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Short…exposure…photograph Input…patch

Figure 1: Detecting boundaries at short exposure (1/5000s). The field of junctions extracts boundary structure at noise levels
where other methods fail, even when the others are preceded by denoising and are optimally tuned for the image. Additionally,
our model interprets its boundaries into component contours, corners, junctions, and regional colors (see Figure 2).

Abstract

We introduce a bottom-up model for simultaneously find-
ing many boundary elements in an image, including con-
tours, corners and junctions. The model explains boundary
shape in each small patch using a ‘generalized -junction’
comprising angles and a freely-moving vertex. Images
are analyzed using non-convex optimization to coopera-
tively find junction values at every location, with
spatial consistency being enforced by a novel regularizer
that reduces curvature while preserving corners and junc-
tions. The resulting ‘field of junctions’ is simultaneously a
contour detector, corner/junction detector, and boundary-
aware smoothing of regional appearance. Notably, its uni-
fied analysis of contours, corners, junctions and uniform re-
gions allows it to succeed at high noise levels, where other
methods for segmentation and boundary detection fail.

1. Introduction

Identifying boundaries is fundamental to vision, and be-
ing able to do it from the bottom up is helpful because vision
systems are not always familiar with the objects and scenes

they encounter. The essence of boundaries is easy to articu-
late: They are predominantly smooth and curvilinear; they
include a small but important set of zero-dimensional events
like corners and junctions; and in between boundaries, re-
gional appearance is homogeneous in some sense.

Yet, despite this succinct description, extracting bound-
aries that include all of these elements and exploit their in-
terdependence has proven difficult. After decades of work
on various subsets of contour detection, corner detection,
junction detection, and segmentation, the community is still
searching for comprehensive and reliable solutions. Even
deep encoder-decoder CNNs, which can be tuned to ex-
ploit many kinds of local and non-local patterns in a dataset,
struggle to localize boundaries with precision, motivating
an ongoing search for architectural innovations like skip
connections, gated convolutions, bilateral regularization,
multi-scale supervision, kernel predictors, and so on.

We introduce a bottom-up model that precisely dis-
cerns complete boundary structure—contours, corners, and
junctions—all at the same time (see Figures 1 & 2). It does
this by fitting a non-linear representation to each small im-
age patch, with values that explain the patch as
being uniform or containing an edge, thin bar, corner, or
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Figure 2: Interpreting boundary structure at high and low SNR (top and bottom). The field of junctions identifies contours
(column 6), corners/junctions (circles, column 7) and smooth colors (column 7). It is more resilient to noise than previous
methods that are specific to contours, junctions or smoothing, even when they are preceded by optimally-tuned denoising.

junction of any degree up to (see Figure 3). The model
encourages consistency between overlapping patches using
a new form of spatial regularization that, instead of penal-
izing overall curve length or elastica, expresses preference
for global boundary maps comprising isolated corners and
junctions that are connected by contours with small curva-
ture. As far as we know, this is the first time such regular-
ization has been achieved in the presence of junctions.

An image is analyzed by solving a non-convex optimiza-
tion problem that cooperatively determines junction
values at every location. This produces a field of junctions:
a distilled representation of the contours, corners, junctions
and homogeneous regions of an image. It is an intermedi-
ate representation that is useful for a variety of tasks, in-
cluding contour detection, junction/keypoint detection, and
boundary-aware smoothing.

Experimentally, the field of junctions provides unprece-
dented resilience to noise. It is repeatable over a wide range
of noise levels, including very high noise regimes where
other approaches—whether based on denoising, segmenta-
tion, contour detection, or junction detection—all tend to
fail (see Figures 1 & 2). We attribute this to the form of its
regularization and to its unified representation of contours,
corners, junctions and uniformity, which allows all of these
signals to mutually excite and inhibit during analysis.

We introduce the field of junctions model in Section 3,
where we formulate analysis as a non-convex optimization
problem. We describe how the model can be used for both
single-channel and multi-channel images, and how it in-
cludes a parameter controlling the scale of its output. The
following Section 4 is the heart of the paper: It introduces
the optimization techniques that allow analysis to succeed.
In particular, we present a greedy algorithm for initializ-
ing each patch’s junction parameters that has convergence
guarantees under certain conditions, and is very effective

in practice even when they do not hold. In Section 5 we
apply the field of junctions to contour, corner, and junc-
tion detection, showing that it provides novel regularization
capabilities and repeatable performance across many noise
levels. Extended versions of our figures, generalizations of
the model, additional results, and a video summary of our
paper, are all available in the supplement.

2. Related Work

Contour, corner and junction detection. These have been
studied for decades, often separately, using halved receptive
fields to localize contours [6, 16, 21] and wedges or other
patch-based models for corners and junctions [12, 26, 10,
20, 7, 32, 36]. The drawback of separating these processes
is that, unlike our model, it does not exploit concurrency
between contours, corners and junctions at detection time.

Contour detection at low SNR. The naive way to detect
contours at low SNR is to precede a contour detector by a
strong generic denoiser. Ofir et al. [24, 23] were perhaps the
first to convincingly show that better results can be achieved
by designing optimization strategies that specifically exploit
the regularity of contours (also see Figure 1). We build
on this idea by developing different optimization schemes
that handle a broader set of boundary structures and that
improve upon [24, 23] in both accuracy and scalability.

Curvature regularization. Boundaries extracted at low
SNR are strongly influenced by the choice of regularization.
Prior work has shown that minimizing curvature—either
alone or in combination with length (Euler’s elastica)—
generally does better at preserving elongated structures and
fine details than minimizing length alone; and there have
been many attempts to invent good numerical schemes for
minimizing boundary curvature [28, 22, 39, 37, 30, 13]. All
of these methods lead to rounded corners, and more criti-
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c all y, t h e y o nl y a p pl y t o b o u n d ari es b et w e e n t w o r e gi o ns s o
pr o vi d e n o m e a ns f or pr es er vi n g j u n cti o ns (s e e Fi g ur e 4 ).
I n c o ntr ast, o ur m o d el pr es er v es s h ar p c or n ers a n d j u n cti o ns
w hil e als o r e d u ci n g c ur v at ur e al o n g c o nt o urs.

S e g m e nt ati o n. O ur p at c h m o d el is i ns pir e d b y t h e l e v el-s et
m et h o d of C h a n a n d Ves e [ 8 ] a n d i n p arti c ul ar its m ulti-
p h as e g e n er ali z ati o ns [ 3 1 , 1 4 ]. I n f a ct, o ur d es c e nt str at-
e g y i n S e cti o n 4. 2 c a n b e i nt er pr et e d as p urs ui n g o pti m al
l e v el-s et f u n cti o ns i n e a c h p at c h, wit h e a c h p at c h’s f u n c-
ti o ns c o nstr ai n e d t o a c o nti n u o us (M + 2) - p ar a m et er f a m-
il y. O ur e x p eri m e nts s h o w t h at o ur r e g ul ari z e d p at c h- wis e
a p pr o a c h o b vi at es t h e n e e ds f or m a n u al i niti ali z ati o n a n d
r e-i niti ali zi n g d uri n g o pti mi z ati o n, b ot h of w hi c h h a v e b e e n
fr e q u e nt r e q uir e m e nts i n pr a cti c e [8 , 3 1 , 1 4 , 1 9 ].

B o u n d a r y- a w a r e s m o ot hi n g. W h e n l o c ati n g b o u n d ari es,
o ur m o d el i nf ers t h e r e gi o n al c ol ors a dj a c e nt t o e a c h b o u n d-
ar y p oi nt a n d s o pr o vi d es b o u n d ar y- a w ar e s m o ot hi n g as a
b y- pr o d u ct. It is n ot c o m p etiti v e wit h t h e ef fi ci e n c y of d e d-
i c at e d s m o ot h ers [3 4 , 2 5 , 1 1 ] b ut is m or e r esili e nt t o n ois e.

D e e p e n c o d e r/ d e c o d e r n et w o r ks . O ur a p pr o a c h is v er y
diff er e nt fr o m r el yi n g o n d e e p C N Ns t o i nf er t h e l o c ati o ns
of b o u n d ari es ( e. g ., [3 3 , 2 9 ]) or li n es a n d j u n cti o ns [1 5 , 3 8 ,
3 5 ]. C N Ns h a v e a n a d v a nt a g e of b ei n g tr ai n a bl e o v er l ar g e
d at as ets, all o wi n g b ot h l o c al a n d n o n-l o c al p att er ns t o b e
i nt er n ali z e d a n d e x pl oit e d f or pr e di cti o n; b ut t h er e ar e o n-
g oi n g c h all e n g es r el at e d t o o v er c o mi n g t h eir i nt er n al s p ati al
s u bs a m pli n g ( w hi c h m a k es b o u n d ari es h ar d t o l o c ali z e) a n d
t h eir li mit e d i nt er pr et a bilit y ( w hi c h m a k es it h ar d t o a d a pt
t o r a di c all y n e w sit u ati o ns). U nli k e C N Ns, t h e fi el d of j u n c-
ti o ns m o d el d o es n ot h a v e c a p a cit y t o m a xi m all y e x pl oit t h e
i ntri c a ci es of a p arti c ul ar d at as et or i m a gi n g m o d alit y. B ut
it h as t h e a d v a nt a g es of: n ot b ei n g s u bs a m pl e d; i nt er pr eti n g
b o u n d ar y str u ct ur e i nt o c o m p o n e nt c o nt o urs, c or n ers a n d
j u n cti o ns; a p pl yi n g t o m a n y n ois e l e v els a n d m a n y si n gl e-
c h a n n el or m ulti- c h a n n el 2 D i m a gi n g m o d aliti es; a n d b ei n g
c o ntr oll e d b y j ust a f e w i nt uiti v e p ar a m et ers.

3. Fi el d of J u n cti o ns

Fr o m a K - c h a n n el i m a g e I : Ω → R K wit h 2 D s u p p ort
Ω , w e e xtr a ct d e ns e, o v erl a p pi n g R × R s p ati al p at c h es,
d e n ot e d I R = { I i (x )} N

i = 1 . We als o d e fi n e a c o nti n u o us
f a mil y of p at c h-t y p es, P R = { u θ (x )} , p ar a m etri z e d b y θ ,
d es cri bi n g t h e b o u n d ar y str u ct ur e i n a n R × R p at c h. F or P R

w e us e t h e f a mil y of g e n er aliz e d M -j u n cti o ns, c o m prisi n g
M a n g ul ar w e d g es ar o u n d a v ert e x. T h e p ar a m et ers θ =
(ϕ , x ( 0 ) ) ∈ R M + 2 ar e M a n gl es ϕ = ( ϕ ( 1 ) , ..., ϕ( M ) ) a n d
v ert e x p ositi o n x ( 0 ) = ( x ( 0 ) , y( 0 ) ). I m p ort a ntl y, t h e v ert e x
c a n b e i nsi d e or o utsi d e of t h e p at c h, a n d w e d g es m a y h a v e
si z e 0 . Fi g ur e 3 s h o ws e x a m pl es f or M = 3 .

Ass u m e all i m a g e p at c h es I R ar e d es cri b e d b y p at c h es
fr o m P R wit h a d diti v e w hit e G a ussi a n n ois e. T his m e a ns
t h at f or e v er y i ∈ { 1 , ..., N } t h er e e xist p ar a m et ers θ i , a n d

Fi g ur e 3: A g e n er ali z e d M -j u n cti o n c o m pris es a v ert e x a n d
M a n gl es, p artiti o ni n g e a c h p at c h i nt o at m ost M u nif or m
r e gi o ns ( h er e, M = 3 ). B y fr e ei n g t h e v ert e x t o b e v ari-
o usl y i nsi d e or o utsi d e of p at c h es as n e e d e d, t h e m o d el si-
m ult a n e o usl y a c c o m m o d at es c o nt o urs, li n es, c or n ers, j u n c-
ti o ns, a n d u nif or m r e gi o ns, t h er e b y all o wi n g c o n c urr e n ci es
b et w e e n all of t h e m t o b e e x pl oit e d d uri n g a n al ysis.

M c ol or f u n cti o ns c
( 1 )
i , ..., c

( M )
i : Ωi → R K (t o b e d e fi n e d

m o m e nt aril y), s u c h t h at f or all x ∈ Ω i :

I i (x ) =
M

j = 1

u
( j )
θ i

(x )c
( j )
i (x ) + n i (x ), ( 1)

w h er e n i (x ) ∼ N ( 0, σ2 ) is n ois e, a n d u
( j )
θ i

: Ωi → { 0 , 1 }
is a n i n di c at or f u n cti o n t h at r et ur ns 1 if x is i nsi d e t h e j t h
w e d g e d e fi n e d b y θ i a n d 0 ot h er wis e.

E a c h c ol or f u n cti o n c
( j )
i is d e fi n e d o v er t h e s u p p ort of t h e

it h p at c h Ω i a n d e x pl ai ns t h e c o nti n u o us fi el d of K - c h a n n el
v al u es wit hi n t h e j t h w e d g e of t h at p at c h. T h es e f u n cti o ns
ar e c o nstr ai n e d t o a pr e- c h os e n f a mil y of f u n cti o ns C , s u c h
as c o nst a nt f u n cti o ns C = { c (x ) ≡ c : c ∈ R K } or li n e ar
f u n cti o ns C = { c (x ) = A x + b : A ∈ R K × 2 , b ∈ R K } .

We writ e t h e pr o c ess of a n al y zi n g a n i m a g e i nt o its fi el d
of j u n cti o ns as s ol vi n g t h e o pti mi z ati o n pr o bl e m:

m a x
Θ ,C

l o g p ( Θ) + l o g p (C ) +
N

i = 1

l o g p (I i |θ i , c i ), ( 2)

w h er e p ( Θ) a n d p (C ) ar e s p ati al c o nsist e n c y t er ms o v er all
j u n cti o n p ar a m et ers Θ = ( θ 1 , ..., θ N ) a n d c ol or f u n cti o ns
C = ( c 1 , ..., c N ) r es p e cti v el y, a n d p (I i |θ i , c i ) is t h e li k e-
li h o o d of a p at c h I i gi v e n t h e j u n cti o n p ar a m et ers θ i a n d

c ol or f u n cti o ns c i = ( c
( 1 )
i , ..., c

( M )
i ). If t h e c o nsist e n c y

t er ms p ( Θ) a n d p (C ) ar e 0 w h e n e v er o v erl a p pi n g p at c h es
dis a gr e e wit hi n t h eir o v erl a p, t his o bj e cti v e is pr e cis el y t h e
M A P esti m at e of t h e fi el d of j u n cti o ns, w h er e t h e c o nsis-
t e n c y t er ms ar e i nt er pr et e d as pri ors o v er j u n cti o n p ar a m e-
t ers a n d c ol or f u n cti o ns, w hi c h w e m o d el as i n d e p e n d e nt.

I n t h e r e m ai n d er of t his s e cti o n w e pr o vi d e m or e i nf or-
m ati o n a b o ut t h e t hr e e t er ms i n E q u ati o n 2 . F or si m pli cit y

w e us e M = 3 a n d a c o nst a nt c ol or m o d el c
( j )
i (x ) ≡ c

( j )
i ,

b ut e x p a nsi o ns t o hi g h er- or d er c ol or m o d els a n d t o M > 3
ar e tri vi al a n d d es cri b e d i n t h e s u p pl e m e nt. T h e s u p pl e-
m e nt als o s h o ws h o w t h e m o d el p erf or ms w h e n n ois e is n ot
s p ati all y-i n d e p e n d e nt as is ass u m e d i n E q u ati o n 1 .

6 8 5 1
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I n p ut ℓ 1 - El asti c a [ 1 3]  O urs, λ B = 0 .1 O urs, λ B = 1 0, Q S XW 1 � (O DVWL F D 2 XUV�� λ B = 0 .1 2 XUV�� λ B = 1 0

Fi g ur e 4: O ur b o u n d ar y c o nsist e n c y t er m, g o v er n e d b y λ B ,
f a v ors is ol at e d c or n ers a n d j u n cti o ns c o n n e ct e d b y c o nt o urs
wit h l o w c ur v at ur e. U nli k e ot h er r e g ul ari z ers, it: is a g n osti c
t o c o nt o ur l e n gt h a n d c o n v e xit y; pr es er v es s h ar p c or n ers;
a n d pr es er v es j u n cti o ns b et w e e n t hr e e or m or e r e gi o ns.

3. 1. P at c h Li k eli h o o d

F or a si n gl e p at c h, E q u ati o n 1 dir e ctl y s h o ws t h at t h e
l o g-li k eli h o o d t er m is n e g ati v el y pr o p orti o n al t o t h e m e a n
s q u ar e d err or i n t h at p at c h:

l o g p (I i |θ i , c i ) = − α

M

j = 1

u
( j )
θ i

(x ) c
( j )
i − I i (x )

2

d x , ( 3)

w h er e α > 0 is a c o nst a nt d et er mi n e d b y t h e n ois e l e v el σ .
T h e li k eli h o o d t er m i n E q u ati o n 3 c a n b e tr e at e d as a

f u n cti o n of t h e j u n cti o n p ar a m et ers at a si n gl e l o c ati o n, θ i ,
b e c a us e fi n di n g t h e o pti m al c ol ors c i is tri vi al f or a gi v e n
θ i (s e e E q u ati o n 1 0 i n S e cti o n 3. 2 ). H o w e v er, d es pit e t h e
l o w di m e nsi o n alit y of t h e pr o bl e m, w hi c h r e q uir es esti m at-
i n g a n (M + 2) - di m e nsi o n al j u n cti o n p ar a m et er p er p at c h,
s ol vi n g it ef fi ci e ntl y is a s u bst a nti al c h all e n g e. We pr es e nt
a n ef fi ci e nt s ol uti o n t o t his pr o bl e m i n S e cti o n 4. 1 .

3. 2. S p ati al C o nsist e n c y

O ur s p ati al c o nsist e n c y t er ms p ( Θ) a n d p (C ) r e q uir e t h at
all j u n cti o n m o d els a gr e e wit hi n t h eir o v erl a p. T h e b o u n d-
ar y c o nsist e n c y c a n b e s u c ci n ctl y writt e n as a c o nstr ai nt o n
t h e b o u n d ari es d e fi n e d b y e a c h j u n cti o n:

l o g p ( Θ) =
0 if B i (x ) = B̂ ( x ) f or all i

− ∞ ot h er wis e
, ( 4)

w h er e B i (x ) is t h e b o u n d ar y m a p at t h e it h p at c h t h at r e-
t ur ns 1 if x is a b o u n d ar y l o c ati o n a c c or di n g t o θ i a n d 0
ot h er wis e, a n d B̂ ( x ) = m a x i ∈ { 1 ,..., N } B i (x ) is t h e gl o b al
b o u n d ar y m a p d e fi n e d b y t h e fi el d of j u n cti o ns.

T h e b o u n d ar y c o nsist e n c y t er m i n E q u ati o n 4 pr o vi d es a
h ar d c o nstr ai nt o n t h e j u n cti o n p ar a m et ers, w hi c h is dif fi c ult
t o us e i n pr a cti c e. We i nst e a d r e pl a c e it wit h a r el a x e d, fi nit e

v ersi o n h a vi n g wi dt h δ a n d str e n gt h β B :

l o g p ( Θ) = − β B

N

i = 1

B
( δ )
i (x ) − B̂

( δ )
i (x )

2

d x , ( 5)

w h er e B
( δ )
i (x ) is a s m o ot h b o u n d ar y m a p wit h dr o p off

wi dt h δ fr o m t h e e x a ct b o u n d ar y p ositi o n, t o b e d e fi n e d
pr e cis el y i n S e cti o n 4. 2 . T h e r el a x e d gl o b al b o u n d ar y m a p
B̂ ( δ ) (x ) is n o w c o m p ut e d b y t a ki n g t h e m e a n (r at h er t h a n
m a xi m u m) of t h e s m o ot h l o c al b o u n d ar y m a p at e a c h p osi-
ti o n x o v er all p at c h es c o nt ai ni n g it:

B̂ ( δ ) (x ) =
1

|N x |
i ∈ N x

B
( δ )
i (x ), ( 6)

w h er e N x = { i : x ∈ Ω i } is t h e s et of i n di c es of p at c h es

t h at c o nt ai n x . We d e n ot e b y B̂
( δ )
i (x ) t h e it h p at c h of t h e

r el a x e d gl o b al b o u n d ar y m a p i n E q u ati o n 6 . N ot e t h at t h e
r el a x e d c o nsist e n c y i n E q u ati o n 5 a p pr o a c h es t h e stri ct o n e
fr o m E q u ati o n 4 w h e n δ → 0 a n d β B → ∞ .

Si mil ar t o t h e b o u n d ar y s p ati al c o nsist e n c y t er m, w e d e-
fi n e t h e c ol or s p ati al c o nsist e n c y t er m as:

l o g p (C ) = − β C

N

i = 1

M

j = 1

u
( j )
θ i

(x ) c
( j )
i − Î i (x )

2

d x ,

( 7)
w h er e Î i (x ) is t h e it h p at c h of t h e gl o b al c ol or m a p :

Î ( x ) =
1

|N x |
i ∈ N x

M

j = 1

u
( j )
θ i

(x )c
( j )
i . ( 8)

Usi n g t h e e x pr essi o ns f or t h e l o g-li k eli h o o d a n d t h e r e-
l a x e d c o nsist e n c y i n E q u ati o ns 3 , 5 , a n d 7 , a n al y zi n g a n
i m a g e i nt o its fi el d of j u n cti o ns c a n n o w b e writt e n as t h e
s ol uti o n t o t h e f oll o wi n g mi ni mi z ati o n pr o bl e m:

mi n
Θ ,C

N

i = 1

M

j = 1

u
( j )
θ i

(x ) c
( j )
i − I i (x )

2

d x

+ λ B

N

i = 1

B
( δ )
i (x ) − B̂

( δ )
i (x )

2

d x , ( 9)

+ λ C

N

i = 1

M

j = 1

u
( j )
θ i

(x ) c
( j )
i − Î i (x )

2

d x ,

w h er e λ B = β B / α a n d λ C = β C / α ar e p ar a m et ers c o n-
tr olli n g t h e str e n gt h of t h e b o u n d ar y a n d c ol or c o nsist e n c y.

We s ol v e Pr o bl e m ( 9 ) b y alt er n ati o n, u p d ati n g j u n cti o n
p ar a m et ers a n d c ol ors ( Θ, C ) w hil e gl o b al m a ps ( B̂ ( δ ) , Î )
ar e fi x e d, a n d t h e n u p d ati n g t h e gl o b al m a ps. T his t a k es a d-
v a nt a g e of cl os e d-f or m e x pr essi o ns f or t h e o pti m al c ol ors.
F or t h e c o nst a nt c ol or m o d el t h e e x pr essi o n is

c
( j )
i =

u
( j )
θ i

(x ) I i (x ) + λ C Î i (x ) d x

( 1 + λ C ) u
( j )
θ i

(x )d x
, ( 1 0)
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Figure 5: Output of Algorithm 2 for a patch in SIDD [2]
captured at decreasing light levels. Algorithm convergence
is only guaranteed when noise is absent, but output is quite
accurate in practice even when noise is high.

and for piecewise-linear colors, i.e., ,
there is a similar expression that replaces each of the
divisions with a matrix inversion and multiplication.

Our formulation of boundary consistency encourages
each patch to agree with its overlapping neighbors, by in-
hibiting its own boundariness at pixels that are
assigned a low score by their neighbors (as quantified by

) and exciting its boundariness at pixels assigned a
high score. This means only salient junctions, corners, and
contours end up contributing to the final global boundary
map . Junction values in uniform patches and other
less salient patches tend to disagree with other patches, so
spurious boundaries within them are suppressed.

At the same time, our use of a smoothed version of con-
sistency instead of a strict one allows for contours having
nonzero curvature to be well approximated by local collec-
tions of corners that have slightly different vertices, while
incurring a penalty. This has the effect of a curvature regu-
larizer, because the only way for all junctions in the field to
exactly agree is when the global boundary has zero curva-
ture everywhere except at a finite number of vertices spaced
at least -distance apart (e.g. a polygon).

The color consistency term of our objective promotes
agreement on color between overlapping patches. It im-
proves the results of the field of junctions under high noise
by enforcing long-range consistency between the colors of
sets of pixels not separated by a boundary.

4. Analysis
Analyzing an image into its field of junctions is a chal-

lenge, with Problem (9) consisting of junction-fitting
problems that are coupled by spatial consistency terms.
Even without consistency, finding the optimal junction for
a single patch requires minimizing a non-smooth and non-
convex function in .

We solve the problem in two parts: initialization and re-
finement. Both of these are key to our model’s robustness to
noise. The initialization procedure independently optimizes
each patch, using a handful of coordinate updates to find

discrete values for its angles and vertex location. Then, the
refinement procedure performs gradient descent on a relax-
ation of Problem (9), cooperatively adjusting all junction
parameters to find continuous angles and sub-pixel vertex
locations that improve spatial consistency while maintain-
ing fidelity to local appearance. We next describe each step.

4.1. Initialization

Many previous methods for junction estimation, such
as [10, 7], use gradient descent to optimize the vertex and
angles of a single wedge model. These methods rely on
having a good initialization from a human or a corner detec-
tor, and they fail when such initializations are unavailable.
Indeed, even in the noiseless case, there always exists an
initialization of a patch’s junction parameters around which
the negative log-likelihood is locally constant.

In the present case, we need an initialization strategy that
is automatic and reliable for every patch, or at least the vast
majority of them. We first describe an initialization algo-
rithm for the simpler problem in which the vertex of a patch
is known, where our algorithm guarantees optimality in the
absence of noise; and then we expand it to solve for the
vertex and angles together.

When the vertex is known, optimizing the parameters
of one patch reduces to finding a piecewise-constant, one-
dimensional angular function. There are algorithms for this
based on dynamic programming [4, 17] and heuristic par-
ticle swarm optimization [5]. We instead propose Algo-
rithm 1, which is guaranteed to find the true junction an-
gles that minimize the negative log-
likelihood in the noiseless
case. The algorithm consists of a single coordinate-descent
update over the junction angles, that is, it minimizes

for .

Algorithm 1: Optimization of angles

Initialize  .
for do

 argmin

end

Theorem 1. For a junction image with no noise (i.e.,
in Eq. 1) and with vertex known, Algorithm 1 is

guaranteed to find the globally optimal angles .

Proof Sketch. (See full proof in supplement.) First, note
that is continuous and smooth for all other than
possibly a discontinuity in the derivative at any of the true
junction angles. If the optimal is not one of the true junc-
tion angles then it must lie in the open interval between two
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I n p ut B o u n d ar y- a w ar e s m o ot hi n g B o u n d ari es

Fi g ur e 6: Fi el d of j u n cti o ns fr o m a p h ot o gr a p h. It c a n e xtr a ct b o u n d ar y- a w ar e s m o ot hi n g a n d b o u n d ar y str u ct ur e fr o m
n at ur al i m a g es b e c a us e it is r o b ust t o t e xt ur e a n d ot h er n at ur al d e vi ati o ns fr o m t h e i d e al g e n er ali z e d M -j u n cti o n m o d el.

s u c h a n gl es, i. e. ϕ ∈ (ϕ − , ϕ+ ). It c a n b e s h o w n t h at ℓ j (ϕ )
d o es n ot h a v e a n y l o c al mi ni m a i n (ϕ − , ϕ+ ), a n d t h er ef or e
f or e a c h a n g ul ar i nt er v al b et w e e n t w o tr u e j u n cti o n a n gl es
t h e c ost f u n cti o n m ust b e mi ni mi z e d at o n e of t h e e n d p oi nts.
T h er ef or e r e p e at e dl y mi ni mi zi n g ℓ j (ϕ ) f or j = 1 , ..., M is
g u ar a nt e e d t o pr o vi d e a gl o b all y o pti m al s et of a n gl es.

I n pr a cti c e, w e fi n d t h at Al g orit h m 1 pr o vi d es a n e x c el-
l e nt esti m at e of t h e tr u e j u n cti o n a n gl es e v e n w h e n t h e i n p ut
p at c h is n ois y. It als o h as a si g ni fi c a nt ef fi ci e n c y a d v a nt a g e.
E a c h c o or di n at e u p d at e c a n b e d o n e t o a n ar bitr aril y s m all
err or ε wit h c o m pl e xit y O ( 1/ ε ), b y e x h a usti v el y s e ar c hi n g
o v er all a n gl es i n i n cr e m e nts of ε . T h e c o m pl e xit y f or a
si n gl e j u n cti o n is t h er ef or e O (M / ε ), i n c o ntr ast wit h t h e
O ( 1/ ε 2 ) d y n a mi c pr o gr a m mi n g s ol uti o n of [ 1 7 ] a n d t h e
O ( 1/ ε M ) of n ai v e e x h a usti v e s e ar c h o v er all p ossi bl e M -
a n gl e s ets. M or e o v er, e a c h st e p of t h e al g orit h m c a n b e r u n
i n p ar all el o v er all a n gl es ( a n d o v er all p at c h es) b y c o m p ut-
i n g t h e v al u e of ℓ j (ϕ

( j ) ) f or e a c h of t h e O ( 1/ ε ) v al u es a n d
c h o osi n g t h e mi ni mi zi n g a n gl e. T h us, r u nti m e c a n b e a c-
c el er at e d si g ni fi c a ntl y usi n g a G P U or m ulti pl e pr o c ess ors.

T h es e ef fi ci e n c y a d v a nt a g es b e c o m e es p e ci all y i m p or-
t a nt w h e n w e e x p a n d t h e pr o bl e m t o o pti mi z e t h e v ert e x i n
a d diti o n t o t h e a n gl es. We si m pl y d o t his b y i niti ali zi n g t h e
v ert e x at t h e c e nt er of t h e p at c h a n d u p d ati n g it al o n g wit h
t h e a n gl es usi n g a c o or di n at e d es c e nt pr o c e d ur e. S e e Al g o-
rit h m 2 . Fi g ur e 5 s h o ws a t y pi c al e x a m pl e, w h er e t h e al g o-
rit h m r es ults i n a g o o d esti m at e of t h e tr u e v ert e x p ositi o n
a n d a n gl es d es pit e a s u bst a nti al a m o u nt of n ois e.

4. 2. R e fi n e m e nt

Aft er i niti ali zi n g e a c h p at c h s e p ar at el y, w e r e fi n e t h e
fi el d of j u n cti o ns usi n g c o nti n u o us, gr a di e nt- b as e d o pti-
mi z ati o n. I n or d er t o c o m p ut e t h e gr a di e nt of t h e o bj e c-
ti v e i n Pr o bl e m (9 ) wit h r es p e ct t o Θ w e r el a x t h e i n di c a-

Al g o rit h m 2: O pti mi z ati o n of a n gl es a n d v ert e x

I niti ali z e x ( 0 ) , y( 0 ) at t h e c e nt er of t h e p at c h.
f o r i = 1 , ..., Ni nit d o

Fi n d a n gl es ϕ usi n g Al g orit h m 1 .
x ( 0 ) ← ar g mi n

x
ℓ (ϕ , x, y( 0 ) )

y ( 0 ) ← ar g mi n
y

ℓ (ϕ , x( 0 ) , y)

e n d

t or f u n cti o ns { u θ (x )} , m a ki n g t h e m s m o ot h i n x a n d i n θ ,
si mil ar t o l e v el-s et m et h o ds [ 8 , 3 1 ]. We d o t his b y d es cri b-
i n g e a c h 3 -j u n cti o n usi n g t w o dist a n c e f u n cti o ns ( a si mi-
l ar p ar a m etri z ati o n e xists usi n g M − 1 f u n cti o ns f or M -
j u n cti o ns). Gi v e n t h e v ert e x p ositi o n (x ( 0 ) , y( 0 ) ) a n d a n gl es
ϕ ( 1 ) , ϕ( 2 ) , ϕ( 3 ) , a n d ass u mi n g wit h o ut l oss of g e n er alit y t h at
0 ≤ ϕ ( 1 ) ≤ ϕ ( 2 ) ≤ ϕ ( 3 ) < 2 π , w e d e fi n e a j u n cti o n usi n g
t w o si g n e d dist a n c e f u n cti o ns d 1 2 a n d d 1 3 d e fi n e d b y:

d kl (x ) =
mi n { d k (x ), − d l (x )} if ϕ ( l) − ϕ ( k ) < π

m a x { d k (x ), − d l (x )} ot h er wis e
( 1 1)

w h er e d l (x, y ) = − (x − x ( 0 ) ) si n( ϕ ( l) ) + ( y − y ( 0 ) ) c o s( ϕ ( l) )
is t h e si g n e d dist a n c e f u n cti o n fr o m a li n e wit h a n gl e ϕ ( l)

p assi n g t hr o u g h (x ( 0 ) , y( 0 ) ).
O ur r el a x e d i n di c at or f u n cti o ns ar e d e fi n e d as:

u
( 1 )
θ (x ) = 1 − H η (d 1 3 (x )),

u
( 2 )
θ (x ) = H η (d 1 3 (x )) [ 1 − H η (d 1 2 (x ))] , ( 1 2)

u
( 3 )
θ (x ) = H η (d 1 3 (x ))H η (d 1 2 (x )),

w h er e H η is t h e r e g ul ari z e d H e a visi d e f u n cti o n, as i n [8 ]:

H η (d ) =
1

2
1 +

2

π
a r ct a n

d

η
. ( 1 3)
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Fi g ur e 7: Vert e x a n d b o u n d ar y d et e cti o n F-s c or e f or i n-
cr e asi n g n ois e o n o ur d at as et. At l o w n ois e o ur m o d el is
c o m p ar a bl e t o e xisti n g e d g e a n d j u n cti o n d et e ct ors a n d a
b as eli n e C N N, b ut it si g ni fi c a ntl y o ut p erf or ms t h e m at hi g h
n ois e, e v e n w h e n pr e pr o c ess e d b y B M 3 D. I ns ets: s a m pl e
p at c h at diff er e nt n ois e l e v els.

T h e s m o ot h b o u n d ar y m a ps f or t h e c o nsist e n c y t er m ar e:

B
( δ )
i (x ) = π δ · H ′

δ ( mi n{| d 1 2 (x )|, |d 1 3 (x )| }) , ( 1 4)

w h er e H ′
δ (d ) is t h e d eri v ati v e of H δ (d ) wit h r es p e ct t o d ,

a n d t h e s c ali n g f a ct or e ns ur es t h at 0 ≤ B
( δ )
i (x ) ≤ 1 .

O ur e x p eri m e nts us e η = 0 .0 1 a n d δ = 0 .1 . We fi n d t h at
t h e al g orit h m is f airl y i ns e nsiti v e t o t h es e v al u es, a n d t h at
v ar yi n g t h e m d o es n ot pr o vi d e us ef ul c o ntr ol of t h e m o d el’s
b e h a vi or. T his is i n c o ntr ast t o t h e ot h er p ar a m et ers — p at c h
si z e R a n d c o nsist e n c y w ei g hts λ B , λ C —t h at c o ntr ol s c al e
a n d l e v el of b o u n d ar y a n d c ol or d et ail.

4. 3. O pti mi z ati o n D et ails

We a n al y z e a n i m a g e i nt o its fi el d of j u n cti o ns b y first
i niti ali zi n g wit h Al g orit h m 2 f or N i nit = 3 0 it er ati o ns, f ol-
l o w e d b y r e fi n e m e nt t o mi ni mi z e Pr o bl e m (9 ) usi n g t h e
A d a m o pti mi z er [ 1 8 ] f or N it er = 1 0 0 0 it er ati o ns. I niti ali z a-
ti o n is p erf or m e d b y e v al u ati n g t h e r estri ct e d n e g ati v e l o g-
li k eli h o o d f u n cti o ns i n Al g orit h ms 1 a n d 2 at 1 0 0 e v e nl y-
s p a c e d v al u es. B e c a us e t h e v ert e x of a j u n cti o n c a n b e o ut-
si d e its p at c h (s e e Fi g ur e 3 ), e a c h of its t w o c o or di n at es is
s e ar c h e d o v er a n i nt er v al of l e n gt h 3 R ar o u n d t h e c e nt er of
e a c h p at c h. T h e a c c ur a c y of o ur i niti ali z ati o n is t h us 3 .6 ◦ i n
t h e j u n cti o n a n gl es, a n d 0 .0 3 R i n t h e v ert e x p ositi o n.

F or t h e r e fi n e m e nt st e p w e us e a l e ar ni n g r at e of 0 .0 3 f or
t h e v ert e x p ositi o ns a n d 0 .0 0 3 f or t h e j u n cti o n a n gl es, a n d
t h e gl o b al m a ps B̂ ( δ ) (x ) a n d Î ( x ) ar e tr e at e d as c o nst a nts
c o m p ut e d usi n g t h e v al u es of t h e pr e vi o us it er ati o n w h e n

c o m p uti n g gr a di e nts. I n or d er t o all o w t h e p ar a m et ers t o
first i m pr o v e t h eir esti m at es l o c all y a n d o nl y t h e n us e t h e
c o nsist e n c y t er m t o i m pr o v e t h e fi el d of j u n cti o ns, w e li n-
e arl y i n cr e as e t h e c o nsist e n c y w ei g hts fr o m 0 t o t h eir fi n al
v al u es λ B a n d λ C o v er t h e 1 0 0 0 r e fi n e m e nt it er ati o ns. We
a d diti o n all y a p pl y Al g orit h m 2 ( wit h o ut r ei niti ali zi n g t h e
j u n cti o n p ar a m et ers) o n c e e v er y 5 0 r e fi n e m e nt it er ati o ns,
w hi c h w e fi n d h el ps o ur m et h o d a v oi d g etti n g tr a p p e d i n l o-
c al mi ni m a. T h e r u nti m e of o ur al g orit h m o n a n N VI DI A
Tesl a V 1 0 0 G P U is 1 1 0 s e c o n ds f or a 1 9 2 × 1 9 2 i m a g e wit h
p at c h si z e R = 2 1 , b ut b ot h r u nti m e a n d s p a c e us a g e c a n b e
si g ni fi c a ntl y r e d u c e d b y o nl y c o nsi d eri n g e v er y s t h p at c h i n
b ot h s p ati al di m e nsi o ns f or s o m e c o nst a nt stri d e s (s e e s u p-
pl e m e nt f or t h e eff e ct of s o n r u nti m e a n d p erf or m a n c e).
We i m pl e m e nt e d o ur al g orit h m i n P y T or c h, a n d o ur c o d e
a n d d at as ets ar e a v ail a bl e o n o ur pr oj e ct p a g e [ 1 ].

5. E x p e ri m e nts

O n c e a n i m a g e is a n al y z e d, its fi el d of j u n cti o ns pr o-
vi d es a distri b uti o n al r e pr es e nt ati o n of b o u n d ar y str u ct ur e
a n d s m o ot h r e gi o n al a p p e ar a n c e. E a c h pi x el i n t h e fi el d
pr o vi d es a “ v ot e ” f or a n e ar b y (s u b- pi x el) v ert e x l o c ati o n
wit h ass o ci at e d w e d g e a n gl es a n d c ol or v al u es ar o u n d t h at
l o c ati o n. Si m pl e pi x el- wis e a v er a g es d eri v e d fr o m t h e fi el d
ar e us ef ul f or e xtr a cti n g c o nt o urs, c or n ers a n d j u n cti o ns,
a n d b o u n d ar y- a w ar e s m o ot hi n g. We d e m o nstr at e t h es e us es
h er e, a n d w e c o m p ar e o ur m o d el’s r e g ul ari z ati o n t o pr e vi-
o us m et h o ds f or c ur v at ur e mi ni mi z ati o n.

We e v al u at e p erf or m a n c e usi n g t hr e e t y p es of d at a. First,
w e s h o w q u alit ati v e r es ults o n c a pt ur e d p h ot o gr a p hs. S e c-
o n d, w e q u a ntif y r e p e at a bilit y usi n g t h e S m art p h o n e I m a g e
D e n oisi n g D at as et ( SI D D) [ 2 ], e v al u ati n g t h e c o nsist e n c y of
e xtr a ct e d b o u n d ari es w h e n t h e s a m e s c e n e is p h ot o gr a p h e d
at d e cr e asi n g li g ht l e v els ( a n d t h us i n cr e asi n g n ois e l e v els).
Fi n all y, t o pr e cis el y q u a ntif y t h e a c c ur a c y of e xtr a ct e d c o n-
t o urs, c or n ers a n d j u n cti o ns, w e g e n er at e a d at as et of 3 0 0
s y nt h eti c gr a ys c al e i m a g es (s h o w n i n t h e s u p pl e m e nt) wit h
b o u n d ar y el e m e nts k n o w n t o s u b- pi x el pr e cisi o n, a n d wit h
c ar ef ull y c o ntr oll e d n ois e l e v els. I n t his s e cti o n w e pr o vi d e
r es ults usi n g u n c orr el at e d n ois e, a n d o ur s u p pl e m e nt c o n-
t ai ns r es ults o n i m a g es c orr u pt e d b y ot h er n ois e m o d els.

B o u n d a r y- a w a r e s m o ot hi n g. A fi el d of j u n cti o ns r e a d-
il y pr o vi d es a b o u n d ar y- a w ar e s m o ot hi n g usi n g E q u ati o n 8 .
A n e x a m pl e f or a p h ot o gr a p h is s h o w n i n Fi g ur e 6 , a n d
a c o m p aris o n of its r esili e n c e t o n ois e wit h t h at of [ 3 4 ] is
s h o w n i n Fi g ur e 2 .

B o u n d a r y D et e cti o n. A fi el d of j u n cti o ns als o i m m e di at el y
pr o vi d es a b o u n d ar y m a p vi a E q u ati o n 6 . Fi g ur e 6 s h o ws
t h e r es ulti n g b o u n d ari es e xtr a ct e d fr o m a p h ot o gr a p h, a n d
Fi g ur e 1 s h o ws a q u alit ati v e c o m p aris o n of o ur b o u n d ari es
t o pr e vi o us e d g e d et e cti o n a n d s e g m e nt ati o n m et h o ds o n a
p at c h e xtr a ct e d fr o m a n ois y s h ort- e x p os ur e p h ot o gr a p h.
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Fi g ur e 8: Vert e x d et e cti o n r e p e at a bilit y o v er i n cr e asi n g
n ois e o n p at c h es fr o m SI D D, c o m p ar e d t o r e p e at a bilit y of
ot h er d et e ct ors wit h a n d wit h o ut d e n oisi n g. T h e n u m b er of
p oi nts d et e ct e d b y e a c h m et h o d o n t h e cl e a n gr o u n d tr ut h is
1 2 6 ( o urs), 4 9 ( A SJ), 5 7 ( H arris), a n d 7 0 ( O R B).
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Fi g ur e 9: Err or of a n gl es (i n d e gr e es) at d et e ct e d j u n cti o ns
o n o ur d at as et, f or o ur m et h o d a n d A SJ pr e pr o c ess e d b y
B M 3 D. O ur m et h o d d e gr a d es sl o wl y. We r e p ort e d a c c ur a c y
f or A SJ o n c orr e ctl y- d et e ct e d j u n cti o ns o nl y. S e e Fi g ur e 7
f or s a m pl e p at c h es.

We q u a ntit ati v el y c o m p ar e o ur r es ults t o e xisti n g c o nt o ur
a n d b o u n d ar y d et e cti o n m et h o ds: g P b [ 3 ], H E D [3 3 ], O fir
et al . [2 4 ], a n d g P b a n d H E D w h e n d e n ois e d b y B M 3 D [9 ]
s u p pli e d wit h tr u e n ois e l e v el σ . ( Si n c e [2 4 ] is d esi g n e d f or
l o w S N R, s o w e d o n ot c o m bi n e it wit h B M 3 D.) I n Fi g ur e 7
w e s h o w t h e F-s c or es of r es ults o bt ai n e d b y e a c h m et h o d o n
o ur s y nt h eti c d at as et. T h e F-s c or e is c o m p ut e d b y m at c hi n g
t h e b o u n d ari es o ut p ut b y e a c h d et e ct or wit h t h e gr o u n d tr ut h
a n d t a ki n g t h e h ar m o ni c m e a n of its pr e cisi o n a n d r e c all.

C u r v at u r e R e g ul a ri z ati o n. Fi g ur e 4 c o m p ar es o ur b o u n d-
ar y r e g ul ari z ati o n t o ℓ 1 - el asti c a [1 3 ] wit h o pti m all y-t u n e d
p ar a m et ers. T his r e pr es e nts t h e str o n g est p ossi bl e c o m p ar-
is o n a cr oss a l ar g e f a mil y of e xisti n g r e g ul ari z ers, b e c a us e
el asti c a i n cl u d es p ur e-l e n gt h a n d p ur e- c ur v at ur e mi ni mi z a-
ti o n as s p e ci al c as es, a n d b e c a us e mi ni mi zi n g t h e ℓ 1 - n or m
o ut p erf or ms t h e ℓ 2 - n or m i n t h es e i m a g es. U nli k e e xist-
i n g r e g ul ari z ers, t h e fi el d of j u n cti o ns pr es er v es s h ar p c or-
n ers; f a v ors li n e ar c o nt o urs o v er c ur v e d o n es; is a g n osti c
t o l e n gt h a n d c o n v e xit y of b o u n d ari es; a n d is, as f ar as w e
k n o w, t h e first t o d o all of t his w hil e pr es er vi n g j u n cti o ns.

Ve rt e x D et e cti o n. A fi el d of j u n cti o ns als o pr o vi d es a m a p
of v ert e x l o c ati o ns t h at c a n b e us e d li k e a tr a diti o n al c or n er,
j u n cti o n, or i nt er est p oi nt d et e ct or. T o cr e at e a v ert e x m a p,
w e us e w ei g ht e d v oti n g fr o m e a c h j u n cti o n i n t h e fi el d. T h e

li k eli h o o d t h at a v ert e x e xists at l o c ati o n x is:

V (x ) ∝
N

i = 1

w i κ x − x
( 0 )
i , ( 1 5)

wit h G a ussi a n k er n el κ ( ∆x ) = e x p − ∥ ∆ x ∥ 2

2 γ 2 of wi dt h

γ , a n d w ei g hts w i t h at s u p pr ess v ot es fr o m p at c h es h a vi n g
w e d g e- a n gl es cl os e t o 0 ◦ or 1 8 0 ◦ (i. e. wit h n o u ni q u e v er-
t e x) a n d fr o m p at c h es wit h v ert e x x ( 0 ) v er y f ar fr o m t h e
p at c h c e nt er. ( S e e s u p pl e m e nt f or f ull e x pr essi o n.)

Fi g ur e 2 s h o ws t h e q u alit ati v e r es ults of o ur v ert e x d e-
t e ct or i n t h e l o w- a n d hi g h- n ois e r e gi m e, c o m p ar e d wit h
A SJ [ 3 6 ]. A q u a ntit ati v e st u d y of t h e r o b ust n ess of o ur d e-
t e ct or t o n ois e o n o ur s y nt h eti c d at as et is s h o w n i n Fi g ur e 7 .
We a g ai n us e F-s c or e t o c o m p ar e t o A SJ [ 3 6 ] a n d t o B M 3 D
f oll o w e d b y A SJ, a n d t o b as eli n e C N Ns t h at w e tr ai n e d o n
o ur d at as et s p e ci fi c all y f or v ert e x d et e cti o n. I n t his e x p eri-
m e nt, a s e p ar at e C N N w as tr ai n e d f or e a c h P S N R. Fi g ur e 8
s h o ws t h e r e p e at a bilit y of o ur v ert e x d et e ct or o v er diff er e nt
n ois e l e v els usi n g p at c h es e xtr a ct e d fr o m SI D D, c o m p ar e d
t o A SJ [3 6 ], H arris [1 2 ], a n d O R B [2 7 ]. T h e r e p e at a bilit y
F-s c or es ar e c o m p ut e d b y c o m p ari n g t h e p oi nts o bt ai n e d
b y e a c h m et h o d o n t h e n ois y i m a g es wit h its o ut p ut o n t h e
n ois el ess gr o u n d tr ut h i m a g es. I n all c as es w e fi n d t h at o ur
m o d el pr o vi d es s u p eri or r esili e n c e t o n ois e. O ur d et e ct or
als o pr o vi d es r e p e at a bilit y o v er c h a n g e i n vi e w p oi nt a n gl e
si mil ar t o ot h er i nt er est p oi nt d et e ct ors (s e e s u p pl e m e nt).

I n a d diti o n t o t h e v ert e x l o c ati o ns, a fi el d of j u n cti o ns
pr o vi d es a n esti m at e of t h e a n gl es of e a c h d et e ct e d v ert e x.
We tr e at ϕ i as a n esti m at e f or t h e a n gl es at a pi x el i. Fi g-
ur e 9 s h o ws a c o m p aris o n of t his a n gl e esti m ati o n a c c ur a c y
o v er m ulti pl e n ois e l e v els wit h A SJ pr e pr o c ess e d b y B M 3 D.
B e c a us e A SJ al o n e f ails at m o d er at e n ois e l e v els (s e e Fi g-
ur e 7 ), w e o nl y pl ot t h e r es ults of B M 3 D f oll o w e d b y A SJ.

6. Li mit ati o ns

T h e fi el d of j u n cti o ns is g o v er n e d b y j ust a f e w p ar a m-
et ers, s o c o m p ar e d t o d e e p C N Ns it h as m u c h l ess c a p a c-
it y t o s p e ci ali z e t o n o n-l o c al p att er ns of b o u n d ar y s h a p e
a n d a p p e ar a n c e t h at e xist i n a p arti c ul ar d at as et or i m a gi n g
m o d alit y. Als o, as c urr e ntl y d esi g n e d, it a n al y z es i m a g es
at o nl y o n e s c al e at a ti m e, wit h R d et er mi ni n g t h e mi ni-
m u m s e p ar ati o n b et w e e n v erti c es i n t h e o ut p ut at t h at s c al e.
Fi n all y, w hil e t h e a n al ysis al g orit h m s c al es w ell wit h i m-
a g e si z e ( O (N ), c o m p ar e d t o t h e O (N 1 .5 ) a n d O (N l o g N )
al g orit h ms of [ 2 4 , 2 3 ]) a n d h as r u nti m e c o m p ar a bl e t o
s o m e ot h er a n al y z ers li k e g P b, it is sl o w er t h a n f e e df or w ar d
C N Ns a n d d e di c at e d s m o ot h ers a n d c o nt o ur/ c or n er d et e c-
t ors t h at ar e e n gi n e er e d f or s p e e d o n hi g h- S N R i m a g es.

A c k n o wl e d g e m e nts. T his w or k is s u p p ort e d b y t h e N a-
ti o n al S ci e n c e F o u n d ati o n u n d er C o o p er ati v e A gr e e m e nt
P H Y- 2 0 1 9 7 8 6 ( a n N S F AI I nstit ut e, htt p://i ai fi. or g ).

6 8 5 6

A ut h ori z e d li c e n s e d u s e li mit e d t o: MI T Li br ari e s. D o w nl o a d e d o n J a n u ar y 3 1, 2 0 2 4 at 1 7: 2 9: 4 7 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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