, we assume we have an upper bound on
the largest singular value of the target matrix M*; we will
show how to lift this assumption in Section V.

Corollary 2. Let M* € R™*" be rank-r*, |[M*[|, < o,
m >mn, & € (0,1), lee M = M* + N for [N|p < A,
and let ¢ > 1. Algorithm 3 returns U € R™*", V ¢
R™ " and (S,T), for v = r*poly(f), such that [UV "]s
is O(max(ov/7* exp(—log?(£)), A))-close to M* on an a-
submatrix and |S| > m—an, |T| > (1—«a)n, with probability
>1—46. Algorithm 3 uses O(M 10g3(%)) time and
one call to (’)p(ﬁ), where for a sufficiently large constant,

0“0 (5).

Proof. The failure probability follows by applying a union
bound to the 2K calls to Desc. Next, we claim that throughout




Algorithm 3: PartialMC(Oj 1j(M ) r* 0,7 «,6,0)

1 Input: Oy, 1](
M* is rank-r* satisfying |[M*[|,,
IN[|g <A, a,6€(0,1),£>1

A« Vo

(U7V> — (Om><07 On><0)

k+0

I' < yaaak

(5, T) <= ([m], [n])

K <+ [log (]

Yadd <_~max(800K2 log((xm),2~105€2K2)
9 while A > 20¢A and k < K do

10 (U,V,5,T) «

Desc(Op.1)(Ms,7), [UV |57, 7, A, T, Yaad, 5 £)

) for M = M* + N € R™*" where
< ¢ and

W NN R W N

1 ﬁ<—%
12 k+—k+1
13 end

14 kfreeze — k
15 while A > 20eA and k — kfreere < K do
16 (U,V,S5,T) «
Desc(O[OJ] (MS,T)a [UVT]SyT, 7‘*, A, F, Yadd s %, 6)

17| A« 2

18 k< k+1

19 end

20 return (U,V,S T)

the algorithm we maintain the invariant that A is an overesti-
mate on the distance from [UV "]g 7 to [M*]s.7 on a Yaak-
submatrix; this is clearly true at the beginning of the algorithm,
since ||M*||p < Vr* [[M*||,,- Further, applying Proposition 1
shows that this invariant is preserved in each iteration, which
gives the closeness guarantee since £~ < exp(—log®(¢)).
We note that the role of the first phase (Lines 9 to 13) is
to cut the initial distance estimate by a factor =K but is
bottlenecked by the requirement that A > 20¢A. To bring this
overhead down to a constant factor, we repeat the argument
in Lines 15 to 19, but set { = e.

By our parameter settings Proposition 1 drops < $7 rows
and columns in each iteration, giving the lower bounds on
|S|,|T|. Further, we can inductively apply Proposition 1 to
maintain that the rank r of our iterate is bounded by 325 * =
r*poly(¢), since the potential function r + r* at most triples
each iteration. The bounds on the runtime and p then follow by
using Proposition 1 2K times; we recall that we can aggregate
the observation probabilities using Lemma 1. O

To briefly interpret Corollary 2, let o = ﬁ, in other
words, consider the case where we are willing to give up
on recovering a small constant fraction of rows and columns.
Further, suppose "\F is polynomially bounded in m, i.e. our

initial distance estimate is not too far off from our noise level.
By balancing terms via setting

{ = exp log <J\£T*) = exp (O ( log(m))) _ mo(l)

we see that Corollary 2 yields partial matrix completion
obtaining the desired noise level A up to constant overhead,
on at least 99% of rows and columns. This setting of ¢ also
implies that the rank of the iterates of Algorithm 3 is bounded
by *-m°() throughout. Further, assuming § = poly(m ") for
simplicity, the sample complexity of mnp = O(m!*T°M) ) is
almost information-theoretically optimal, and the runtime of
O(m*t°(M(r*)2) is almost-verification time. In other words,
by giving up on recovering a subconstant fraction of rows
and columns, we obtain almost-optimal matrix completion
on the remaining submatrix, without any subspace regularity
assumptions.

IV. RECOVERING DROPPED SUBSETS

In this section, we provide the second key ingredient of our
framework, an algorithm which recovers rows and columns
which were dropped by our iterative method in Section III.
The method of this section takes as input M which satisfies
submatrix closeness to our target rank-r* M*, and returns a
rank-O(r*) factorization. This factorization has the appealing
property that it satisfies standard Frobenius norm closeness to
M* (without any dropped rows or columns), at a cost of a
roughly poly(r*) factor increase in the closeness bound. We
now state the main export of this section, parameterized by
the notion of standard subspaces (Definition 4).

Proposition 3. Letr M* € R™*™ be rank-r* with (a, 3, p)-
standard row and column spans, m > n, § € (0,1) and let
S C [m], T C [n] have S5 T > m — .
Assume M € R™*" g given as a rank-r factorization, r > r*,
MS T IS (Wog(m)’ A)-close to Mg r ona 'y -submatrix, and

M = M* + Nfor M|, < <& Algorzthm 10
returns U € R™*"" and V € R"X’" sansfymg

CﬁxT*

rlog(r*) A and 1’ < 2r*

38
Iv.1)
for a universal constant Cnx, with probability > 1 — 4.
Algorithm 10 uses O("” log? (55) log(m(a+A) )) time and

b B ABS
one call to Op,(M) where for a sufficiently large constant,
rilog? (%) log(%2)
p=0 .
af?n

We prove Proposition 3 in a number of steps organized into
subsections, summarized as follows.

oV’ -, <

1) In Section IV-A, we give an algorithm Sparsify which
takes matrices which are close on a submatrix and drops
a few more rows and columns, with the guarantee that
the resulting submatrices satisfy Definition 3, i.e., they
are close away from an RCS matrix.



2) In Section IV-B, we give an algorithm Representative
which takes as input a matrix which is close to the target
away from an RCS matrix. By repeatedly testing for
regression error of our iterate’s columns against itself,
Representative learns a subset B of columns which are
representative of the difference between our iterate and
the target, in the sense of Definition 6.

3) In Section IV-C, we first show that Definition 6 implies
that the columns indexed by B can be used to effectively
approximate dropped rows and columns from observa-
tions. We then give an algorithm Complete which learns
a low-rank approximation of M* to slightly higher error
using B.

4) We put all the pieces together to prove Proposition 3 in
Section IV-D.

A. Sparsifying errors

The output of the method of Section III is M that is A-
close to the true matrix M* on a y-submatrix (up to dropped
subsets). We begin with a postprocessing step which yields
finer control over the structure of M — M*. In particular, we
drop some additional rows and columns so that the difference
M — M~ is close away from an s-RCS matrix, for s = %
The algorithm is Algorithm 4, and its statement and analysis
are similar to that of Algorithm 1.

We use the following concentration inequality to control the
error of empirical estimates.

Lemma 10. Let p,5 € (0,1), 7 > 0, v € R?, and let © € R?
have each entry v; independently set to v; with probability p,
and 0 otherwise. Then with probability > 1 — 6,

. 1. _

’{zEdHUZ‘ZTH_pHZEdUi|27}‘
1 301og 2

< max —|{i€d\|v¢|27}\7& .
10 P

Proof. Let x; € {0,1} be a scalar random variable for all
i € [d] which is 1 if |v;| > 7 and let Z; be analogously defined
for v; clearly Ex; = px;. Fact 3 shows that with probability

21_6’
iefd i oy 2
» 30g6.

IEEEDIEIE
i€[d] zE [d]

The conclusion follows depending on which of 7%%“”“ or
301og 2 5 is larger. O

f

We now use an analogous argument to that of Lemma 4 to
analyze Algorithm 4.

Lemma 11. Ler 0 < 7 < A and 7, Yarop, P, 0 € (0,1), and s €
[n]. Assume M € R™*" is A-close to M on a ~y-submatrix,

2
and that m > n. Finally define s := T%?YdA — and assume
rop
207aropn T

’Ydrop 2 2007 log(m)7 p Z

2 100m
A2 log 5 .

With probability > 1 — §, Algorithm 4 returns S C [m], T C
[n] satisfying the following.
D [S] > M = Ydrop™t

=z (1 - 'Ydrop)n-
2) Mg, Mg 1 are 2A-close away from an s-RCS matrix.

Proof. Our first goal is to show that before the application of
Filter, every row and column of [M — M]g r has at most s
entries larger than 7 in magnitude. We will denote

D! = [M - 1\71}
Sex Ty
and O, := H(i,j) €S xT,||[D}l,;| = TH
In other words, @, tracks the number of large entries in D},
and by definition &3 < mn and ®; is nonincreasing. We also
denote the exact number of large entries per row and column
by
=HjeT:||[D
={ie S |[[D
Also, as in the proof of Lemma 4, by applying Lemma 10
and a union bound over < 40log(m) iterations (giving the

failure probability with a union bound over the call to Filter
succeeding), we assume that for all 0 < ¢ < ¢, and all

1€S, jel,
A2 1
212 yn )’

« | < 1, AZ 1
|cj7tfcj7t|_max Ecj’t’ ﬁ% ,

as well as, forall ¢ € Sy, _,j €T}

tlijl > 7} forall i € Sy,
7lij| = 7} for all j € T;.

|ri,t lt’<max( 10 zt,

max

< max ( L i )
10 & tmax 10/’

< max ( L 5 ) .
10 J tmax’ 10

We observe that two matnces which are A-close in Frobenius
norm have at most A entries of the difference with magmtude

*
% max

|7“i—’l“

*
|CJ T G tmax

more than 7. Next, cons1der an iteration ¢ where ¢, > 4A .By
an analogous argument to Lemma 4, removing the vyn largest
rows and columns decreases the potential by at least a 0.05
factor, so inducting shows that after t,,,x iterations,

4A?
< —.

max —

q)t 7_2
Therefore by Markov’s inequality there are at most A"'“’"" Tows
inSy_. columns in 73 __  with at least 13? ~ <3
entries larger than 7. In concluswn if a row or cohi?nn has
more than s entries larger than 7 in the last iteration, it will
be removed as claimed. .

In the last iteration Mg 7 and Mg 1 are clearly still A-close
on a <y-submatrix, since we only dropped rows or columns.
Filter ensures that by dropping 2™ more rows and columns,
the difference matrix truncated at 7' has Frobenius norm < 2A
(see the third guarantee of Lemma 4). Hence, we can take X
to be the truncated difference and Y to be the sparse errors
in Definition 3. O

Ydrop T
and 4




Algorithm 4: Sparsify (O 1 (ﬁ), M, 7, A, 7, Yarops Ps 9)
1 Input: O 1 (ﬁ) M e R™ " 7 A >0,
75 Ydrops P» o€ (O’ 1)
S() “— [m],TO — [n]
tmax  [201og 277
for 0 <t < tyax do
D, + O,(IM — Mg, 1,)
for i € St do Tit < %H] S Tt | |[Dt]ij| > T}l
for j € T, do ¢;, + %\{z € Sy | |[Dy)ij] > 7}
Str1 < Si\ Ay where A; C S corresponds to the
~n indices ¢ with largest 7; ¢
9 Ti41 < T3 \ By where B; C T corresponds to the
«n indices j with largest c; ;

@@ N S R W N

10 end

1D+ O(M-Ms, 1,

2 fori€ S, dor; < S|{j€T,.. |[Dil =T}

13 for Jje Ttmax do Cj < %H] € Ttmax ‘ ‘D”| > T}|

4 S+ Sy .. \Awhere AC S . corresponds to the
% indices ¢ with largest r;

15 T« Ty, .. \ B where B C T, corresponds to the
2 indices j with largest ¢;

max max

16 return
Filter(O[O,l] (MS,T)a MS,Ta T, 00, Aa e "Ydropv 17pa g)

B. Learning a representative subset

1) Structural properties: In this section, we collect several
structural tools which will be helpful in the analysis of our
testers. We first provide simple spectral bounds on a randomly
subsampled matrix.

Lemma 12. Let 6 € (0,1) and let V. C R be (a, B, p)-
standard of dimension r, let {b;};cjqq C R" be rows of an
(arbitrary) choice of By, and let S C [d] have |S| > (1—5)d.
Let T C S have each element in S included with probability

p 2 ik log(). Then with probability =1 =6,

2
DL =Y 0l <2,
€T
Proof. By the assumption on the subspace V, there is a set
A C S of size at most %d such that every row i € R := S\ A
satisfies ||b;||, < /EF. For all i € R define a random matrix

bl
X; = {blbl
O’I"XT

We recognize Y, X; = .. bib] (since it is restricted
to a subset of the rows), and [|X;||,, < £ with probability 1
for all i € R. Moreover, we have EY. . X; =p Y, p bib;
and

with probability p,
otherwise.

pAL 2 p Y bib] =pl,
i€R
by Lemma 2 since |R| > (1 — a))d. The conclusion follows
by applying Fact 3 with € = 3. O

We also use Proposition 4, an existential variant of
Lemma 12 which does not impose a regularity constraint,
which can be viewed as a one-sided discrepancy statement
potentially of independent interest. We use this terminology
because a random S of size d\ yields Zie g bib;r = A, in
expectation, and Proposition 4 matches this up to constant
factors in the smallest eigenvalue (a one-sided guarantee). We
defer a proof of this claim to Appendix A.

Proposition 4. Let A € [299° 1), let B € R™" have or-
thonormal columns, and denote rows of B by {b;};cjq) C R".
There exists S C [d] with |S| < d\ and

A
> bibl = T
i€s
By using Proposition 4, we show that removing a few
columns from a pair of matrices which are close away from

a RCS matrix induces a submatrix on which they are truly
close.

Lemma 13. Ler M, M’ € R™*™ and suppose M, M’ are A-
close away from an s-RCS matrix. Further, suppose M — M’
is rank-r. There is T' C [n] with |T'| > n — 5600rs log m such

that
Vlogm
13

Proof. Let D := M — M’ for notational convenience, and let
D = X +Y be the decomposition guaranteed by Definition 3.
Partition [m] into sets {S;},cx) where k < logm as follows.
Let S; be the set of i € [m] such that || X[, < \2/% and for
j>1,1let S; be the set of i € [m] with

M =Ml < A-

A . A
2 Xl < 2 —.
\/m || ||2 — \/ﬁ
Now for each j € [k], consider an SVD of D . = U; EjVjT
and apply Proposition 4 to U; with \; = 5%)_0'7’. We obtain
A; C S; such that |A;| < 56007 and for all v € R,

A
IDa;vll, = 4/ 5 [Dsyof],-

Next recall D = X +Y where Y is s-RCS. For each i € [m)],
let T; C [n] be the set of entries on which Y. is supported.
Let T = [n] \ Uica,u..ua, Ti so [T| > n — 5600rslogm.
Now we can bound D.r by applying (IV.2):

8
1Dl = 3 IPs,rlls < 3 5 1D, 7
jelk] jelk] 7

NA. 925 A2 2 2
SZ 1Sil[A;] 2¥A <Ak<A logm
(]

IV.2)

7007 m — 175 — 175

where in the second-to-last step, we used that |S;| < 3% by

Markov’s inequality. O

We note that Lemma 13 is a robust variant of a simpler
claim, which says that a low-rank matrix with a sparse nonzero
pattern must have all of its entries localized to a small



submatrix. We provide a proof of this claim for convenience,
as we believe it aids in building intuition for our method.

Lemma 14. Ler D € R™*" be rank-r with m > n, and
suppose D is %-RCS for a € (0,1). There are A C [m)],
B C [n] with |A| > m—an, |B| > (1 — a)n such that D 4 g
has no nonzero entries.

Proof. Consider an iterative process which takes any row of D
with nonzero entries, and orthogonalizes all rows of D against
it. The process terminates after r iterations as D is rank-r, and
the union of the supports of all rows used by the process grows
by < ©% in each iteration. Hence, the support of all rows is
contained in a subset of size an, and a symmetric argument
holds for columns. O

2) Basic testing: We next analyze properties of a simple
algorithm, Test, which solves a regression problem attempting
to boundedly combine a set of columns of a matrix to
approximate another column. For ease of discussion, we focus
on testing columns rather than rows, but a symmetric argument
handles both.

Algorithm 5: Test(M, T, j, ¢, 7)
1 Input: M € R™*" T C[n], j € [n], §,7 >0
2
2 if min,cgr [|[M.rv — Mng + % ||U||§ < 2¢? then
return “True”
3 else return “False”

If Test returns “True” then we say it has passed, and
otherwise we say it has failed. Intuitively, Test simulates
testing the value of the following constrained problem:

min [[M.pv — M, < ¢,
er”
lloll,<7
but is easier to compute. We use the following helper claim,

which follows from a calculation.

Fact 5. Let M € R™*" have SVD UEVT and have rank
r, and let T C [n] satisfy V—'T—:VT: >~ ~2I,.. Then for some
j € [n], letting ¢ € RT be the vector such that M.pc = M
HC”Q < % ||Vj:H2'

B

Fact 5 will be used to show the regression problems we
encounter have bounded solutions. Motivated by this, we next
specify a set of properties that guarantee Test will pass,
combining regularity of a comparison matrix [M*].r in the
sense of Fact 5 with closeness of M, M*.

Definition 6. We say T C [n] is a (A, v)-representative subset
with respect to a pair of matrices M, M* € R™*" if the
following properties hold.
o [[[M—-M*]p[[p <A
. [V*];: Vil = Y%L, where U, X, V] is an SVD of
M* which has rank r*.

Lemma 15. Ler T C [n]| contain a (%,g)—representative

subset with respect to M,M* € R™*" for some 6 > 0.

Let j € [n] satisfy ||[V.]j:ll, < 6 and [[[M — M|, <
where U, 3, V, is an SVD of M*. Then Test(M, T, j, ¢,
will pass.

Proof. By Fact 5 and the fact that 7" is a representative subset
with parameter g, there is a vector ¢ € RT with ||c[|, < 7 and
M’rc = M. Using the other property of a representative
subset shows

[M.re = M|, < [[Mire = Mizel|, + [Mize — My,

< M = M p g [lelly + 1M — Ml
¢ ¢
< . Z — .
e T
It is then straightforward to check that c attains objective value
2¢? as desired. O

To complete our analysis of Test we further specify a set of
properties that guarantees it will fail. Intuitively our conditions
impose that for a small set of coordinates (which cannot
significantly affect subspace regularity), the deviation from
the underlying matrix IM* on a particular column restricted
to those coordinates is substantially larger than it should be.

Lemma 16. Ler M,M* € R™*", m >n, and R C S C [m),
T C [n], j € [n] satisfy the following.

DM = M5 7l < 2.

2) [[[M=Ms\m, < o

3) [|M — M*]g I, > 2.

4) S| >m — % and |R| < G
Then if the column span of M* is («,()-regular

Test(M, T, j, ¢, 7) will fail.

Proof. Assume for contradiction that Test passes, and let v €
RT be the solution. This implies

[olly < V27, [Mirv — M|, < v26. (IV.3)
‘We next observe that
HME\R,TU - ME‘\R,J’HQ < HME\R,T” —Mg\r,; , T ¢

<M - M5\ 7ol
+ [ Mg\grv — Mg\g |, + ¢ < 46,

where the first line used Item 2, and the second used Item 1,

I-lop < [I-llg> the bounds in (IV.3), and 1+ 2v/2 < 4. We

further have
* * 7¢ *
[MF 70— Mp ||, > B [MF 70— Mg,
7
> %2~ M- Ml
4
— [Mg1v — Mg, > fd)’

where the first line used Item 3, and the second line followed
similarly to the previous calculation. Finally, note that the
column span of MY, is a (§,3)-regular subspace by the
size bound on S from Item 4, and u := Mp v — M ;
is an element of this subspace. However, we have proven



H“S\RHQ < pull, by combining the above displays, a
contradiction to Lemma 2. O

We now give a consequence of Lemma 16 that handles the
case of a randomly chosen subset 7.

Lemma 17. Let M,M* € R™*"™ be A-close away from
an s-RCS matrix, and let X + Y be the decomposition
in Definition 3. Let T C [n] have each element included
independently with probability p, and suppose

100
Y50, = —= (IXylly + 7v/PA + 6)

for some j € [n]. Finally suppose s < 280 - ong p <
Tooos- Then with probability at least 0.9 over the randomness
of T, Test(M, T, j,¢,7) fails.

Proof. For all k € [n] let Sy be the support of the Y.
satisfying [Sx| < s, and let S := [m] \ U,cp Sk. We first
condition on the following three events, each of which happens
with probability at least 0.99 by Markov’s inequality, giving
the failure probability via a union bound.

D [Xrlls < 1054,

2) |T| < 100pn.

3) [ Ysns,jll, = 0.91Y .5l
To see that the last event holds with probability 0.99, we used
Markov’s inequality and

)

2
e [l =E [Hvumsk,j

<ps
because for each ¢ € S, at most s other columns of Y have
i € Sy by assumption. Under these events, we now prove Test
fails by applying Lemma 16 with parameters ¢, 7 where

¢ =107 VpA + [IXl, + ¢-

We will use R = SN.S;, so Item 4 of Lemma 16 follows from
the assumed bound on s > |R|, and that |[m]\ S| < 100pns <
&t Item 1 follows because [M — M*]s;7 = Xs,1 (as Y1
%’. Item 2

= Y5,

is zero by definition), and || Xs 7|z < [|[Xir||p <
follows because

[IM = M Js\r,5], = [[Xs\roll, < 11Xl < ¢

Finally, Item 3 follows because

. 7o

H[M_ M ]smsj,j ’2 =z HYSHSN'HQ 1%l = B
We note that as ¢ < ¢, Test failing with parameter ¢’ implies
Test with parameter ¢ also fails. O

3) Finding a representative subset: In this section, we
finally analyze our main algorithm, Representative, for finding
a representative subset of columns of an iterate M in the
sense of Definition 6, assuming M is close to M* away from
an RCS matrix. We showed in Lemma 15 that this ensures
good regression error on completing other columns of M.
This property will be used with the representative subset we

return in the next Section IV-C to complete our current matrix
(including rows and columns we dropped).

Algorithm 6: Representative(M, ¢, p)

1 Input: M € R™*", ¢ >0, pe (0,1)

2 Sample By C [n] by independently including each
k € [n] with probability p

3 count < Op,

4 tmax < [40log(mn)]

5T ¢
/40 log(r)

6 for t € [tiax] do

7 Sample T' C [n] by independently including each
k € [n] with probability p

8 for j € By do

9 if Test(M, T, j, ¢, 7) then

count; < count; +1

10 end

11 end

12 B < B with all j € By satisfying count; < %tmax
removed

13 return B

Lemma 18. Let M € R™*" be given as a rank-r factorization
and A-close to M* € R™*"™ away from an s-RCS matrix,
where M* is rank-r* with («, 8, u)-standard row and column

spans. If m > n, r > r*, and
. [ amin(m,n) «
s < min ,
1057 log(mn)’ 1000p

¢ = A+/plogm,
4 *
p> ﬁ2 log ("),

then letting B C [n] be the subset output by Algorithm 6 with
parameters (M, ¢, p), B is a (A, ~)-representative subset with
respect to M, M* with probability at least 0.9, for

~ 2
A::A'1000p1/%77::\/%.

Proof. Throughout we follow the parameter settings of 7
and ty.x in Algorithm 6. We begin by proving the second
condition in Definition 6. By Lemma 13 and the upper bound
on s, there is a subset Q C [n] with |Q| > (1 — {5)n such

that
Viogm
13

Further, let U, X,V be an SVD of M*, and let Q" C @ be
the indices j satisfying both

M- Mo, < a2 < 2

%
[v-1, ], o

H[M—M*]:QHF <A (1V.4)

[\
=

<0:=

By Markov’s inequality and the definition of a regular sub-
space, we have that |Q'| > (1—§)n. We next claim that every



index in Q'N By will be included in B with probability at least
0.99. It suffices to prove that the conditions of Lemma 15 are
met with probability at least 0.9, and then a Chernoff bound
shows a majority of the ¢,,x tests will pass with probability
> 1— -1 for each j € Q' N By. To see this, by Markov’s

100n
inequality and (IV.4), with probability at least 0.99 we have

H[M—M*]TOQH < Ay/plogm < QE,
: F T
and by Lemma 12 with S < @, with probability at least 0.99,

pBQ 02

TIT* i ﬁl,.* .

T
Vilrng: [Vilrng: =

Clearly T contains 7' N @ so the conditions of Lemma 15
are all met with probability 0.9. Therefore, conditioning that
B D Q' N By, and since By is independently sampled from
Q', applying Lemma 12 once more with S < @’ shows the
first condition of Definition 6 is met with probability 0.95.
Now we verify the first of the desired conditions in Defini-
tion 6. Let M —M* = X +Y be the promised decomposition
from Definition 3, and note that the given bound on s shows
the preconditions of Lemma 17 are met. Therefore for every
7 € B, a Chernoff bound shows that with probability 0.99,
the contrapositive of Lemma 17 holds, i.e.
30000
=
T (1X13+ 1.56%)

where we used (a+ b+ ¢)? < 3(a? + b? + ¢?) and the lower
bound on ¢. Summing the above display over j € B and using
lu~+ |2 < 2ull2+ 20| with u + X.; and v < Y., we
have

2
1Y 5l

IN

1X5113 + 7027 + 62)

IN

90000png?  60000pn
p? p?
since |B| < |Bg| < 2pn with probability at least 0.99
by a Chernoff bound. Finally, the conclusion follows since
|X.5]|% < 30pA2 with probability at least 0.97 by Markov’s
inequality, and we union bound over these two events and the
prior failure probabilities. O

IV~ M7 < IX:s. AV.5)

C. Filling in the matrix

1) Completing columns with a representative subset: In this
section, we show that given a representative subset of columns
(in the setting of Lemma 18), we can efficiently learn coef-
ficients completing the rest of our iterate IM as combinations
of the subset via observations from M*. We begin by proving
several helper regularity bounds which will allow us to argue
that the regression problems we solve are well-conditioned
with good probability. Specifically, we analyze the regularity
of a (truncated) span of our representative columns.

Lemma 19. Let A € R™*" pe rank-r with SVD UXV T, and
let B € R™*™ satisfy ||[A — B < A. For some § € (0,1)
let B’ be the matrix obtained by taking an SVD of B and
dropping singular values smaller than %. Let U'S (V)T be
an SVD of B'. Then the following statements hold.

1) U’ has rank at most 2r.
2) H(Im —UUT)uH2 < 0 for all unit vectors u in the
column span of U’.

4/rA
3) A B[, < 1A,

Proof. To see the first claim, Lemma 9 (overloading the
application with B <~ B — A) shows that B has at most
2r singular values more than AT, so B’ is rank at most 27.
We move onto the second claim: let © € R™ be in the column
span of U’. We bound

B (Tn = UUT) ul|, > [[VE(UT) (Tn - UUT) ul,

A
> 2 (W) (L, - UUT ),
> %UT (I, -UU")u

A

0

2
(T =TT ),

where the first inequality followed since B’ = U'X/(V')T
drops singular values from B, the second used orthonormality
of V’ and our lower bound on X', the third used that u is
contained in the column span of U’, and the last used that
I,, — UUT is a projector. On the other hand,

BT (1~ UUT)ufl, = (A ~B)" (L, - UUT)
< A (Tn —UUT) ul,

2

where we used A = UUT A. The above two displays yield
the second claim. To see the third,
2A

||B/ - A”op S ||B/ - BHop + ||B - AHF S 7

Since B’ — A is rank at most 37, the conclusion follows from
|IB" — Allg < V3r|B' — A||0p. O

Applying Lemma 19 then yields a regularity bound on a
truncated SVD of our iterate.

Lemma 20. Let B C [n] be (A, ~)-representative with respect
to M,M* € R™*"™ and assume M* is rank-r* with SVD
U, X, V] and (a, B3, p)-standard row and column spans. Let
USVT be an_SVD of M.p after dropping singular values

smaller than %. Then the following statements hold.

1) U has rank at most 2r*.
2) The column span of U is (a, g)-regular.
3) There is a matrix Y € R"™™ where U € R™*7,

satisfying

8V A
v

Proof. We are in the setting of Lemma 19 with A < Mg,
B+ M.g, and 0 «+ g so the first claim follows. The second
claim in Lemma 19 shows any unit « in the column span of
U can be decomposed as u = v+ w where v is the projection
of u into the column space of U, and ||w||, < g Since v

IUY — M"| <



is in the column span of U,, Lemma 2 shows that for any
S C [m] with |S| > (1 — a)m,
lvslly = Bllvll,
B B
hoslly > 8- 5 = 5.
proving the desired regularity of the column span of U via

Lemma 2. To see the last claim, representativeness of B shows
that by taking Z = [V, ]p.([V4]5.[Vils) "' V] € RIBIX?

12l = /A (ZZT) = A0 (VIR V8) ) <

Further, this Z satisfies M* = M;Z. Hence for
YV TZ, we have the desired

= luslly = llosll, =

1
’Y
Y =

IUY — M*||p = || (USVT - M%) Z||,
1 8Vr*A
< - |luzvT - < :
~ 5 H BHF = 48

Above we used the last claim of Lemma 19 and, for any A
with | B| columns,

1

IAZ|; = (ATA227) <

(ATA Ijp)) = IIAIIF

O

We further require one helper claim on regression error from
noisy observations.

Lemma 21. Let v = Uy+£ for U € R™*" with orthonormal
columns. Suppose U Ua, = N1, for A C [m]. Then for
¢* = argmingerr |[Ua.c —va.lly, and any ¢ € R" with

[ =clly <A,

R 2
102~ oll, < llgl, + 5 Eaclls + A.

Proof. Because setting ¢ = y attains error [|€4.||,, we must
have || X 4.¢* —va.|l, < [|€a:]|5. The conclusion follows from
the assumption on A and the triangle inequality:

IU€ = vlly < [[Uy = vl + [[U(" = y)ll, + [[U(c" =)l
1 ~
< gl + 5 I0ae =), + A
< Hfl\z

+ X ||UA;y —va:lly, + A

N HUA c—vally

2
<€l + by [€a:]l, + A

O

Finally, we state a standard result on the runtime of well-
conditioned linear regression.

Proposition 5 ( [Nes83]). Let A € R™" have full column
rank, let b € R, and let

* = in [|[Az —b|>.
2" := arg min [|Az — b,

There is an algorithm AGD (A, b, x9, N') which outputs © € R”
in time O(Tmy(A) - N) satisfying ||z — z*[|, < A, if

26(ATA) [lzo — |3
A2

N> /k(ATA) log<

We now analyze our subroutine for learning coefficients
with respect to a representative subset.

Algorithm 7: Complete(O,(M), M., 7*, B,A, A, 0, v, B)

1 Input: O ( ) for p € (0,1) and
M = M* + N € R™*™ where M* is rank-r*,
IN|p <A, M.p e R™¥IBI B C[n], A,o >0,
a,f €(0,1)

2 UEVT~<— SVD of M.p with singular values smaller
than % dropped, for U € Rmxr’

3V 0, 5r

4 if v/ > 2r* then return (U, \A/')

s R {ieml|||Usl; > 22}

6 N [4log(B0 Gt toriny)

7 for j € [n] do S; < A; \ R where A; C [m]
corresponds to revealed entries of 1/\\/1

8 for j € [n] doV < AGD(Ug;. ,MSJ],O ,N) (see
Proposition 5)

9 return (U,\A/')

Lemma 22. Following notation of Algorithm 7, suppose B
s (A,~y)-representative with respect to M* M € R™*",
M* has («, B)-regular row and column spans, || M*||,, < o,

INllg < A, and p > ‘1050{ log(n). Then with probability at

least 0.9 over the randomness of Op(ﬁ),

VA

200

P B2 <A - gl
Proof. By Lemma 20, whenever B is (A,~)-representative,
the algorithm never terminates on Line 4, and the column
space of U is (a, 7) -regular (and hence (o, 3, 2)-standard).
We condition on the following two events, each of which holds
with probability at least 0.95, giving the failure probability by
a union bound. First, by an application of Fact 3 analogous
to its use in proving Lemma 12, since |R| < %, we have for
all j € [n] simultaneously,

HU\AfT M

) and v < 2r*.

p52 T
L 2> wu < 2pI. (IV.6)
iESj
Second, let N/ = M* UY be the difference matrix from

Lemma 20, so that M = UY+N+N’ and N’ is independent
of O ( ). We will condition on the following via Markov’s
inequality:

2
2
>N | < 20m N+ N
j€[n]

av.m



Under these events, Lemma 20 also proves ||N’|| < S‘Vﬁ%,

and by orthonormality of U,

SVIrrA
1Y |[p = [UY]|p < [M*||p + [|N||p < ov/r* + \/VZ :
(IV.8)

Finally, for all j € [n] we bound the error of AGD. Let c}

minimize HUSj;c MSJ |13, and for simplicity let A;

Us,. and b; := MSM. By Lemma 21 with y < Y and
6(— [N—FN/]J,
* 2 ’ 2 64
|45 = bl < 2“[N+N]: H Y H[NJFN] S5 |y
av.9)

where we used the lower bound A% = ﬂ in (IV.6). Further,
by integrating the lower bound in (IV. 6)

YSJJ H2

e ~ Yol < m A

= (HAYSJ,J bills — [[Ase

—bj Hi)
< o HUY - MH <% NN
pB? P pp? v
so plugging in (IV.8) gives the crude bound
192r*£2

< 5 N+ N2 + 307
H JHQ IBQ F ,}/QBQ (IV.10)

33007*

- py?p
Therefore, by combining (IV.9), (IV.10), the condition number
bound in (IV.A6), and Proposition 5, running for N iterations

(A2 + A2 +02) .

yields ¢; := V; satisfying ||c; —cf |2 < \/%, so by Lemma 21
once more,
~ R 2
UV, = My|| <3N+
2 Ill2
96 2 A2
+ g [N+ N, o, + 5
The conclusion follows by summing over all columns and
using (IV.7) which we conditioned on. O

2) Geometric aggregation: In this section, we give an ag-
gregation technique for boosting the constant error guarantees
of earlier sections. We begin with an approximation algorithm
for the distance between low-rank matrices.

Algorithm 8: LowRankDist(U,V, W Z,J)

1 Input: U, W € R™*" V,Z € R"*", § € (0,1)

2 d + [1000log 2]

3 Sample Q € RY*™ with independently random unit
vector rows in R™

4D L(QUVT -

5 return ||D||F

QWz")

Lemma 23. Let M,M’ € R™*" be given as rank-r fac-
torizations UV, WZ" respectively. For any § € (0,1),

LowRankDist(U, V, W, Z) returns a value V such that with
probability > 1 — ¢,

[V = IM = M| | < 0.1 M — M[|..

The runtime of the algorithm is O((m + n)rlog %).

Proof. First, letting D := UV —WZ", standard guarantees
on Johnson-Lindenstrauss sketches [DGO03] guarantee that with
probability at least 1 — 4,

[IDI? — IDJE| < 01D}

— DIl ~ IB]ie| < 0.1 D]l

since multiplying by d’%Q preserves all row norms of D up
to a 0.1 factor with this probability. Finally, we can explicitly
compute D and return its Frobenius norm in time O((m +
n)rd). O

Leveraging Lemma 23, we give our approximation-tolerant
geometric aggregation technique. The algorithm is identical to
Algorithm 4 of [KLL"22] other than our use of approximate
distance computations, but we provide an analysis of this
modification here for completeness.

Algorithm 9: Aggregate({M;};cx), A, 9)

1 Input: {M,;};cp) C R™*™ each given as rank-r
factorizations {U; V' },c(47, A > 0 such that
|M; — M*||p < A for an unknown M* € R™*" and
at least 0.51k of the ¢ € [k], § € (0,1)

2 for (i, ) € (]  [K] do
d;; + LowRankDist(U;, V;,U;, V;, %)

3 for i € [k] do

4 | if d;; <2.2A for at least 0.51k distinct j € [k]

then return ;
5 end

Lemma 24. Under the input assumptions of Aggregate, with
probability > 1 — 6, an index i is returned in time O((m +
n)rk? log mTk) satisfying

[M; — M| < 4A. av.an
Proof. We condition on all calls to LowRankDist returning a
pairwise distance up to 0.1 error, giving the failure probability

and runtime via an application of Lemma 23. To prove (IV.11),
let

Ti={i€[k]|||M; — M*[|p < A}.

Note that any ¢ € T passes the check on Line 4 by the triangle
inequality, so the algorithm will return. Further, any index i €
(k] with ||M; — M*||p > 4A will fail the check on Line 4 by
the triangle inequality, since its (approximate) distance to any
1 € T is too large. O



Algorithm 10: Fix(Opg 1 ( ), M,r*,0,5,T,A, «a, B, i, 6)

1 Input: O, 1]( ) for M=M*+Ne¢e RmXn where
M* is rank-r*, [M*[|,, < o and ||N||p < 20,

M € R™*™ given as a rank -r factorization, S C [m],

TCn), A u>0,a,pB,6c(0,1)
4.8:10° ur log(m) log (829 )

af?n
1204/15ur log(m A

/
Al - aBn

(5]

D <

3 0 Tgo5ieatmy

4 (9,T)
Sparsify(Ojp 1) (Mg ), Mg, A, 1.05A, o, §,p, 2)

s K < [10log &]

6 for k € [K]| do

7| g BB log(n), o« T log(n)
8 By + Representatlve(MS/’T/ 14;0? A, q)

9 (Ug, Vi)
Complete(Oy (Mg:.), Mg: g, r*, B

) 207 B3/n
Ao, 2, B)
10 end
1 k* « Aggregate({Usz}ke[K], 1057 “;Og(?A7 %)
12 (U7 V) — (Uk* , Vk*)
5 A MA
14 for k € [K] do
15 (Vk, Uk) —
Complete(Oy (M), VUT ,r*, 5, SN 0,22 3)
16 end
17 k* +

10107\ /r* log(r*
Aggregate({UkaT}ke[K], Wg()Aa %)

18 return (Ug«, Vix)

D. Proof of Proposition 3

We now put all the pieces together in Algorithm 10, and
prove Proposition 3.

Proposition 3. Letr M* € R™*™ be rank-r* with (a, 3, p)-
standard row and column spans, m > n, § € (0,1) and let
S C [m], T C [n] have |S| > m — ¢, |[T| > m — 5
Assume M € R™*" is given as a rank-r factorization, r > r*,

MS T IS (Wog(m) A)-close to Mg  ona 7 -submatrix, and
M = M* + NfOr M| <% Algorzthm 10

returns U € R™*"" and V € R"X’" satlsfymg

Chxr*/1* log(r*)

T * *
HUV -M ||F§ 58 A and v’ < 2r*,
Iv.1)
for a universal constant Cﬁx, with probability > 1 — 4.

Algorithm 10 uses O(m(:ﬁff log? (55) 1o g(m(K;&A))) time and

) where for a sufficiently large constant,

rulog? () log()
p=0 < a?n ) ’

one call to (’)p(ﬁ

88000ur™ log(r™) .

Proof. First, by applying Lemma 11 with ygrop = § and A <
1.05A (to account for the error due to IN), with probability
> 1—7 we have that IS’ > m—%* and [T'| > (1—§)n, and
that MS/ 7 and MS/ 7 are 2.2A- close away from an s-RCS
matrix (accounting for N again), for

B af’n

15 10%urlogm’
Condition on this event for the remainder of the proof. Next,
consider one run k € [K] of the loop from Line 14 to Line 10.
It is straightforward to check that for p « % and
¢ 14[1305%"), the preconditions of Lemma 18 are met
because we have 2.2A-closeness between Mg/ 77 and M, 7
away from an s-RCS matrix, and MY, 5, has (%, 8, 1)-
standard row and column spans. Therefore, with probability
> 0.9, By, is (A, «y)-representative with respect to Mg/ 7 and
MY, 1. for

~  88000ur* log(r*)

2
A= 98

B TN
Under this event, Lemma 22 shows Complete returns a rank-r’
factorization (Uy, V) satisfying

< 1087 \/log(r*

)
o < =B,
with probability > 0.9, and guarantees r’ < 2r*. Therefore
this occurs with probability > 0.8 for each independent run
k € [K]. A Chernoff bound shows the preconditions of

ULV, — M~

Aggregate are met with probability > 1 — &, and then with
probability > 1 — &, Lemma 24 implies that on Line 12,
4-10%r%4/1 *
HUVT _ g,:| . S A/ — r Og(T )A

35
Next, note that S’ is a (A’, §)-representative subset with
respect to any extension of VU to R”*™ and (M*)T, by
subspace regularity and Lemma 2. An analogous argument
to the above shows that with probability > 1 — 2, applying
Complete and Aggregate with the given parameters yields
(IV.1). Union bounding over all these events, we have a failure
probability of 1— 5—5. We condition on one last event with fail-
ure probability % via standard Chernoff bounds: that the total
number of observed entries in Sparsify, and the total number
of sampled rows and columns in calls to Representative and
Complete, are within constant factors of their expectations.
Regarding the choice of p in the statement, note that the
only subroutines which require observations are Sparsify and
Complete, and our bound then follows from our parameter
choices and Lemma 1 (the dominant term is the O(log(%))
observation calls used by Sparsify). Finally, we discuss
runtime. There are four components to bound: Sparsify,
Representative, Complete, and Aggregate. The runtime bottle-
neck of Sparsify is computing O(prmn) observations O(log %)
times, where each observation takes time O(r) to compute by
our low-rank factorization. The runtime of Representative is
dominated by O(log(m)) calls to Test, and each call solves



a regression problem in a O(m) x O(ng) matrix, which is
within the required budget. The cost of Complete is dominated
by running AGD for O(5 log(M)) iterations for each
column, and the total number of nonzero entries among
all regression matrices is O(mnr*q’), assuming " < 2r*.
We remark that in the second application of Complete, we
need to take an SVD of an n x ©(m) matrix, but its row
space is given as an orthonormal basis, so we may apply
Lemma 25 to perform this efficiently. Finally, by an application
of Lemma 24, the calls to Aggregate do not dominate the
runtime. O

Lemma 25. Let M = UV € R™*" be given as a rank-
r factorization and suppose U € R™*" has orthonormal
columns and V € R"™", We can compute an SVD of M in
time O((m + n)r?).

Proof. Let an SVD be ZXW . The right singular vectors W
are an n X r matrix with orthonormal columns corresponding to
the nonzero eigenvalues of VV T, and we can compute these
in the given time by forming V'V, performing eigendecom-
position, and multiplying by V. This also yields the diagonal
matrix 3. We can then directly compute Z = UVIWX !
within the allotted time. O

V. MATRIX COMPLETION ALGORITHMS

A. Estimating the operator norm

Our algorithms in Section 1V, as well as computation of
an initial distance bound, require an estimate on ||IM*||o,. We
give a simple algorithm for performing this estimation under a
boundedness assumption on the noise. We then justify that this
noise boundedness assumption is without loss of generality, up
to a small overhead in our recovery guarantee.

Algorithm 11: EstimateOpNorm((’)[oJ](ﬁ),p, d)

1 Input: O 1 (ﬁ), p,0 €(0,1)
2 T+ [201og §]
3 for t € [T do

4 ‘ St < Bg

0,51,
5 end

6 return median({s;}¢c|7])

Lemma 26. Assume M = M* + N where M* € R™*n
is rank-r* with («, 8, u)-standard row and column spans,
and m > n. If |N|[p < 1% |M*||g and p > 3252* log(n),
Algorithm 11 returns a value V' such that with probability
Z 1- 6’ ||0p S Vv S 2\/ﬁ||M*||op

Proof. Consider one independent run of the loop in Algo-
rithm 11, and let 2 be the observed entries. With probability
at least % by Markov’s inequality we have

2 *
<
INali < 25 2,

where we used the assumption on ||N||.. Further, let S; C
[m] be the observed entries in column j for all j € [n], and
let U, X, V] be an SVD of M*. With probability at least
— for each j € [n], by an analogous argument to the lower
bound in (IV.6) (since adding outer products of rows can only
mcrease the smallest elgenvalue) we have that H s vH2

||v||2 for all v € R"". Therefore, by a union bound on thls

event over all j € [n] we have with probability at least {3,

M= |Mos, 45
J€[n]
2 2
DS v = P .
J€[n]

Combining the above two displays and taking a union bound
implies that in each independent run, with probability at least
2 we have

:
i ¥ = 25 (51
1

where we applied (a + b)? > Za* — b? entrywise to
M = M* + N. Applying a Chernoff bound then implies
the median estimate over the runs satisfies the above display
with probability > 1 — g, which gives the upper bound on
[M*|,, < [[M*||p < V. For the lower bound,

* 2 2 *112
M2 2||N||F) > M2,

o~ 2
M| < 2 MR +2 Nallf < 3IM7IF < 3 M

op’
for each independent run with probability at least g by
conditioning on the same event on N as before. A similar
Chernoff bound and 967" < 4n then yields the upper bound

onV. O

Remark 1. In the regime |N|p > 1’% [ M* |,
matrix M = M* + N can equivalently be written as M =
0. xn + (M* + N), where we treat 0,,x,, as the target low-
rank matrix and (M* + N) as the noise. This only increases
the target noise level by a 1[71 factor.

the revealed

B. Main result

We are now ready to state our main meta-result for matrix
completion.

Theorem 3. Let M* € R™*" be rank-r* with (g,ﬂ,u)-row

and column spans, m > n, 6 € (0,1), and let M = M* +

N for |N||p < A. Algorithm 12 returns U € R™ " and
* *\1.5+0(1

V € R™" satisfying |[UVT — M*HF < MA with

probability > 1 — 0. Algorithm 12 uses

m(’l"*)2+0(1)u2 .
O(aﬂ“‘o(l).L time,
for L = logd () log?(™ 0w and Il to O,(M
= log”(55) log”™(—xzz52), and one call 1o Op(M)

where for a sufficiently large constant,

_ (r* D m n ||M[|,,
p=0 ( a8 (o5 )l | — &

)1—0—0(

)



Algorithm 12: MC(Op 1;(M), 7*, o, B, 11, A, 6)

Input: Oy (ﬁ) ™ eN, u,A>0, o, 5,6 €(0,1)

1A
A<—B

304+ EstimateOpNorm(ﬁ
4 £ < exp(y/log(r*f—1))
s K« fos7 " 108(2Csxr*\/1* log (1) %)
6 A+ rio
7
8
9

[ ST

, = log(n), §)

(U7V> — (OmXO7 On><0)
k<« 0
(5, T) = ([m], [n])
10 N « Klog,(55%)
11 Yadd < W, I' < Yadak
12 while A > 20/A do
13 (U,V,S5,T) «
DESC(O[OJ] (MS,T), [UVT]&T, T’*, A, F, Yadd s &, Z)

u | A2

15 k< k+1

16 if £ = K then

17 (U,V) «

Fix(O[U’l](ﬁ)7 UVT r*0,8,T, A, a, B, , %)

18 A« ChrxT™\/T* log(T*)ﬁ
19 (5,T) < ([m], [n])

20 k<0

21 end

22 end

23 (U, V") < top r* components of an SVD of
Fix(Opo,1 (M), UV’ r* 0,5 T, E, a, B, i, g) sorted
by the corresponding singular value

24 return (U, V)

Proof. By Remark 1 and the guarantees of Lemma 26, our
estimate o is an upper bound on [[M*||,, with probability
at least 1 — g; we condition on this for the remainder of
the proof. This also implies that our initial estimate Ais a
valid overestimate of ||[UVT — M*||, < /7 |[M*||,, at the
beginning of the algorithm. We next claim that throughout
the algorithm, [UV 7] s,r and M 1 are A-close on a v,dak-
submatrix. This invariant is preserved every time we call
Desc (assuming it succeeds), by Proposition 1. Further, our
parameter settings imply the preconditions of Proposition 3
are met whenever it is called: it is straightforward to check
that the 740p parameter in Proposition 1 is bounded by 57,
so that after K steps, at most an % fraction of rows and
columns are dropped, and the submatrix parameter is at most
Yadd K < Wc)g(m). Hence, every time we call Fix (assuming
it succeeds) the invariant is also preserved, by the guarantees
of Proposition 3.

The above argument also shows that every time the loop
in Lines 12 to 22 is executed, A is decreased by a factor of

05 - (Cgxr*+/r* log(r*)) = 2, by combining the guarantees
of Proposition 1 (K times) and Proposition 3 (once). This
implies that the number of times the loop is executed is at
most N. By union bounding over all N calls to Desc and Fix,
the last call to Fix, and the first call to EstimateOpNorm, this
gives the failure probability; we condition on all of these calls
succeeding for the remainder of the proof. When the algorithm
exits the loop and before Fix is called for the last time, the
closeness parameter (on a submatrix) is bounded by 20/A,
so the distance bound follows from Proposition 3 and since
we increased A by a % factor at the start of the algorithm.
Finally, we note that because the top-r* truncation of the
output’s SVD minimizes the projection to rank-r* matrices
by Frobenius norm, the distance to M* (which is rank-r*)
can at most double.

Further, note that throughout the algorithm, we can in-
ductively apply Proposition 1 to maintain that the rank r of
our iterate is bounded by 3**+1r* = (r*)1*o(t) g=o() since
the potential function r + r* at most triples each iteration,
and whenever k is reset to 0, Proposition 3 guarantees that
r < 2r*. The bounds on the runtime and p then follow
by combining Propositions 1 and 3 (at most N + 1 times)
with Lemma 26, where we apply Lemma 1 to aggregate the
observation probabilities. To handle the runtime of the final
SVD and truncation, it suffices to use Lemma 25. O

By combining Theorem 3 with Facts 1 and 2, we then obtain
the following results.

Corollary 3. Let M* € R™*"™ be rank-r* with ((1),Q(1))-
regular row and column spans, m > n, § € (0,1), and
let M = M* + N for |[N|p < A. Algorithm 12 returns
U € R™" and V € R™" satisfying |[UVT — M*||, <
(r*) 5+ A with probability > 1 — §. Algorithm 12 uses

O (m(r*)2+0(1) ~L> time,

for L = logﬁ(%)logz( A(;Hov)’ and one call to Op(ﬁ)
where for a sufficiently large constant,

- (T*)1+o(1) 6 /M n ||M*||Op
p—0<n~log (;)log R — .

Corollary 4. Let M* € R™*"™ be rank-r* with pi-incoherent
row and column spans, m > n, 6 € (0,1), and let M =
M* + N for |N||p < A. Algorithm 12 returns U € R™*""
and V € R™"" satisfying |[UVT — M*||, < (r*)1-+oMA,
with probability > 1 — 0. Algorithm 12 uses

O (m(r*)3+"(l)u3 . L) time,
for L = logG(%) 1og2(M), and one call to (’)p(ﬁ)
where for a sufficiently large constant,

o[ my (0,
p—O(n-log (g)bg — A .
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APPENDIX

In this section, we prove that uniformly random subspaces
of R% of dimension 7 are (£2(1),§2(1))-regular with exponen-
tially small failure probability, when % is at least a sufficiently
large constant. This latter condition is not typically restrictive,
as the regime of interest in matrix completion is where
r = o(min(m,n)) (otherwise, it is information-theoretically
necessary to reveal at least a constant fraction of the matrix,
limiting the runtime gains of matrix completion algorithms).
Our main helper tool is the following standard concentration
bound on the spectra of Wishart matrices.

Lemma 27. Let G have independent entries ~
N(0,1), and assume % is sufficiently large. For a universal
constant C, k(G " G) < 3 with probability > 1 — exp(—Cd)
(where recall k(A) denotes the condition number of a matrix
A).

Proof. For shorthand let K := GTG € R™ ", where EK =
dI,. Letting N be a maximal 0.1-net of the unit ball in R",
Lemma 1.18 of [RH17] shows |N| < exp(4r). By Exercise
4.3.3 of [Verl6],

Rdxr

Sl m

.
1K =1, < 1.255}1153}(@ (K-1,)v|,

so it suffices to prove that with the desired probability, we
simultaneously have |v' Kv — d| < 0.4d for all v € N. For
any v € N, v Kuv is a chi-squared random variable with d
degrees of freedom, so

Pr[jv"Kv — d| > 0.4d] < exp(—2Cd)

for C' > %, by Lemma 1 of [LMOO]. The conclusion follows
from a union bound for 4r < Cd. O

Corollary 5. Let V C R be a uniformly random subspace
of dimension r, where % is sufficiently large. For universal
constants « and v, V is (a, %)-regular with probability >
1 — exp(—~d).

Proof. By the characterization in Lemma 2 (and following
its notation), it suffices to prove that for every S C [d] with
S| = [(1 — a)d], we have k(> ;cqbib] ) <9, since taking
larger S can only improve the condition number. Let o be a
sufficiently small constant such that

(d e a>d1> =P (Csd> ’

which exists following the estimate (z) < (&4)*. By rotational
symmetry, it suffices to consider By, = K™ 2 G, following the
notation of Lemma 2. In this case we further have

> bib] =K P KK for Kg := G Gs..
€S

Finally, with probability at least 1 — (exp(—Cd) +
exp(—%)) > 1—exp(—~d) for an appropriate constant v, K
and K¢ (for all |S| = [(1 — a)d] simultaneously) satisfy the



conclusion of Lemma 27. Therefore, the claim follows from
Lemma 28:

o (KKK ) < (K1) (Ks) = 5 (K) 6 (Kg) < 9.

O
Lemma 28. For any positive definite A,B € R4
(AZBAz) < k(A)k(B).
Proof. 1t suffices to take a ratio of the following bounds:
A (ATBAYT) = max uTABALY
Hu”2=1
<A\ (A) max, v Bv = A1 (A)\(B),
v 2=
M (ATBAY) = HrﬂinluTA%BA%u
ully,=
> \g(A) HminlvTBv = Aa(A)X\g(B).
vlly=
O

In this section, we prove Proposition 4, a one-sided matrix
discrepancy bound. Our proof follows from a straightforward
application of the resolution of the Kadison-Singer conjecture
from Marcus, Spielman and Srivastava. In particular, we use
the following result restated from [MSS15].

Proposition 6 (Specialization of Corollary 1.5, [MSS15]). For
any t € N and {u;}iejm) C R such that 3¢, ui ul =1,
and Hqu; < § for all i € [m), there is a partition {Sj}je[t]
of [m] with, for all j € [t],

€S

g(;ﬁﬁ)zi(umf

op

As a corollary of Proposition 6 we have the following result
on splitting an approximation of a multiple of the identity into
two pieces; we will later apply this procedure recursively.

Corollary 6 For any {vi}icim) C R" and X\ > 0 such that
> iem }vv ~e AL and ||lvil|5 < 0 for all i € [m], and
e€(0,7). 6 € (0, 100) there exists a partition {S1,S2} of
[m] such that for all j € [2),

/\I
Z““ Sets\/o/x 5T

i€S;
Proof. Let M := Zie[m] viv] and let u; = M~ zv;. Note
that
Z uu; = M2 Z v, M3 = L,
i€[m] i€[m]
and

_ 1 )
i3 = o M < S exp(e) il < 5 exp(e):

Applying Proposition 6 to {u;};c[m]
partition {S7,S2} of [d] such that

E uiu;

with ¢ = 2 yields a

i€S;
op
1 120 20
= 5 <1 =+ 2 7 exp(e) =+ 7 exp(e))
< } 14 126 < 1 126
=32 x ) =2t V)

where we used that 2y/2exp(3) + 2exp(3) - & < V12

Consequently, for all x € R” we have

' (Z u) z = ||| -

i€S,
2
> [lll;

1 126
> |lz|l3 <1 —3 <1+ A))

2
= ||CUH2

.
Z uju;

JES2

Using 1/126/A < 5, 1—

and vV12+ 1.2 < 5 we have that

1- \/? > exp E\/?S()Jﬁ+ 12\/§>>

2?) for all z € [0, 3],

Combining with (A.1) then yields Y, g uiu =~ /5 7 i1,
Since u; = M’%vi and M =, I, the result follows for Sy,
and the result for Sy is symmetric. O

Applying Corollary 5 repeatedly then yields the following
result on splitting a decomposition of the identity into smaller
pieces, inspired by procedures described in [FM99], [Sril3].

Corollary 7 For any k € N and {ul}ze[m] € R” such that
> iem ]uz =1, and ||uLH2 <i< 1400 Taooar Jor all i € [m)],
there exists a partition {S;}jcior) of [m] such that

€S

1 .
13V53F 2—kIr for all j € [24].

Proof. We prove the result by induction to show that for all
¢ € [k], under the given assumptions we can find a partition
{S;Z)}je[gz] of [m] such that for all j € [2¢],

Z uiu I where €, := Z 5V 620

ies® icle—1]

Re, 22



This suffices to prove the result as

X l
«=5v8 Y (\/5)1:5\/5- <W> < 13v/52L.

i€le—1] V2-1
The base case ¢ = 0 clearly holds as in this case 2¢ =
1, ¢, = 0, and Zze[d u;u; = I.. Next, suppose that the

claim holds for some ¢ € [k — 1]. Since 2° < 5 and
13v2800—t < % we can apply Corollary 5 2¢ times, where in
each application {vi}icpm) is set to the u; in some S and A
is set to 2( The resulting sets partition [m] into 2°F! pieces

that have the desired properties. O

Leveraging Corollary 6 and a standard, natural splitting
argument we prove our main result.

Proposition 4. Let A € [5%9" 1), let B € R™" have or-
thonormal columns, and denote rows of B by {b;}ic(q) C R".
There exists S C [d] with |S| < dX\ and

A
> bd] = ST
€S
Proof. Let k € N be such that 5+ < 3 < &, and let
{ui}icm) be formed by replacing every b; with «; := [||b; Hg

g} copies of b Note that each Hul||2 <d:=7 and

m—Zal<d+ > bills = 2d.

1€[d) i€[d]

Now since § < 5600 <73 400 Tiooa%» We can apply Corollary 6 to
the {u;};c[m). and let T' C [m] be the smallest cardinality set

in the output partition. This set satisfies |T'| < 3—2? < d)\, and

T T 1 1 /\
Amin <Z Uiths ) = exp (_13 Vd 2k> % o1 2 g

€S

Finally, letting .S C [d] consist of all indices of a b; associated
with one of the u; indexed by T, we have }_, (g bib] =
ieruiui and |S| < |T| since b;ib] is the sum of all
associated u;u; . O
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