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Abstract

Sampling from known probability distributions is a ubiquitous task 
in computational science, underlying calculations in domains from 
linguistics to biology and physics. Generative machine-learning (ML) 
models have emerged as a promising tool in this space, building on the 
success of this approach in applications such as image, text and audio 
generation. Often, however, generative tasks in scientific domains have 
unique structures and features — such as complex symmetries and the 
requirement of exactness guarantees — that present both challenges 
and opportunities for ML. This Perspective outlines the advances 
in ML-based sampling motivated by lattice quantum field theory, 
in particular for the theory of quantum chromodynamics. Enabling 
calculations of the structure and interactions of matter from our  
most fundamental understanding of particle physics, lattice quantum 
chromodynamics is one of the main consumers of open-science 
supercomputing worldwide. The design of ML algorithms for this 
application faces profound challenges, including the necessity of  
scaling custom ML architectures to the largest supercomputers, but  
also promises immense benefits, and is spurring a wave of development 
in ML-based sampling more broadly. In lattice field theory, if this 
approach can realize its early promise it will be a transformative 
step towards first-principles physics calculations in particle, nuclear 
and condensed matter physics that are intractable with traditional 
approaches.
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far-reaching implications within and beyond physics. For example, 
both the classic Metropolis–Hastings Markov chain Monte Carlo 
algorithm10 and Hamiltonian/hybrid Monte Carlo (HMC)11 were first 
developed in the context of theoretical nuclear physics, with the lat-
ter conceived specifically for lattice QCD. Similarly, the IBM Blue 
Gene series of supercomputers trace their origins back to the QCDOC 
(quantum chromodynamics on a chip) computer built specifically for 
this particular application12.

The rapid advance of ML over the past few years has spurred the 
emergence of a new class of algorithms that are revolutionizing com-
puting for both science and industry applications. For example, the 
extraordinary success of the ML tool AlphaFold13 in protein folding 
took the world of biology by surprise, redefining the pace of progress 
in a field where algorithmic developments had been slow for decades. 
For lattice QCD, which has historically driven a virtuous cycle of innova-
tions in scientific computing, these advances promise a new chapter. 
In particular, the rise of generative modelling with ML14,15 suggests the 
particular application of sampling algorithms for lattice QCD. The sam-
pling problem in lattice QCD has several key features that present both 
challenges and opportunities to ML. On the one hand, any algorithm 
must be asymptotically exact, preventing the direct application  
of certain generative ML approaches such as generative adversarial 
networks or variational autoencoders (VAEs). A practical challenge 
is also presented by the extreme scale of lattice QCD samples used in 
state-of-the-art calculations, each of the order of several terabytes at 
the current time. On the other hand, the forms of the relevant probabil-
ity distributions are exactly known, which can inform the design and 
training of sampling architectures. In particular, these distributions are 
invariant under complicated and high-dimensional symmetry groups 
which significantly reduce the dimensionality and complexity of the 
problem if they can be incorporated exactly. Although it has required 
considerable effort to develop ML models that incorporate the sym-
metries of lattice QCD into ML architectures, the investment has paid 
dividends in the efficacy of the resulting algorithms.

This Perspective reviews the unique requirements and features of 
a class of ML-based sampling strategies that have been recently devel-
oped for lattice QCD applications and places these developments in 
the broader context of ML for sampling in scientific domains. Although 
this endeavour remains in its early stages, it is already clear that it has 
considerable potential, not only to emulate the transformative impact 
that ML has had in applications such as AlphaFold13, but also to spur the 
advancement of ML itself.

Lattice QCD and the sampling problem
The lattice method for computing physical observables in quantum 
field theories such as QCD proceeds by discretizing space and time 
onto a four-dimensional grid (or ‘lattice’), with spacing a between 
neighbouring points and a finite volume V. In this framework, the 
fundamental particle degrees of freedom of the theory — quarks and 
gluons in QCD — are represented through ‘quantum fields’ that consist 
of complex numbers, vectors or matrices associated with the points 
and edges (or ‘links’) of the lattice. Quantities of physical interest are 
then defined by integrals over these field degrees of freedom, and the 
continuum, infinite-volume theory is recovered by taking the limit 
a → 0, V → ∞.

A general physical observable can be defined in terms of quantum 
‘operators’ O and computed as a statistical expectation value16:

O D O∫ p p Z� � = Φ [Φ] [Φ], where [Φ] = e / . (1)S− [Φ]

Introduction
Theoretical nuclear physics has the ironic feature that although the 
fundamental laws are well understood, the computations required to 
make quantitative, first-principles predictions are in many cases cur-
rently infeasible. The strong nuclear force is fundamentally described 
by the quantum field theory known as quantum chromodynamics 
(QCD), which details the dynamics of constituent particles — quarks 
and gluons — that arise as excitations of underlying quantum fields. This 
theory successfully predicts a wide range of phenomena that occur at 
different energy scales, ranging from the high-energy collisions at the 
Large Hadron Collider to the properties and interactions of composite 
particles such as the proton and neutron, as well as the nuclei they 
form. At high energies, the interactions between quarks and gluons are 
weak, and accurate QCD calculations can be made using a perturbative 
expansion, which is often represented with Feynman diagrams. At the 
lower energies relevant for much of nuclear physics, the interactions 
between quarks and gluons are strong, and the perturbative approach 
breaks down. In this regime, quantitative predictions can be achieved 
through a computational approach known as lattice QCD, in which the 
quark and gluon fields are represented on a discrete spacetime lattice. 
Many key aspects of nuclear physics can be computed precisely in this 
framework. For example, such calculations reveal how the masses of 
the proton and neutron arise from the fundamental quarks and gluons1, 
and they have been used to make predictions of the masses of new 
composite particles later discovered by experiments at CERN2–4. How-
ever, the reach of this approach is limited by its computational cost,  
and controlled first-principles QCD calculations of nuclear structure and  
reactions, for example, would require a scale of computational 
resources that is currently infeasible5. Without breakthrough devel-
opments, many important studies will remain impossible even with 
the world’s next generation of exascale supercomputers (quintillions 
(1018) of operations per second, or the equivalent of 50 million laptops 
working in concert). If the computational cost of lattice field theory can 
be greatly reduced, fundamental questions in particle, nuclear and con-
densed matter physics will be answered. For example, first-principles 
calculations can probe the fine-tunings in nuclear physics that are 
deeply important for understanding our existence, by revealing how 
sensitive the production of carbon in the Universe via the triple-α pro-
cess is to the free parameters of the theory, explaining why protons 
and neutrons cluster inside nuclei, and elucidating how the lightest 
elements formed in the first minutes of the Universe’s existence via 
Big Bang nucleosynthesis6.

Calculations in lattice QCD are cast in the form of statistical 
averages with respect to a distribution of quark and gluon field con-
figurations. A major component of the computational cost of lattice 
QCD calculations is the estimation of these averages by Monte Carlo 
sampling techniques. (Sampling is one of several computationally 
intensive steps in lattice QCD calculations. Others, such as the inver-
sion of Dirac operators for the calculation of physical observables, 
may also be accelerated using machine-learning (ML) approaches7–9.) 
Sampling representative configurations of a system to quantitatively 
evaluate its properties is ubiquitous in physics, being used in fields 
spanning from ab initio molecular dynamics and statistical phys-
ics to astrophysics, and many others. However, sampling from the 
highly structured, high-dimensional and multimodal distribution of 
configurations in lattice QCD presents an extraordinarily difficult com-
putational challenge. This problem has historically been the impetus 
for the development of what have become foundational techniques 
in computational statistics and high-performance computing, with 
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Here the notation ∫ ΦD  schematically indicates integration over 
all configurations of the discretized quantum fields collectively 
denoted by Φ, and D∫Z e= Φ S− [Φ] is a normalizing constant. The ‘action’ 
S[Φ] encodes the dynamics of the theory by defining the statistical 
distribution p[Φ]; in QCD, it describes the fluctuations and interactions 
of the quark and gluon fields. The operator O can be chosen to study 
various physical properties of the theory; for example, the mass of the 
proton can be calculated using an operator that represents 
the interaction of two up quarks and one down quark.

In practice, the integral in equation (1) cannot be computed ana-
lytically and is instead evaluated by Monte Carlo integration, that is, 
using an ensemble of N field configurations {Φ1,…,ΦN} sampled from 
the distribution p[Φ]. Physical quantities are then computed as 
O O� � ≈ ∑ [Φ ]N i

N
i

1
=1  with an uncertainty that is systematically improvable 

by taking N large. The first step of any lattice field theory calculation is 
thus a sampling problem. Although the challenge of generating lattice 
field configurations is reminiscent of sampling problems in many other 
fields, the structure of the quantum fields, the complicated symmetries 
of the distribution p[Φ] and the sheer scale of the required calculations 
set this apart as a particularly difficult computational problem.

Structure and symmetries of field configurations
In typical lattice quantum field theories, the discretized quantum fields 
not only extend over the spacetime lattice, but also have ‘internal’ 
degrees of freedom represented mathematically by a vector or matrix 
structure at each point or edge of the lattice. In particular, in QCD the 
gluon field U is encoded by SU(3) variables — 3 × 3 complex unitary, 
unit-determinant matrices — on each edge of the lattice, whereas the 
quark fields Ψ are encoded by 4 × 3 complex matrices on each site of 
the lattice, as shown in Fig. 1. For QCD, the calculation of a physical 
observable via equation (1) can thus be expressed as

O D D D O

D O

D D D

∫

∫

∫

Z
U U

Z
U U

Z U

� � =
1

Ψ Ψ [ , Ψ, Ψ]e

=
1

′[ ]e ,

where = Ψ Ψe .

(2)

S U

S U

S U

− [ ,Ψ,Ψ]

− [ ]

− [ ,Ψ,Ψ]

eff

Here the notation D∫ U  indicates integration over all values of the 
discretized gluon field U, whereas the integration ∫ Ψ ΨD D  over all 
values of the discretized quark fields are Gaussian integrals that are 
evaluated analytically, yielding a modified operator O′ and the modi-
fied weight p U Z[ ] = e /S U− [ ]eff  over gluon field configurations. (In par-
ticular, the integral ∫ Ψ ΨD D  is a Berezin integral17 over elements of a 
Grassmann algebra, which must be analytically treated to produce an 
integral amenable to numerical evaluation.) In practice, auxiliary 
degrees of freedom known as ‘pseudo-fermions’18 are also typically 
introduced as stochastic estimators for determinants appearing  
in p U S U Z[ ] = exp(− [ ])/ .eff  State-of-the-art lattice QCD calculations 
involve fields of size up to 2563 × 512 ≈ 8.6 billion lattice sites with quan-
tum fields represented by roughly 50 degrees of freedom per lattice 
site (this counting includes four SU(3) matrices for each lattice site, 
yielding 4 × 8 = 32 degrees of freedom, as well as complex 4 × 3 matrices 
with 2 × 3 × 4 = 24 degrees of freedom for each site, arising from the 
pseudo-fermion fields), meaning that, in practice, calculations involve 
Monte Carlo integration over as many as 1012 variables.

Symmetries in a lattice field theory manifest as transformations 
of field configurations that leave the probability density p[U ] and the 

integration measure invariant. The action, and hence p, is typically 
invariant under both discrete geometric symmetries of the hypercubic 
Euclidean spacetime, such as discrete translations, rotations and reflec-
tions, and under internal symmetry transformations. For example, one 
contribution to the lattice QCD action is given by

∑ ∑S U
β

U x U x µ U x ν U x[ ] = −
6

ReTr[ ( ) ( + ) ( + ) ( )], (3)g
x µ

ν

µ ν µ ν
=1

=1

4
† †̂ ̂

where β is a parameter of the theory that is related to the lattice spacing 
a, x is summed over the sites of the discretized lattice, and µ ν,̂  ̂indicate 
vectors of length a in the μ and ν directions, respectively (see Fig. 1). 
From this expression, it can be seen how ‘gauge’ symmetry is manifest 
in QCD, as p[U ] is invariant under the transformation of the gauge field 
U according to

U x x U x x µ( ) → Ω( ) ( )Ω ( + ) (4)µ µ
† ̂

for all possible choices of Ω(x) ∈ SU(3) over all lattice sites. Because 
this symmetry is specified by one SU(3)-valued matrix per lattice site 
(so eight degrees of freedom per site), the symmetry group may have 
a dimension as large as 1011 in state-of-the-art calculations.

Approaches and challenges to sampling field configurations
Conventionally, the generation of an ensemble of lattice fields dis-
tributed according to p[Φ] is performed iteratively using a Markov 

U3(x)
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ψ(y)

U2(x)

a
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x

ψ11 ψ12 ψ13
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Fig. 1 | Depiction of a single cube within the spacetime lattice of a lattice QCD 
calculation. Shown are some elements Uμ(x) of the discretized gluon field (red), 
each associated with an edge x x µ( , + )̂  from site x to the neighbouring site in 
direction μ ∈ {1,2,3,4}, and an element Ψ(y) of the discretized quark field (blue), 
associated with a site y. The value of each Uμ(x) is a complex unitary 3 × 3 matrix 
with determinant 1, that is, an SU(3) matrix, and each Ψ(y) is a 4 × 3 complex 
matrix. a is the lattice spacing between neighbouring points. The fourth 
dimension of the lattice is suppressed for clarity.
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process, in which a chain of configurations {Φ1,Φ2,…} is generated by 
a sequence of stochastic updates beginning from an initial configura-
tion Φ0. In particular, the HMC algorithm was first conceived of in the 
1980s specifically for this application in lattice field theory11 and has 
since become a mainstay of the computational science community. 
In this paradigm, the rapid exploration of the state space is achieved 
by a directed evolution from each configuration to a new proposed 
configuration, which avoids an inefficient random walk. Exactness of 
the distribution is guaranteed by applying the Metropolis–Hastings 
procedure to accept the proposed configuration with an appropriate 
probability10,19 (see also the next section).

Despite the outstanding success of this approach — which 
remains the workhorse of lattice field theory — generating ensembles 
of field configurations is one of the notable computational costs of 
first-principles QCD calculations. In particular, because the approach 
evolves configurations via a local dynamical process, increasingly 
many updates are required to decorrelate samples on physical length 
scales as the continuum limit is approached (a → 0). This is a manifes-
tation of the phenomenon known as ‘critical slowing-down’ in this 
context11,20. Simultaneously, the distribution of QCD gauge fields 
spans topologically distinct sectors, and Markov-based sampling 
algorithms such as HMC can become ‘trapped’ or ‘frozen’ in sectors 
of fixed topology.

Any alternative approach to sampling lattice field configurations 
will need to satisfy several key requirements in order to be practically 
viable. Most importantly, it must be statistically improvable: that is, the 
true probability distribution p[Φ], including the various symmetries 
that this distribution respects, must be recovered in the limit of a large 
number of samples. Furthermore, the approach must be efficiently 
scalable to state-of-the-art lattice field theory studies, which involve 
field configurations as large as many terabytes of memory each, with 
as many as 1012 degrees of freedom. Finally, the approach must improve 
on the impressive success of the HMC framework and mitigate the 
challenges of critical slowing-down and topological freezing in some 
regime of physical interest.

ML for sampling lattice field configurations
An ML approach to sampling lattice field configurations is an appeal-
ing proposition: it offers a new paradigm of algorithms that are opti-
mized specifically for the task at hand. Enabling radically different 
approaches to sampling, ML may mitigate critical slowing-down and 
other key challenges faced by traditional Markov-process algorithms 
such as HMC. Even for cases where HMC works well, ML may still pro-
vide advantages, for example by enabling embarrassingly parallel, 
rather than sequential, sampling, or by learning to approximate a large 
number of computational steps of traditional algorithms with fewer 
operations, as is observed in other fields such as ML approximations 
of partial differential equation solvers21.

However, the application of ML to lattice field theory is not 
straightforward, given the previously highlighted features of the  
lattice field theory problem. In particular, for the theory of QCD, gauge 
field samples are collections of matrices that are constrained to be 
SU(3) matrices (see Fig. 1), whereas samples in typical ML domains 
such as images or natural language models are represented by vec-
tors of unconstrained real numbers. When considering generative 
models based on diffeomorphisms, as discussed below, it is imperative  
to ensure that these constraints are satisfied by all transformations.  
The associated SU(3) gauge symmetry is also very atypical in com-
parison with usual ML applications, although other symmetries such as  

4D translations may be handled by traditional ML methods such as 
convolutional neural networks. Moreover, generative models for 
traditional applications such as images and language do not require 
asymptotic guarantees of exactness in sampling, whereas these  
are critical in the lattice field theory context. Finally, the sheer scale of  
state-of-the-art lattice QCD calculations, both in terms of the scale  
of lattice samples and the computational cost required to manipu-
late them, presents a challenge to ML approaches. Figure 2 illustrates 
these stark contrasts between the lattice field generation problem  
and other sampling tasks that have been revolutionized through ML,  
such as image generation. Clearly, achieving state-of-the-art sam-
pling performance with new ML algorithms in the context of lattice  
field theory will require the development of new algorithms and 
innovation in ML.

Classes of generative models for sampling in lattice field 
theory
ML models designed to (approximately) sample from a target density 
are known as generative or probabilistic models. A generative model 
typically consists of three components: a space of latent or hidden 
variables equipped with a density, a set of observed or target variables, 
and a parametric map that transforms points in the latent space into 
points in the target space. Optimization is performed on the parametric 
map so that the density it induces in the target space approximates the 
target density. A wide variety of ML-based generative architectures 
have been developed over the past decade, with transformative suc-
cesses particularly evident in applications to sound/image data22–25 
and language data14,15,26–30.

One notable difference between these applications and the chal-
lenge of sampling field configurations for lattice QCD is that the true 
distribution over the space of images, sounds or text is not known, so 
the model distribution is learnt from data samples. For lattice field 
configurations, not only is the unnormalized target distribution known, 
but it must be sampled from with asymptotic guarantees of exact-
ness. This can be achieved with ML models if they feature tractable 
likelihoods (the model probability density can be computed for any 
given sample); in this case, they can be embedded inside sampling 
algorithms with asymptotic guarantees, such as a Markov chain, as 
discussed further below.

A tractable likelihood also allows one to optimize an ML model by 
minimizing a probability divergence D(qθ; p) between the model pro
bability density qθ[U] parameterized by θ and the known target probabil-
ity density p U Z[ ] = e /S U− [ ]eff . However, in stark contrast to typical ML  
sampling problems, training models for lattice QCD sampling requires 
estimating the gradients ∇θD(qθ; p) using only samples from the model 
or perhaps only a small number of ‘ground truth’ data samples. This 
restricts the family of probability divergences that can be used; 
f-divergences such as the Kullback–Leibler divergence31 are commonly 
used, as they can be expressed as an expectation value under qθ, allow-
ing the divergence and its gradient to be estimated from model samples 
alone.

Any ML approach to sampling for lattice QCD must also be  
‘scalable’ as the number of lattice sites, M = V/a4, is increased. Ide-
ally, its computational and memory costs should scale linearly or 
sublinearly with the number of lattice sites, which we denote by O(M) 
below. This applies to all aspects of the model: drawing samples, 
evaluating the likelihood qθ, and evaluating the gradients ∇θD(qθ; p). 
This consideration restricts or rules out certain classes of models,  
as discussed below.
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The features of various generative modelling frameworks that 
could be considered for the lattice QCD sampling problem are outlined 
below.
•	 Latent-variable models such as generative adversarial networks32 

and VAEs33,34 typically have efficient O(M) sampling, but intractable 
likelihoods (involving marginalization of latent variables).

•	 Autoregressive models14,15,22,26–30,35 typically have efficient O(M) 
likelihood evaluation. Sampling can also be achieved with O(M) 
cost in principle, but existing implementations are impractically 
slow.

•	 Continuous-time models include diffusion models23,24 defined via 
stochastic differential equations and continuous-time normalizing 
flows36 defined via ordinary differential equations. In these models, 
likelihood computation requires integrating a scalar ordinary 
differential equation defined by the divergence of a vector field 
(the marginal score function). This computation typically has 
computational cost O(M3) unless additional structure is forced 
on to the model37.

•	 Discrete-time normalizing flow models38–43 remain as good 
candidate models. In a discrete flow, the generative process maps 
a latent vector z (a field configuration in the lattice field theory 
context) sampled from a base density into the target density via the 
composition of a series of parametric diffeomorphisms F1, F2, …, Fn. 
If z is sampled with density r(z), then a flow sample x = F(z) has 
known density q x r z F z( ) = ( ) det∂ /∂ −1∣ ∣ , where F = F1∘ … ∘ Fn is the 
composed diffeomorphism. By restricting to Fi for which ∂Fi/∂z 
is a triangular matrix, the cost of ∣ ∣F zdet∂ /∂  is only O(M) (ref. 38).

These models, however, also have intrinsic limitations that must be 
worked around, such as topology preservation of the diffeomorphism44 
and difficulty in modelling tail-behaviour of a target density if the tails 
are not already in the base density45.

One can also consider sampling in an augmented space, where the 
data space is augmented with an additional set of auxiliary or latent 
variables. In this setting, it may be viable to reconsider VAEs33,34 or 
VAE–flow hybrids46, but currently there are no results demonstrating 
that these methods perform well compared to models working directly 
on the data space for lattice QCD.

Methods to guarantee asymptotic exactness
Several mechanisms have been proposed to combine generative mod-
els with Markov chain Monte Carlo and importance-sampling algo-
rithms in order to inherit their asymptotic convergence guarantees. 
One of the simplest mechanisms is neural importance sampling, in 
which a model density qθ(x) ≈ p(x) is used to evaluate expectations 
under the target p via E Ex x[ ( )] = [ ( )]p q

p x
q x

( )
( )θ θ

O O  (ref. 47). An appealing 
alternative is to incorporate generative models into an asymptotically 
exact Markov process, which allows existing analysis techniques to be 
used or existing Markov chain updates to be combined with the ML 
sampling approach. Generally, the Metropolis–Hastings algorithm 
uses an ergodic transition kernel K x x( ′ )  to propose Markov chain 
updates x x→ ′ which are accepted with probability









p x x

K x x p x
K x x p x

( ′ ) = min 1,
( ′) ( ′)
( ′ ) ( )

(5)acc

Quantum field generation Image generation

……

Image geometry

RGB pixel variables

Target
Subjective high quality per sample

Symmetries
Few approximate symmetries
(for example, reflection, small translations)

Lattice geometry

SU(3) link variables

Target
Objective distribution p(U) = e–S(U)/Z

Symmetries
High-dimensional exact symmetries
(for example, translations, gauge symmetry)

≈ 1,000,000,000 samples

≈ 10,000 samples

256 × 256 × 256 × 512

× 4 × 8

≈ 100,000,000,000 dof

512 × 512

× 3

≈ 1,000,000 dof

Fig. 2 | Comparison between the sampling tasks of quantum field generation 
for lattice quantum chromodynamics and image generation. In addition 
to differences in the target and symmetries of the problems, the hierarchy 
of degrees of freedom (dof) per sample to number of samples is inverted for 
quantum field generation as compared with image generation. The action  

S encodes the dynamics of the theory by defining the statistical distribution  
p, U is the gluon field, and Z is a normalizing constant. The image on the right 
side is reprinted from Kaggle (https://www.kaggle.com/datasets/vitaliykinakh/
stable-imagenet1k) under a Creative Commons licence CC0 1.0).
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to ensure that the asymptotic equilibrium distribution is the desired 
target distribution10,19. Although this method is guaranteed to 
converge48, the speed of convergence depends on the target density 
and the choice of transition kernel K x x( ′ ).

ML models can be combined with the Metropolis–Hastings 
approach by using generative models to construct the kernel K x x( ′ ). 
A direct approach is to use the trained model qθ(x) ≈ p(x) to produce 
independent and identically distributed (iid) proposal samples, 
K x x q x( ′ ) = ( ′)θ , with the convergence rate determined by the quality 
of the model approximation to the target distribution. More advanced 
techniques include neural transport Monte Carlo49,50, where Markov 
chain Monte Carlo is performed in the latent space; learned Monte Carlo 
proposals51–64, where the goal is to directly learn the kernel K x x( ′ ); 
learned sequential Monte Carlo sampling46,65–67, which combines deter-
ministic flows with sequential Monte Carlo annealing techniques; 
Monte Carlo variance minimization47,68,69; and stochastic normalizing 
flows46, which interleave deterministic transforms with latent-variable 
VAE-like components and Markov chain Monte Carlo transforms. HMC 
is a particularly successful family of kernels and can also be combined 
with learnt components. In the presence of pseudo-fermions, simulat-
ing the Hamiltonian dynamics for HMC requires an expensive computa-
tion of ‘force terms’, which is another area where acceleration may be 
possible using ML62,70–73.

Incorporating manifold constraints and gauge symmetry in 
ML models
When the target density for sampling features an exact or approximate 
symmetry, breaking that symmetry in a sampling algorithm will result 
in computational inefficiencies. In particular, continuous exact symme-
tries naturally reduce the effective dimensionality of the target distri-
bution, such that incorporating them directly reduces the difficulty of 
modelling that target. In addition, training a model with the symmetry 
explicitly encoded modifies the structure of the loss landscape in a way 
that may make training feasible in cases where attempting to approxi-
mately ‘learn’ the symmetry may not be. Moreover, if guarantees of 

exactness are required, any remaining symmetry-breaking after 
training will result in additional costs to correct that breaking via the 
approaches discussed in the previous subsection. It is thus often advan-
tageous, and in some cases critical, to incorporate symmetries into ML 
architectures and/or training approaches.

Modern ML offers many techniques that seek to take advantage of 
known symmetries. The simplest such method is data augmentation74, 
where the available training set is ‘augmented’ with randomly trans-
formed input/output pairs. Another technique consists of explicitly 
adding a term to the optimization target that encourages equivari-
ance or invariance with respect to a group of transformations75,76. Both 
approaches only serve to assist the training, and symmetries still have 
to be learnt by the model architecture. Alternatively, it is possible to 
construct architectures such that they respect known symmetries by 
construction; standard convolutional neural networks, for example, 
are equivariant maps with respect to translations. The most commonly 
studied symmetries are finite groups77 and SE(3), the group of isometries 
of 3D Euclidean space78,79. Naturally, the larger the symmetry group, the 
harder it is to learn the symmetries, either via data augmentation or via 
additional optimization targets. In the case of lattice QCD, the gauge 
symmetry has a prohibitively large dimension scaling with the number 
of lattice sites, hence it is likely essential to build gauge-equivariant and 
invariant neural networks for this application. For example, with cur-
rent architectures and training approaches it has been demonstrated 
that it is essential to exactly incorporate gauge symmetry80, but not 
translations and hypercubic transformations81, for successful training 
of flow-based sampling algorithms for lattice field theory.

Building generative models that exactly incorporate the symmetry 
constraints of lattice QCD is a non-trivial task that has required the 
introduction of several new ML models to treat both gauge and pseudo- 
fermionic degrees of freedom82–90. This approach relies on the observa-
tion that starting from a base distribution that is gauge-invariant (such 
as the Haar measure on SU(N)) and applying a gauge-equivariant dif-
feomorphism to this base density yields a new density that is also 
gauge-invariant38,76,84,91. One can reduce the problem of building gauge- 
equivariant diffeomorphisms on the gauge degrees of freedom situated 
on the edges of a lattice to the problem of building matrix-conjugation-
equivariant diffeomorphisms80,81 on SU(3), which is a simpler problem. 
As described in equation (4), a gauge symmetry transformation TΩ is 
parameterized by a field of SU(3) variables Ω(x) and acts on an edge, 
or ‘link’, variable as ̂T U x x U x x µ( ) = Ω( ) ( )Ω ( + )µ µΩ

† . As a consequence,  
a product of link variables along a closed loop Λ(x) starting and ending 
at a point x transforms as Λ(x) → Ω(x)Λ(x)Ω†(x). Mathematically this is 
referred to as a matrix-conjugation, or adjoint transformation. If Uμ(x) 
is a link, ̂x x µΓ( , + ) is a product of links along an open path from x to 

̂x µ+  that does not contain Uμ(x), and g: SU(3) → SU(3) is a 
conjugation-equivariant diffeomorphism, then a gauge-equivariant 
diffeomorphism f can be constructed as

̂ ̂f U x g U x x x µ x x µ( ( )) = ( ( )Γ ( , + ))Γ( , + ), (6)µ µ
†

as shown in Fig. 3. The diffeomorphism f then manifestly satisfies gauge 
equivariance, f(TΩU) = TΩ f(U). Building gauge-equivariant diffeomor-
phisms for pseudo-fermion degrees of freedom is also possible using 
extensions of this approach based on parallel transport92.

A roadmap for ML-based sampling in lattice QCD
The great potential of ML-based sampling for lattice field theories has 
inspired rapid developments that have already demonstrated profound 

Uµ(x)
x x + µ̂

Γ(x, x + µ̂     )

Γ(x, x + µ̂     )

U′µ(x)

g

×

Γ†(x, x + µ̂     )Uµ(x)

Fig. 3 | Illustration of a gauge-equivariant transformation layer80, 81. Here,  
a parametric gauge-equivariant diffeomorphism is constructed from a 
diffeomorphism g satisfying g(ΩUΩ†) = Ωg(U)Ω† (matrix-conjugation 
equivariance). To update the matrix-valued link Uμ(x) in red, this transformation 
first updates the plaquette U x x x µ( )Γ ( , + )µ

† ̂  containing that link, before ‘pushing’ 
that update onto the link by assigning ̂ ̂U x g U x x x µ x x µ′ ( ) = ( ( )Γ ( , + ))Γ( , + )µ µ

† .  
The output link U x′ ( )µ  transforms appropriately under gauge transformations 
when Uμ(x) and ̂x x µΓ( , + ) are transformed. See the main text for further details.
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successes. Following early applications of flow-based sampling to field 
theories other than QCD80,89, the approach was developed for theories 
in two spacetime dimensions, specifically for SU(3) gauge fields without 
dynamical quark (fermionic) degrees of freedom81 and for U(1) gauge 
fields with dynamical fermions93. Combining these advances enabled 
the first application of flow models to sampling QCD in 4D94, albeit 
with small spacetime volumes. ML-accelerated updating schemes have 
been developed, again for small volumes and with the SU(2) gauge 
group instead of SU(3) (ref. 62), and continuous-time models inspired 
by previous work in the lattice field theory community95,96 have been 
applied to simple lattice field theories97 and both U(1) gauge theory82 
and SU(3) gauge theory98 in 2D. These approaches have had astound-
ing success; Fig. 4 illustrates the advantages of flow-based sampling 
in one particular toy theory, but the conclusion that ML-accelerated 
sampling schemes can overcome the critical slowing-down and topo-
logical freezing challenges faced by HMC has been clear and univer-
sal. It is important to emphasize that this success includes theories 
with fermionic degrees of freedom, where ML-accelerated sampling 
schemes have been developed to integrate with the usual approach 
of pseudo-fermions92,94,99. However, the crucial aspect missing in all 
applications so far is a demonstration of the effectiveness of ML tech-
niques at the scale of state-of-the-art lattice QCD calculations in nuclear 
and particle physics.

We expect that not only will we soon see applications of 
ML-accelerated sampling to lattice field theory at scale, but that run-
ning at scale is a key ingredient necessary to realize the full potential of 
ML in this context. In particular, we anticipate that the first impact of ML  
for this application will be that, once the potentially high cost of training 
is paid, ML-based sampling will be orders of magnitudes faster than tra-
ditional HMC, mitigating critical slowing-down, overcoming topological 
freezing, and opening the door to a sampling regime where this training 
cost can be efficiently amortized, as depicted in Fig. 5. At precisely which 
scale this advantage will be reached is not yet clear; the computational 
cost of training ML models in this context may vary by orders of magni-
tude between different architectures and training approaches100. As the 

optimal approach to model parameterization and training can depend 
sensitively on the number of samples which are ultimately required, the 
balance of training and sampling costs is highly problem-dependent, 
and the regime in which flow-based sampling outperforms HMC for 
lattice QCD applications will depend on precisely how the flow models 
are used (and reused). It is already evident, however, that achieving this 
paradigm of efficient ML-accelerated sampling will require consider-
able investment; it is clear that in the field of generative ML as a whole, 
the substantial progress in text14,15,26–30 and image modelling22–25 has 
required pushing the boundaries of model size. So far, the generative 
ML experiments for lattice field theory are of comparatively small scale, 
despite the target scale of the problem itself being comparable to, or 
even larger than, applications in these domains. Success will thus pro
bably require model scales, and corresponding investments in upfront 
training, that will constitute a change in paradigm of computational 
resource use for the theoretical physics community. Nevertheless, as a 
fundamentally structured problem, we anticipate that scaling the cus-
tom ML solutions developed for lattice field theory to large models will 
pay dividends and that lattice QCD will join the list of scientific problems 
that have seen important impacts from ML at state-of-the-art scale, such 
as low-dimension Bayesian parameter inference for astrophysics101, 
quantum Monte Carlo102 and protein folding13.

Beyond the anticipated impacts of mitigating sampling challenges 
such as critical slowing-down and topological freezing, ML models have 
the potential to catalyse other paradigm shifts in lattice field theory. 
For example, they naturally offer new opportunities for community 
resource sharing. Ensembles of lattice field configurations are large 
enough in size (petabytes for state-of-the-art ensembles) that they 
cannot be easily shared, and massive investments in tape resources are 
made to store them. In contrast, even the largest ML models contain 
only a few terabytes of parameters. These can easily be shared, allow-
ing research groups around the globe to efficiently generate their own 
configurations or reproduce ensembles from a known seed, in both 
cases capitalizing on community-owned pretrained models. Another 
important opportunity is that ML-based samplers can be conditioned 
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Fig. 4 | Demonstration of the advantages of flow-based sampling in a U(1) 
lattice gauge theory in two spacetime dimensions83. The inset shows the rapid 
mixing of topological charge Q when sampling with normalizing flows, compared 
with Hamiltonian/hybrid Monte Carlo (HMC) and heat bath (HB) algorithms for 
the action defined by β = 7 (see equation (3) for the definition of the analogous 

parameter in quantum chromodynamics). The main graph shows the asympto
tically improved scaling of τQ

int towards the continuum limit β → ∞, where τQ
int is the 

‘integrated autocorrelation time’ of the topological charge, which is a measure of 
cost in Markov-process sampling and can be interpreted here as a metric for 
critical slowing-down. Reproduced with permission from ref. 83, APS.
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on various parameters of the theory, from the lattice spacing and 
volume to physical parameters such as the strength of coupling of the 
fundamental particles of the theory. The potential to generate ‘cor-
related’ sets of samples at different parameters, interpolated, or even 
extrapolated103,104, from the parameters used during training, is quali-
tatively distinct from what is possible using traditional sampling algo-
rithms such as HMC (in principle this is also possible for pre-selected 
parameter sets, using approaches such as parallel tempering) and 
offers new parameter extrapolation methods. Ultimately, one could 
even imagine more general ways of conditioning these models (for 
example, on a symbolic description of the target action), enabling new 
approaches such as direct measurements of the effect of modifying the 
action on physical observables. As such, ML techniques hold the prom-
ise of redefining conventional wisdom in this field, with implications 
that have yet to be fully explored.

Outlook
As ML continues to evolve in scope and complexity, its applications in 
science are being driven into two broad categories: those that can adapt 
existing ML technologies (usually developed to model images, sound and 
text) and those that demand ground-up development and inspire innova-
tion. Lattice field theory is becoming established as a prime example of 
the latter, being simultaneously an important science application in which 
algorithmic acceleration will have wide-reaching implications for funda-
mental physics and a massive computational challenge of a scope and scale 
that has driven advances in computation and algorithms for decades.

In particular, the challenge of sampling lattice field configu-
rations for nuclear and particle physics calculations is a definitive 
proving-ground for generative ML models in science. With strict 
requirements of asymptotic exactness, and an ultimate scale at which 
each sample is several terabytes in size, it is clear that symmetries, 
structure and domain knowledge must be incorporated into ML archi-
tectures designed for this task. In that regard, the application of ML to 

sampling in lattice field theory is a key exemplar informing the debate 
that is currently underway in the ML community around incorporating 
domain or expert knowledge: whereas ardent supporters of modern 
deep learning often argue against the long-term value of incorporating 
such knowledge (the ‘bitter lesson’ theory105, advocated by Richard 
Sutton), in the physical sciences, and in particular in theoretical phys-
ics calculations, there are often precise mathematical formulations 
of domain knowledge that not only make little sense to ignore, but 
are intractable to learn from data. Adding to the complexity of this 
engineering and design challenge, existing algorithmic benchmarks 
for sampling in lattice field theory are extremely high; new ML samplers 
must compete against well-established algorithms that have been 
optimized in co-design with high-performance computing systems 
for more than four decades.

As such, ML for lattice field theory is not only a benchmark for 
the application of ML in science, but it is also an endeavour with 
paradigm-shifting potential for physics. If the success already achieved 
in sampling field theories at toy scales can be mimicked at state-of-
the-art scales, it will transform the computational landscape of a field 
that is one of the largest consumers of open-science supercomputing 
(computing available to public scientific applications) worldwide, 
with impacts across particle, nuclear and condensed matter physics 
and beyond. On the ML side, it will be a flagship example of the power 
of sophisticated domain-specific customization and engineering to 
achieve transformative impact in computational science.

Published online: 4 August 2023

References
1.	 Borsanyi, S. et al. Ab initio calculation of the neutron–proton mass difference. Science 

347, 1452–1455 (2015).
2.	 Brown, Z. S., Detmold, W., Meinel, S. & Orginos, K. Charmed bottom baryon 

spectroscopy from lattice QCD. Phys. Rev. D 90, 094507 (2014).
3.	 Aaij, R. et al. Observation of two new −Ξb baryon resonances. Phys. Rev. Lett. 114, 062004 

(2015).
4.	 Aaij, R. et al. Observation of the doubly charmed baryon ++Ξcc. Phys. Rev. Lett. 119, 112001 

(2017).
5.	 Joó, B. et al. Status and future perspectives for lattice gauge theory calculations to the 

exascale and beyond. Eur. Phys. J. A 55, 199 (2019).
6.	 Detmold, W. et al. Hadrons and nuclei. Eur. Phys. J. A 55, 193 (2019).
7.	 Calì, S., Hackett, D. C., Lin, Y., Shanahan, P. E. & Xiao, B. Neural-network preconditioners 

for solving the Dirac equation in lattice gauge theory. Phys. Rev. D 107, 034508 (2023).
8.	 Lehner, C. & Wettig, T. Gauge-equivariant pooling layers for preconditioners in lattice 

QCD. Preprint at https://arxiv.org/abs/2304.10438 (2023).
9.	 Lehner, C. & Wettig, T. Gauge-equivariant neural networks as preconditioners in lattice 

QCD. Preprint at https://arxiv.org/abs/2302.05419 (2023).
10.	 Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of 

state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).
11.	 Duane, S., Kennedy, A. D., Pendleton, B. J. & Roweth, D. Hybrid Monte Carlo. Phys. Lett. B 

195, 216–222 (1987).
12.	 Chen, D. et al. QCDOC: a 10-teraflops scale computer for lattice QCD. Nucl. Phys. B Proc. 

Suppl. 94, 825–832 (2001).
13.	 Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 

583–589 (2021).
14.	 Hoffmann, J. et al. Training compute-optimal large language models. Preprint at https://

arxiv.org/abs/2203.15556 (2022).
15.	 Thoppilan, R. et al. Lamda: Language models for dialog applications. Preprint at https://

arxiv.org/abs/2201.08239 (2022).
16.	 Peskin, M. E. & Schroeder, D. V. An Introduction to Quantum Field Theory 

(Addison-Wesley, 1995).
17.	 Berezin, F. A. The method of second quantization. Pure Appl. Phys. 24, 1–228 (1966).
18.	 Gattringer, C. & Lang, C. B. Quantum Chromodynamics on the Lattice Vol. 788 (Springer, 

2010).
19.	 Hastings, W. K. Monte Carlo sampling methods using Markov chains and their 

applications. Biometrika 57, 97–109 (1970).
20.	 Schaefer, S., Sommer, R. & Virotta, F. Critical slowing down and error analysis in lattice 

QCD simulations. Nucl. Phys. B 845, 93–119 (2011).
21.	 Beck, C., Hutzenthaler, M., Jentzen, A. & Kuckuck, B. An overview on deep learning-based 

approximation methods for partial differential equations. Discrete Contin. Dyn. Syst. B 28, 
3697–3746 (2023).

Thermalization

Hybrid Monte
Carlo

Flow-based
sampling

C
os

t

Number of generated samples
N*

Training

Fig. 5 | Sketch of the upfront and sampling costs of hybrid Monte Carlo 
compared with flow-based models. Hybrid Monte Carlo (HMC) shown in 
blue; flow-based sampling in red. Whereas machine-learning models require a 
potentially large upfront computational cost for training, they offer the hope 
of efficient sampling, such that this training cost can be amortized. That is, 
for sufficiently many samples, flow-based sampling that is more efficient than 
HMC (for example, as in Fig. 4) can outperform HMC in terms of total cost. The 
minimum number of samples for which flow-based sampling is more efficient 
than HMC is denoted by N*.

http://www.nature.com/natrevphys
https://arxiv.org/abs/2302.05419
https://arxiv.org/abs/2302.05419
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239


Nature Reviews Physics | Volume 5 | September 2023 | 526–535 534

Perspective

22.	 Oord, A. v. d. et al. Wavenet: a generative model for raw audio. Preprint at https://arxiv.
org/abs/1609.03499 (2016).

23.	 Dhariwal, P. & Nichol, A. Diffusion models beat GANs on image synthesis. Adv. Neural  
Inf. Process. Syst. 34, 8780–8794 (2021).

24.	 Saharia, C. et al. Photorealistic text-to-image diffusion models with deep language 
understanding. Adv. Neural Inf. Process. Syst. 35, 36479–36494 (2022).

25.	 Child, R. Very deep VAEs generalize autoregressive models and can outperform them  
on images. Preprint at https://arxiv.org/abs/2011.10650 (2020).

26.	 Kaplan, J. et al. Scaling laws for neural language models. Preprint at https://arxiv.org/
abs/2001.08361 (2020).

27.	 Brown, T. et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33, 
1877–1901 (2020).

28.	 Lieber, O., Sharir, O., Lenz, B. & Shoham, Y. Jurassic-1: Technical Details and Evaluation 
White Paper (AI21 Labs, 2021).

29.	 Rae, J. W. et al. Scaling language models: methods, analysis & insights from training 
gopher. Preprint at https://arxiv.org/abs/2112.11446 (2021).

30.	 Smith, S. et al. Using DeepSpeed and Megatron to train Megatron-Turing NLG 530B, a 
large-scale generative language model. Preprint at https://arxiv.org/abs/2201.11990 (2022).

31.	 Kullback, S. & Leibler, R. A. On information and sufficiency. Ann. Math. Stat. 22, 79–86 
(1951).

32.	 Goodfellow, I. et al. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 
2672–2680 (2014).

33.	 Rezende, D. J., Mohamed, S. & Wierstra, D. Stochastic backpropagation and approximate 
inference in deep generative models. Proceedings of Machine Learning Research 32(2), 
1278–1286 (2014).

34.	 Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at https://arxiv.org/
abs/1312.6114 (2014).

35.	 Van Oord, A., Kalchbrenner, N. & Kavukcuoglu, K. Pixel recurrent neural networks. 
Proceedings of Machine Learning Research 48, 1747–1756 (2016).

36.	 Chen, C. et al. Continuous-time flows for efficient inference and density estimation. 
Proceedings of Machine Learning Research 80, 824–833 (2018).

37.	 Chen, R. T. & Duvenaud, D. K. Neural networks with cheap differential operators. Adv. 
Neural Inf. Process. Syst. 32, 9961–9971 (2019).

38.	 Papamakarios, G., Nalisnick, E. T., Rezende, D. J., Mohamed, S. & Lakshminarayanan,  
B. Normalizing flows for probabilistic modeling and inference. J. Mach. Learn. Res. 22, 
1–64 (2021).

39.	 Rezende, D. & Mohamed, S. Variational inference with normalizing flows. Proceedings of 
Machine Learning Research 37, 1530–1538 (2015).

40.	 Tabak, E. G. & Turner, C. V. A family of nonparametric density estimation algorithms. 
Commun. Pure Appl. Math. 66, 145–164 (2013).

41.	 Dinh, L., Sohl-Dickstein, J. & Bengio, S. Density estimation using real NVP. In International 
Conference on Learning Representations (ICLR, 2017).

42.	 Kingma, D. P. & Dhariwal, P. Glow: generative flow with invertible 1x1 convolutions.  
Adv. Neural Inf. Process. Syst. 31, 10215–10224 (2018).

43.	 Papamakarios, G., Pavlakou, T. & Murray, I. Masked autoregressive flow for density 
estimation. Adv. Neural Inf. Process. Syst. 30, 2338–2347 (2017).

44.	 Huang, C.-W., Dinh, L. & Courville, A. Augmented normalizing flows: bridging the gap 
between generative flows and latent variable models. Preprint at https://arxiv.org/
abs/2002.07101 (2020).

45.	 Laszkiewicz, M., Lederer, J. & Fischer, A. Marginal tail-adaptive normalizing flows. 
Proceedings of Machine Learning Research 162, 12020–12048 (2022).

46.	 Wu, H., Köhler, J. & Noé, F. Stochastic normalizing flows. Adv. Neural Inf. Process. Syst. 
33, 5933–5944 (2020).

47.	 Müller, T., McWilliams, B., Rousselle, F., Gross, M. & Novák, J. Neural importance 
sampling. ACM Trans. Graph. 38, 1–19 (2019).

48.	 Robert, C. P., Casella, G. & Casella, G. Monte Carlo Statistical Methods Vol. 2 (Springer, 
1999).

49.	 Hoffman, M. et al. Neutralizing bad geometry in Hamiltonian Monte Carlo using neural 
transport. Preprint at https://arxiv.org/abs/1903.03704 (2019).

50.	 Nijkamp, E. et al. Learning energy-based model with flow-based backbone by neural 
transport MCMC. Preprint at https://arxiv.org/abs/2006.06897 (2020).

51.	 Wang, T., Wu, Y., Moore, D. & Russell, S. J. Meta-learning MCMC proposals. Adv. Neural  
Inf. Process. Syst. 31, 4146–4156 (2018).

52.	 Song, J., Zhao, S. & Ermon, S. A-NICE-MC: adversarial training for MCMC. Adv. Neural  
Inf. Process. Syst. 30, 5140–5150 (2017).

53.	 Li, Z., Chen, Y. & Sommer, F. T. A neural network MCMC sampler that maximizes proposal 
entropy. Entropy 23, 269 (2021).

54.	 Huang, L. & Wang, L. Accelerated Monte Carlo simulations with restricted Boltzmann 
machines. Phys. Rev. B 95, 035105 (2017).

55.	 Liu, J., Qi, Y., Meng, Z. Y. & Fu, L. Self-learning Monte Carlo method. Phys. Rev. B 95, 
041101 (2017).

56.	 Liu, J., Shen, H., Qi, Y., Meng, Z. Y. & Fu, L. Self-learning Monte Carlo method and 
cumulative update in fermion systems. Phys. Rev. B 95, 241104 (2017).

57.	 Nagai, Y., Shen, H., Qi, Y., Liu, J. & Fu, L. Self-learning Monte Carlo method: 
continuous-time algorithm. Phys. Rev. B 96, 161102 (2017).

58.	 Shen, H., Liu, J. & Fu, L. Self-learning Monte Carlo with deep neural networks. Phys. Rev. B 
97, 205140 (2018).

59.	 Xu, X. Y., Qi, Y., Liu, J., Fu, L. & Meng, Z. Y. Self-learning quantum Monte Carlo method in 
interacting fermion systems. Phys. Rev. B 96, 041119 (2017).

60.	 Chen, C. et al. Symmetry-enforced self-learning Monte Carlo method applied to the 
Holstein model. Phys. Rev. B 98, 041102 (2018).

61.	 Nagai, Y., Okumura, M. & Tanaka, A. Self-learning Monte Carlo method with Behler–
Parrinello neural networks. Phys. Rev. B 101, 115111 (2020).

62.	 Nagai, Y., Tanaka, A. & Tomiya, A. Self-learning Monte Carlo for non-Abelian gauge theory 
with dynamical fermions. Phys. Rev. D 107, 054501 (2023).

63.	 Pawlowski, J. M. & Urban, J. M. Reducing autocorrelation times in lattice simulations with 
generative adversarial networks. Mach. Learn. Sci. Technol. 1, 045011 (2020).

64.	 Foreman, S. et al. HMC with normalizing flows. PoS LATTICE2021, 073 (2022).
65.	 Arbel, M., Matthews, A. & Doucet, A. Annealed flow transport Monte Carlo. Proceedings 

of Machine Learning Research 139, 318–330 (2021).
66.	 Matthews, A. G. D. G., Arbel, M., Rezende, D. J. & Doucet, A. Continual repeated annealed 

flow transport Monte Carlo. Proceedings of Machine Learning Research 162, 15196–15219 
(2022).

67.	 Caselle, M., Cellini, E., Nada, A. & Panero, M. Stochastic normalizing flows as 
non-equilibrium transformations. J. High Energy Phys. 2022, 1–31 (2022).

68.	 Veach, E. & Guibas, L. J. Optimally combining sampling techniques for monte carlo 
rendering. In Proceedings of the 22nd Annual Conference on Computer Graphics and 
Interactive Techniques, 419–428 (1995).

69.	 Müller, T., Rousselle, F., Keller, A. & Novák, J. Neural control variates. ACM Trans. Graph. 
39, 1–19 (2020).

70.	 Li, S.-H. & Wang, L. Neural network renormalization group. Phys. Rev. Lett. 121, 260601 
(2018).

71.	 Li, S.-H., Dong, C.-X., Zhang, L. & Wang, L. Neural canonical transformation with 
symplectic flows. Phys. Rev. X 10, 021020 (2020).

72.	 Tomiya, A. & Nagai, Y. Gauge covariant neural network for 4 dimensional non-Abelian 
gauge theory. Preprint at https://arxiv.org/abs/2103.11965 (2021).

73.	 Tanaka, A. & Tomiya, A. Towards reduction of autocorrelation in HMC by machine 
learning. Preprint at https://arxiv.org/abs/1712.03893 (2017).

74.	 Shorten, C. & Khoshgoftaar, T. M. A survey on image data augmentation for deep 
learning. J. Big Data 6, 1–48 (2019).

75.	 Mitrovic, J., McWilliams, B., Walker, J. C., Buesing, L. H. & Blundell, C. Representation 
learning via invariant causal mechanisms. In International Conference on Learning 
Representations (2020).

76.	 Rezende, D. J., Racanière, S., Higgins, I. & Toth, P. Equivariant Hamiltonian flows. Preprint at 
https://arxiv.org/abs/1909.13739 (2019).

77.	 Cohen, T. & Welling, M. Group equivariant convolutional networks. Proceedings of 
Machine Learning Research 48, 2990–2999 (2016).

78.	 Fuchs, F., Worrall, D., Fischer, V. & Welling, M. SE(3)-transformers: 3D roto-translation 
equivariant attention networks. Adv. Neural Inf. Process. Syst. 33, 1970–1981 (2020).

79.	 Du, W. et al. SE(3) equivariant graph neural networks with complete local frames. 
Proceedings of Machine Learning Research 162, 5583–5608 (2022).

80.	 Kanwar, G. et al. Equivariant flow-based sampling for lattice gauge theory. Phys. Rev. Lett. 
125, 121601 (2020).

81.	 Boyda, D. et al. Sampling using SU(N) gauge equivariant flows. Phys. Rev. D 103, 074504 
(2021).

82.	 Jin, X.-Y. Neural network field transformation and its application in HMC. In The 38th 
International Symposium on Lattice Field Theory Vol. 396, 600 (PoS, 2022).

83.	 Kanwar, G. et al. Equivariant flow-based sampling for lattice gauge theory. Phys. Rev. Lett. 
125, 121601 (2020).

84.	 Katsman, I. et al. Equivariant manifold flows. Adv. Neural Inf. Process. Syst. 34, 10600–
10612 (2021).

85.	 Finkenrath, J. Tackling critical slowing down using global correction steps with 
equivariant flows: the case of the Schwinger model. Preprint at https://arxiv.org/
abs/2201.02216 (2022).

86.	 de Haan, P., Rainone, C., Cheng, M. & Bondesan, R. Scaling up machine learning for 
quantum field theory with equivariant continuous flows. Preprint at https://arxiv.org/
abs/2110.02673 (2021).

87.	 Albergo, M. S. et al. Flow-based sampling for fermionic lattice field theories. Phys. Rev. D 
104, 114507 (2021).

88.	 Hackett, D. C. et al. Flow-based sampling for multimodal distributions in lattice field 
theory. Preprint at https://arxiv.org/abs/2107.00734 (2021).

89.	 Albergo, M. S., Kanwar, G. & Shanahan, P. E. Flow-based generative models for markov 
chain monte carlo in lattice field theory. Phys. Rev. D 100, 034515 (2019).

90.	 Vaitl, L., Nicoli, K. A., Nakajima, S. & Kessel, P. Path-gradient estimators for continuous 
normalizing flows. Proceedings of Machine Learning Research, 162, 21945–21959  
(2022).

91.	 Köhler, J., Klein, L. & Noé, F. Equivariant flows: exact likelihood generative learning for 
symmetric densities. Proceedings of Machine Learning Research 119, 5361–5370 (2020).

92.	 Abbott, R. et al. Gauge-equivariant flow models for sampling in lattice field theories with 
pseudofermions. Phys. Rev. D 106, 074506 (2022).

93.	 Albergo, M. S. et al. Flow-based sampling for fermionic lattice field theories. Phys. Rev. D 
104, 114507 (2021).

94.	 Abbott, R. et al. Sampling QCD field configurations with gauge-equivariant flow models. 
In The 39th International Symposium on Lattice Field Theory Vol. 430, 036 (PoS, 2023).

95.	 Lüscher, M. Trivializing maps, the Wilson flow and the HMC algorithm. Commun. Math. 
Phys. 293, 899–919 (2010).

96.	 Lüscher, M. & Weisz, P. Perturbative analysis of the gradient flow in non-Abelian gauge 
theories. J. High Energy Phys. 2011, 1–23 (2011).

http://www.nature.com/natrevphys
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/2011.10650
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2002.07101
https://arxiv.org/abs/2002.07101
https://arxiv.org/abs/1903.03704
https://arxiv.org/abs/2006.06897
https://arxiv.org/abs/2103.11965
https://arxiv.org/abs/1712.03893
https://arxiv.org/abs/1909.13739
https://arxiv.org/abs/2201.02216
https://arxiv.org/abs/2201.02216
https://arxiv.org/abs/2110.02673
https://arxiv.org/abs/2110.02673
https://arxiv.org/abs/2107.00734


Nature Reviews Physics | Volume 5 | September 2023 | 526–535 535

Perspective

97.	 Gerdes, M., de Haan, P., Rainone, C., Bondesan, R. & Cheng, M. C. N. Learning lattice 
quantum field theories with equivariant continuous flows. Preprint at https://arxiv.org/
abs/2207.00283 (2022).

98.	 Bacchio, S., Kessel, P., Schaefer, S. & Vaitl, L. Learning trivializing gradient flows for lattice 
gauge theories. Phys. Rev. D 107, L051504 (2023).

99.	 Albergo, M. S. et al. Flow-based sampling in the lattice Schwinger model at criticality. 
Phys. Rev. D 106, 014514 (2022).

100.	 Abbott, R. et al. Aspects of scaling and scalability for flow-based sampling of lattice QCD. 
Preprint at https://arxiv.org/abs/2211.07541 (2022).

101.	 Gabbard, H., Messenger, C., Heng, I. S., Tonolini, F. & Murray-Smith, R. Bayesian 
parameter estimation using conditional variational autoencoders for gravitational-wave 
astronomy. Nat. Phys. 18, 112–117 (2022).

102.	 Musaelian, A. et al. Learning local equivariant representations for large-scale atomistic 
dynamics. Nat. Commun. 14, 579 (2023).

103.	 Singha, A., Chakrabarti, D. & Arora, V. Conditional normalizing flow for Markov chain Monte 
Carlo sampling in the critical region of lattice field theory. Phys. Rev. D 107, 014512 (2023).

104.	 Lehner, C. & Wettig, T. Gauge-equivariant neural networks as preconditioners in lattice 
QCD. Preprint at https://arxiv.org/abs/2302.05419 (2023).

105.	 Sutton, R. The Bitter Lesson (2019); https://www.cs.utexas.edu/~eunsol/courses/data/
bitter_lesson.pdf.

Acknowledgements
We thank W. Detmold and R. D. Young for comments on the manuscript. P.E.S. was supported 
in part by the US Department of Energy, Office of Science, Office of Nuclear Physics, under 

grant contract number DE-SC0011090, and by Early Career Award DE-SC0021006, by a  
NEC research award, and by the Carl G. and Shirley Sontheimer Research Fund. G.K. was 
supported by funding from the Schweizerischer Nationalfonds (grant agreement no. 
200020_200424).

Author contributions
The authors contributed equally to all aspects of the article.

Competing interests
The authors declare no competing interests.

Additional information
Peer review information Nature Reviews Physics thanks Tanmoy Bhattacharya and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to  
this article under a publishing agreement with the author(s) or other rightsholder(s); author 
self-archiving of the accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© Springer Nature Limited 2023

http://www.nature.com/natrevphys
https://arxiv.org/abs/2207.00283
https://arxiv.org/abs/2207.00283
https://arxiv.org/abs/2211.07541
https://arxiv.org/abs/2302.05419
https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf
https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf

	Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics

	Introduction

	Lattice QCD and the sampling problem

	Structure and symmetries of field configurations

	Approaches and challenges to sampling field configurations


	ML for sampling lattice field configurations

	Classes of generative models for sampling in lattice field theory

	Methods to guarantee asymptotic exactness

	Incorporating manifold constraints and gauge symmetry in ML models

	A roadmap for ML-based sampling in lattice QCD


	Outlook

	Acknowledgements

	Fig. 1 Depiction of a single cube within the spacetime lattice of a lattice QCD calculation.
	Fig. 2 Comparison between the sampling tasks of quantum field generation for lattice quantum chromodynamics and image generation.
	Fig. 3 Illustration of a gauge-equivariant transformation layer80, 81.
	Fig. 4 Demonstration of the advantages of flow-based sampling in a U(1) lattice gauge theory in two spacetime dimensions83.
	Fig. 5 Sketch of the upfront and sampling costs of hybrid Monte Carlo compared with flow-based models.




