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A B S T R A C T 

Examining the properties of subhaloes with strong gravitational lensing images can shed light on the nature of dark matter. 
From upcoming large-scale surv e ys, we e xpect to disco v er orders of magnitude more strong lens systems that can be used for 
subhalo studies. To optimally extract information from a large number of strong lensing images, machine learning provides 
promising avenues for efficient analysis that is unachie v able with traditional analysis methods, but application of machine 
learning techniques to real observations is still limited. We build upon previous work, which uses a neural likelihood-ratio 

estimator, to constrain the ef fecti ve density slopes of subhaloes and demonstrate the feasibility of this method on real strong 

lensing observations. To do this, we implement significant impro v ements to the forward simulation pipeline and undertake careful 
model e v aluation using simulated images. Ultimately, we use our trained model to predict the ef fecti ve subhalo density slope 
from combining a set of strong lensing images taken by the Hubble Space Telescope . We found the subhalo slope measurement of 
this set of observations to be steeper than the slope predictions of cold dark matter subhaloes. Our result adds to several previous 
works that also measured high subhalo slopes in observations. Although a possible explanation for this is that subhaloes with 

steeper slopes are easier to detect due to selection effects and thus contribute to statistical bias, our result nevertheless points to 

the need for careful analysis of more strong lensing observations from future surv e ys. 

Key words: gravitational lensing: strong – dark matter. 
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 INTRODUCTION  

he standard Lambda cold dark matter (CDM) cosmological model 
as been in remarkable agreement with large-scale observations, but 
here is scarce evidence for the nature of dark matter (DM) on small
sub-galactic) scales. Because the nature of DM remains elusive, 
xamining various DM models using small-scale cosmological 
bservables becomes crucial. One of the promising observables used 
o study DM is subhaloes, which are small DM clumps gravitationally 
ound to a larger halo. Probing the properties of these subhaloes can
otentially shine light on the nature of DM, as subhaloes exhibit 
ifferent properties under alternate DM models beyond CDM. For 
nstance, warm dark matter (WDM) models predict a smaller number 
f low-mass subhaloes and more cored subhalo density profiles 
ompared to CDM (Bode, Ostriker & Turok 2001 ), while self-
nteracting dark matter (SIDM) models generally predict more cored 
ubhalo profiles than that of the CDM model (Spergel & Steinhardt 
000 ). 
Because low-mass subhaloes are observed to lack luminous 
atter (Fitts et al. 2017 ; Read et al. 2017 ; Kim, Peter & Hargis

018 ), they are typically probed through their gravitational effects. 
trong gravitational lensing, a predicted phenomenon from General 
elati vity, is a po werful way to constrain subhalo properties. In strong
ravitational lensing, light emitted by a distant source gets deflected 
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y the gravitational field of a massive structure (lens), and properties
f the lens and its substructure can be inferred by analysing the
mages of the source light. In this paper, we will focus on studying
ubhaloes in the lens galaxy of strong lensing systems in which both
he lens and background source are galaxies. 

To date, there have been a few claimed detections of substructure in
 alaxy–g alaxy strong lensing observations (Vegetti et al. 2010 , 2012 ;
ezaveh et al. 2016b ). Existing analyses that use observed strong

ensing images to constrain DM models primarily rely on modelling 
ndividual (often the most massive) substructure in a lens system 

Vegetti et al. 2014 ; Ritondale et al. 2019 ; S ¸eng ̈ul et al. 2022 ). While
seful, direct substructure modelling is computationally costly, and it 
s often limited to capturing the effect of relati vely massi ve subhaloes.
ven though the CDM paradigm predicts a large number of subhaloes
ith smaller masses, they are difficult to probe through traditional 

nalysis methods because the inclusion of more subhaloes makes 
ampling of the joint parameter space prohibitive. As a result, it
s important to explore alternative analysis methods that can more 
ptimally incorporate information from the large population of 
maller subhaloes. 

To leverage the collective effect of subhalo populations on strong 
ensing images, there has been significant work done to obtain 
tatistical constraints from subhaloes (Dalal & Kochanek 2002 ; Cyr- 
acine et al. 2016 ; Hezaveh et al. 2016a ; Birrer, Amara & Refregier
017 ; Daylan et al. 2018 ; D ́ıaz Rivero, Cyr -Racine & Dv orkin
018a ; D ́ıaz Rivero et al. 2018b ; Gilman et al. 2018 ; Brennan et al.
019 ; Cyr-Racine, Keeton & Moustakas 2019 ; He et al. 2022 ). In
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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articular, machine learning has emerged as a promising candidate to
nalyse subhaloes in strong lensing images for its ability to efficiently
nd implicitly marginalize o v er a large parameter space. With the
pcoming large-scale imaging surv e ys, the number of observed
trong lensing systems is expected to increase significantly (Laureijs
t al. 2011 ; Collett 2015 ; McKean et al. 2015 ; Bechtol et al. 2019 ;
acobs et al. 2019 ; Huang et al. 2021 ; Storfer et al. 2022 ). Machine
earning has a much-needed advantage that can make inference on
hese large data sets feasible. 

Several deep learning techniques have been demonstrated to be
f fecti ve at constraining the subhalo mass function using simulated
trong lensing images (Brewer, Huijser & Lewis 2016 ; Brehmer et al.
019 ; Anau Montel et al. 2023 ; Ostdiek, Diaz Rivero & Dvorkin
022a , b ; Wagner -Carena et al. 2023 ), b ut so far, there has been no
uccessful attempt at applying them to real observations. The main
hallenge of applying deep learning methods to observations comes
rom the need for the training set to closely resemble the test set,
s deep learning models are known to struggle in the presence of a
istribution shift between training and test sets (Recht et al. 2018 ,
019 ). Most of the previous works on machine learning applications
o strong lensing made simplifying assumptions in the forward
odelling pipeline of the training set in order to demonstrate the

otential suitability of a method. Ho we ver, for the machine learning
odel to be deployed on observations, its training set needs to

ncorporate all possible complexities that exist in the observed data. 
In this work, for the first time, we analyse subhalo properties in

eal strong lensing observations with a machine learning technique.
e build upon the method developed in Zhang, Mishra-Sharma &
vorkin ( 2022 ) by adding multiple layers of complexities in the

orward pipeline for the training set. Through training, our model
earns to infer the ef fecti ve subhalo density slope (directly related
o the subhalo concentration), a promising observable proposed by
 ¸eng ̈ul & Dvorkin ( 2022 ) for distinguishing DM models. Several
ther works have also shown that the concentration of subhaloes is an
f fecti ve probe of DM (Minor et al. 2021a , b ; Amorisco et al. 2022 ).
sing our trained model on real observed strong lensing images,
e found a subhalo density slope steeper than those of subhaloes
redicted by the CDM model. This measurement is consistent
ith previous works, which also found unexpectedly large subhalo

oncentrations (Minor et al. 2021b ; S ¸eng ̈ul & Dvorkin 2022 ). 
This paper is organized as follows. In Section 2 , we discuss details

f the forward model used to generate mock strong lensing images.
n Section 3 , we summarize the deep learning technique that we
se for inference, discuss our inference procedure, and outline our
eural network architecture. In Section 4 , we e v aluate our trained
odel and compare the model predictions on the observed data with

hose under the CDM model. We conclude with a summary of our
esults in Section 5 , and discuss the implications of our work. 

 DATA  

e generate simulated lensing images to train our neural network
nd compare our model predictions with ground truths on mock
mages post-training to ensure training quality. At inference time,
e apply the trained model to a set of observed lensing images from

he Hubble Space Telescope ( HST ). We discuss details of both the
ock data and the real HST observations below. 

.1 Mock data generation 

o generate our mock strong lensing images, we use the software
ackage LENSTRONOMY (Birrer, Amara & Refregier 2015 ; Birrer &
NRAS 527, 4183–4192 (2024) 
mara 2018 ). In order to match the HST post-drizzling image config-
ration, we generate (100 × 100) pixel 2 images, with a resolution of
.04 arcsec per pixel. We build upon the simulation pipeline used in
hang, Mishra-Sharma & Dvorkin ( 2022 ) and include significantly
ore complexities in the modelling process so as to make the images

s similar to real observations as possible. Modelling a strong lens
ystem requires several ingredients in the forward model: a source
alaxy, a main (host) lens galaxy, a population of subhaloes and
ine-of-sight (LoS) haloes. In addition, we specify the instrumental
onfiguration and image pre-processing of the mock images in the
orward simulation. The distributions of parameters go v erning the
ens models of our simulated images are summarized in Table 1 . 

.1.1 Source and main lens 

n a g alaxy–g alaxy lens system, light rays of a background source
alaxy get gravitationally deflected by a foreground lens galaxy en
oute to the detector. Strong gravitational lensing specifically refers
o the case where the projected surface mass density of the lens
s greater than the critical surface density � crit . In this scenario, the
ending of source light is significant enough to result in characteristic
rcs of light in observed images. 

To simulate the source light, we use galaxy images taken by
he HST Cosmic Evolution Surv e y (COSMOS; Koekemoer et al.
007 ; Scoville et al. 2007 ) processed by P AL TAS (Wagner-Carena
t al. 2023 ). The P AL TAS package takes a subsample of the HST
OSMOS surv e y galaxy images (Mandelbaum et al. 2012 , 2014 )
nd filters out suitable source candidates. To simulate the source
or each mock image, we randomly draw a galaxy image from the
OSMOS catalogue and randomly vary the rotation angle and the

ource coordinates ( x source , y source ). From the 2262 available source
alaxies, we use 2163 (96 per cent) for the training set, 70 (3 per cent)
or the validation set, and the remainder (1 per cent) for testing and
 v aluation. 

We model the main lens mass distribution using an elliptical power
aw (EPL) profile (Barkana 1998 ). The convergence of an EPL profile
t position ( x , y ) on the lens plane is given as follows: 

( x , y ) = 

3 − γ

2 

⎛ 

⎝ 

θE √ 

qx 2 φ + y 2 φ/q 

⎞ 

⎠ 

γ−1 

, (1) 

here θE is the Einstein radius, q is the minor/major axis ratio, x φ ,
 φ are positions on the axes aligned with the major and minor axes,
nd γ is the power-law slope of the mass distribution. To model each
ain lens, we draw its γ ML ( γ of the main lens) from N (2 , 0 . 1)

nd truncate the tails of the normal distribution so that the range of
ossible values is bounded by 1.1 and 2.9. Slope values outside of
he (1, 3) interval lead to non-physical or divergent mass profiles
nd are thus not included in our modelling. Adding variations in γ ML 

imulates the natural stochasticity in lens density profiles that deviate
rom an isothermal profile ( γ = 2). Note that φ indicates the angle
etween the major/minor axes and the fixed ( x , y ) axes of an image.
he inputs into LENSTRONOMY are the ellipticity moduli, which are
irectly related to q and φ: 

 1 = 

1 −q 

1 + q 
cos (2 φ) , (2) 

 2 = 

1 −q 

1 + q 
sin (2 φ) . (3) 

n addition, we add multipole moments m = 3, 4 to the EPL lens mass
istribution in order to more realistically model the mass distribution
f more complex lenses that may deviate from an elliptical profile.
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Table 1. Parameters of the main components of a g alaxy–g alaxy strong gravitational lensing system and their 
respective training distributions in our forward simulation pipeline. 

Parameter Distribution 

Source 
Source redshift z source ∼ U (0 . 5 , 0 . 7) 
x -coordinate x source ∼ U ( −0 . 1 arcsec , 0 . 1 arcsec ) 
y -coordinate y source ∼ U ( −0 . 1 arcsec , 0 . 1 arcsec ) 

Main lens 
Lens redshift z lens ∼ U (0 . 15 , 0 . 25) 
x -coordinate x lens ∼ U ( −0 . 2 arcsec ) , 0 . 2 arcsec ) 
y -coordinate y lens ∼ U ( −0 . 2 arcsec , 0 . 2 arcsec ) 
Einstein radius θE ∼ U (0 . 9 arcsec , 1 . 3 arcsec) 
Ellipticities e 1 ∼ U ( −0 . 2 , 0 . 2) e 2 ∼ U ( −0 . 2 , 0 . 2) 
Multipole moments ( m = 3, 4) a m ∼ U (0 , 0 . 05) φm ∼ U ( −π, π ) 
EPL slope of density profile γML ∼ N (2 , 0 . 1) 
External shear γshear , 1 ∼ U ( −0 . 1 , 0 . 1) γshear , 2 ∼ U ( −0 . 1 , 0 . 1) 

Lens light 
Apparent magnitude m ∼ U (17 , 19) 
Half-light radius R sersic ∼ N (0 . 8 , 0 . 15) 
S ́ersic index n sersic ∼ N (2 , 0 . 5) 
Ellipticities e 1 ∼ U ( −0 . 1 , 0 . 1) e 2 ∼ U ( −0 . 1 , 0 . 1) 

LoS haloes 
EPL ellipticities e 1 ∼ U ( −0 . 2 , 0 . 2) e 2 ∼ U ( −0 . 2 , 0 . 2) 
EPL slope of density profile per lens system γ ∼ U (1 . 1 , 2 . 9) 
EPL slope of density profile per subhalo γi ∼ N ( γ, 0 . 1 γ ) 
LoS halo mass M 200 ∈ [10 7 , 10 10 ] M �
Halo mass function normalization δlos ∼ U (0 , 2) 

Subhaloes 
EPL ellipticities e 1 ∼ U ( −0 . 2 , 0 . 2) e 2 ∼ U ( −0 . 2 , 0 . 2) 
EPL slope of density profile per lens system γ ∼ U (1 . 1 , 2 . 9) 
EPL slope of density profile per subhalo γi ∼ N ( γ, 0 . 1 γ ) 
Subhalo mass function power-law slope −1.9 
Subhalo mass M 200 ∈ [10 7 , 10 10 ] M �
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e also include an external shear parametrized by γ shear,1 and γ shear,2 

Keeton, Kochanek & Seljak 1997 ). The shear parameters γ shear,1 and 
shear,2 are the diagonal and off-diagonal terms of the shear matrix, 

espectively. 
In Zhang, Mishra-Sharma & Dvorkin ( 2022 ), it is assumed that the

ight produced by the lens galaxy has already been subtracted from
he original observed image through a coarse modelling process. 
o we ver, for real observed images, removing the lens light may

nvolve imperfect modelling and high computational cost. To bypass 
his assumption, we include lens light in our mock image modelling. 

e assume that the centre of the lens light coincides with the centre
f its mass density profile and that the lens light takes on an elliptical
 ́ersic profile (S ́ersic 1963 ), with the brightness parametrized as: 

 ( r) = I 0 exp 

( 

−b n sersic 

(
r 

r sersic 

) 1 
n sersic 

) 

, (4) 

here n sersic is the S ́ersic index, b n sersic ≈ 1 . 999 n sersic − 0 . 327. Here,
 sersic is the half-light radius, and I 0 is determined by the apparent
agnitude (Birrer & Amara 2018 ). We draw the apparent magnitude 

f the lens light from a uniform distribution between 17 and 19.
e choose this range to be consistent with the apparent magnitude 
easurements of lens galaxies in the observed images used in our 

nalysis (Auger et al. 2009 ), which are discussed in detail in Section
.2 . In each mock image, we vary all parameters go v erning the
ens model, including its centre position, Einstein radius, shear 
arameters, apparent magnitude, and its ellipticity. The variation 
anges of these parameters are summarized in Table 1 . 
In simulating our training set images, we take into account the
pectroscopic redshifts of the real HST observations used during 
nference. To simulate each image in our training set, the source
alaxy redshift is drawn from a uniform distribution of z source ∼
(0 . 5 , 0 . 7), while the lens galaxy redshift is drawn from a uniform
istribution of z lens ∼ U (0 . 15 , 0 . 25). These redshift ranges roughly
atch with those of the real observations that we use for inference.
e deliberately chose to work with systems with relatively low- 

ource redshifts because they align better with the redshifts of 
he COSMOS galaxies that are used in our modelling pipeline, 

inimizing the difference between our simulated images and the 
eal observations. 

.1.2 Subhaloes and line-of-sight haloes 

side from the main lens, the observed strong lensing images of the
ource light are affected by additional structures: subhaloes, which 
re small haloes residing inside the main host halo, and LoS haloes,
hich are located along the LoS between the source galaxy and the
bserver. If these (sub)haloes are found within the bright lensed arcs
n the observed image, they can leave detectable perturbations on 
he observed images. Analysing these perturbations provides us with 
nformation about the properties of these substructures. 

In our pipeline for simulating the training and validation set 
mages, we add subhaloes and LoS haloes that follow the EPL profile
iven in equation ( 1 ). The γ parameter in the EPL profile controls
he steepness of the halo density profiles: a larger γ implies a denser
MNRAS 527, 4183–4192 (2024) 
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alo density profile. We model our training and validation set images
ith EPL (sub)haloes because it allows us to label each image with

ts underlying power-law slope, which is the ultimate parameter of
nterest during our inference. We include a uniform prior on γ in
ur training set so that we do not unnecessarily bias our model.
o model the subhaloes and LoS haloes in each image, we first
raw γ from a uniform distribution: γ ∼ U (1 . 1 , 2 . 9); we then draw
ormally distributed slopes γi ∼ N ( γ, 0 . 1 γ ) for the i th subhalo. This
ormal distribution is truncated so that γ i is constrained between 1.01
nd 2.99. The number of subhaloes added to each image is drawn
rom a uniform distribution N sub ∼ U{ 0 , 3000 } . Note that the upper
ound of 3000 subhaloes is an o v erestimate of a realistic number of
ubhaloes for our host halo mass, but we include a higher number
f subhaloes so that our neural network can successfully learn the
ignatures in the lensed images corresponding to the changes in the
ensity slope γ . During model e v aluation, we will use a smaller N sub 

ange to simulate a more realistic substructure fraction, as will be
iscussed in Section 4 . 
Because only subhaloes near the bright arcs of an image have

bserv able ef fects, in our simulated images, we place subhaloes
olely in pixels whose brightness is more than a fifth of the maximum
rightness in the smooth model image, which is the image modelled
ith only the lens and source galaxies and no substructure (and

n this case no lens light). The Einstein radius of each subhalo is
etermined by its mass M 200 , which is drawn from a subhalo mass
unction d N sub / d M 200 ∝ M 

−1 . 9 
200 . The mass M 200 is defined as the total

ass enclosed by r 200 , which is the radius within which the average
ass density is 200 times the critical density of the Universe. In our

imulated images, we only add subhaloes with masses between 10 7 

nd 10 10 M �, because subhaloes heavier than this range are scarce
nd can often be individually modelled. 

To add the LoS haloes in our modelling, we use the pipeline
rovided by P AL TAS , with several added modifications. The properties
f each LoS halo are determined by the following parameters: its
ass M 200 , density slope γ i , ellipticities e 1 , e 2 , redshift z los , and

osition coordinates x los , y los . P AL TAS determines the mass M 200 of
ach LoS halo using a modified Sheth–Tormen halo mass function,
hich includes two additional free parameters to the mass function
roposed originally in Sheth, Mo & Tormen ( 2001 ): (1) an o v erall
caling factor that accounts for uncertainties in the normalization of
he mass function; (2) a parameter that accounts for the contribution
rom the two-point halo correlation function, due to the fact that DM
aloes are biased tracers of the o v erall matter distribution. The two-
oint halo correlation function correction is only added for haloes
long the LoS that are sufficiently close to the main halo of the lens.
or a more comprehensive discussion of the modified Sheth–Tormen
ass function used in P AL TAS , we refer readers to Wagner-Carena

t al. ( 2023 ). The density slopes and ellipticities of LoS haloes are
rawn from the same uniform distributions as subhaloes, as discussed
bo v e. To determine the position of LoS haloes, we divide the space
etween the observer and the source galaxy into thin slices of redshift
ith uniform thickness. The position coordinates, ( x los , y los ), are
ounded by a double cone whose bases lie in the lens plane and
hose ape x es lie at the observ er and the source. The position of each
oS halo is sampled uniformly in the volume of the double cone. 
The addition of subhaloes causes an enlarged ef fecti ve Einstein

adius, so to restore the ef fecti ve Einstein radius to its smooth model
ounterpart, we add a ne gativ e mass sheet in the lens plane for the
ubhaloes. In addition, to a v oid making the region along our LoS
 v erdense compared to the rest of the Universe, we add a negative
ass sheet in each redshift slice for the LoS haloes. The ne gativ e
ass sheet is a constant sheet of convergence such that the sum o v er
NRAS 527, 4183–4192 (2024) 
ll its pixels cancels out the total convergence added by the subhaloes
r LoS haloes. 

.1.3 Instrumentation details and data pre-processing 

o make the mock images as similar to real observations as possible,
e incorporate HST instrumentation details in the production of
ur training set. We model our images using the HST Advanced
amera for Surv e ys W ide Field Channel (A CS/WFC) F 814 W filter
onfiguration and apply an empirical point spread function, obtained
rom examining the exposure of point-like stars (Anderson & King
000 ). We add noise using an exposure time of 2200 s, in approximate
greement with the noise level of the observed HST images discussed
n Section 2.2 . 

Moreo v er, in real observations, there are often bright structures
lose to the strong lens system of interest that can potentially distract
ur analysis. During training, we apply a circular mask to co v er the
egion outside of the lensed arcs, so that our model learns to not
et confused by potential confounders. To mask out the edges of the
mages, we set the area outside of a circular mask to zero after an
mage has been whitened. We vary the radius of the circular mask
ased on the Einstein radius of the image. 

.2 HST obser v ations 

e demonstrated, in Zhang, Mishra-Sharma & Dvorkin ( 2022 ), that
 neural likelihood-ratio estimator is capable of extracting subhalo
opulation density slope information from simulated strong lensing
mages. In this work, we apply the same method to real strong lensing
ata taken by the HST . Specifically, we use strong lens systems
dentified by the Sloan Lens A CS (SLA CS) surv e y (Bolton et al.
008 ) and followed up by HST observations. 
In the SLACS strong lens systems, the redshifts of the foreground

alaxies range from 0.05 to 0.5, while the redshifts of the background
alaxies range from 0.2 to 1.2. For our analysis, we choose observed
mages that share the same set of properties, and then simulate a

atching training set. The shared properties include 0.04 arcsec pixel
esolution, F 814 W camera band, and exposure time of approximately
200 s. We also select lens systems with source redshifts, lens
edshifts, and Einstein radii that fall in a reasonably narrow range
o limit the span of the o v erall parameter space. From the HST
bservations, we made (100 × 100) pixel 2 cutouts in which the lens
ystems of interest are located roughly at the centre. Out of these
utouts, we then selected a subset of them that contain visible lensed
rcs. The selected HST observations share the same instrumentation
etails with our training set so as to a v oid ha ving an unnecessary
istribution shift between training and testing. Our selection process
ed to a subset of 13 images that we ultimately used for inference, as
hown in Fig. 1 . 

 MODEL  AND  INFERENCE  

o infer the subhalo density slopes, we use a simulation-based in-
erence (SBI) machine learning technique. SBI methods have gained
ncreasing popularity in parameter inference problems in cosmology
ecause of their ability to approximate intractable likelihoods due to
omplicated physical processes. In our application, we train a neural
ikelihood-ratio estimator as a parametrized classifier to learn the
ikelihood function (Cranmer, P av ez & Louppe 2015 ; Baldi et al.
016 ; Hermans, Begy & Louppe 2019 ). 
In this section, we will give a high-level summary of our model

nd inference method. For a more detailed description of the theory
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Figure 1. For our inference, we selected 13 image cutouts from observations that share similar instrumental configurations taken by the HST F 814 W filter. 
Each image cutout has 100 pixels of size 0.04 arcsec per side. The pixel values of the images are shown in logscale so that features of the lensed arcs are visible 
by eye. The title of each image corresponds to the name of the strong lens system. 
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nderpinning the neural likelihood-ratio method, we refer readers 
o Cranmer, P av ez & Louppe ( 2015 ), while for more details on its
pplication to analysing subhalo density slopes in strong lensing 
mages, we refer readers to Zhang, Mishra-Sharma & Dvorkin 
 2022 ). 

.1 Inference method 

uppose θ denotes the parameters of our interest and x denotes 
he observed data. The core idea of likelihood-ratio estimation is 
raining a classifier to distinguish between samples from two different 
robability distributions: the joint data–parameter distribution p ( x , 
), which is the distribution of our interest, and the product of the
arginal distributions of the data and the parameter p ( x ) p ( θ ). In our

ase, x corresponds to observed strong lensing images, while θ is the 
ubhalo density slope γ underlying each image. We train a neural 
etwork as a classifier to learn the decision function s ( x , θ ) = p ( x ,
)/( p ( x , θ ) + p ( x ) p ( θ )), which is in one-to-one correspondence with

he likelihood ratio r ( x | θ ) = p ( x , θ )/( p ( x ) p ( θ )) as follows: 

( x | θ ) = 

s ( x , θ ) 

1 − s ( x , θ ) 
. (5) 

his allows us to convert a likelihood inference task to a classification
ask (Cranmer, P av ez & Louppe 2015 ; Baldi et al. 2016 ; Mohamed &
akshminarayanan 2016 ). At test time, to compute the likelihood- 

atio profile as a function of γ for a given lensed image, we obtain
he classifier logits for a linearly spaced array of input γ values. The
ikelihood-ratio estimation method is amortized: after spending an 
nitial o v erhead for model training, minimal computational cost is
eeded during inference. 
If we have an ensemble of strong lensing observations { x } that
re independently and identically distributed when conditioned on 
, then we can obtain their combined likelihood ratio by computing

he product of the individual likelihood ratios, 

ˆ  ( { x} | γ ) = 

∏ 

i 

ˆ r ( x i | γ ) . (6) 

his offers a way for us to efficiently combine results of multiple
bservations with little additional computational cost. 

.2 Uncertainty quantification 

f our likelihood-ratio estimator is a perfect classifier, then the test
tatistic 2 ( ln ̂  r MLE − ln ̂  r ) should be χ2 -distributed (Wilks 1938 ), 
here ln ̂  r is the loglikelihood e v aluated at the true γ and ln ̂  r MLE is

he loglikelihood at the maximum-likelihood estimate (MLE) γ MLE . 
o we ver, we found that with our imperfect classifier, the test-statistic
istribution deviates slightly from a true χ2 . Therefore, instead of 
uoting the 68 per cent uncertainty interval using a χ2 distribution, 
e empirically determine the threshold for the 68 per cent confidence 

nterval (CI) of the test statistic. In practical terms, we do this by
omputing the test statistic of many samples and then determining 
 threshold value under which approximately 68 per cent of the test
tatistic of these samples are included. Then, for a likelihood-ratio 
rofile, the γ values whose likelihood ratios evaluate to this threshold 
etermine the upper and lower uncertainties on the MLE. Because we
ound that combining different numbers of likelihood ratios leads to 
lightly different test-statistic distributions, this empirical threshold 
s determined separately for combining different numbers of images. 
his uncertainty quantification procedure ensures that approximately 
MNRAS 527, 4183–4192 (2024) 
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Figure 2. Scatter plot of the MLEs γ MLE and their associated 68 per cent 
CIs (as discussed in Section 3.2 ) predicted using the trained likelihood-ratio 
estimator compared to the true underlying γ of 93 test images. The images 
contain EPL subhaloes with M 200 ∈ [10 7 , 10 10 ] M � and N sub ∼ U{ 0 , 1800 } . 
The model was trained on images containing EPL subhaloes with M 200 ∈ 

[10 7 , 10 10 ] M � and N sub ∼ U{ 0 , 3000 } . 

Figure 3. Maximum-likelihood estimated γ MLE and associated 68 per cent 
CIs predicted from combined likelihoods of sets of 13 images containing 
EPL subhaloes compared to the true γ underlying each set of images (with 
M 200 ∈ [10 7 , 10 10 ] M � and N sub ∼ U{ 0 , 1800 } ). The model was trained on 
images containing EPL subhaloes with M 200 ∈ [10 7 , 10 10 ] M � and N sub ∼
U{ 0 , 3000 } . 
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8 per cent of the ground truths fall within the uncertainties quoted,
nd is used to determine the error bars presented in Section 4 . 

.3 Model and training details 

or our application, we use as our classifier a modified version of a
ommon computer vision model, the ResNet-50 convolutional neural
etwork implemented in PYTORCH (He et al. 2016 ; Paszke et al.
019 ). We add a sigmoid projection after all of the dense layers
n the ResNet in order to output the classification score ˆ s ( x, θ ). At
raining time, we append the true γ for each input image to the
atent vector after the convolutional layers in order to ensure that the

odel learns the true label. At test time, we instead append test γ
alues in order to obtain likelihood-ratio estimates o v er a range of γ .
ur training objective is the canonical binary cross-entropy loss for

lassification. We provide more details of our customized ResNet-50
rchitecture in Appendix A . 

To help with model convergence, we pre-process our training
et images. We normalize image pixel values to having zero mean
nd unit standard deviation across the training set; in addition, we
ormalize the γ values to zero mean. To ensure consistency at test
ime, we use the training set mean and standard deviation to whiten
ur test data. 
We use the AdamW optimizer (Kingma & Ba 2014 ; Loshchilov &

utter 2017 ) with an initial learning rate of 10 −3 . We follow a
earning rate schedule that decays by an order of magnitude when
he validation loss stagnates for three epochs, followed by a two-
poch cool-down period. We use a batch size of 1000 based on the
aximum GPU memory available. There are 5000 000 mock images

n our training set and 1000 in our validation set, all of which are
enerated using the forward model described in Section 2 . Training
erminates when the validation loss plateaus under a threshold of
0 −3 . We carried out our neural network training on NVIDIA V100
PUs for ∼20 epochs, with each epoch taking ∼5 h. We found

hat scaling up the size of the training set and the model complexity
ignificantly impro v ed the model performance during inference, and
e expect there to be more improvement if the computing resource

v ailability allo ws for more upscaling. 

 RESULTS  

fter our model has been trained, we first need to e v aluate its
onvergence. To do this, we compare model predictions of the
ubhalo density slope with their ground truths using individual
mages in our validation set. In Fig. 2 , we show the MLE (along
ith their 68 per cent uncertainties) compared to the true γ for 93

mages with 1.2 < γ < 2.8. 
The validation images have parameters drawn from the same

istributions as the training set, except for N sub , which is drawn
rom U{ 0 , 1800 } to simulate a more realistic substructure fraction.
ote that because each image in our training and validation set

s labelled with a true underlying γ value for EPL subhaloes, we
deally would like the neural network to predict the ground truths
nd be agnostic to the number of subhaloes. Therefore, having a
ore realistic number of subhaloes in our validation set serves as
 way for us to ensure that changing the number of subhaloes does
ot incur a bias in our neural network predictions. The source galaxy
mages used in validation were held out in training. These images
ontain EPL subhaloes whose true underlying subhalo density slopes
re known in the forward simulation pipeline, making this direct
omparison possible. As shown in Fig. 2 , our model predictions
ollow the ground truths in trend. This demonstrates that despite the
NRAS 527, 4183–4192 (2024) 
ddition of several layers of complexities into training images, our
eural network remains sensitive to the signature imprinted on strong
ensing images by changes in the subhalo density slope. Ho we ver, the
elatively large CIs indicate that the constraining power of individual
mages is limited, which makes it imperative to combine multiple
mages for inference. Note that the uncertainties are larger at the
ower end of the γ range because smaller γ values indicate less
oncentrated subhaloes, which leave less detectable signatures in the
ensed images. 

In addition, we check the model predictions of combining likeli-
ood ratios of multiple images. In Fig. 3 , we show γ MLE compared
o the ground truth γ for combined likelihoods of sets of 13 images,
ith each set sharing the same underlying slope γ . Note that we still

imulate the natural spread in γ i , so the slope for each subhalo varies
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lightly. These images share the same parameter distributions as the 
mages used in Fig. 2 except that the source galaxies come from the
eld-out set for validation. In Fig. 3 , we see that the MLE predictions
f our model closely follow the ground truths with relatively small
rror bars. Comparing the uncertainties between Figs 2 and 3 , we see
hat combining images significantly impro v es constraining power. 

.1 Simulated images with NFW subhaloes 

o obtain the expected subhalo density slopes under the CDM model, 
e simulate images containing subhaloes and LoS haloes following 

he Navarro–Frenk–White (NFW) profile (Navarro, Frenk & White 
997 ). Its radial density profile given by: 

( r) = 

ρ0 

r 
r s 

(
1 + 

r 
r s 

)2 , (7) 

here r is the distance from the centre of a subhalo, and the
ormalization ρ0 and the scale radius r s are free parameters. The 
FW profile is the most common fit for the universal density 
rofile of haloes from CDM N -body simulations. In addition to 
 normalization and a scale radius, the NFW profile can also be
arametrized by the (sub)halo mass M 200 and concentration c 200 . 
he concentration c 200 relates to the scale radius and virial radius
 200 (as defined in Section 2.1.2 ) following r 200 = c 200 r s . In our
imulated images with NFW subhaloes, we relate M 200 and c 200 with 
 mass–concentration relation extrapolated from Dutton & Macci ̀o 
 2014 ), which is an empirical relation determined using haloes in
DM simulations. We add a dex scatter of N (0 , 0 . 1) to the mass–
oncentration relation for each subhalo in order to mimic the natural 
pread in the relationship. Note that a dex scatter of 0.1 corresponds
o a ∼26 per cent variation in concentration. If we denote the CDM
ass–concentration as f CDM ( M 200 ), then we can modify the CDM
ass–concentration relation by multiplying it by a constant factor 

which will be referred to as concentration multiplicative factor) in 
rder to simulate different density slopes of subhalo populations. In 
ther words, this means that for a given concentration multiplicative 
actor a , we set the concentration of a subhalo with mass M 200 to be
 × f CDM ( M 200 ). To test the robustness of our neural network with
s realistic images as possible, we add subhaloes everywhere in the 
mage in these test sets. 

In addition, due to tidal stripping from the host halo, subhaloes 
ypically lose mass in their outer region (Hayashi et al. 2003 ;
iemand & Moore 2011 ). This means that, instead of an NFW
rofile, they can be more realistically modelled by a truncated NFW 

tNFW) profile. The tNFW profile is parametrized by the NFW 

arameters as well as a truncation radius r t : 

( r ) = 

r 2 t + r 2 

r 2 t 

ρ0 

r / r s ( 1 + r/ r s ) 
2 . (8) 

ecause the truncation steepens the subhalo density profile past 
he truncation radius, we expect tNFW subhaloes to have steeper 
ower-law density slopes than their NFW counterparts. To model 
he tNFW subhaloes in our pipeline, we first determine their NFW 

arameters following the procedure described for NFW subhaloes 
nd subsequently set their truncation radii. The choice of truncation 
adii affects subhalo density profiles in the intermediate and outer 
egion and thereby their measured slopes ( S ¸eng ̈ul & Dvorkin 2022 ).
or our test images, we set the truncation radii following Wagner- 
arena et al. ( 2023 ): 

 t = 1 . 4 

(
M 200 

m trunc , pivot 

) 1 
3 
(

r sub 

r trunc , pivot 

) 2 
3 

, (9) 
ith m trunc , pivot = 10 7 M � and r trunc,pivot = 50 kpc. Here, M 200 is the
ubhalo mass and r sub is the distance of the subhalo from the main
alo centre. Note that in the test sets where subhaloes are modelled
ith tNFW, LoS haloes are still modelled with the NFW profile as

he y e xperience less tidal stripping than subhaloes. 
One question that might arise is why our trained likelihood-ratio 

stimator can be applied to images with (t)NFW subhaloes and 
oS haloes even though the training set only contains their EPL
ounterparts. The justification for this has been demonstrated in 
 ¸eng ̈ul & Dvorkin ( 2022 ) and Zhang, Mishra-Sharma & Dvorkin
 2022 ): given limited resolution and appropriate noise level, the
bservable changes in the surface brightness due to the presence of
t)NFW subhaloes can be well approximated by that of a power-law
rofile subhalo. 
Because the density slopes of (t)NFW subhaloes vary with mass 

 i.e. larger masses have more extended density profiles and thereby
maller density slopes), the intrinsic stochasticity in the masses of a
t)NFW subhalo population introduces intrinsic aleatoric uncertainty 
nto the slope measurement. To account for this uncertainty in each
f our measurements, we generate 100 separate sets of images 
ith shared properties and then obtain the MLE of each combined

ikelihood; using the set of 100 MLEs, we empirically determine the
8 per cent CIs. 
In Fig. 4 , we sample an array of varying concentration multi-

licative factors and show our model MLE from the combined 
ikelihood of 13 images that contain (t)NFW subhaloes and LoS 

aloes at each multiplicative factor. As expected, subhaloes with 
igher concentrations lead to larger γ predictions. In particular, the 
ata points for a concentration multiplicative factor of 1 correspond 
o the expected subhalo density slope measurements under the CDM 

odel, and they will be compared with the predicted slope of the
ST observations in Section 4.2 . From the figure, we find that tNFW

ubhaloes in general produce higher density slope measurements 
han NFW subhaloes, consistent with findings presented in S ¸eng ̈ul &
vorkin ( 2022 ). 

.2 Result with HST images 

aving done model validation and obtained the expected density 
lope of CDM subhaloes, we will now use our model to infer
MNRAS 527, 4183–4192 (2024) 
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M

Figure 5. Representativ e e xamples of the individual likelihood-ratio test- 
statistic profiles for HST images. Each profile is labelled with the name of its 
corresponding lens system. 

Figure 6. The 68 per cent CI of combined likelihood-ratio test-statistic 
profiles of 13 images containing M 200 ∈ [10 7 , 10 10 ] M � NFW subhaloes 
and tNFW subhaloes, both with a concentration multiplicative factor of 1, 
as well as the combined likelihood-ratio test-statistic profile of the 13 HST 
images shown in Fig. 1 . The uncertainties corresponding to the 68 per cent 
CI are shown in dashed lines for the likelihood-ratio test-statistic profile. 
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he subhalo slope of observed HST strong lensing images, which
re described in Section 2.2 . These images are masked at the
dges and whitened with the training mean and standard deviation
efore being fed into our neural network. In Fig. 5 , we show the
ndividual likelihood-ratio test-statistic profiles for several of the
ST observations. In comparison with the predictions of NFW and

NFW subhaloes under the CDM model, as discussed in Section 4.1 ,
e see that the predicted slopes of these HST observations are larger

han the predicted slopes of the CDM model. 
We subsequently combine these individual likelihood ratios using

quation ( 6 ) in order to obtain tighter constraints. In Fig. 6 , we show
he combined likelihood-ratio test-statistic profile for all of the 13
mages. From this profile, we get a measurement of the subhalo
ensity slope of γMLE = 2 . 51 −0 . 04 

+ 0 . 05 , with the quoted uncertainties
ndicating the 68 per cent credible interval shown in dotted lines. 
NRAS 527, 4183–4192 (2024) 
In the same figure, we also show the 68 per cent CIs for the
ombined likelihood-ratio test-statistic profiles of 13 images con-
aining NFW subhaloes or tNFW subhaloes. These correspond to
ata points shown in Fig. 4 for a concentration multiplicative factor
f 1. Comparing the slope prediction of the HST images with that
f the simulated images with NFW subhaloes, we see that the
easured density slope of the HST data is significantly steeper than

he expected slope under the assumption that CDM subhaloes follow
n NFW profile. The predicted slope of the images containing tNFW
ubhaloes is also less than the HST measurement, but their difference
s less statistically significant than that with the NFW prediction.

hile surprising, this is in agreement with previous works that also
easured a higher than expected concentration (Minor et al. 2021b ;
 ¸eng ̈ul & Dvorkin 2022 ). In particular, our 13 HST images include the
DSSJ0946 + 1006 system analysed by Minor et al. ( 2021b ), which
easured a much higher concentration than the CDM prediction. The

ndividual likelihood-ratio test-statistic profile for the same system
n our analysis is shown in Fig. 5 , and it is in broad agreement
ith the result in their work. It is also worth noting that our method
rovides a stronger constraint due to the neural network’s ability to
fficiently combine multiple observations. It would also be useful to
ompare our results with those obtained by S ¸eng ̈ul & Dvorkin ( 2022 )
f the JVAS B1938 + 666 lens system, but to our knowledge, there
s no suitable HST observation of this lens system that matches our
raining set configuration. Thus, we leave this for future work when

ore observations become available. 
One possible explanation of the difference between our result and

he CDM predictions lies in the assumptions made in our subhalo
odelling. Several assumptions about subhalo density profiles went

nto modelling the lens system in the image; in particular, the density
rofile parametrization and the choice of mass–concentration relation
ffect the predicted slope measurements of subhaloes under the CDM
odel. Modelling these properties for subhaloes is an ongoing area

f research (Green, van den Bosch & Jiang 2021 ), and an impro v ed
nderstanding of subhalo profiles may change the predicted CDM
ensity slopes. Another possible reconciliation is accounting for the
election effects. Subhaloes with steeper density slopes are more
oncentrated and, therefore, are easier to detect in observations.
ithin our current resolution constraint and noise level, the less

oncentrated smaller subhaloes are not detectable, hence biasing our
tatistics. This effect of the selection function on slope measurements
s important, and we leave a careful study of it for future work, when

ore observations become available from ongoing and upcoming
urv e ys. 

 CONCLUSIONS  AND  OUTLOOK  

bservations at sub-galactic scale are essential for examining
lternate DM models and contrasting them against the standard
DM model. Among the small-scale observables, subhaloes provide
 promising avenue for DM studies. In addition to constraining
he subhalo mass function, studying the subhalo density slope
concentration) can help to potentially dif ferentiate v arious classes
f DM models. Subhalo properties can be probed by analysing
trong gravitational lensing images. Traditional strong lensing image
nalyses model individual subhaloes through a forward modelling
ipeline, but this process can only provide limited statistics; to model
ore subhaloes in a system or to combine statistics from many

mages, direct lens modelling becomes computationally infeasible. 
The rapid progress in machine learning enables the development

f techniques that have the power to leverage the collective effect of
ubhalo populations in strong lensing images, as well as to efficiently
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nalyse a large ensemble of observ ations. Despite sho wcases of
uccess on simulated images, many of these machine learning 
ethods require further validation and impro v ements before they 

an be successfully applied to real strong lensing observations. 
In this work, we built upon the likelihood-ratio estimation method 

eveloped in Zhang, Mishra-Sharma & Dvorkin ( 2022 ) and trained 
 neural network capable of making inference from observed strong 
ensing images. To make the leap from mock to real images, we added
umerous layers of realism in the forward pipeline of the training 
et. This includes complexifying the lens model to account for the 
ens light, multipole moments as well as external shear, incorporating 
ealistic noise levels, and adding LoS haloes. We demonstrated that 
he likelihood-ratio estimator retains its sensitivity to changes in the 
ubhalo density slope in simulated strong lensing, even after adding 
hese layers of realism. Furthermore, we obtained the expected 
ubhalo density slope measurements in simulations under the CDM 

odel. This measurement comes from using our trained neural 
etwork to predict the slope of simulated lensing images containing 
t)NFW subhaloes that follow a mass–concentration relation derived 
rom CDM simulations. Finally, we measured the subhalo slopes 
f a set of 13 HST observations and statistically combined their 
onstraints. By comparing the subhalo slope in the HST observations 
ith the measurement from simulated CDM images, we found an 
nexpectedly high slope measurement in the HST observations, in 
ension with CDM predictions. 

Several recent works in cluster lensing have also suggested that 
ubstructures in galaxy clusters are more compact than expected of 
he CDM model (Meneghetti et al. 2020 , 2022 , 2023 ). Combined
ith several similar results in the literature, our measurement has 

mportant implication for DM studies as it may moti v ate more careful
xamination of alternate DM models. The most common alternatives 
o CDM, the WDM model, and many SIDM models, predict a 
ower than CDM subhalo density slope and would exacerbate the 
ension that we observe (Lovell et al. 2012 , 2014 ; Vogelsberger,
avala & Loeb 2012 ; Rocha et al. 2013 ; Kahlhoefer et al. 2019 ).
o we ver, certain SIDM models [ e.g. with large self-interacting cross-

ections (Nishikawa, Boddy & Kaplinghat 2020 )] also predict that 
IDM subhaloes can undergo core collapses that result in unusually 
oncentrated inner profiles in a time-scale rele v ant for observ ations
oday (Lynden-Bell & Wood 1968 ; Kochanek & White 2000 ; Col ́ın
t al. 2002 ; Elbert et al. 2015 ; Nadler, Yang & Yu 2023 ). This
ravitothermal core collapse due to DM self-interactions has been 
uggested as a possible explanation of these high-density central 
egions in cluster galaxies (Yang & Yu 2021 ). Resolving galactic 
ubhaloes in simulations is harder due to their lower masses. A 

ybrid approach in Zeng et al. ( 2022 ), which includes a combination
f semi-analytical methods and N -body simulations has shown that 
ome SIDM models can produce subhaloes with collapsed cores at 
ubgalactic mass scales ( < 10 10 M �). This phenomenon provides 
 possible explanation for the high subhalo density slope that we 
easured. Based on our work, it is still not possible to pinpoint

he mechanism that causes this outlier measurement from the CDM 

odel, but there are several directions of future work that can take
s closer to answering this question. For instance, one can study
he subhalo slope predictions under different microphysical DM 

odels and compare them with the predictions from observed lensing 
mages. In addition, one can examine the effect of assumptions about 
DM subhalo properties on the likelihood-ratio estimator’s slope 
redictions. As more lensing systems are expected to be disco v ered
ith upcoming surv e ys (and followed up by observations), the 

ikelihood-ratio estimator will be a valuable tool for obtaining more 
easurements to help elucidate the nature of DM. 
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PPENDIX:  MODEL  ARCHITECTURE  

e describe in this appendix the customized ResNet-50 architecture
sed in this work. The original ResNet-50 model used in computer
ision consists of a series of convolution blocks followed by pooling
nd dense layers. We made two modifications to this model for our
nference task. First, we append the truth label γ of each image during
raining to the flattened latent space vector after the convolution
locks, as indicated by the top arrow in Fig. A1 . This ensures that the
eural network incorporates information about γ into its prediction.
n addition, we add a logistic acti v ation function after the last layer
f ResNet-50 to ensure that the final output is a valid classification
core ˆ s ( γ, x) ( i.e. between 0 and 1). As discussed in Section 3.3 ,
hen we train the neural network as a classifier, the v alue gi ven by

he ResNet before the logistic acti v ation gi ves us the loglikelihood
stimate ln ̂  r , as indicated in Fig. A1 . 

igure A1. Graphical illustration of the neural network architecture used in
his work. 
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