2210.05588v2 [math.DG] 8 Mar 2023

.
.

arxiv

RIGIDITY OF NONPOSITIVELY CURVED MANIFOLDS
WITH CONVEX BOUNDARY

MOHAMMAD GHOMI AND JOEL SPRUCK

ABsTRACT. We show that a compact Riemannian 3-manifold M with strictly convex
simply connected boundary and sectional curvature K < a < 0 is isometric to a con-
vex domain in a complete simply connected space of constant curvature a, provided
that K = a on planes tangent to the boundary of M. This yields a characteri-
zation of strictly convex surfaces with minimal total curvature in Cartan-Hadamard
3-manifolds, and extends some rigidity results of Greene-Wu, Gromov, and Schroeder-
Strake. Our proof is based on a recent comparison formula for total curvature of
Riemannian hypersurfaces, which also yields some dual results for K > a > 0.

1. INTRODUCTION

A Cartan-Hadamard manifold H is a complete simply connected Riemannian n-space
with sectional curvature K < 0. Greene and Wu [9, 10] and Gromov [3, Sec. 5] showed
that, when n > 3, these spaces exhibit remarkable rigidity properties, analogous to
those observed earlier by Mok, Siu, and Yau [13, 18] in K&hler geometry. In particular,
a fundamental result is that if K vanishes outside a compact set C' C H, then H is
isometric to Euclidean space R™. More generally, if K < a <0 on H, and K = a on
H\ C, then K =a on H [9, p. 734] [17]. We extend this result when n = 3:

Theorem 1.1. Let M be a compact Riemannian 3-manifold with nonempty C* boundary
OM and sectional curvature K < a < 0. Suppose that OM is strictly convex, each
component of OM is simply connected, and K = a on planes tangent to OM. Then M
is isometric to a conver domain in a Cartan-Hadamard manifold of constant curvature

a. In particular, M is diffeomorphic to a ball.

Strictly conver here means that the second fundamental form of M is positive definite
with respect to the outward normal. For n = 3, this theorem immediately implies the

rigidity results mentioned above, by letting M be a geodesic ball in ‘H containing C.
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Schroeder and Strake [15] had established this result for a = 0 (and only for n = 3)
refining earlier work of Schroeder and Ziller [14]. The simply connected assumption on
components of dM is necessary, as can be seen by considering a tubular neighborhood
of a closed geodesic in a hyperbolic manifold.

As an application of Theorem 1.1 we obtain the following characterization for strictly
convex surfaces with minimal total curvature. We say that an oriented closed (com-
pact, connected, without boundary) hypersurface I' C H is strictly convex if its second
fundamental form 1 is positive definite. Then I' is embedded, bounds a convex do-

main, and is simply connected [1]. The total Gauss-Kronecker curvature of T is given

by G(T') := [ det(I), and |I'| denotes the area of I'.

Corollary 1.2. Let H be a 3-dimensional Cartan-Hadamard manifold with curvature
K <a<0, andT CH be aC? closed strictly convex surface. Then

(1) G(I) > 47 — a|T|,
with equality only if K = a on the conver domain bounded by T'.

Proof. By Gauss’ equation det(Il,) = Kr(p) — K(T,I') for all p € I', where Kr is the
intrinsic curvature of I', and T,I' is the tangent plane of I' at p. Since I' is simply
connected, fr Kr = 47 by Gauss-Bonnet theorem. Thus

(2) GI) =4r — K(T,I') > 4w — a|T'|.

pel’
If equality holds in (1), then it also holds in (2), which forces K = a on tangent planes of
I'. Theorem 1.1, applied to the convex domain bounded by I'; completes the proof. [J

For a = 0, the last result is stated in [3, p. 66] and follows from [15, Thm. 2.
Gromov’s approach to the rigidity theorems mentioned above [3, Sec. 5], which are
further developed in [14,15], was based on extension of isometric embeddings in locally
symmetric spaces. In most of these results the rank of the space is required to be bigger
than 1, which precludes negative upper bounds for curvature. The arguments of Greene
and Wu [9] on the other hand involve volume comparison theory, which applies readily
to various curvature bounds [9, p. 734]; see Seshadri [17|. Here we develop a different
approach via recent work on total curvature of Riemannian hypersurfaces |7, 8], which
also yields some results for the dual case K > a > 0; see Note 3.1. Generalizing (1) to
dimensions n > 3 is an important open problem with applications to the isoperimetric
inequality; see [7]| for more references and background in this area.
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2. PROOF OF THEOREM 1.1

The proof consists of three parts. First we use the comparison formula developed in
[7,8] to show that K = a on a neighborhood of M (which we do not a priori assume
to be connected). Then it follows that M is isometric to a convex domain in a Cartan-
Hadamard manifold M, which has constant curvature a outside M (in particular M
is connected). Finally enclosing M in a geodesic ball B C M and shrinking the radius
of B completes the proof via the first part of the argument. The first part also involves
the Gauss-Bonnet theorem, which is why we need to assume that n = 3. Other aspects

of the proof work in all dimensions n > 3.

(Part I). Let I' be a component of M, dr: M — R be the distance function of I', and
Iy = dfl(t) be the parallel surface of I' at distance ¢. Since I' is C2, there exists € > 0
such that Ty is C% for t € [0, ], see [5]. In particular, for t € [0, €], the principal curvatures
k! of T'y with respect to the outward normal v are well-defined. By assumption, /{? > 0,
which yields that s} > 0, assuming ¢ is sufficiently small. Let e} be a choice of orthogonal
principal directions for /if, and Kzt be the sectional curvatures of M for planes spanned
by v; and ef. Let Q. C M be the domain bounded in between I' and T, and recall that
G(T';) denote the total Gauss-Kronecker curvature of Ty, i.e., the integral of x}{x} over
I';. Since |Vdr| is constant on I't, the comparison formula in [8, Thm. 3.1] reduces to

O(T) - G(r0) =~ [ (K} + rbiY).
Qe
Let H' := k! + r} denote the mean curvature of I';. Since k! > 0,
®) G(r) - 6(r) = ~a [ H'=~a(IT| - L),
Qe

The last equality is due to Stokes theorem, since H! = div(Vdr) and |Vdr| = 1 (more
formally, the above inequality holds on €.\ g, for 0 < s < ¢, and we may take the limit
as s — 07). On the other hand, by Gauss’ equation and Gauss-Bonnet theorem,

G(IT) = 4m — K(T,I') = 4 — a|T'|,
pel’

(4) G(T.) =4r — K(TPFE) > 4 — a|l¢|.
p€el:
Hence

G(T) - G(Te) < —a(|T| - L)
So equality holds in (3) which forces K} = a on (2 for i = 1, 2. Furthermore, equality in
(3) implies equality in (4), which yields that K = a on tangent planes of T'.. So K = a
on a triplet of mutually orthogonal planes at each point of I'c. It follows that K = a
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with respect to all planes with footprint on I';, since K < a. As this argument holds for

all &/ < e, we conclude that K = a on ..

(Part IT). Let H be the 3-dimensional Cartan-Hadamard manifold of constant curva-
ture a. Then €2 is locally isometric to . Furthermore, since I' is simply connected, so
is €).. Thus there exists an isometric immersion f: Q. — H, by a standard monodromy
argument. In particular, f(I") forms a closed immersed surface in H with positive prin-
cipal curvatures. Consequently, by a result of Alexander [1, Thm. 1|, see also [15, Lem.
1], f embeds I" into the boundary of a convex domain C' C H. Let C’ C H be the closure
of H\ C. Using the diffeomorphism f between f(I') = 9C’ and T, we may glue C’ to M
along I' to obtain a smooth manifold with one fewer boundary component. Repeating
this procedure for each component I' of OM yields an extension of M to a complete
manifold M of nonpositive curvature. Now pick a point p € M. By Cartan-Hadamard
theorem, the exponential map exp,,: T,M — M is a covering. Let X be a component
of M\ M. Note that X is simply connected since, by Schoenflies theorem, it is homeo-
morphic to the complement of a ball in R3. Let X’ be a component of exp, L(X). Since
X is simply connected, X’ is homeomorphic to X. In particular X’ is an embedded
topological sphere. Thus X’ is the complement of a bounded set in 7T,M. Since any
two such sets must intersect, it follows that M \ M is connected, and X" = exp,!(X).
In particular M \ M = X, which is simply connected. Consequently exp,: X "= X is
one-to-one, which yields that it is one-to-one everywhere, since exp,, is a covering map.
Hence M is simply connected, and therefore is a Cartan-Hadamard manifold. Finally,
since M \ M is connected, OM is connected. So M forms a convex domain in M by
Alexander’s result [1, Thm. 1].

(Part III). It remains to show that K = a on M. By construction K =a on M \ M.
So we just need to check that K = a on M. Fix a point o in M and let B, C M be
the geodesic ball of radius r centered at o. If r is large enough, so that M C B,, then
K = a outside B,.. Let rg be the infimum of » > 0 such that K = a on M\BT. Ifrg=0
we are done. Otherwise, since a < 0, 0B,, forms a strictly convex surface by Hessian
comparison (the principal curvatures of 0B,, are bigger than those of a sphere of the
same radius in R3 [12, 1.7.3]). Thus we may apply the result of Part I to B, to obtain
that K = a on a neighborhood of 0B, in B,,, which contradicts the definition of ry.
So we conclude that K = a everywhere, which completes the proof.

3. NOTES

Note 3.1. Part I of the proof of Theorem 1.1 works just as well for nonnegative cur-
vature, i.e., suppose that K > a > 0 on M and K = a on tangent planes of M, then
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virtually the same argument shows that K = a on an open neighborhood of 0M. Thus
if OM contracts to a point through strictly convex surfaces, then K = a on M as we
showed in Part ITI. This may be considered a dual version of Theorem 1.1. For instance
if M is a geodesic ball of radius r in a space with K < b, then it satisfies the contraction
property provided that = < 7/(2v/b), by Hessian comparison [12, 1.7.3]. More generally,
the required contraction may be achieved via a curvature flow when maximum value
of K is not too large compared to principal curvatures of M [2]. Furthermore note
that when a = 0, and M is simply connected, M may be extended to a nonnegatively
curved manifold M which is flat outside M, as discussed in Part II of the above proof.
Then M is isometric to R? by [9, Thm. 1]. So M will be flat, as had been observed
earlier in [15, p. 486|. See [14,16] for more rigidity results for nonnegative curvature

Note 3.2. Once Part I of the proof of Theorem 1.1 has been established, and it is known
a priori that M is simply connected with connected boundary I', one may complete
the argument more directly by covering M with a continuous family of strictly convex
surfaces I'y with I'g = I'. For instance, we may let ['; be level sets of a strictly convex
function on M, see [4, Lem. 1]. Alternatively, one may use harmonic mean curvature
flow, i.e., set I'y := X(I',¢) for X: ' x [0,T) — M given by
0 -1

o P = )+ 1m0

ot
where 14 is the outward normal of I'; and ﬁ§ are its principal curvatures. Xu showed

X(p,0) =p,

[19], see also Gulliver and Xu [11], that T'; converges to a point o0 as t — T, and remains
strictly convex throughout [19, Prop. 19]. So T’y always moves inward, foliating the
region M \ {o}. The stated regularity requirement in [19] is that I" be C*°, which we
may assume is the case after a perturbation of I' [6, Lem. 3.3], since by Part I we have
K =anearI'.
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