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Abstract Sections

Sampling from known probability distributions is a ubiquitous task Introduction

in computational science, underlying calculations in domains from Lattice QCD and the sampling
linguistics to biology and physics. Generative machine-learning (ML) problem

models have emerged as a promising tool in this space, buildingonthe | MLfor sampling lattice field
success of this approach in applications such asimage, textand audio | configurations
generation. Often, however, generative tasks in scientific domains have | Outlook

unique structures and features — such as complex symmetries and the
requirement of exactness guarantees — that present both challenges
and opportunities for ML. This Perspective outlines the advances

in ML-based sampling motivated by lattice quantum field theory,

in particular for the theory of quantum chromodynamics. Enabling
calculations of the structure and interactions of matter from our

most fundamental understanding of particle physics, lattice quantum
chromodynamics is one of the main consumers of open-science
supercomputing worldwide. The design of ML algorithms for this
application faces profound challenges, including the necessity of
scaling custom ML architectures to the largest supercomputers, but
also promises immense benefits, and is spurring a wave of development
in ML-based sampling more broadly. Inlattice field theory, if this
approach canrealizeits early promise it will be a transformative

step towards first-principles physics calculations in particle, nuclear
and condensed matter physics that are intractable with traditional
approaches.
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Introduction

Theoretical nuclear physics has the ironic feature that although the
fundamental laws are well understood, the computations required to
make quantitative, first-principles predictions are in many cases cur-
rently infeasible. The strong nuclear force is fundamentally described
by the quantum field theory known as quantum chromodynamics
(QCD), which details the dynamics of constituent particles — quarks
andgluons —thatarise as excitations of underlying quantum fields. This
theory successfully predicts awide range of phenomena that occur at
differentenergy scales, ranging from the high-energy collisions at the
Large Hadron Collider to the properties and interactions of composite
particles such as the proton and neutron, as well as the nuclei they
form. At high energies, theinteractions between quarks and gluons are
weak, and accurate QCD calculations can be made using a perturbative
expansion, whichis often represented with Feynman diagrams. At the
lower energies relevant for much of nuclear physics, the interactions
between quarks and gluons are strong, and the perturbative approach
breaks down. Inthis regime, quantitative predictions can be achieved
through acomputationalapproachknownaslattice QCD, in which the
quarkand gluonfields arerepresented on a discrete spacetime lattice.
Many key aspects of nuclear physics can be computed precisely in this
framework. For example, such calculations reveal how the masses of
the protonand neutron arise from the fundamental quarks and gluons',
and they have been used to make predictions of the masses of new
composite particles later discovered by experiments at CERN***. How-
ever, the reach of this approachis limited by its computational cost,
and controlledfirst-principles QCD calculations of nuclear structureand
reactions, for example, would require a scale of computational
resources that is currently infeasible’. Without breakthrough devel-
opments, many important studies will remain impossible even with
the world’s next generation of exascale supercomputers (quintillions
(10'®) of operations per second, or the equivalent of 50 million laptops
workingin concert). If the computational cost of lattice field theory can
be greatly reduced, fundamental questionsin particle, nuclear and con-
densed matter physics will be answered. For example, first-principles
calculations can probe the fine-tunings in nuclear physics that are
deeply important for understanding our existence, by revealing how
sensitive the production of carbonin the Universe via the triple-a pro-
cess is to the free parameters of the theory, explaining why protons
and neutrons cluster inside nuclei, and elucidating how the lightest
elements formed in the first minutes of the Universe’s existence via
Big Bang nucleosynthesis®.

Calculations in lattice QCD are cast in the form of statistical
averages with respect to a distribution of quark and gluon field con-
figurations. A major component of the computational cost of lattice
QCD calculations is the estimation of these averages by Monte Carlo
sampling techniques. (Sampling is one of several computationally
intensive steps in lattice QCD calculations. Others, such as the inver-
sion of Dirac operators for the calculation of physical observables,
may also be accelerated using machine-learning (ML) approaches’°.)
Sampling representative configurations of a system to quantitatively
evaluate its properties is ubiquitous in physics, being used in fields
spanning from ab initio molecular dynamics and statistical phys-
ics to astrophysics, and many others. However, sampling from the
highly structured, high-dimensional and multimodal distribution of
configurationsin lattice QCD presents an extraordinarily difficult com-
putational challenge. This problem has historically been theimpetus
for the development of what have become foundational techniques
in computational statistics and high-performance computing, with

far-reaching implications within and beyond physics. For example,
both the classic Metropolis-Hastings Markov chain Monte Carlo
algorithm' and Hamiltonian/hybrid Monte Carlo (HMC)" were first
developed in the context of theoretical nuclear physics, with the lat-
ter conceived specifically for lattice QCD. Similarly, the IBM Blue
Gene series of supercomputerstrace their origins back to the QCDOC
(quantum chromodynamics ona chip) computer built specifically for
this particular application™.

The rapid advance of ML over the past few years has spurred the
emergence of a new class of algorithms that are revolutionizing com-
puting for both science and industry applications. For example, the
extraordinary success of the ML tool AlphaFold" in protein folding
took the world of biology by surprise, redefining the pace of progress
inafield where algorithmic developments had been slow for decades.
Forlattice QCD, which has historically drivenavirtuous cycle ofinnova-
tions in scientific computing, these advances promise a new chapter.
In particular, therise of generative modelling with ML suggests the
particular application of sampling algorithms for lattice QCD. The sam-
pling probleminlattice QCD has several key features that present both
challenges and opportunities to ML. On the one hand, any algorithm
must be asymptotically exact, preventing the direct application
of certain generative ML approaches such as generative adversarial
networks or variational autoencoders (VAEs). A practical challenge
is also presented by the extreme scale of lattice QCD samples used in
state-of-the-art calculations, each of the order of several terabytes at
the currenttime. Onthe other hand, the forms of the relevant probabil-
ity distributions are exactly known, which can inform the design and
training of sampling architectures. In particular, these distributions are
invariantunder complicated and high-dimensional symmetry groups
which significantly reduce the dimensionality and complexity of the
problemifthey canbeincorporated exactly. Althoughit has required
considerable effort to develop ML models that incorporate the sym-
metries of lattice QCD into ML architectures, the investment has paid
dividends in the efficacy of the resulting algorithms.

This Perspective reviews the unique requirements and features of
aclass of ML-based sampling strategies that have been recently devel-
oped for lattice QCD applications and places these developments in
the broader context of ML for sampling in scientific domains. Although
this endeavour remains inits early stages, it is already clear that it has
considerable potential, not only to emulate the transformative impact
that ML has hadinapplications such as AlphaFold", but also to spur the
advancement of ML itself.

Lattice QCD and the sampling problem
The lattice method for computing physical observables in quantum
field theories such as QCD proceeds by discretizing space and time
onto a four-dimensional grid (or ‘lattice’), with spacing a between
neighbouring points and a finite volume V. In this framework, the
fundamental particle degrees of freedom of the theory — quarks and
gluonsinQCD —are represented through ‘quantum fields’ that consist
of complex numbers, vectors or matrices associated with the points
and edges (or ‘links’) of the lattice. Quantities of physical interest are
then defined by integrals over these field degrees of freedom, and the
continuum, infinite-volume theory is recovered by taking the limit
a->0,V->o,

Ageneral physical observable canbe defined in terms of quantum
‘operators’ ©and computed as a statistical expectation value':

(0) =J"Dq> O[®]p[®], where p[®] = e S1®Y/Z. o
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Here the notation f Do schematically indicates integration over
all configurations of the discretized quantum fields collectively
denoted by @,and Z = [ D®e 1*!isanormalizing constant. The ‘action’
S[®] encodes the dynamics of the theory by defining the statistical
distribution p[@];in QCD, it describes the fluctuations and interactions
of the quark and gluon fields. The operator O can be chosen to study
various physical properties of the theory; forexample, the mass of the
proton can be calculated using an operator that represents
theinteraction of two up quarks and one down quark.

In practice, the integral in equation (1) cannot be computed ana-
lytically and is instead evaluated by Monte Carlo integration, that is,
using an ensemble of N field configurations {®,,...,®,} sampled from
the distribution p[®]. Physical quantities are then computed as
(O)= % Zﬁl O[®,;] withanuncertainty thatis systematicallyimprovable
by taking Nlarge. The first step of any lattice field theory calculationis
thusasampling problem. Although the challenge of generating lattice
field configurationsis reminiscent of sampling problemsin many other
fields, the structure of the quantum fields, the complicated symmetries
of thedistribution p[@]and the sheer scale of the required calculations
set this apart as a particularly difficult computational problem.

Structure and symmetries of field configurations
Intypicallattice quantum field theories, the discretized quantum fields
not only extend over the spacetime lattice, but also have ‘internal’
degrees of freedom represented mathematically by a vector or matrix
structure at each point or edge of the lattice. In particular, in QCD the
gluon field Uis encoded by SU(3) variables — 3 x 3 complex unitary,
unit-determinant matrices — on each edge of the lattice, whereas the
quark fields & are encoded by 4 x 3 complex matrices on each site of
the lattice, as shown in Fig. 1. For QCD, the calculation of a physical
observable via equation (1) can thus be expressed as

(Oy= % J"DUDWW OU, @, ple SVl
% j DUO[U]e e, 2

where Z= I DUDPDYe SW. ¥ W1

Here the notation IDU indicates integration over all values of the
discretized gluon field U, whereas the integration fD@DllJ over all
values of the discretized quark fields are Gaussian integrals that are
evaluated analytically, yielding a modified operator ©” and the modi-
fied weight p[U] = e >« Y}/ 7 over gluon field configurations. (In par-
ticular, the integral _[DWDUJ is a Berezin integral” over elements of a
Grassmann algebra, which must be analytically treated to produce an
integral amenable to numerical evaluation.) In practice, auxiliary
degrees of freedom known as ‘pseudo-fermions’ are also typically
introduced as stochastic estimators for determinants appearing
in p[U]=exp(-S.;[U])/Z. State-of-the-art lattice QCD calculations
involve fields of size up t0 256 x 512 = 8.6 billion lattice sites with quan-
tum fields represented by roughly 50 degrees of freedom per lattice
site (this counting includes four SU(3) matrices for each lattice site,
yielding4 x 8 =32 degrees of freedom, as well as complex 4 x 3matrices
with 2 x 3 x 4 =24 degrees of freedom for each site, arising from the
pseudo-fermion fields), meaning that, in practice, calculationsinvolve
Monte Carlo integration over as many as 10” variables.

Symmetries in a lattice field theory manifest as transformations
of field configurations that leave the probability density p[U] and the
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Fig.1|Depiction of a single cube within the spacetime lattice of a lattice QCD
calculation. Shown are some elements U, (x) of the discretized gluon field (red),
each associated with anedge (x, x + i) from site x to the neighbouring site in
direction u € {1,2,3,4}, and an element ¥(y) of the discretized quark field (blue),
associated withasitey. The value of each U,(x) isa complex unitary 3 x 3 matrix
with determinant1, thatis, an SU(3) matrix, and each ¥(y) isa4 x 3 complex
matrix. a is the lattice spacing between neighbouring points. The fourth
dimension of the lattice is suppressed for clarity.

integration measure invariant. The action, and hence p, is typically
invariantunder both discrete geometric symmetries of the hypercubic
Euclideanspacetime, such as discrete translations, rotations and reflec-
tions, and under internal symmetry transformations. For example, one
contribution to the lattice QCD action s given by

4
S[U1=~ g Y Y ReTr[UY,0)U,(x+ DU x+)U](x)],
x p=1
v=1

(3)

where Sisaparameter of the theory thatis related to the lattice spacing
a,xissummed over the sites of the discretized lattice, and /i, Vindicate
vectors of length ain the uz and v directions, respectively (see Fig. 1).
Fromthis expression, it can be seen how ‘gauge’ symmetry is manifest
inQCD, as p[U]isinvariant under the transformation of the gauge field
Uaccordingto

U,00) > U0 (x + ) (4)

for all possible choices of Q(x) € SU(3) over all lattice sites. Because
this symmetry is specified by one SU(3)-valued matrix per lattice site
(so eight degrees of freedom per site), the symmetry group may have
adimension as large as 10" in state-of-the-art calculations.

Approaches and challenges to sampling field configurations
Conventionally, the generation of an ensemble of lattice fields dis-
tributed according to p[®] is performed iteratively using a Markov
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process, in which a chain of configurations {®,,®,,...} is generated by
asequence of stochastic updates beginning from aniinitial configura-
tion @,. In particular, the HMC algorithm was first conceived of in the
1980s specifically for this application in lattice field theory" and has
since become a mainstay of the computational science community.
In this paradigm, the rapid exploration of the state space is achieved
by a directed evolution from each configuration to a new proposed
configuration, which avoids an inefficient random walk. Exactness of
the distribution is guaranteed by applying the Metropolis—Hastings
procedure to accept the proposed configuration withan appropriate
probability'®" (see also the next section).

Despite the outstanding success of this approach — which
remains the workhorse of lattice field theory — generating ensembles
of field configurations is one of the notable computational costs of
first-principles QCD calculations. In particular, because the approach
evolves configurations via a local dynamical process, increasingly
many updates are required to decorrelate samples on physical length
scales as the continuum limitis approached (a > 0). This is a manifes-
tation of the phenomenon known as ‘critical slowing-down’ in this
context'*. Simultaneously, the distribution of QCD gauge fields
spans topologically distinct sectors, and Markov-based sampling
algorithms such as HMC can become ‘trapped’ or ‘frozen’ in sectors
of fixed topology.

Any alternative approach to sampling lattice field configurations
will need to satisfy several key requirements in order to be practically
viable. Mostimportantly, it must be statisticallyimprovable: thatis, the
true probability distribution p[®], including the various symmetries
that thisdistribution respects, must be recoveredinthelimitofalarge
number of samples. Furthermore, the approach must be efficiently
scalable to state-of-the-art lattice field theory studies, which involve
field configurations as large as many terabytes of memory each, with
asmany as 10 degrees of freedom. Finally, the approach mustimprove
on the impressive success of the HMC framework and mitigate the
challenges of critical slowing-down and topological freezing in some
regime of physical interest.

ML for sampling lattice field configurations

An ML approach to sampling lattice field configurationsis an appeal-
ing proposition: it offers a new paradigm of algorithms that are opti-
mized specifically for the task at hand. Enabling radically different
approaches to sampling, ML may mitigate critical slowing-down and
other key challenges faced by traditional Markov-process algorithms
such as HMC. Even for cases where HMC works well, ML may still pro-
vide advantages, for example by enabling embarrassingly parallel,
ratherthansequential, sampling, or by learningto approximate alarge
number of computational steps of traditional algorithms with fewer
operations, as is observed in other fields such as ML approximations
of partial differential equation solvers®.

However, the application of ML to lattice field theory is not
straightforward, given the previously highlighted features of the
lattice field theory problem. In particular, for the theory of QCD, gauge
field samples are collections of matrices that are constrained to be
SU(3) matrices (see Fig. 1), whereas samples in typical ML domains
such as images or natural language models are represented by vec-
tors of unconstrained real numbers. When considering generative
models based on diffeomorphisms, as discussed below, itisimperative
to ensure that these constraints are satisfied by all transformations.
The associated SU(3) gauge symmetry is also very atypical in com-
parisonwith usual ML applications, although other symmetries such as

4D translations may be handled by traditional ML methods such as
convolutional neural networks. Moreover, generative models for
traditional applications such as images and language do not require
asymptotic guarantees of exactness in sampling, whereas these
arecriticalinthelattice field theory context. Finally, the sheer scale of
state-of-the-art lattice QCD calculations, both in terms of the scale
of lattice samples and the computational cost required to manipu-
late them, presents a challenge to ML approaches. Figure 2 illustrates
these stark contrasts between the lattice field generation problem
and other sampling tasks that have been revolutionized through ML,
such as image generation. Clearly, achieving state-of-the-art sam-
pling performance with new ML algorithms in the context of lattice
field theory will require the development of new algorithms and
innovationin ML.

Classes of generative models for sampling in lattice field
theory

ML models designed to (approximately) sample from atarget density
are known as generative or probabilistic models. A generative model
typically consists of three components: a space of latent or hidden
variables equipped with a density, aset of observed or target variables,
and a parametric map that transforms points in the latent space into
pointsinthetargetspace. Optimizationis performed on the parametric
map so that the density itinducesin the target space approximates the
target density. A wide variety of ML-based generative architectures
have been developed over the past decade, with transformative suc-
cesses particularly evident in applications to sound/image data®* >
and language data'*">**",

One notable difference between these applications and the chal-
lenge of sampling field configurations for lattice QCD is that the true
distribution over the space of images, sounds or text is not known, so
the model distribution is learnt from data samples. For lattice field
configurations, notonly is the unnormalized target distribution known,
but it must be sampled from with asymptotic guarantees of exact-
ness. This can be achieved with ML models if they feature tractable
likelihoods (the model probability density can be computed for any
given sample); in this case, they can be embedded inside sampling
algorithms with asymptotic guarantees, such as a Markov chain, as
discussed further below.

Atractablelikelihood also allows one to optimize an ML model by
minimizing a probability divergence D(q,; p) between the model pro-
bability density g,[U] parameterized by 6 and the knowntarget probabil-
ity density p[U] = e *Y)/Z_ However, in stark contrast to typical ML
sampling problems, training models for lattice QCD sampling requires
estimating the gradients V,D(q,; p) using only samples fromthe model
or perhaps only a small number of ‘ground truth’ data samples. This
restricts the family of probability divergences that can be used;
f-divergences such as the Kullback-Leibler divergence® are commonly
used, asthey canbe expressed as an expectation value under g, allow-
ingthedivergence anditsgradient tobe estimated frommodel samples
alone.

Any ML approach to sampling for lattice QCD must also be
‘scalable’ as the number of lattice sites, M = V/a*, is increased. Ide-
ally, its computational and memory costs should scale linearly or
sublinearly with the number of lattice sites, which we denote by O(M)
below. This applies to all aspects of the model: drawing samples,
evaluating the likelihood g, and evaluating the gradients V,D(qg; p).
This consideration restricts or rules out certain classes of models,
as discussed below.
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Quantum field generation

=10,000 samples

Lattice geometry ‘ 256 x 256 x 256 x 512

|
SU(3) link variables ‘ x4x8 ‘
|

| 2100,000,000,000 dof
Target
Objective distribution p(U) = eY/Z
Symmetries

High-dimensional exact symmetries
(for example, translations, gauge symmetry)

Fig.2 | Comparison between the sampling tasks of quantum field generation
for lattice quantum chromodynamics and image generation. In addition

to differences in the target and symmetries of the problems, the hierarchy

of degrees of freedom (dof) per sample to number of samples is inverted for
quantum field generation as compared with image generation. The action

Image generation

=1,000,000,000 samples

RGB pixel variables E
=1,000,000 dof

Image geometry

Target
Subjective high quality per sample

Symmetries
Few approximate symmetries
(for example, reflection, small translations)

Sencodes the dynamics of the theory by defining the statistical distribution

p, Uis thegluon field, and Zis a normalizing constant. The image on the right
sideis reprinted from Kaggle (https://www.kaggle.com/datasets/vitaliykinakh/
stable-imagenetlk) under a Creative Commons licence CC01.0).

The features of various generative modelling frameworks that
couldbe considered for the lattice QCD sampling problem are outlined
below.

+ Latent-variable models such as generative adversarial networks™
and VAEs*** typically have efficient O(M) sampling, but intractable
likelihoods (involving marginalization of latent variables).

+ Autoregressive models'>?>*3%% typically have efficient O(M)
likelihood evaluation. Sampling can also be achieved with O(M)
costinprinciple, but existing implementations are impractically
slow.

+ Continuous-time modelsinclude diffusion models**** defined via
stochasticdifferential equations and continuous-time normalizing
flows* defined viaordinary differential equations. Inthese models,
likelihood computation requires integrating a scalar ordinary
differential equation defined by the divergence of a vector field
(the marginal score function). This computation typically has
computational cost O(M?) unless additional structure is forced
on to the model™.

+ Discrete-time normalizing flow models** * remain as good
candidate models. Ina discrete flow, the generative process maps
alatent vector z (a field configuration in the lattice field theory
context) sampled fromabase density into the target density viathe
composition of aseries of parametric diffeomorphismsF,, F,, ..., F,.
If zis sampled with density r(z), then a flow sample x = F(z) has
known density q(x) =r(z)|detdF /02!, where F= Fpo ... « F, is the

These models, however, also have intrinsic limitations that must be
worked around, such astopology preservation of the diffeomorphism**
and difficulty inmodelling tail-behaviour of atarget density if the tails
arenotalready in the base density®.

One canalso consider sampling inanaugmented space, where the
data space is augmented with an additional set of auxiliary or latent
variables. In this setting, it may be viable to reconsider VAEs**** or
VAE-flow hybrids*¢, but currently there are no results demonstrating
that these methods perform well compared to models working directly
on the data space for lattice QCD.

Methods to guarantee asymptotic exactness

Several mechanisms have been proposed to combine generative mod-
els with Markov chain Monte Carlo and importance-sampling algo-
rithms in order to inherit their asymptotic convergence guarantees.
One of the simplest mechanisms is neural importance sampling, in
which a model density g,(x) = p(x) is used to evaluate expectations
under the target p viaE,[O(x)] = B, [;(();)) O(x)](ref.47). Anappealing
alternativeis toincorporate generative modelsinto anasymptotically
exact Markov process, which allows existing analysis techniques tobe
used or existing Markov chain updates to be combined with the ML
sampling approach. Generally, the Metropolis-Hastings algorithm
uses an ergodic transition kernel K(x’|x) to propose Markov chain
updates x > x” which are accepted with probability

composed diffeomorphism. By restricting to F; for which 8F,/dz b () = min[l K(X|X')p(x’)j )
isatriangular matrix, the cost of |detdF/dz| is only O(M) (ref.38). ace K(x’Ix)p(x)
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to ensure that the asymptotic equilibrium distribution is the desired
target distribution'®'. Although this method is guaranteed to
converge*®, the speed of convergence depends on the target density
and the choice of transition kernel K (x’|x).

ML models can be combined with the Metropolis—Hastings
approach by using generative models to construct the kernel K(x’|x).
A direct approach is to use the trained model gy(x) = p(x) to produce
independent and identically distributed (iid) proposal samples,
K(x’|x) = g,(x"), with the convergence rate determined by the quality
ofthe model approximation to the target distribution. More advanced
techniques include neural transport Monte Carlo*>*°, where Markov
chain Monte Carlois performedinthe latent space; learned Monte Carlo
proposals®®* where the goal is to directly learn the kernel K(x’|x);
learned sequential Monte Carlo sampling*®**, which combines deter-
ministic flows with sequential Monte Carlo annealing techniques;
Monte Carlo variance minimization*”***’; and stochastic normalizing
flows*®, whichinterleave deterministic transforms with latent-variable
VAE-like components and Markov chain Monte Carlo transforms. HMC
isaparticularly successful family of kernels and can also be combined
with learnt components. In the presence of pseudo-fermions, simulat-
ing the Hamiltonian dynamics for HMC requires an expensive computa-
tion of ‘force terms’, which is another area where acceleration may be
possible using ML*7072,

Incorporating manifold constraints and gauge symmetry in
ML models

When the target density for sampling features an exact or approximate
symmetry, breaking that symmetry in asampling algorithmwill result
incomputationalinefficiencies. In particular, continuous exact symme-
tries naturally reduce the effective dimensionality of the target distri-
bution, suchthatincorporatingthem directly reduces the difficulty of
modelling that target. In addition, training amodel with the symmetry
explicitly encoded modifies the structure of the loss landscapein away
that may make training feasible in cases where attempting to approxi-
mately ‘learn’ the symmetry may not be. Moreover, if guarantees of

Upx) I, x + i)

!

e, x+ fr)

o

Uy

Fig. 3 | lllustration of a gauge-equivariant transformation layer®**', Here,
aparametric gauge-equivariant diffeomorphismis constructed froma
diffeomorphism g satisfying g(QUQ") = Qg(U)Q' (matrix-conjugation
equivariance). To update the matrix-valued link U,(x) in red, this transformation
first updates the plaquette U”(x)l'T(x, X+ fi) containing that link, before ‘pushing’
thatupdate onto the link by assigning U, (x) =g(Uu(x)l'T(x, X+ ), x+ ).

The outputlink U (x) transforms appropriately under gauge transformations
when U,(x) andT (x, x + i) are transformed. See the main text for further details.

exactness are required, any remaining symmetry-breaking after
training will result in additional costs to correct that breaking via the
approachesdiscussedinthe previous subsection. It is thus often advan-
tageous, and in some cases critical, toincorporate symmetriesinto ML
architectures and/or training approaches.

Modern ML offers many techniques that seek to take advantage of
known symmetries. The simplest such methodis dataaugmentation™,
where the available training set is ‘augmented’ with randomly trans-
formed input/output pairs. Another technique consists of explicitly
adding a term to the optimization target that encourages equivari-
ance or invariance with respect to agroup of transformations’’¢. Both
approaches only serve to assist the training, and symmetries still have
to be learnt by the model architecture. Alternatively, it is possible to
construct architectures such that they respect known symmetries by
construction; standard convolutional neural networks, for example,
are equivariant maps with respect to translations. The most commonly
studied symmetriesare finitegroups’” and SE(3), the group of isometries
of 3D Euclidean space’’”’. Naturally, the larger the symmetry group, the
harderitis tolearnthe symmetries, either viadataaugmentation or via
additional optimization targets. In the case of lattice QCD, the gauge
symmetry has a prohibitively large dimension scaling withthe number
oflatticesites, henceitis likely essential to build gauge-equivariantand
invariant neural networks for this application. For example, with cur-
rent architectures and training approaches it has been demonstrated
that it is essential to exactly incorporate gauge symmetry®’, but not
translations and hypercubic transformations®, for successful training
of flow-based sampling algorithms for lattice field theory.

Building generative models that exactlyincorporate the symmetry
constraints of lattice QCD is a non-trivial task that has required the
introduction of several new ML models to treat both gauge and pseudo-
fermionic degrees of freedom®*°, This approach relies on the observa-
tionthat starting fromabase distribution that is gauge-invariant (such
as the Haar measure on SU(N)) and applying a gauge-equivariant dif-
feomorphism to this base density yields a new density that is also
gauge-invariant®*’*%*?!, One canreduce the problem of building gauge-
equivariant diffeomorphisms onthe gauge degrees of freedomssituated
ontheedgesof alattice to the problem of building matrix-conjugation-
equivariant diffeomorphisms®*>* on SU(3), whichis asimpler problem.
As described in equation (4), a gauge symmetry transformation 7, is
parameterized by a field of SU(3) variables Q(x) and acts on an edge,
or ‘link’, variable as ToU,(x) = Q(x)U”(x)QT(xﬂj) .As a consequence,
aproductoflink variables alongaclosed loop A(x) starting and ending
atapointx transforms as A(x) > Q(x)A(x)Q"(x). Mathematically this is
referred to asamatrix-conjugation, or adjoint transformation. If U,(x)
isalink, [(x, x + f1) is a product of links along an open path from x to
x+/ that does not contain U,(x), and g:SU(3) » SU(3) is a
conjugation-equivariant diffeomorphism, then a gauge-equivariant
diffeomorphism fcan be constructed as

FU00) =g(U0OT"(x, X + @), X + fa), (6)

asshownin Fig. 3. The diffeomorphism fthen manifestly satisfies gauge
equivariance, (T,U) = T, f(U). Building gauge-equivariant diffeomor-
phisms for pseudo-fermion degrees of freedom is also possible using
extensions of this approach based on parallel transport®*.

Aroadmap for ML-based samplingin lattice QCD
The great potential of ML-based sampling for lattice field theories has
inspired rapid developments that have already demonstrated profound

Nature Reviews Physics | Volume 5 | September 2023 | 526-535

531


http://www.nature.com/natrevphys

Perspective

--@--HMC ' 1
10,000 &--HB L1 1 4 ! |
%= = Flow R ! 2 ‘wl T
> S .
- + Qo ;
L T !
! N
1,000 — Lo L ; !
‘;" o 3 I T T ' T T !
‘_ﬂ [ 0 20,000 40,000 60,000 80,000 100,000 !
£ ¥ i : i |
5 400 e o ! Markov chain step !
.ot ! —HMC | |
Loee® ! HB |
__n' - | — Flow | |
107 Lae" __,.-‘* """" il :777777777777777777777777777777777777777777777777777777777:
o SIS IR —
‘.......-&
14
I I I I I I I
1 2 3 4 5 6 7
B

Fig. 4| Demonstration of the advantages of flow-based sampling ina U(1)
lattice gauge theory in two spacetime dimensions®. The inset shows the rapid
mixing of topological charge Q when sampling with normalizing flows, compared
with Hamiltonian/hybrid Monte Carlo (HMC) and heat bath (HB) algorithms for
theaction defined by 8 =7 (see equation (3) for the definition of the analogous

parameter in quantum chromodynamics). The main graph shows the asympto-
ticallyimproved scaling ofré"t towards the continuum limit 8 > =, where 1'(‘2"t isthe
‘integrated autocorrelation time’ of the topological charge, which is ameasure of
costin Markov-process sampling and can be interpreted here as a metric for
critical slowing-down. Reproduced with permission fromref. 83, APS.

successes. Following early applications of flow-based sampling to field
theories other than QCD®**’, the approach was developed for theories
intwo spacetime dimensions, specifically for SU(3) gauge fields without
dynamical quark (fermionic) degrees of freedom® and for U(1) gauge
fields with dynamical fermions®. Combining these advances enabled
the first application of flow models to sampling QCD in 4D%*, albeit
with smallspacetime volumes. ML-accelerated updating schemes have
been developed, again for small volumes and with the SU(2) gauge
group instead of SU(3) (ref. 62), and continuous-time models inspired
by previous work in the lattice field theory community®>°® have been
applied to simple lattice field theories’ and both U(1) gauge theory®
and SU(3) gauge theory®® in 2D. These approaches have had astound-
ing success; Fig. 4 illustrates the advantages of flow-based sampling
in one particular toy theory, but the conclusion that ML-accelerated
sampling schemes can overcome the critical slowing-down and topo-
logical freezing challenges faced by HMC has been clear and univer-
sal. It isimportant to emphasize that this success includes theories
with fermionic degrees of freedom, where ML-accelerated sampling
schemes have been developed to integrate with the usual approach
of pseudo-fermions®****°, However, the crucial aspect missing in all
applications so faris a demonstration of the effectiveness of ML tech-
niques at the scale of state-of-the-art lattice QCD calculationsin nuclear
and particle physics.

We expect that not only will we soon see applications of
ML-accelerated sampling to lattice field theory at scale, but that run-
ningatscaleis akeyingredient necessary to realize the full potential of
ML inthis context.In particular, we anticipate that the firstimpact of ML
for this application will be that, once the potentially high cost of training
is paid, ML-based sampling will be orders of magnitudes faster than tra-
ditional HMC, mitigating critical slowing-down, overcoming topological
freezing, and openingthe door toasampling regime where this training
cost can be efficiently amortized, as depicted in Fig. 5. At precisely which
scale thisadvantage will bereached is not yet clear; the computational
cost of training ML models in this context may vary by orders of magni-
tudebetween different architectures and training approaches'®’. Asthe

optimal approachto model parameterization and training can depend
sensitively onthe number of samples which are ultimately required, the
balance of training and sampling costs is highly problem-dependent,
and the regime in which flow-based sampling outperforms HMC for
lattice QCD applications will depend on precisely how the flow models
areused (and reused). Itis already evident, however, that achieving this
paradigm of efficient ML-accelerated sampling will require consider-
ableinvestment;itis clear thatin the field of generative ML asawhole,
the substantial progress in text'**?** and image modelling”** has
required pushing the boundaries of model size. So far, the generative
ML experiments for lattice field theory are of comparatively small scale,
despite the target scale of the problem itself being comparable to, or
even larger than, applications in these domains. Success will thus pro-
bably require model scales, and corresponding investments in upfront
training, that will constitute a change in paradigm of computational
resource use for the theoretical physics community. Nevertheless, asa
fundamentally structured problem, we anticipate that scaling the cus-
tomML solutions developed for lattice field theory to large models will
pay dividends and that lattice QCD will join the list of scientific problems
that have seenimportantimpacts from ML at state-of-the-artscale, such
as low-dimension Bayesian parameter inference for astrophysics'”,
quantum Monte Carlo'* and protein folding®.

Beyond the anticipated impacts of mitigating sampling challenges
such as critical slowing-down and topological freezing, ML models have
the potential to catalyse other paradigm shifts in lattice field theory.
For example, they naturally offer new opportunities for community
resource sharing. Ensembles of lattice field configurations are large
enough in size (petabytes for state-of-the-art ensembles) that they
cannotbe easily shared, and massive investments in tape resources are
made to store them. In contrast, even the largest ML models contain
only afew terabytes of parameters. These can easily be shared, allow-
ingresearchgroups around the globe to efficiently generate their own
configurations or reproduce ensembles from a known seed, in both
cases capitalizing on community-owned pretrained models. Another
important opportunity isthat ML-based samplers can be conditioned
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Fig. 5| Sketch of the upfront and sampling costs of hybrid Monte Carlo
compared with flow-based models. Hybrid Monte Carlo (HMC) shownin
blue; flow-based sampling in red. Whereas machine-learning models require a
potentially large upfront computational cost for training, they offer the hope
of efficient sampling, such that this training cost can be amortized. That is,
for sufficiently many samples, flow-based sampling that is more efficient than
HMC (for example, asin Fig.4) can outperform HMC in terms of total cost. The
minimum number of samples for which flow-based sampling is more efficient
than HMCis denoted by N*.

on various parameters of the theory, from the lattice spacing and
volume to physical parameters such as the strength of coupling of the
fundamental particles of the theory. The potential to generate ‘cor-
related’ sets of samples at different parameters, interpolated, or even
extrapolated'®>'%*, from the parameters used during training, is quali-
tatively distinct from what is possible using traditional sampling algo-
rithms such as HMC (in principle this is also possible for pre-selected
parameter sets, using approaches such as parallel tempering) and
offers new parameter extrapolation methods. Ultimately, one could
even imagine more general ways of conditioning these models (for
example,onasymbolicdescription of the targetaction), enabling new
approachessuch as direct measurements of the effect of modifying the
actionon physical observables. Assuch, ML techniques hold the prom-
ise of redefining conventional wisdom in this field, with implications
that have yet to be fully explored.

Outlook

As ML continues to evolve in scope and complexity, its applications in
science are being driven into two broad categories: those that can adapt
existing ML technologies (usually developed to modelimages, soundand
text) and those that demand ground-up developmentandinspireinnova-
tion. Lattice field theory is becoming established as a prime example of
thelatter, being simultaneously animportant science applicationin which
algorithmicacceleration will have wide-reaching implications for funda-
mental physics and amassive computational challenge of ascope and scale
that has driven advances in computation and algorithms for decades.

In particular, the challenge of sampling lattice field configu-
rations for nuclear and particle physics calculations is a definitive
proving-ground for generative ML models in science. With strict
requirements of asymptotic exactness, and an ultimate scale at which
each sample is several terabytes in size, it is clear that symmetries,
structure and domain knowledge must be incorporated into ML archi-
tectures designed for this task. Inthat regard, the application of ML to

samplinginlattice field theoryis akey exemplarinforming the debate
thatis currently underway in the ML community around incorporating
domain or expert knowledge: whereas ardent supporters of modern
deeplearning often argue against the long-term value ofincorporating
such knowledge (the ‘bitter lesson’ theory'®, advocated by Richard
Sutton), inthe physical sciences, and in particular in theoretical phys-
ics calculations, there are often precise mathematical formulations
of domain knowledge that not only make little sense to ignore, but
are intractable to learn from data. Adding to the complexity of this
engineering and design challenge, existing algorithmic benchmarks
forsamplinginlattice field theory are extremely high; new ML samplers
must compete against well-established algorithms that have been
optimized in co-design with high-performance computing systems
for more than four decades.

As such, ML for lattice field theory is not only a benchmark for
the application of ML in science, but it is also an endeavour with
paradigm-shifting potential for physics. Ifthe success already achieved
in sampling field theories at toy scales can be mimicked at state-of-
the-artscales, it will transform the computational landscape of a field
thatis one of the largest consumers of open-science supercomputing
(computing available to public scientific applications) worldwide,
with impacts across particle, nuclear and condensed matter physics
and beyond. On the ML side, it will be a flagship example of the power
of sophisticated domain-specific customization and engineering to
achieve transformative impact in computational science.

Published online: 4 August 2023
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