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Abstract—Self-driving cars and trucks, autonomous vehicles (avs), should not be accepted by regulatory bodies and the public until
they have much higher confidence in their safety and reliability — which can most practically and convincingly be achieved by testing.
But existing testing methods are inadequate for checking the end-to-end behaviors of av controllers against complex, real-world corner
cases involving interactions with multiple independent agents such as pedestrians and human-driven vehicles. While test-driving avs on
streets and highways fails to capture many rare events, existing simulation-based testing methods mainly focus on simple scenarios
and do not scale well for complex driving situations that require sophisticated awareness of the surroundings. To address these
limitations, we propose a new fuzz testing technique, called AutoFuzz, which can leverage widely-used av simulators’ APl grammars to
generate semantically and temporally valid complex driving scenarios (sequences of scenes). To efficiently search for traffic violations-
inducing scenarios in a large search space, we propose a constrained neural network (NN) evolutionary search method to optimize
AutoFuzz. Evaluation of our prototype on one state-of-the-art learning-based controller, two rule-based controllers, and one industrial-
grade controller in five scenarios shows that AutoFuzz efficiently finds hundreds of traffic violationsin high-fidelity simulation
environments. For each scenario, AutoFuzz can find on average 10-39% more unique traffic violationsthan the best-performing
baseline method. Further, fine-tuning the learning-based controller with the traffic violationsfound by AutoFuzz successiully reduced
the traffic violationsfound in the new version of the av controller software.

Index Terms—Search-based software engineering, evolutionary algorithms, neural networks, software testing, test generation, autonomous

vehicles

1 INTRODUCTION

T'HE rapid growth of autonomous driving technologies
has made self-driving cars around the corner. As of June
2021, there are 55 autonomous vehicle (Av) companies
actively testing self-driving cars on public roads in Califor-
nia [1]. However, the safety of these cars remains a signifi-
cant concern, undermining wide deployment — there were
43 reported collisions involving self-driving cars in 2020
alone that resulted in property damage, bodily injury, or
death [2]. Before mass adoption of avfor our day-to-day
transportation, it is thus imperative to conduct comprehen-
sive testing to improve their safety and reliability.

However, real-world testing (e.g., monitoring an Av on a
regular road) is extremely expensive and may fail to test
against realistic variations of corner cases. Simulation-based
testing is a popular and practical alternative [3], [4], [5], [6].
In a simulated environment, the main av software, known as
the ego car controller, receives multi-dimensional inputs from
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various sensors (e.g., Cameras, LIDAR, Radar, efc.) and pro-
cesses the sensors’ information to drive the car.

A good simulation-based testing framework should test the
ego car controller by simulating challenging real-life situations
— especially the ones that emulate real-world violations made
by human drivers that lead to crashes, such as those shown
in Table 1. These crash scenarios are rather involved, e.g., a
leading car suddenly stopped to avoid a pedestrian and got
hit by a following vehicle. However, simulating such involved
crash scenarios is non-trivial, especially because the ego car
can interact with its surroundings (e.g., driving path, weather,
stationery, and moving agents, etc.) in an exponential number
of ways. Yet, simulating some crash-inducing scenarios, even
in this large space, is not so difficult—for example, one can
simply place a stationary object on the ego car’s path to simu-
late a crash. Further, many traffic violationscan be reported
with slight variations of essentially the same situation (e.g.,
changing a never seen object’s color). Thus one of the require-
ments for a successful simulation-based testing framework is
to simulate scenarios that can lead to many diverse violations.

For traditional software, fuzz testing (a.k.a. fuzzing) [8],
[9]is a popular way to find diverse bugs by navigating large
search spaces. At a high level, fuzzing mutates existing test
cases to generate new tests with an objective to discover new
bugs. However, incorporating fuzzing into simulation test-
ing of Avis not straightforward, as the test inputs (i.e., driving
scenarios in our case) have many features and inter-depen-
dencies, and random mutations of arbitrary features will
lead to semantically incorrect scenarios. Although the simu-
lator will eventually reject such inputs, the computational
effort on generating and validating these invalid test cases
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TABLE 1
Dominant Scenarios Leading to Car Crashes as Per National
Highway Traffic Safety Administration (NHTSA) report [7]

Crash Scenario #Per Economic Years
Year Cost Lost

A leading vehicle stopped 975k $15388m 240k

Vehicle lost control without 529k $15796m 478k

taking any action

Vehicle(s) Turning at 435k  $7343m 138k

Non-Signalized Junctions

A leadin; f vehicle decelerating 428k $390m 100k

Vehicle drove off road without 334k  $9005m 270k

taking any action

Straight Crossing Paths at 264k $7290m 174k

Non-Signalized Junctions

Without taking any action’ means the vehicle is going straight or negotiating a
curve than explicitly making turns | changing lanes [ leaving a parking position.
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Fig. 1. AutoFuzz high-level overview.

will waste a large portion of the testing budget. Thus, each
generated scene and sequence of scenes (a scenario consists
of a sequence of scenes) should be sermantically correct as well
as triggering diverse traffic violations.

Our Approach. We address these challenges by designing a
grammar-guided learning-based fuzzer, called AutoFuzz
(Fig. 1). A self-driving car simulator takes some valid initial
scene configuration as input (consisting of: road map; starting
position and destination of the ego car; initial locations, direc-
tions, and velocities of other cars and pedestrians; etc.) and
starts the simulation with the initial scene to generate a series
of semantically valid consecutive scenes in the constrained
driving environment. For initial scene generation, AutoFuzz
leverages the API grammar provided by the simulator and
fuzzes the grammar-constrained input space, treating the sim-
ulator as black-box (Section 4). In particular, AutoFuzz runs in
an evolutionary fuzzing setting where it is optimized to gener-
ate test input that the target simulator uses to initiate a sce-
nario, running the ego car through corresponding time steps
such that it may lead to a traffic violation. However, if we opti-
mize the search to only find violation-producing inputs (i.e.,
binary objective), it will be challenging to convergein a sparse
space. Instead, following previous work on av testing [6], [10],
[11], [12], we formulate the fuzzing process as a smooth multi-
objective search that guides the ego car to the point of interest.

To quantify the notion of traffic violationdiversity, we
define the concept of unique violation, where the configurations
of two violation-producing input scenes should be apart by a
user-defined threshold. AufoFuzz is optimized towards finding
unique violations rather than every possible traffic violation.
However, unique violation-producing inputs are sparse, and
sparsity increases as the uniqueness threshold becomes more
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stringent. In such a sparse domain, the success of a fuzzer
depends heavily on its initial seed selection and mutation strat-
egy [13], as successful mutants are often limited in a sparse
high-dimensional space, and chances of finding them without
any guidance are thin. Besides, when a violation has been
found, it is not trivial to automatically derive new violations
with different parameters since a specific scenario leading to a
violation can be very similar to a specific scenario leading to a
safe outcome. One example is shown in Fig. 6 where a small
change of the leading vehicle’s speed can lead to drastically
different results. To address these, we propose a novel seed
selection and mutation strategy. Our key insight is, we can
learn from the success/ failure of the past mutants to produce
traffic violationsand incorporate that knowledge in our fuzz-
ing strategy. In particular, we devise a novel (i) learning-based
seed selection and (ii) a gradient-guided mutation strategy
that exploits knowledge learned from previous simulations.

Seed Selection. AutoFuzz learns from previous test-runs’
behavior in an incremental learning setting and leverages
past knowledge to filter out new test cases (a.k.a.seeds) that
are unlikely to produce unique traffic violations. In particu-
lar, at each generation, we train a Neural Network (NN)
classifier [13], [14], [15], [16] on previous runs’ results to pre-
dict if a new input will lead to a unique traffic violation. The
confidence scores of the NN’s prediction are then used to
rank the candidate inputs from highest to lowest, with the
top ones are selected.

Mutation Strategy. The selected seeds are further mutated to
increase their likelihood of causing unique traffic violations.
Here we leverage a projected gradient descent (PGD) [17]
strategy from the ML-based adversarial attack domain. At a
high level, a small mutation is added to every relatively lower
confident input from the seed selection step to increase the
NN’s confidence in it, by iteratively back-propagating the
NN’s gradient. However, naively applying gradient-guided
mutation can generate invalid inputs. We resolve this problem
by projecting each mutation back into a feasible region. The
projection finds a feasible mutation value that obeys the gram-
mar constraints and is also closest to the original mutation
value. For this AutoFuzz applies a gradient-guided linear
regression, where the grammar constraints are expressed as
linear equations and the corresponding fields of the mutation
values are variables.

Compared with previous works using evolutionary search
based methods for avtesting [6], [12], [18], our proposed seed
selection and mutation strategy enable AutoFuzz to find more
unique traffic violations. Besides, unlike previous works
which focus on one particular (mostly proprietary) system in
a couple of fixed scenarios running in a particular simulator,
we show the effectiveness of our proposed open source fuzzer
AutoFuzz in the combination of multiple Avcontrollers, scenar-
ios, and simulators.

In summary, we make the following contributions:

e We introduce AutoFuzz, a grammar-based fuzzing
technique to test avcontrollers, which leverages the
simulator’s API specification to generate semanti-
cally valid test scenarios.

e We propose a novel learning-based seed selection
and mutation strategy to optimize AutoFuzz for find-

more uni !%ue traffic violations.
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e We evaluate our AutoFuzz prototype on four avcon-
trollers [19], [20], [21] in two simulators [22], [23]. On
average, AutoFuzz can find 10-39% more unique traf-
fic violationsper scenario than the best-performing
baseline method.

e We reduce traffic violationsby 75-100% for the learn-
ing-based controller by fine-tuning it with the traffic
violation-producing test cases.

e We make AutoFuzz's source code and representative
traffic violationsavailable at https://github.com/
autofuzz2020/ AutoFuzz[24].

Contribution to SE Field First, the proposed seed selection
and mutation strategy can be potentially applied to other
fuzzing areas where inputs take a long time to execute, and
one needs to leverage time and effectiveness. Second, Auto-
Fuzz is the first open source general framework on fuzz test-
ing for Avs in high fidelity simulators. It allows a user to test
a new system under a user-specified scenario in popular,
open-source high-fidelity simulators. Besides, it allows a
researcher to compare a new Avfuzzing method with exist-
ing methods easily. We believe the paper along with Auto-
Fuzz can make the research in the field of avtesting more
accessible and efficient to the community.

2 BACKGROUND

2.1 Definitions
First, we define a few terms based on [25], [26]:

A Scene is a frame in the simulation that contains the
detailed properties (e.g., location, velocity, acceleration) of
the ego-car, other moving objects, the surrounding station-
ary objects, and road conditions. For example, the ego car is
at map location (20, 20) with speed 5m /s facing north on a
rainy afternoon.

A Scenario is “the temporal development between several
scenes in a sequence of scenes” [25]. Two scenes could specify
the same initial locations for the ego-car and other objects but
different velocities, efc.resulting in different scenarios.

A Functional Scenario is a natural language description of
an abstract scenario, e.g., the ego-car crosses an intersection.
The examples in Table 1 belong to this category. Since such
an abstract functional scenario cannot be fuzzed directly,
we design a corresponding logical scenario as a special
implementation of the former.

A Logical Scenario is the parameterized space where search
during the fuzzing will be bounded. For example, the ego car
that is crossing the intersection in the above example will start
and end at locations (zs,ys) and (z.,y.), respectively, where
Ts,ys € [0,20]and z., y. € [20,40].

A Specific Scenario is a concrete instance in the logical
search space, e.g., the ego car crossing the intersection will
start at (10,10) and end at (30,30). A specific scenariousu-
ally takes 30-50 seconds—if the simulation runs at 10Hz,
this gives around 300-500 consecutive scenes.

2.2 Testing Autonomous Vehicle Controllers
There are three ways to testa controller: real-world, individ-
ual component, and simulation.

Real-world testing involves running the controller on the
road. However, as per Table 1, many pre-crash functional
scenarios may only occur in certain comer cases, i.e.,

troller
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variations in background buildings, weather, the behaviors
of other vehicles, etc.It is extremely difficult to focus real-
world testing towards such rare events.

Single component testing primarily focuses on the percep-
tion component or the planning component. The works for
the perception component differ on the place perturbed:
road sign [27], billboard [28], LiDAR input[29], camera
image (30], [31], [32]), LiDAR and camera image [33], and
the target they attack: perception[27], [28], [29], [30], motion
planing [34], lane following controller [31], [32]. The works
for the planning component differ on the characteristics of
the scenarios to look for: avoidable collisions [35], patterns
satisfaction [36], and requirements violation [37]. However,
this line of research tends to miss more involved interac-
tions between different components [38].

Simulator-based end-to-end testing treats the ego-car con-
troller as an end-to-end system and usually uses high-fidel-
ity simulations to find failure cases. Gambi et al. [4] create
simulations that reproduce specific scenariosaccording to
the functional scenariosleading to real car crashes in police
reports. However, their system does not support testing dif-
ferent variations of the constructed specific scenarios, which
is important to test for corner case behavior. Most other
works study how to efficiently find challenging specific sce-
narios in a parameterized logical scenario space.

These works usually model the logical scenariowith only
one or two agents having relatively simple behavior. However,
many real-world crashes involve multiple dynamic agents
with involved interaction (e.g., a leading car brakes when the
ego car gets close within a certain distance). Further, these
works usually focus only on collisions rather than other traffic
violationslike going off-road. Furthermore, the search methods
used, e.g., adaptive sampling[3] , bayesian optimization [5],
topic modeling [20], reinforcement learning [39] , flow-based
density estimation [40] tend to be either highly sensitive to
hyper-parameters and proposal distributions[3] or not scale
well to high-dimensional search space[5], [20], [39], [40] .

Among these, perhaps the closest to our work are evolu-
tionary-based algorithms [10], [18], [41], [42] and their variants
(with NN [12] or Decision Tree [6] for seed filtration) on testing
avor Advanced Driver-Assistance Systems (ADAS). These
methods can scale to high-dimensional input search spaces.
Unfortunately, they are currently only used for testing one
particular ADAS system or its component (e.g., Automated
Emergency Braking (AEB) [6], Pedestrian Detection Vision
based (PeVi) [12], OpenPilot [42], and an integration compo-
nent [10]) under one particular logical scenario, testing a con-
troller on road networks without any additional elements
(e.g., weather, obstacle, and traffic) [41], or focusing on finding
collision accidents in a logical scenario with other cars con-
stantly changing lanes [18]. In contrast, our proposed Auto-
Fuzz is generalized to different Avsystems and scenarios. Our
learning-based seed selection and mutation strategy further
enables AutoFuzz to disclose more unique traffic violations-
than the existing methods. We adapt the algorithms
from [6], [12], [18] in our setting, and compare with AutoFuzz.

2.3 Motivating Example

AutoFuzz aims to generate traffic violationsby an ego car con-

fuzzing the input scenes. AufoFuzz starts with a
C from IEEE Xplore. Restrictions apply.
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Fig. 2. Example of crash simulation in consecutive time steps.

logical driving scenario that involves traffic violations,
designed based on the top pre-crash functional scenariosfrom
NHSTA [7] (see Table 1). For instance, “vehicle leading ego
car stopped” and “non-signalized junction” are the top causes
of manual car crashes, and AutoFuzz tests how an avbehaves
in such situations. Fig. 2 presents this scenario. To simulate a
crash in such a situation, AutoFuzz starts the simulation with a
green car leading an orange ego car near a non-signalized
junction (Fig. 2-t(0)). From there, with fuzzing, AutoFuzz gen-
erates the following crash: the ego-car is going to tumn right
while the leading car suddenly slows down to avoid hitting a
pedestrian who is crossing the road (Fig. 2-t(1)). This leads the
ego car to collide with the leading car (Fig. 2-1(2)). To simulate
the collision, AutoFuzz leverages carLA’s APIs related to vehi-
cle, pedestrian, and cross-road in the map. Since the forces
that influence collision are mainly the pedestrian’s behavior
and the leading vehicle’s behavior, starting with these agents
and starting location in the map, AutoFuzz needs to search for
valid driving directions for all the agents, their speeds, road
condition, etc. to simulate the crash. Exemplary challenging
specific scenariosin addition to the collision shown here
include the pedestrian gets occluded by the leading vehicle
(as shown in Fig. 6), and the background is at night with heavy
rain. The detailed search space of this logical scenariois pro-
vided in Appendix H in supplementary material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109 /TSE.2022.3195640.

3 API GRAMMAR

Fig. 3 shows a simplified version of the APIs that AutoFuzz
uses to simulate crashes in our prototype implementation
for carLa. The core of the simulation is an initial driving
Scene with four main components: a route map, the ego car
whose controller is under test, some static and dynamic
objects (e.g., other vehicles, pedestrians, efc.), and back-
ground like weather and road conditions.

carLaprovides the API specifications as a set of Python
APIs [22], [43]. For example, calling CarlaDataProvider.reques-
t_new_actor(pedestrian_model, spawn_point) creates a pedes-
trian, where pedestrian_model is a pedestrian asset predefined
in carLAand spaumn_point specifies the pedestrian’s initial loca-
tion and direction. From such specifications we construct a
test-generation grammar, G(Map, Ego Car, Objects, Background),
shown in Listing 1. Encoding the grammar in JSON format
allows us to specify values for each field. We extend the gram-

mar bar adding two constraints for restricting the search region
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(see Listing 1) and additional conditions (e.g., the distance
between the ego-car and the leading car must be greater than
a certain distance).

After processing carLA’s APIs, we get a Test Grammar, G,
as G(Map, Ego Car, Objects, Background, Search Range, Con-
straint), where the underlined components are optional. The
details of search range and constraints are provided in
Appendix D in supplementary material, available online.

Listing 1. An example Test Grammar, G, from CARLA’s
specification. The JSON-encoded grammar snippet is for
the pedestrian in the motivating example. The con-
straints specified at the bottom express one vehicle’s tar-
get_speed < 0.5x of another vehicle’s target_speed

pedestrian_0: |{

setup: {
location: {
x:[=123, =83, (normal, Nome, 10)],
y:[3.5, 43.5, (normal, None, 10}]
}
direction: [0, 360],
type: [0, 12]

},

trigger_event: |
trigger_distance:[2, 50],
target_speed: [0, 4],
travel _distance: [0, 50]
1}

customized_constraints: [{
coefficients: [1, =0.5],
labels: [vehicle[0].trigger_event.target_speed,
vehicle[1].trigger_event.target_speed],
value: 0

H

4 METHODOLOGY

Leveraging the API grammar as described in Section 4.2,
AutoFuzz fuzzes inputs to the ego-car’s controller in a black-
box manner. We make several design decisions to address
the following questions: (i) How to define unique violation to
simulate diverse traffic violations? (Section 4.1) (ii) How to
generate only semantically valid scenes? (Section 4.2) and
(iii) How to design the fuzzing algorithm to produce more
valid unique traffic violations? (Section 4.3)

4.1 Diverse Traffic Violations

We focus on two types of violations: collision and going out-
of-road. A collision consists of colliding with other moving
or stationary objects. An out-of-road violation consists of
going into a wrong lane (opposite direction traffic), onto the
road’s shoulder or literally off-road.

The goal of a good fuzzer should be to find diverse bugs.
However, defining diversity for traffic violationsis a hard
problem. Merely comparing the violation-inducing inputs
may lead to infinitely different violations. For example, let’s
assume that a stationary pedestrian in front of a car results
in a crash. By modifying unrelated input parameters (e.g.,
the position of another pedestrian far from the crash site,
the position of another vehicle in a different lane, etc.), pos-
sibly outside the vision of the ego-car controller, we can

enerate an infinite number of different violations. But such
E Xplore. Restrictions apply.
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+ target speed

+ travel distance

+ start location
+ middle location
+ end location

| Static Pedestrian Vehicle

+ color
+ initial speed
+ direction

Following

+ trigger di

+ target speed
+ target location
+ avoid collision

+ direction

API
Route Map

Description

The user selects a route map, identified by town name, which
the ego-car should drive. A map contains a path consisting
of a sequence of 2D locations—the first and last locations in
the sequence refer to the start and destination of the ego-car.
CARLA comes with eight predefined maps.

Ego Car | The controller of the ego car is under test in this paper.

The user can set up a driving environment with different
weather and road conditions. The road conditions are set by
different friction values. CARLA has 21 predefined weather
and lighting modes.

Background

Objects The user can choose a range of static (e.g., debris, bus stop,
elc.) and moving (e.g., vehicles and pedestrians) objects that
can appear dynamically around the ego car’s route. Each
moving object is associated with a triggering event, which
specifies the triggering condition and behavior after being
triggered. Each vehicle is also associated with a behavior,
which makes the vehicle follow CARLA’s map with a
specified speed to a given destination. Users can also choose
each vehicle’s type (e.g., tesla model 3, nissan patrol, efc.),
color, and whether to try to drive directly to the destination
without regard to other objects.

Fig. 3. A simplified description of carLa’s APls. We fuzz only over the
background and objects.

redundancy is not interesting nor useful. Thus, criteria for
precisely defining unigue traffic violationsis needed.

Abdessalem et al. [6] define that two test specific scenar-
ios are distinct if they differ in “the value of at least one
static variable or in the value of at least one dynamic vari-
able with a significant margin.” This definition fails in our
high-dimensional scenarios, as the example above could be
considered different violations by their criteria. We instead
count the number of unique violations as:

Unique Violation. For a given type of traffic violation(colli-
sion or out-of-road), two violations caused by specific sce-
narios x and y are uniqueif at least th% of the total number
of changeable fields are different between the two, where
th, is a configurable threshold.

For a discrete field, the corresponding values are differ-
ent if they are non-identical in z and y (e.g., “color” field is
different between a black and a white car). For a continuous
field, the corresponding normalized values should be dis-
tinguishable by at least th,%, where th, is a user-defined
threshold. For instance, if the speed range of a car is [0,10]
m/s, and two violations occur at speeds 3m/s and 4m/s,
the field is considered to be the same between the two viola-
tions since ;t=% = 0.1 < 0.15, where thy% = 15%.

Scalability of the Definition. Compared with the definition
in [6], the new definition has two benefits in terms promoting

This is an
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the violation’s diversity for higher dimensional logical sce-
narios. First, since th, % is the percentage of the total number
of changeable fields that need to be different, given a fixed
th,%, as the number of changeable fields goes up, the num-
ber of changeable fields that need to be different for two vio-
lations to be considered different also goes up. Second, the
current definition enables a user to specify the thresholds
th1% and thy% according to one’s need. For scenarios with
higher dimensions, larger th, % can be used.

Benefits of Finding More Unique Violations. There are two
benefits of finding more unique violations for AV testing.
First, it enables engineers to better identify the limitation of
the AV under test. Different violations can potentially expose
different functionality issues and/or with different causes.
Compared with the formulation of finding the Pareto front as
in [12], our method allows more exploration and thus can find
not only the most severe violations but also less severe viola-
tions that should be avoided and can be potentially useful for
improving the AV under test (e.g., collisions at low speed).
Such violations tend to be missed by methods optimized for
Pareto front since they usually generate new seeds based on
the most extreme violations so far at each generation. Second,
by maximizing the number of unique violations found, the
“violation coverage” in the user specified logical scenariois
maximized. Instead of maximizing the “branch coverage” as
in the traditional fuzz testing, we maximize the number of
unique specific scenarios(for each logical scenario) that
induce violations. This can help a tester to validate if an AV
can perform well in the specified logical scenarioas expected.

4.2 Fuzzing With APl Grammar

AutoFuzz takes the API grammar as input and fuzzes follow-
ing the grammar spec. The user first selects a route map where
the ego-car controller will drive and a starting initial scene
encoded according to the API grammar. Users can optionally
specify a customized search region and constraints. AutoFuzz
uses these pieces of information to sample initial scenes(also
called seeds in fuzzing); Each sampled initial scene obeys the
constraints enforced by the API grammar.

Fig. 1 shows a high-level overview of the fuzzing process.
The objective is to search for initial scenesthat will lead to
unique traffic violations. To achieve this, like common black-
box fuzzers, AutoFuzz runs iteratively: AutoFuzz samples the
grammatically valid initial scenes (Step-1), and the simulator
runs these initial scenes with the controller under test to col-
lect the results as per the objective functions, as detailed in
Section 4.3.1. AutoFuzz leverages feedback from previous
runs to generate new seeds, i.e., favors the ones that have bet-
ter potential to lead to violations over others (Step-II) and fur-
ther mutates them (Step-1II). The API grammar constraints
are followed while incorporating feedback to create new
mutants, so all the mutants are also semantically valid. The
new seeds are then fed into the simulator to run. The traffic
violationsfound are reported, and their corresponding seeds
added to the seed pool. This repeats until the budget expires.

4.3 Fuzzing Under Evolutionary Framework
AutoFuzz aims to maximize the number of unigue traffic viola-
tionsfound within a givenresource budget (e.g., # simulations).

timization problem, where AufoFuzz searches
4 at 19:50:40 UTC from IEEE Xplore. Restnctions apply.
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over the entire input space of grammatically valid initial scenes
to maximize unique violations found by simulating from those
scenes. More formally, if A'is the space of all possible valid
input scenes, AutoFuzz searches over A'to maximize traffic vio-
lationcount () within a fixed budget, say 7. Thus, if B; is the
set of traffic violationsfound by input z; € A at fuzzing step t,
then more formally fuzzing is: yy=max|| | J_ 5. Here || is the
norm and | J () represents the union of all violations over all
possible inputs.

Since the input space X’is prohibitively large, an exhaus-
tive search to optimize the equation is infeasible. Instead,
one needs to identify and focus the search on promising
regions to optimize the number of unique violations. Fuzz-
ing based on evolutionary algorithms is a common approach
for such optimization. Starting with some initial inputs, evo-
lutionary fuzzers tend to select new inputs that find new vio-
lations and further mutate those successful inputs to
generate further new inputs. Thus, the success of fuzzing
depends on careful design of the following three parts:

i)  Objective function (F): How to design a objective
function to maximize unique bugs?
ii)  Seed Selection (x €X): Which inputs to mutate [44]?
and
iii) Mutation(m): How to mutate [16], [45], [46]?

Thus, the next generated input at time t, z; depends on
(x.4_1,m), where x;_; := z1,...,2;_1. The set of traffic viola-
tions B; found by z; can be represented as a function (F) of
these fuzzing parameters, i.e., By = —F(x4_1,m), such that
minimizing F' will maximize the unique traffic violations.
Thus, more formally, evolutionary fuzzing (with x; is an ini-
tial seed input) can be written as:

yr =milg, ,m

U Feerm) | 1)

In the following, we discuss the details of the fuzzing.

4.3.1 Objective Function

The ultimate goal of the fuzzing algorithm is to maximize
diverse traffic violationsfound. However, as the bug-pro-
ducing inputs are sparse, we need more violation-specific
guidance to help the ego car move towards the violation
points. For example, to generate a collision with a pedes-
trian, we need to guide both the ego car and the pedestrian
closer to each other. Thus, we need a smoother objective
function that helps lead towards the traffic violation. To this
end we define the following objective functions:

Violation
Type Objective Definition
Collision Fiyision  :=speed of ego-car at collision
Fopjer  :=minimum distance to other objects
Fliew = minimum angle from camera’s view
Out-of-  Fyongiane := minimum distance to an opposite lane
road Foffroad :=minimum distance to a non-drivable
region
Fljeviation = maximum deviation from interpolated
route
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Collision. We optimize for the weighted sum of the three
smooth objective functions: Fi,uision, Fobject, and Fiic,,, similar
to the objectives used in [6], [10], [12]. Flouision and Fipject
promote the severity of collision and the chance of collision,
respectively. Fiuision 18 set to —1 as per [6] when no collision
happens. F,;., promotes cases where the object(s) involved
are within the camera(s) view.

Out-of-road. This is implemented by a weighted sum of
the three smooth objectives: F,ongiane, Foffroad, aNA Fieviation -
Fieviation 18 adapted from the objective of “maximum dis-
tance deviated from lane center” in [11].

We further define Fongane and Fj ffr0qq to strengthen the
signals for driving into an incorrect lane or off the road,
respectively. Fig. 15 in Appendix E in supplementary mate-
rial, available online provides an illustration.

For each traffic violationtype, we formulate the fuzzing
problem as a constrained multi-objective optimization. Let z be
an input, i.e., a specific scenario with all the searchable fields.
Denote F;(z) for i = 1,...,n to be n objective functions, w; to
be some user-provided weights, and g;(z) forj=1,...,ptobe
p constraints, where each constraint is expressed as < 0 form.
Then, the objective function F(z) of Eq. (1) can be expressed as
a constrained weighted sum: min, Y, w; F(z),s.t. gj(z) <
0Vj=1,...,p. Unlike [6], [12], we optimize for a weighted
sum of objective functions rather than search for a Pareto front
of the involved objective functions, because our goal is to find
the maximum number of unique traffic violationsrather than
traffic violationswith the Pareto front of multiple objectives.

4.3.2 Seed Selection

Common evolutionary fuzzers like AFL [47] maintain a
seed queue and tend to favor some seeds over others. Smart
seed selection strategies give a significant boost to fuzzing
performance to not waste limited resources by running
fruitless seeds [48], [49]. In our case, a bad seed may lead to
running several scenes without simulating a traffic viola-
tion. We devise an incremental learning-based seed selec-
tion strategy, as shown in Fig. 1.

For each generation t of our evolutionary search, a Neu-
ral Network (INN;_;) is trained with all the seeds executed
up to generation ¢ — 1, such that the NN learns to differenti-
ate between successful versus unsuccessful seeds. NN;_; is
used to predict the seeds generated in generation ¢. It ranks
all the candidate seeds of generation ¢ based on its confi-
dence of leading to a unique traffic violation. AutoFuzz then
selects the top S seeds that are more likely to produce viola-
tions, where S is a configurable parameter. Fig. 4 illustrates
this process. The top row shows all the seeds generated in a
particular generation. The NN ranks them based on their
potential to produce unique violations—darker color is
more violation prone than lighter. The top S seeds are then
selected for future steps (in the second row.)

4.3.3 Mutation

Among the top s seeds selected in the previous step, not all
are equally likely to lead to unique violations. In particular,
the NN has lower confidence on the bottom seeds of the
ranked list (the lighter color seeds in the second row of
Fig. 4). AutoFuzz further mutates such lower confidence
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Fig. 4. Seed selection & mutation strategy per generation.

seeds to increase their potential to simulate traffic viola-
tions. A constrained gradient-guided perturbation mutates
the lower confidence seeds towards higher confidence (the
third row in Fig. 4 where all the seeds become dark red).
This perturbation is generated by iteratively back-propagat-
ing the input’s gradient with respect to the NN'’s prediction.
We describe the perturbation algorithm in Section 5.

5 [IMPLEMENTATION DETAILS

We realize our evolutionary fuzzing design discussed in Sec-
tion 4 following the main steps: Sampling, Seed Selection, and
Mutation (see Fig. 1). Algorithm 2 in Appendix A in supple-
mentary material, available online gives the detailed algorithm.

Step-I: Sampling: This step samples seed test cases from the
entire input space by obeying the constraints enforced by the
API grammar. We use two sampling strategies: (i) random
and (ii) genetic algorithm (GA). Each field is sampled based
on a user-specified distribution, search range, and con-
straints (see Listing 1). In either strategy, when the specified
constraints are not satisfied, each variable will be re-sam-
pled. If the specified constraints and cannot be satisfied after
a specified number of attempts, the program will raise an
error. We filter out seeds similar to those corresponding to
previous relevant traffic violations. In the fuzzing literature,
this step is commonly used for test suite minimization [10].

At each generation, the GA considers the previous seeds
with results, selects from them new parent test cases, and
generates new seeds through crossover and mutation.

Selection:We adopt binary toumament selection with
replacement, like the original Nsca2implementation [50], as
well as the variations in [6], [12]. Two duplicates are created
for each sample and randomly paired. Each pair’s winner is
then randomly paired as the parents for this generation’s
mating process. The rank of two individuals is determined
by the objective function in Section 4.3.1.

Crossover & Mutation:Simulated Binary Crossover [51], a
classical crossover method commonly used for floating
point numbers, is adopted, as in [6], [12], [50]. A distribution
index (n) is used to control the similarity of the offspring
and their parents. The larger 7 is, the more similar the off-
spring are w.r.t.their parents. We set n =5 and probabil-
ity=0.8 to enable more diversity. If a larger » is used, the
offspring will be more similar to their parents, so it takes
longer to find distinct offspring for methods with unique-
ness filtration and results in fewer unique bugs found for
methods without. If a smaller 7 is used, the offspring will be
too distinct from their parents and violation-inducing
parents won't be fully leveraged. Polynomial Mutation is
applied to each discrete and continuous variable [52]. For
discrete variables, we treat the value as continuous during
the mutation and round later. We clip the values at specified
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boundary values. Following [6], mutation rate is set to i,
where k is the number of variables per instance. We furthér
set the mutation magnitude 7,, to 5 for larger mutations.

Algorithm 1. Constrained Gradient Guided Mutation

Input: x: test case, f: NN forward function of predicting a
test case’s likelihood of being a traffic violation,
theone: threshold of conducting a perturbation,
theene: threshold of stopping a perturbation, n: max-
imum number of iterations, A: step size, c¢: con-
straints, e maximum perturbation bound, Xgin:
minimum allowable values, Xma: maximum allow-
able values
Output: X': mutated test cases
2 =g
i=0;
: if f(z) > thensi then
return z;
end
: whilei < ndo
" i)
I

de= A T ;

9: o =2 +dz;
10: 2’ = clip(z, Tmin, Tmaz);
11:  dz = clip(z’ — z,—¢,¢€);
12:  if check-constraint-violation (c, dr) == True then
13: dz = linear-regression (¢, dr);

QNI RDBN

14: end

15:  if is-similar (X, x + dz) then
16: break;

17: end

18: ' =z +dz;

19:  if f(z') > themg then
20: break;

21: end

22: end

23: return =’

Step-II: Seed Selection: As described in Section 4.3.2, we boost
fuzzing performance with a learning-based seed selection
strategy. We train a shallow neural network (1-hidden layer)
using the previous seed test cases to predict if a test case leads
to a traffic violation. The NN ranks the next generation seeds
based on its confidence of leading to a traffic violationand the
most likely tests are selected. Some previous work [12] also lev-
erages an NN for seed selection. There are several major differ-
ences. First, we train a single NN for binary dassification of
traffic violationsrather than several NNs for regressing over all
objective values as in [12]. Thus we rank test cases based on the
confidence value of finding a traffic violationrather than the
Pareto front from multiple NNs. This design choice is moti-
vated by our goal to find maximum number of valid, diverse
traffic violationsrather than finding the best set of traffic viola-
tionsachieving the optimal trade-off among multiple objectives
at the same time. Second, we iteratively train the NN in an
active learning setting rather than training fixed ones at the
beginning. This active training results in increasingly more
training samples than the initial population and, thus,
improved NN approximation over time. We show both design
choices introduce performance gains in the experiment section.
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TABLE 2
Different Driving Scenarios Under Test
Logical Scenarios Names Corresponding . #Para Map ID Road Type #violations
NHTSA functional scenarios found
Turning right while leading car slows Leading vehicle stopped / 26 town05 junction 512
down/stops deccelerating
Turning left a non-signalized junction ~ Vehicle(s) turning at non-signalized 26 town01 non-signalized T- 672
junctions junction
Crossing a non-signalized junction Straight crossing paths at non- 47 town07 non-signalized 400
signalized junctions junction
Changing lane Vehicle(s) changing lanes — same 26 town03  straight road 147
direction
Turning left a signalized junction LTAP/OD at signalized junctions ~ 11 Borregas signalized 76

* All scenarios involve ego car lost control or drove off-road, without taking any action, by testing if the ego-car goes out-of-road.
"(ﬁrsf four rows) average numbers of collision traffic violations(for town03 and town05) or out-of-road traffic violations(for town01 and town07) found by ca-
UN-NN-GRADON the Ibc controller in cArLA. (last row) average number of collision traffic violationsfound by GA-un-NN-GRaDon AporLo6.0in SVL.

Step-III: Constrained Gradient-Guided Mutation: As per Sec-
tion 4.3.3, we apply a constrained gradient-guided mutation on
the selected top test cases to maximize their likelihood of lead-
ing to traffic violations. The procedure, shown in Algorithm 1,
is adapted from the constrained adversarial attack in [53].

A test case z is perturbed only when the NN’s confidence
in its leading to a traffic violation, f(x), is smaller than a
threshold thcy, . If a test case is already considered highly
likely to lead to a traffic violation, there may be no extra
benefit in further perturbing it. Otherwise, an iterative pro-
cess begins (line 6-21). At each iteration, a small perturba-
tion dr is generated (line 8) via back-propagation from
maximizing the test case’s NN confidence. The perturbation
is then clipped based on allowable input value domains
and a user-specified maximum perturbation bound € (line
9-11). Next, the perturbation is checked against grammar
constraints (line 12). If necessary, a linear regression projects
it back within the constraints. The perturbed test case is then
checked against previously found traffic violations(line 15).
If a similar test case already found a traffic violation, the
perturbation process ends, and the latest perturbation won't
be applied. Otherwise, the current perturbation is applied
on top of the perturbed test case from the last iteration (line
18). The new perturbed test case is then fed into NN for its
confidence of leading a traffic violation. If larger than a
specified threshold thcm, the mutated test case will be
retumed and the mutation procedure ends. Otherwise, a
new iteration begins.

One difficulty here is to make sure the perturbed test case
still satisfies the grammar constraints. The simplest solution
is to discard the perturbations (and subsequent iterations)
that lead to constraint violation. However, as shown in [53],
the insight for linear constraints is if an original (unper-
turbed) test case satisfies the constraints and the perturbation
alone satisfies the constraints as well, then the perturbed test
case also satisfies the constraints. Thus, only the perturbation
needs to be checked against the constraints after each itera-
tion. If some constraints are violated, we apply a linear
regression to the perturbation to map it back within the con-
strained region (motivated by [53]). For the linear regression,
the non-constant part of the constraints are weights W where
each row corresponds to the coefficients of one constraint,
the constant parts y are the objectives, and the projected per-
turbation dx,,,; are the variables to search for. The linear

regression starts with the perturbation dx and find the the
projection dzy; = argming, Wz — yll

6 EXPERIMENTAL DESIGN

Environment. Our primary evaluation uses the carra(ver-
sion 0.9.9) simulator [22]. To show the generalization of our
approach, we further conduct evaluation using the SVL(ver-
sion 2021.3) simulator [23] in RQ4. All the algorithms are
built on top of pymoo [54], an open-source Python frame-
work for single- and multi-objective algorithms.

Scenarios. We run AutoFuzz under five different logical
scenarios(Table 2) inspired by the NHTSA report [7].

Selection. The first three logical scenarioscover the top six
pre-crash functional scenariosin terms of frequency and
incurred economic cost as shown in Table 1. The last two
scenarios are also common logical scenariosranked fourth
and eighth among the pre-crash scenarios of two-vehicle
light-vehicle crashes in terms of occurrence frequency [7].
Note that the other frequent scenarios have been covered by
the first three.

Adaptation. To use a NHTSA pre-crash scenario for test-
ing, we let the ego car be a vehicle involved in each crash
scenario. To make the scenario searchable, we convert each
functional scenario into a logical scenario (defined in Sec-
tion 2.1) that satisfies the functional scenario’s description.
For example, in the scenario “A leading vehicle decelerat-
ing/stopped”, the ego car is the following vehicle. We set
the search range of the location of the leading vehicle to be
in the same lane and ahead of the ego car. Additionally, we
set the search range of the speed of the leading vehicle after
being activated to be slower than that of its initial speed.
These designs enable every generated specific scenario to
satisfy the logical scenario “A leading vehicle decelerating/
stopped”.

Validity. The scenarios we use are supposed to be within
the operation design domain (ODD) of the avcontrollers
under test which are all supposed to handle regular traffic
scenarios. To check that they can handle the base scenarios,
we conduct a validity test for each scenario. The result
shows that, when no other vehicles /pedestrians are present,
the corresponding AV controller can successfully reach its
destination without incurring traffic violations. When there
are other vehicles/pedestrians, the corresponding controller
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succeeds with no violations in some cases but not others.
Our goal is to find those violations.

avcontroller. We test two rule-based PID controllers, pid-
1 [20] and pid-2 [19], one end-to-end controller [19], (Ibc),
and one modular controller [21], (ArorLo6.0). Ibc is a vision-
based, end-to-end controller proposed in [19]. PID control-
lers assume knowledge of the states of other objects in the
environment and the trajectory to follow. They attempt to
reach the next planned location with a specified speed by
adjusting controls for brake, throttle, steering and try to min-
imize the mismatch with the desired speed and direction
while avoiding collision with other objects. pid-1 is a default
rule-based controller in CARLA’s official release [22] and
hasbeen used as the main system under test in existing liter-
ature [20]. pid-2 is a rule-based pid controller implemented
by the authors in [19] to collect data to train Ibc. ApoLL06.0is
an industrial-grade, modular controller [21].

Hyper-Parameters.The NN for seed selection has a hidden
layer of size 150. We use the Adam optimizer with 30
epochs and batch-size 200. th., s is set to be the 0.25 x p-th
highest NN confidence value among training data, where p
is the percentage of the training data leading to traffic viola-
tions, and thnss is set to 0.9. € is set to be 1, n is set to 255
and A is set to 1/255 so an input seed can be perturbed to
any other input seed in the input domain. We collected
seeds up to 10 generations (and thus 500 simulations) by
default. The default method used for seed collection is Ga-
UN.

Metrics. When we compare search quality, we use the
number of unique traffic violationsfound over the corre-
sponding number of simulations run. We use the number of
simulations rather than time because the former is platform
independent. Moreover, the time costs mainly come from
simulations. On average, each simulation takes about 40
seconds, while the generation process only takes about 10
seconds and is only invoked once per generation. A simula-
tion ends if a violation happens, the ego car reaches the des-
tination, or time (50 seconds) runs out. When counting
collision traffic violations, for lbc, pid-1, and pid-2, we only
count those where the collision happened within the view
of the controller’s front camera and the controller did not
stop to avoid the collision. For ArorLo6.0, since it is
equipped with LiDAR (providing 360 degrees view), we
count all collision traffic violationswhere it did not stop to
avoid them. We further manually checked a set of found
collision scenarios and found they can be avoided if the con-
trollers maneuver correctly. For example, in Fig. 11, if Aror-
Lo6.0slows down earlier, both collisions could be avoided.
When the baseline method AV-FUZZERis considered (i.e.,
Figs. 7 and 10), since it does not have a seed collection stage,
for a fair comparison, the number of simulations for the
seed collection stage of other methods is also included.
When the comparison does not involve AV-FUZZER, the
number of simulations for seed collection is excluded since
all the methods will be set to share the same seed collection
stage for a fair comparison. We set uniqueness thresholds
thy = 10% and thy = 50% as default values, and explore the
sensitivity of different search methods under nine different
combinations.

Baseline Comparison. We compare AutoFuzz with three
baseline methods shown in Table 3’s baselines row. To
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TABLE 3
Proposed Methods, Baselines and Variations
Method Description
AutoFuzz GA-UN-NNw/ constrained gradient guided

(GA-UN-NN-GRAD)

mutation
(e=1.0)
Baselines
NSGA2-DT [6] nsGA2w/ decision tree
NsGA2-sMm [12] NsGA2w/ surrogate model

NSGA2-UN-SM-A NsGa2-smw/ duplicate elimination and

incrementally learned surrogate model

AV-FUZZER [18] global Ga+ local ca

Variants .

GA-UN-NN-GRAD GA-UN-NN-GRADW,/ a smaller (0.3 rather
(e=0.3)

than 1) maximum perturbation bound e

RANDOM-UN-NN- raNDOMW/ duplicate elimination,

GRAD
NN filtration and constrained gradient
guided mutation
GA-UN-NN ca-uNnw/ NN filtration
GA-UN Gaw/ duplicate elimination
cA genetic algorithm
RANDOM random sampling

*GA= Genetic Algorithm, UN = Unique, NN = Neural Network based seed
selection, GRAD=Gradient guided mutation.

fairly compare the fuzzing strategies on equal footing, we
used the same objectives from Section 4.3.1 and the same
random sampling with uniqueness filtration to generate the
initial populations for all. We also compare AutoFuzz with
alternative design choices in Table 3’s variants row.

Among the baseline methods, NsGa2-DTand NsGA2-smare
two multi-objective GA-based methods and AV-FUZZERis
a single-objective GA-based method, all of them are adapted
from previous work [6], [12], [18]. NsGa2-Drcalls NsGa2 [50]
as a subroutine. After each run of NsGA2, NsGA2-Drfits a deci-
sion tree over all instances so far. It uses cases that fall into
the leaves with more traffic violationsthan normal cases (a.
k.a. “critical regions”) as the initial population for NsGa2's
next run. During NsGA2, only the generated cases that fall
into the critical regions are run. We set search iterations to 5
as in [6]. Since the tree tends to stop splitting very early in
our logical scenarios, we decrease the impurity split ratio
from 0.01 to 0.0001. We set minimum samples split ratio set
to 10%.

NSGA2 -sMtrains regression NNs for every search objective
and ranks candidate test cases and traffic violationsfound
so far based on the largest Pareto front and crowding dis-
tance, as in NsGA2. To further compute the effects of unique-
ness and incremental learning as well as the effects of
weighted sum objective and gradient-guided mutation, we
implement NSGA2-UN-sM-A— a variant of NsGa2-smwith addi-
tional duplication elimination and incremental learning. For
both nNsGa2-smand NSGA2-UN-sM-Atraining processes, we first
sampled 1000 additional seeds to train three regression
NNs. For finding collision violations, the three NNs are
trained to predict Fipject, Fooliision, and Fiie,, respectively; for
finding out-of-road violations, the three NNs are trained to
predict Furongianes Foffroads aNd Fievigtion, Tesp. The NNs all
have one hidden layer with size 100. The batch-size, training
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epoch and optimizer are set to 200, 200, and the Adam
optimizer.

AV-FUZZER [18] first runs a global cafor several itera-
tions and enters a local Gawith the initial population set to
the scenario vectors with the highest fitness scores. It also
starts a new global caevery time when the fitness score of
the current generation does not increase anymore compared
with a running average of the last five generations. We keep
the hyper-parameters used as in the original implementa-
tion e.g. population size is set to 4.

We did not directly compare with FITEST [10], Asfault [11]
or FusionFuzz [42] since they are essentially cawith specifi-
cally designed objectives targeting testing of the integration
component of an Av, a controller’s performance under differ-
ent road networks, or the fusion component of an Av, respec-
tively, while we focus on testing a black-box end-to-end
system on a predefined map available with different specific
scenarios by mutating different elements (e.g., weather,
agents, their positions and behaviors).

7 RESULTS

To evaluate how efficiently AutoFuzz can find unique traffic
violations, we explore the following research questions:

RQ1: Evaluating Performance. How effectively can Auto-
Fuzz find unique violations versus baselines?

RQ2: Evaluating Design Choices. What are the impacts of
different design choices on AutoFuzz?

RQ3: Evaluating Repair Impact. Can we leverage traffic
violationsfound by AutoFuzz to improve the controller?

RQ4: Evaluating Generalizability. Can AutoFuzz general-
izes to a different system and simulator combination?

RQ1. Evaluating Performance. We first explore whether
AutoFuzz can find realistic and unique traffic violationsfor
the avcontrollers under test. Note that all the traffic viola-
tionsare generated by valid specific scenario, as they are
created using carLA’s API interface (we also randomly spot-
checked 1000 of them). We run AutoFuzz with GA-UN-NN-GRA-
pon all three controllers for 700 simulations, with the search
objective to find collision traffic violationsin the town05 log-
ical scenario. Note that even though the search objective is
set to finding collisions, the process might also find a few
off-road traffic violations. Overall, AutoFuzz found 725
unique traffic violationstotal across the three controllers for
this logical scenario. In particular, it found 575 unique traffic
violationsfor the 1bc controller, 80 for the pid-1 controller,
and 70 for the pid-2 controller. Since pid-1 and pid-2
assume extra knowledge of the states of other environment
objects, it is usually harder to find traffic violations. Fig. 5
shows snapshots of example traffic violationsfound by
AutoFuzz. These examples illustrate that starting from the
same logical scenario, different violations can be generated
because of the high-dimensional input feature space. Fig. 6
shows an example violation of the motivating logical sce-
nario” Turning right while leading car slows down/stops”.
A small mutation of the leading vehicle’s speed from 3m/s
to 4m/s or 2m/s leads to completely different outcomes.
When the leading vehicle’s speed is 3m/s, the ego car has
less time to detect the presence of a pedestrian obstructed
by the leading vehicle (b2) and ends up with colliding with
the pedestrian (c2). When the leading vehicle’s speed is
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Fig. 5. RQ1. Example traffic violationsfound by AutoFuzz. For each row,
the time goes by from left to right. (1st row) pid-1 controller collides with
a pedestrian crossing the road. (2nd row) pid-2 controller collides with
the stopped leading car. (3rd row) Ibc controller makes a wide turn into
the opposing lane (considered "off-road”).

leading vehicle
Initial speed =
2mis

(b1) ego speed = 2.75m/s
when seeing a pedestrian

(c1) vehicle stops

leading vehicle
initial speed =
3m/s

{b2) ego speed = 4.87Tm/s
when seeing a pedestrian

leading vehicle
initial speed =
4mls

(b3) ego speed = 4.58m/s (c3) vehicle stops
when seeing a pedestrian

(a) ego car follows a
leading car

{c2) collision

Fig. 6. An example (front camera view) where a small parameter change
leads to distinct outcomes for Ibc in carLA

4m/s, the ego car detects the pedestrian earlier (b3) and
avoids the collision by braking on time (c3). When the lead-
ing vehicle’s speed is 2m/s, although the ego car detects the
pedestrian late (bl), the ego car is at low speed (2.75m /s) so
it also manages to avoid the collision (c1). It should also be
noted that the collision (c2) can be avoided if the ego car
brakes the first time it sees the pedestrian (b2). This traffic
violationis non-trivial to be found since the change of the
leading NPC vehicle’s initial speed leads to different reac-
tion of the ego car and it is not clear what value of the initial
speed along with other parameters in the search space leads
to the collision. In fact, AV-FUZZERfails to find this viola-
tion since AV-FUZZERgets stuck at another traffic violatio-
ninvolving the ego car’s collision with the slowing down
leading NPC vehicle.

We compare AutoFuzz (ie., GA-UN-NN-GRAD) with the
baseline methods NsGA2-DT, NSGA2-SM, NSGA2-UN-SM-A, and
AV-FUZZER under four different logical scenarios. We
focus on collision traffic violationsfor two logical scenarios
and off-road traffic violationsfor the other two. In each set-
ting, we run each method 6 times and report mean and stan-
dard deviation. For AV-FUZZER, we fuzz for 1200
simulations. For other methods, we assume 500 pre-col-
lected seeds and fuzz for 700 simulations. Fig. 7 shows the

results.
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Fig. 7. RQ1. average # unique off-road or collision violations.

GA-UN-NN-GRADconsistently finds 10%-39% more than the
best-performing baseline method. In particular, GA-UN-NN-
GRraDfinds 41, 51, 135 and 111 more unique traffic violations-
over the second-best method in the four logical scenarios.

We further conduct Wilcoxon rank-sum test [55] and
Vargha-Delaney effect size test [56], [57]. For all the settings,
the 90% confidence interval of the effect size between Ga-
UN-NN-GRaDand the best baseline is (0.834, 1.166) meaning
large effect size, and the p-value is 3.95¢° suggesting the
gain of the proposed method is statistically significant.

After collecting all the violation-producing specific sce-
narios, we measure how many are truly unique as per our
uniqueness criteria. GA-UN-NN-GRADand NSGA2-UN-SM-AWin
by a large margin. For example, for the turning left non-sig-
nalized junction logical scenario, GA-UN-NN-GRADand NSGA2-
UN-sM-Ahave 100% unique violations while the other three
methods have only 42%, 22% and 10%. This is expected
since they both have a duplicate elimination component
inherent to the search strategy. The results show that the
baselines NSGA2-SM, NSGA2-DT, and AV-FUZZER waste
many resources by running similar violation-producing
specific scenarios.

After introducing duplicate elimination (UN) and incre-
mental learning (A), NsGA2-UN-sM-Afinds more violations
than NsGa2-sm. But GA-UN-NN-GRaDstill has advantages: (i)
Our goal is to maximize the number of unique traffic viola-
tionsthan finding traffic violationswith the best Pareto
front [6], [12], so a binary classification NN gives a better
guide than multiple regression NNs. (i) The constrained
gradient-guided permutation gives a further boost. The sec-
ond point is shown in the ablation study in RQ 2. Besides,
we have observed that AV-FUZZERfinds much fewer traffic
violations. It even finds fewer unique traffic violationsthan
the seed collection stage (for which Ga-unis used) of other
methods. The main reason is that AV-FUZZERhas very lim-
ited diversity exploration. In particular, its default mutation
rate is small and its local Gastarts with the mutated dupli-
cates of the global best scenario vector so far, both of which
limit diversity. If the global best scenario vector does not
change after several generations, all the local Gawill start
with the same duplicates. Moreover, its resampling process

picks the farthest scenario vectors from the existing ones
Authorized licensed use limited to: Fondren Library Rice University.
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Fig. 9. #unique traffic violationsfound by AutoFuzZz's variants.

but does not consider the distances among the selected sce-
nario vectors, which results in restarting at a local cluster of
scenario vectors with limited diversity.

Next, we study if GA-UN-NN-GRADcan effectively find more
unique traffic violationsover baselines under different initial
seeds. We compare the number of unique traffic violations-
found by GA-UN-NN-GRADwith NSGA2-UN-sM-aand NsGA2-DTfor
700 simulations, assuming 500 initial seeds collected by RAN-
poM, and 100 and 1000 initial seeds collected by Ga-UN, resp.
As shown in Fig. 8, Ga-UN-NN-GRaDfinds 99, 139, and 121
more unique traffic violationsthan the baselines.

Result 1: AutoFuzz finds hundreds of unique traffic violation-
sacross all three controllers. On average, it finds 9%-41%
more unique violations over the second-best baseline.

RQ2. Evaluating Design Choices. We study the influ-
ence of each component and choice of hyper-parameters on
AutoFuzz. We present the results for the town07 logical sce-
nario, with finding collisions as the objective. However, the
observations also hold in general for other logical scenarios
and objectives.

We conduct an ablation study on the impact of each Ga-
UN-NN-GRADcomponent, comparing the number of unique
traffic violationsfound by GA-UN-NN-GRADwith the six varia-
tions shown in Table 3. Fig. 9 presents the results.

- GA-UN-NN-GRAD (e = 1 versus 0.3). With larger ¢, slightly
more violations are detected. A larger ¢ value can perturb
the input with a larger magnitude. Thus, it can have more
diverse seeds and reach a better optimum in terms of viola-
tions likelihood considered by the NN used for seed-selec-
tion and mutation.

- GA-UN-NN-GRADUErsHS RANDOM-UN-NN-GRAD. GA-UN-NN-
GraDfinds more violations indicating the importance of the
base sampling strategy.

- GA-UN-NN-GRADDErsUS GA-UN-NNDUErSUs GA-UN. GA-UN-NN-
GraDfinds more unique violations than Ga-UN-NNand GA-UN-
NNbeats Ga-UN. These show the necessity of the gradient-
guided mutation component (GRAD) and seed selection
component (NN). Furthermore, Ga-unfinds slightly more
unique traffic violationsthan Ga.
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TABLE 4
# of Unique Violations Found Under Different ths, thy

(tha, th1) GA-UN-NN-GRAD NSGA2-UN-SM-A NSGA2-DT
(5, 25) 175 110 138
(10, 25) 168 121 142
(20, 25) 161 109 131
5, 50) 73 121 146
(10, 50) 169 131 92
(20, 50) 35 31 16
(5,75) 26 16 1
(10, 75) 0 0 0
(20, 75) 0 0 0

We next explore the sensitivity of different search meth-
ods under nine different combinations of uniqueness
thresholds, th; and th,, as discussed in Section 5. We com-
pare them for 300 simulations after the initial seed collection
stage. The trend also holds for more simulations. Table 4
shows GA-UN-NN-GRaDfinds at least 10-30% more unique traf-
fic violationsthan the second-best baseline method under
seven settings. For the setting (10, 75) and (20, 75), none of
the methods can find new traffic violations. This is because
the uniqueness constraint is too stringent, so the sampling
component cannot find a valid sample that obeys the
constraint.

Result 2: Each component of GA-UN-NN-GRADcontributes to
the final superior performance and combined they find more
unique traffic violationscompared to all other settings.

RQ3. Evaluating Impact on Repair. Since the purpose of
finding erroneous behavior in any software is to help with
removing the errors, we speculated whether we can lever-
age the traffic violationsfound to improve a controller to
reduce future traffic violations. We focus on the collisions
found for four logical scenarios. For each one, we randomly
select 200 detected traffic violationsby GA-UN-NN-GRADfor
Ibc, and split the corresponding specific scenarios into 100
for retraining and 100 for testing. We use pid-1 as a teacher
model to run the 100 specific scenarios for retraining and
collect the camera data where it finishes successfully. The
collected camera images are down-sampled to two frames
per sec (about 2000 images) and use them to fine-tune the
Ibc model for one epoch. Finally, we test the retrained
model on the held-out 100 previously failing specific scenar-
ios. Table 5 shows that the retrained controller succeeds in
over 75% of the originally failing specific scenarios.

Result 3: In our preliminary study, retraining with traffic
violationsfound by AutoFuzzimproved the Ibccontroller’s per-
formance on failure cases by 75% to 100%.

RQ4. Evaluating Generalizability.

In Section 7 we reported experimental results based on a
single simulator, carLA, and three research-oriented control-
lers. To evaluate the generalizability of AutoFuzz, we con-
duct a preliminary study on AroLL06.0, an industrial-grade

TABLE 5
# of Violations Fixed in the Held-Out Dataset
logical scenarios names # #
retraining violations
data fixed

turning right while leading car slows 64 82 /100
down
turning left non-signalized 47 76 /100
crossing non-signalized 91 100/ 100
changing lane 64 75 /100
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Fig. 10. RQ4. average #unique collision traffic violations.

Av controller [21], using a different simulator, SVL(version
2021.3) [23], [58]. We analyze the SVLAPI similarly to cARLA
(Section 4.2) and focus on collision traffic violations(Sec-
tion 4.3.1). We use a logical scenario where the ego car con-
ducts a left turn at a signalized junction while another
vehicle comes from the other side and a pedestrian crosses
the street. Since the search space has 11 parameters (we do
not consider parameters like weather and lighting since
their implementations in SVLdo not influence LiDAR which
AproLLO6.0mostly relies on for its perception module) to
search for, to speed up the convergence of the search pro-
cess, we reduce the population size to 10. All other hyper-
parameters and settings are kept the same as in RQ1. We
run AutoFuzz and the best performing baseline NsGA2-UN-sM-
afor 14 generations totaling 140 simulations (excluding an
initial 100 simulations for the seed collection stage) and run
AV-FUZZERfor 240 simulations (since it does not have a
seed collection stage). We then compare them over the
entire 240 simulations. As shown in Fig. 10, on average of
six repetitions, GA-UN-NN-GRADfinds 76 unique traffic viola-
tions— which is 49% and 375% more, respectively, than the
two baseline methods NsGa2-un-sm-aand AV-FUZZER(51
and 16 unique traffic violations, resp.). We further conduct
Wilcoxon rank-sum test and Vargha-Delaney effect size
test. The 90% confidence interval of the effect size between
GA-UN-NN-GRADand the best baseline is (0.807, 1.165) meaning
large effect size, and the p-value is 5.07¢™* suggesting the
gain of the proposed method is statistically significant.

Fig. 11 shows two examplary Apollo traffic violations-
found by AutoFuzz: the ego car turning left collides with a
pedestrian crossing the street and an incoming truck,
respectively. They expose different functionality errors: fail
to avoid a pedestrian and fail to avoid a truck, respectively.
An investigation of the two violations identify their differ-
ent causes. In the pedestrian collision case, the ego car's
detection of the pedestrian is too late and thus the ego car
does not have enough time to stop. In the truck collision

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on January 31,2024 at 19:50:40 UTC from IEEE Xplore. Restnctions apply.
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Fig. 11. Two fraffic violationsfound for ApoLL06.0in SVL. (1st row) The
ego-car turning left collides with a pedestrian crossing the street. (2nd
row) The ego-car turning left collides with an incoming truck.

case, the ego car detects the truck stably but does not plan
its speed properly.

Result 2: AutoFuzzcan generalize beyond cARLA. In particu-
lar, it can find more unique traffic violationsthan the baseline
methods for ApoLLO6.0in SVL.

8 RELATED WORK

Section 2.2 presents the work most related to this paper.
This section covers other peripheral works.

Grammar-Based Fuzzing. Fuzzing produces input varia-
tions and tries to find failure cases for the software under
test [59], [60]. Fuzzing tends to work well with relatively
simple input formats such as image [61] or audio [62]. For
more complex input formats such as cloud service APIs [63]
or language compilers [64], researchers often use grammar-
based fuzzing [65], [66]

to obey domain-specific constraints and narrow down
the search space for producing effective and valid inputs.

Language Specification and Testing. OpenScenario [67] is an
open file format for describing the dynamic contents of driv-
ing simulations at a logical level [68], but it is at an early
stage. GeoScenario [69] provides a language describing a
specific scenario to be simulated; [70] develops a simula-
tion-based testing framework for Av. Neither provides a
parametric search space that can be easily fuzzed. In con-
trast, we parameterize functional scenarios that allows users
to specify the range and distributions of parameters and
their constraints for automatically finding traffic violations.

9 DISCUSSION & THREATS TO VALIDITY

Realism. Our evaluation results are limited by the simulator
implementations. Some reported traffic violationsmight be
due to interactions between the simulator and controller,
e.g., message passing delays, rather than the controller
itself. To mitigate this threat to internal validity, we experi-
mented with two simulators (carLaand SVL) and four dif-
ferent controllers (Ibc, pid1, pid2, AproLro6.0). Further, to
make the simulated crashes close to the real world, we con-
struct logical scenariosbased on the most frequent pre-crash
functional scenariosfrom an NHTSA report. The example
shown in Fig. 12 is a complex high-dimensional (328d) sce-
nario with many agents. Since to fully consider the temporal

development (e s the location of a vehicle at
Aum?nzed Ill:enseg usepe:?e?;l
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Fig. 12. An example of traffic violationin a high-dimensional scenario: the
av (controlled by Ibc) collides with a child crossing street.

every time step), the search space can grow quickly and
makes the searching process intractable, and during most
accidents the movements of the involved vehicles/pedes-
trians can usually be decomposed into a couple of atomic
behaviors, we currently consider one behavior development
in carLAand only the initial state (e.g., location, orientation,
and speed) in SVL. The integration of more temporal devel-
opments into AutoFuzz is relatively easy. Besides, given our
fuzzing strategy’s black-box nature, the additional behavior
developments should only have limited influence.

Road Infrastructures. The road infrastructures considered
in the current work are the default ones in the built-in maps
in the simulators, which are mostly modeled based on the
current road infrastructures in the United States. Different
road infrastructures (e.g., those designed for deploying
AVs) can influence the behavior of the AV under test [71],
[72]. However, the public road infrastructures with support
for connected autonomous vehicles (CAVs) are not yet
available and may not be available for quite some time.
Nevertheless, there are not-connected AVs on conventional
public roads now [73], some of which led to fatal acci-
dents [74]. Thus, it is necessary to study traffic violations by
individual Avs on the current road infrastructures. We leave
an exploration of road infrastructures with the support for
CAVs for future work.

Unique Violations. The uniqueness of traffic violationsis
hard to define precisely. We mitigate this threat to construct
validity by extending the definition used in [6] with addi-
tional configurable parameters th, and ths, enabling users to
control uniqueness stringency. A more desirable definition
might be based on the internal system fault causing the viola-
tion. For example, two traffic violationscan be considered
distinct if one is due to a failure of detecting a pedestrian for
2 seconds and the other is due to a sub-optimal tracking for 5
seconds). However, this is not feasible in our black-box test-
ing setting where we assume no knowledge of the system
under test. Besides, general methods to locate the root cause
for a violation is itself an open question since it is non-trivial
to assign the responsibility of a violation to different compo-
nents of an AV at different time steps and the AV under test
can have drastically different sub-components (e.g., Ibcis an
end-to-end neural network based system while AroLL06.0is
amodular based system). Another desirable definition might
be search space causal related, e.g., only variables interacting
with the ego car or that have an impact on ego car behavior
count. However, efficiently determining the features contrib-
uting to a failure behavior is still an open challenge. One idea
is to keep all other features fixed while changing the value of
one feature and observe whether the failure behavior per-

sists. If so, that feature can be ;;otengealgnym conmd'yered
ore strictions appl
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unrelated. This method faces some major limitations: First, as
the number of features and the range for each feature become
large, it is practically infeasible to conduct such analysis
within a given time budget. Second, the features may not be
independent and changing them one-by-one will miss the
dependencies. Third, there is no consensus on quantifying if
the causes of two failure cases are the same. For example, a
car may collide with a pedestrian at slightly different loca-
tions for two simulations. Should we consider the cause to
stay the same? It might be worth looking into the behavior of
the controller’s internal states, which goes beyond the ability
of a black-box testing framework. Because of these chal-
lenges, we leave an in-depth study of this topic for future
work.

Policy Implication:Public officials should be educated on
the severe implications of studies like our own, and urged to
make a comprehensive avsafety testing standard. Avs must
be shown to satisfy the safety requirements in the necessary
testing process (e.g., having acceptably few traffic violations)
in order to be allowed to deploy on the publicroads.

10 CONCLUSION

We present AutoFuzz, a grammar-based fuzzing technique
for finding traffic violationsin Avcontrollers during simula-
tion-based testing. A traffic violationindicates a flaw in the
controller that needs to be fixed. AutoFuzz leverages the sim-
ulator’s API specification to generate inputs (seed scenes)
from which the simulator will generate semantically and
temporally valid specific scenarios. It performs an NN-
guided evolutionary search over the API grammar, seeking
seeds that lead to distinct traffic violations. Evaluation of our
prototype implementation on four avcontrollers shows that
AutoFuzz successfully finds hundreds of realistic unique traf-
fic violationsresembling complex real-world crashes and
other driving offenses, outperforming the baseline methods.
Furthermore, we leverage traffic violationsfound to improve
a learning-based controller’s behavior on similar cases.

ACKNOWLEDGMENTS

The authors thank Suman Jana and Dongdong She from
Columbia University for valuable discussions.

REFERENCES

[1] D.O.M. V. State of California, “Autonomous vehicle testing per-
mit holders,” 2020. [Online]. Available: https://www.dmv.ca.
gov/portal /vehicle-industry-services/autonomous-vehicles /
autonomous-vehicle-testing-permit-holders/

State of California, Department of Motor Vehicles, 2020. [Online].
Available:  https:/ /www.dmv.ca.gov/portal/vehicle-industry-
services /autonomous-vehicles /autonomous-vehicle-collision-
reports/

J. Norden, M. O’Kelly, and A. Sinha, “Efficient black-box assess-
ment of autonomous vehicle safety,” in Proc. Mach. Learn. Auton.
Driving Workshop 33rd Conf. Neural Inf. Process. Syst., 2019.

A. Gambi, T. Huynh, and G. Fraser, “Generating effective test
cases for self-driving cars from police reports,” in Proc. 27th ACM
Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2019,
pp- 257-267.

Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek, “Generating
adversarial driving scenarios in high-fidelity simulators,” in Proc.
Int. Conf. Robot. Automat., 2019, pp. 8271-8277.

[2]

(3

[4]

[51

[6]

[71

[81

91

[101

[11]

[12]

[13]

[14]

[15]

[16]

171

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]
[29]

1873

R. B. Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
vision-based control systems using leamable evolutionary algo-
rithms,” in Proc. 40th Int. Conf. Softw. Eng., 2018, pp. 1016-1026.

G. WassimJohn, D. NajmSmith, and M. Yanagisawa, “Pre-crash
scenario typology for crash avoidance research,” Nat. Highway
Trans. Saf. Admin., Washington, DC, USA, Tech. Rep. DOT-HS-
810767, Apr. 2007.

M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnera-
bility Discovery. Reading, MA, USA: Addison-Wesley, 2007.

B. Miller, M. Zhang, and E. Heymann, “The relevance of classic
fuzz testing: Have we solved this one?,” IEEE Trans. Softw. Eng.,
vol. 48, no. 6, pp. 2028-2039, Jun. 2022.

R. B. Abdessalem, A. Panichella, 5. Nejati, L. C. Briand, and T.
Stifter, “Testing autonomous cars for feature interaction failures
using many-objective search,” in Proc. 33rd ACM/IEEE Int. Conf.
Automated Softw. Eng., 2018, pp. 143-154.

S. Kuutti, S. Fallah, and R. Bowden, “Training adversarial agents
to exploit weaknesses in deep control policies,” 2020,
arXiv:2002.12078.

R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
advanced driver assistance systems using multi-objective search
and neural networks,” in Proc. 31st IEEE/ACM Int. Conf. Automated
Softw. Eng., 2016, pp. 63-74.

D. She, R. Krishna, L. Yan, S. Jana, and B. Ray, “Mtfuzz: Fuzzing
with a multi-task neural network,” in Proc. 28th ACM Joint Meet-
ing Eur. Softw. Eng. Conf. Symp. Foundations Softw. Eng., 2020,
pp. 737-749.

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Englewood Cliffs, NJ, USA: Prentice Hall, 1998.

1. ]J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016, http:/ /www.deeplearningbook.
org.

D. She, K. Pei, D. Epstein, ]. Yang, B. Ray, and S. Jana, “NEUZZ:
Efficient fuzzing with neural program learning,” in Proc. IEEE
Symp. Secur. Privacy, 2019, pp. 803-817.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,”
in Proc. 6th Int. Conf. Learn. Representations, 2018. [Online]. Avail-
able: https:/ /openreview.net/forum?id=rJzIBfZAb

G. Li et al., “AV-FUZZER: Finding safety violations in autono-
mous driving systems,” in Proc. IEEE 31st Int. Symp. Softw. Rel.
Eng., 2020, pp. 25-36.

D. Chen, B. Zhou, V. Koltun, and P. Krdhenbiihl, “Leaming by
cheating,” in Proc. 3rd Conf. Robot Learn., 2019, pp. 66-75. [Online].
Available: http:/ /proceedings.mlr.press/v100/chen20a.html

W. Ding, B. Chen, M. Xu, and D. Zhao, “Leamning to collide: An
adaptive safety-critical scenarios generating method,” in Proc.
IEEE/RS] Int. Conf. Intell. Robots Syst., 2020, pp. 2243-2250.

Baidu, “Apollo: 2021. [Online]. Available: An open autonomous
driving platform,” https:/ /github.com/ApolloAuto/apollo

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. Conf. Mach.
Learn., 2017, pp. 1-16. [Online]. Available: http://proceedings.
mlr.press/v78/dosovitskiy17a.html

LG Electronics, “SVL Simulator: An autonomous vehicle simula-
tor, A ROS/ROS2 multi-robot simulator for autonomous
vehicles,” 2021. [Online]. Available: https:/ /github.com/lgsvl/
simulator

Z. Zhong, G. Kaiser, and B. Ray, “autofuzz2020/ autofuzz: v0.0.1,” Mar.
2022 [Online]. Available: https: / /doi.org/10.5281 /zenod0.6399383

S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer,
“Defining and substantiating the terms scene, situation, and sce-
nario for automated driving,” in Proc. IEEE 18th Int. Conf. Intell.
Transp. Syst., 2015, pp. 982-988.

PEGASUS RESEARCH PROJECT, SCENARIO DESCRIPTION,
2019. [Online]. Available: https://www.pegasusprojekt.de/files /
tmpl/PDF-Symposium /04_Scenario-Description.pdf

Y. Zhao, H. Zhu, R. Liang, Q. Shen, S. Zhang, and K. Chen,
“Seeing isn't believing: Towards more robust adversarial attack
against real world object detectors,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2019, pp. 1989-2004.

H. Zhou et al., “Deepbillboard: Systematic physical-world testing
of autonomous driving systems,” 2018, arXiv:1812.10812.

Y. Jia et al., “Fooling detection alone is not enough: Adversarial
attack against multiple object tracking,” in Proc. Int. Conf. Learn.
Representations, 2020. [Online]. Available: https://openreview.
net/forum?id=rJI31TNYPr

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on January 31,2024 at 19:50:40 UTC from IEEE Xplore. Restnctions apply.



1874

[301

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[391

[40]

[41]

[42]

[43]
[44]

[45]

[46]
[47]
[48]

[49]

[501

[51]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Y. Cao et al., “Adversarial sensor attack on lidar-based perception
in autonomous driving,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2019, pp. 2267-2281. [Online]. Available: https://
doi.org /10.1145/3319535.3339815
Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proc. 40th
Int. Conf. Softw. Eng., 2018, pp. 303-314.
M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid,
“Deeproad: Gan-based metamorphic testing and input validation
framework for autonomous driving systems,” in Proc. 33rd IEEE/
ACM Int. Conf. Automated Softw. Eng., 2018, pp. 132-142.
J. Tu et al.,, “Exploring adversarial robustness of multi-sensor per-
ception systems in self driving,” Proc. 5th Conf. Robot Learn.,
vol. 164, pp. 1013-1024, 2021.
K. Wong et al,, “Testing the safety of self-driving vehicles by sim-
ulating perception and prediction,” in Proc. Eur. Conf. Comput.
Vis., 2020, pp. 312-329.
A. Calo, P. Arcaini, S. Ali, F. Hauer, and F. Ishikawa, “Generating
avoidable collision scenarios for testing autonomous driving sys-
tems,” in Proc. IEEE 13th Int. Conf. Softw. Testing Validation Verifica-
tion, 2020, pp. 375-386.
P. Arcaini, X.-Y. Zhang, and F. Ishikawa, “Targeting patterns of
driving characteristics in testing autonomous driving systems,” in
Proc. 14th IEEE Conf. Softw. Testing Verification Validation), 2021,
PP- 295-305.
Y. Luo et al,, “Targeting requirements violations of autonomous
driving systems by d ic evolutionary search,” in Proc. 36th
IEEE/ACM Int. Conf. Automated Softw. Eng., 2021, pp. 279-291.
J. Shen, J. Won, Z. Chen, and Q. A. Chen, “Drift with devil: Secu-
rity of multi-sensor fusion based localization in high-level autono-
mous driving under GPS spoofing,” in Proc. 29th USENIX Secur.
Symp., 2020, pp. 931-948. [Online]. Available: https://www.
usenix.org/ conference/usenixsecurity20 / presentation /shen
B. Chen, X. Chen, Q. Wu, and L. Li, “Adversarial evaluation
of autonomous vehicles in lane-change scenarios,” Adv. Eval.
Auton. Veh. Lane-Change Scenarios, pp. 1-10, 2020, doi: 10.1109/
TITS.2021.3091477.
W. Ding, B. Chen, B. Li, K. J. Fun, and D. Zhao, “Multimodal
safety-critical scenarios generation for decision-making algo-
rithms evaluation,” 2020, ar Xiv:2009.08311.
A.Gambi, M. Mueller, and G. Fraser, “ Automatically testing self-driv-
ing cars with search-based procedural content generation,” in Proc.
28th ACM SIGSOFT Int. Symp. Softw. Testing Anal., 2019, pp. 318-328.
Z.7Zhong, 7. Hu, S. Guo, X. Zhang, Z. Zhong, and B. Ray, “Detecting
problems of multi-sensor fusion in autonomous driving,”
2021, arXiv:2109.06404.
C. team, “Scenariorunner for carla,” 2020. [Online]. Available:
https:/ /github.com /carla-simulator /scenario_runner
M. Bohme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as Markov chain,” IEEE Trans. Softw. Eng.,
vol. 45, no. 5, pp. 489-506, May 2019.
C. Lemieux and K. Sen, “FairFuzz: Targeting rare branches to rap-
idly increase greybox fuzz testing coverage,” in Proc. 33rd IEEE/
ACM Int. Conf. Automated Softw. Eng., 2018, pp. 475-485.
P. Chen and H. Chen, “Angora: Efficient fuzzing by principled
search,” in Proc. IEEE Symp. Secur. Privacy, 2018, pp. 711-725.
M. Zalewski, “American fuzzy lop,” 2017. [Online]. Available:
http:/ /lcamtuf. coredump.cx/afl
T. Yue et al,, “Ecofuzz: Adaptive energy-saving greybox fuzzing
as a variant of the adversarial multi-armed bandit,” in Proc. 29th
{USENIX} Secur. Symp., 2020, pp. 2307-2324.
M. Bohme, V. J. Manés, and S. K. Cha, “Boosting fuzzer efficiency:
An information theoretic perspective,” in Proc. 28th ACM Joint Meet-
ing Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2020, pp. 678-689.
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elit-
ist multiobjective genetic algorithm: Nsga-IL” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182-197, Apr. 2002.
R. Agrawal, K. Deb, and R. Agrawal, “Simulated binary crossover
for continuous search space,” Complex Syst., vol. 9, pp. 115-148,
2000.

[52]

[53]

[54]
[55]

[56]

[571

[58]

[591

[60]

[61]

[62]

[63]

[641
[65]

[66]

671

[68]

[691

[70]

[71]

[72]

[731
[74]

K. Deb and S. Agrawal, “A niched-penalty approach for
constraint handling in genetic algorithms,” in Artificial Neural
Nets and Genetic Algorithms. Berlin, Germany: Springer, 1999,
Pp- 235-243

J. Li, J. Lee, Y. Yang, ]. Sun, and K. Tomsovic, “Conaml: Con-
strained adversarial machine learning for cyber-physical sys-
tems,” 2020, ar Xiv:2003.05631.

J. Blank and K. Deb, “Pymoo: Multi-objective optimization in
python,” IEEE Access, vol. 8, pp. 89497-89509, 2020.

J. A. Capon., Elementary Statistics for the Social Sciences: Study
Guide. Belmont, CA, USA: Wadsworth Publishing Company,
1991.

A. Vargha and H. D. Delaney, “A critique and improvement of the
CL common language effect size statistics of mcgraw and wong,”
J. Educ. Behav. Statist., vol. 25, no. 2, pp. 101-132, 2000.

A. Arcuri and L. Briand, “A hitchhiker's guide to statistical
tests for assessing randomized algorithms in software engineer-
ing,” Softw. Testing Verification Rel., vol. 24, no. 3, pp. 219-250,
2014.

G. Rong et al., “LGSVL simulator: A high fidelity simulator for
autonomous driving,” in Proc. 24th IEEE Int. Conf. Intell. Transp.,
2021, pp. 1-6.

C. Hutchison et al., “Robustness testing of autonomy software,” in
Proc. IEEE[ACM 40th Int. Conf. Softw. Eng.: Softw. Eng. Pract. Track,
2018, pp. 276-285.

T. Dreossi et al., “VERIFAL A toolkit for the design and analysis of
artificial intelligence-based systems,” Comput. Aided Verification,
2019.

Joint Photographic Experts Group, Overview of JPEG 1, 1992.
[Online]. Available: https:/ /jpeg.org/jpeg/

Sustainability of Digital Formats, “Planning for library of congress
collections. MP3 (MPEG layer Il audio encoding),” 1993. [Online].
Available: https://www.loc.gov/preservation/digital /formats /
fdd/fdd000012.shtml

V. Atlidakis, R. Geambasu, P. Godefroid, M. Polishchuk, and B. Ray,
“Pythia: Grammar-based fuzzing of REST APIs with coverage-
guided feedback and leaming-based mutations,” 2020. [Online].
Available: https:/ /arxiv.org/abs /2005.11498

Free Software Foundation, GCC, the GNU Compiler Collection,
1987. [Online]. Available: https:/ /gcc.gnu.org

M. Eberlein, Y. Noller, T. Vogel, and L. Grunske, “Evolutlonary
grammar-based fuzzing,” in Search-Based Software Engineering, A.
Aleti and A. Panichella, Eds., vol. 12420. Berlin, Germany:
Springer, 2020.

E. Soremekun, E. Pavese, N. Havrikov, L. Grunske, and A. Zeller,
“Inputs from hell learning input distributions for grammar-based
test generation,” IEEE Trans. Softw. Eng., vol. 48, no. 4, pp. 1138
1153, Apr. 2022.

ASAM, “ io,” 2021. [Online]. Available: https://www.
asam.net/standards/detail /openscenario

T. Menzel, G. Bagschik, and M. Maurer, “Scenarios for develop-
ment, test and validation of automated vehicles,” in Proc. IEEE
Intell. Veh. Symp., 2018, pp. 1821-1827.

R. Queiroz, T. Berger, and K. Czarnecki, “GeoScenario: An open
DSL for autonomous driving scenario representation,” in Proc.
IEEE Intell. Veh. Symp., 2019, pp. 287-294.

T. Duy Son, A. Bhave, and H. Van der Auweraer, “Simulation-
based testing framework for autonomous driving development,”
in Proc. IEEE Int. Conf. Mechatronics, 2019, pp. 576-583.

T. U. Saeed, “Road infrastructure readiness for autonomous vehicles,”
2019. [Online]. Available: https://hammer.purdue.edu/articles/
thesis/Road_Infrastructure_Readiness_for_Autonomous_Vehicles/
8949011

H. Lengyel, T. Tettamanti, and Z. Szalay, “Conflicts of automated
driving with conventional traffic infrastructure,” IEEE Access,
vol. 8, pp. 163 280-163297, 2020.

Nhtsa av test initiative - test tracking tool, 2022. [Online]. Available:
https:/ /www.nhtsa.gov /automated-vehicle-test-tracking-tool
Tesla deaths, 2022. [Online]. Available: https:/ /www.tesladeaths.
com/

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on January 31,2024 at 19:50:40 UTC from IEEE Xplore. Restnctions apply.



ZHONG ETAL.: NEURAL NETWORK GUIDED EVOLUTIONARY FUZZING FOR FINDING TRAFFIC VIOLATIONS OF AUTONOMOUS VEHICLES 1875

Ziyuan Zhong is currently a PhD student in the
Department of Computer Science, Columbia Uni-
versity His current research mainly focuses on
testing/improving Autonomous Driving Systems
(ADSs) and robustness of deep learning models.
Previously, he did undergrads at Reed College
and Columbia University.

Baishakhi Ray (Member, IEEE) is an associate
professor in the Department of Computer Sci-
ence, Columbia University, NY, USA. She has
received her PhD degree from the University of
Texas, Austin. Baishakhi's research interest is in
the intersection of Software Engineering and
Machine Learning. Baishakhi has received Best
Paper awards at FASE 2020, FSE 2017, MSR
2017, IEEE Symposium on Security and Privacy
(Oak- land), 2014. Her research has also been
published in CACM Research Highlights and has
o . . been widely covered in trade media. She is a recipient of the NSF
Gail Kaiser (Senior Member, IEEE) is a professor  CAREER alayward, VMware Early Career Faculty A\ngrd, IBM Faculty
of Computer Science at Columbia University. She  Award, and IEEE CS TCSE Rising Star Award.
received her ScB in Computer Science and Engi-
neering from Massachusetts Institute of Technol-
ogy, her MS in Computer Science from Carnegie . For more information on this or any other computing topic,

Mellon University, and her PhD in Computer Sci- - . o .
ence from Carnegie Mellon University. please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on January 31,2024 at 19:50:40 UTC from IEEE Xplore. Restnctions apply.



