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ABSTRACT

Examining the properties of subhaloes with strong gravitational lensing images can shed light on the nature of dark matter.
From upcoming large-scale surveys, we expect to discover orders of magnitude more strong lens systems that can be used for
subhalo studies. To optimally extract information from a large number of strong lensing images, machine learning provides
promising avenues for efficient analysis that is unachievable with traditional analysis methods, but application of machine
learning techniques to real observations is still limited. We build upon previous work, which uses a neural likelihood-ratio
estimator, to constrain the effective density slopes of subhaloes and demonstrate the feasibility of this method on real strong
lensing observations. To do this, we implement significant improvements to the forward simulation pipeline and undertake careful
model evaluation using simulated images. Ultimately, we use our trained model to predict the effective subhalo density slope
from combining a set of strong lensing images taken by the Hubble Space Telescope. We found the subhalo slope measurement of
this set of observations to be steeper than the slope predictions of cold dark matter subhaloes. Our result adds to several previous
works that also measured high subhalo slopes in observations. Although a possible explanation for this is that subhaloes with
steeper slopes are easier to detect due to selection effects and thus contribute to statistical bias, our result nevertheless points to

the need for careful analysis of more strong lensing observations from future surveys.
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1 INTRODUCTION

The standard Lambda cold dark matter (CDM) cosmological model
has been in remarkable agreement with large-scale observations, but
there is scarce evidence for the nature of dark matter (DM) on small
(sub-galactic) scales. Because the nature of DM remains elusive,
examining various DM models using small-scale cosmological
observables becomes crucial. One of the promising observables used
to study DM is subhaloes, which are small DM clumps gravitationally
bound to a larger halo. Probing the properties of these subhaloes can
potentially shine light on the nature of DM, as subhaloes exhibit
different properties under alternate DM models beyond CDM. For
instance, warm dark matter (WDM) models predict a smaller number
of low-mass subhaloes and more cored subhalo density profiles
compared to CDM (Bode, Ostriker & Turok 2001), while self-
interacting dark matter (SIDM) models generally predict more cored
subhalo profiles than that of the CDM model (Spergel & Steinhardt
2000).

Because low-mass subhaloes are observed to lack luminous
matter (Fitts et al. 2017; Read et al. 2017; Kim, Peter & Hargis
2018), they are typically probed through their gravitational effects.
Strong gravitational lensing, a predicted phenomenon from General
Relativity, is a powerful way to constrain subhalo properties. In strong
gravitational lensing, light emitted by a distant source gets deflected
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by the gravitational field of a massive structure (lens), and properties
of the lens and its substructure can be inferred by analysing the
images of the source light. In this paper, we will focus on studying
subhaloes in the lens galaxy of strong lensing systems in which both
the lens and background source are galaxies.

To date, there have been a few claimed detections of substructure in
galaxy—galaxy strong lensing observations (Vegetti et al. 2010, 2012;
Hezaveh et al. 2016b). Existing analyses that use observed strong
lensing images to constrain DM models primarily rely on modelling
individual (often the most massive) substructure in a lens system
(Vegetti et al. 2014; Ritondale et al. 2019; Sengiil et al. 2022). While
useful, direct substructure modelling is computationally costly, and it
is often limited to capturing the effect of relatively massive subhaloes.
Even though the CDM paradigm predicts a large number of subhaloes
with smaller masses, they are difficult to probe through traditional
analysis methods because the inclusion of more subhaloes makes
sampling of the joint parameter space prohibitive. As a result, it
is important to explore alternative analysis methods that can more
optimally incorporate information from the large population of
smaller subhaloes.

To leverage the collective effect of subhalo populations on strong
lensing images, there has been significant work done to obtain
statistical constraints from subhaloes (Dalal & Kochanek 2002; Cyr-
Racine et al. 2016; Hezaveh et al. 2016a; Birrer, Amara & Refregier
2017; Daylan et al. 2018; Diaz Rivero, Cyr-Racine & Dvorkin
2018a; Diaz Rivero et al. 2018b; Gilman et al. 2018; Brennan et al.
2019; Cyr-Racine, Keeton & Moustakas 2019; He et al. 2022). In

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

20z Arenuer Lg uo1sanb Aq y9Ly2h//€8 1 ¥/2/L2G/PI0IMe/SeIuw/Wwod"dno-olWapeo.//:sd)y WOy papeojumod


http://orcid.org/0000-0002-8019-8082
http://orcid.org/0000-0002-9817-3297
mailto:yzhang7@g.harvard.edu
http://creativecommons.org/licenses/by/4.0/

4184  G. Zhang, A. C. Sengiil and C. Dvorkin

particular, machine learning has emerged as a promising candidate to
analyse subhaloes in strong lensing images for its ability to efficiently
and implicitly marginalize over a large parameter space. With the
upcoming large-scale imaging surveys, the number of observed
strong lensing systems is expected to increase significantly (Laureijs
et al. 2011; Collett 2015; McKean et al. 2015; Bechtol et al. 2019;
Jacobs et al. 2019; Huang et al. 2021; Storfer et al. 2022). Machine
learning has a much-needed advantage that can make inference on
these large data sets feasible.

Several deep learning techniques have been demonstrated to be
effective at constraining the subhalo mass function using simulated
strong lensing images (Brewer, Huijser & Lewis 2016; Brehmer et al.
2019; Anau Montel et al. 2023; Ostdiek, Diaz Rivero & Dvorkin
2022a, b; Wagner-Carena et al. 2023), but so far, there has been no
successful attempt at applying them to real observations. The main
challenge of applying deep learning methods to observations comes
from the need for the training set to closely resemble the test set,
as deep learning models are known to struggle in the presence of a
distribution shift between training and test sets (Recht et al. 2018,
2019). Most of the previous works on machine learning applications
to strong lensing made simplifying assumptions in the forward
modelling pipeline of the training set in order to demonstrate the
potential suitability of a method. However, for the machine learning
model to be deployed on observations, its training set needs to
incorporate all possible complexities that exist in the observed data.

In this work, for the first time, we analyse subhalo properties in
real strong lensing observations with a machine learning technique.
We build upon the method developed in Zhang, Mishra-Sharma &
Dvorkin (2022) by adding multiple layers of complexities in the
forward pipeline for the training set. Through training, our model
learns to infer the effective subhalo density slope (directly related
to the subhalo concentration), a promising observable proposed by
Sengiil & Dvorkin (2022) for distinguishing DM models. Several
other works have also shown that the concentration of subhaloes is an
effective probe of DM (Minor et al. 2021a, b; Amorisco et al. 2022).
Using our trained model on real observed strong lensing images,
we found a subhalo density slope steeper than those of subhaloes
predicted by the CDM model. This measurement is consistent
with previous works, which also found unexpectedly large subhalo
concentrations (Minor et al. 2021b; Sengiil & Dvorkin 2022).

This paper is organized as follows. In Section 2, we discuss details
of the forward model used to generate mock strong lensing images.
In Section 3, we summarize the deep learning technique that we
use for inference, discuss our inference procedure, and outline our
neural network architecture. In Section 4, we evaluate our trained
model and compare the model predictions on the observed data with
those under the CDM model. We conclude with a summary of our
results in Section 5, and discuss the implications of our work.

2 DATA

We generate simulated lensing images to train our neural network
and compare our model predictions with ground truths on mock
images post-training to ensure training quality. At inference time,
we apply the trained model to a set of observed lensing images from
the Hubble Space Telescope (HST). We discuss details of both the
mock data and the real HST observations below.

2.1 Mock data generation

To generate our mock strong lensing images, we use the software
package LENSTRONOMY (Birrer, Amara & Refregier 2015; Birrer &
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Amara 2018). In order to match the HST post-drizzling image config-
uration, we generate (100 x 100) pixel® images, with a resolution of
0.04 arcsec per pixel. We build upon the simulation pipeline used in
Zhang, Mishra-Sharma & Dvorkin (2022) and include significantly
more complexities in the modelling process so as to make the images
as similar to real observations as possible. Modelling a strong lens
system requires several ingredients in the forward model: a source
galaxy, a main (host) lens galaxy, a population of subhaloes and
line-of-sight (LoS) haloes. In addition, we specify the instrumental
configuration and image pre-processing of the mock images in the
forward simulation. The distributions of parameters governing the
lens models of our simulated images are summarized in Table 1.

2.1.1 Source and main lens

In a galaxy—galaxy lens system, light rays of a background source
galaxy get gravitationally deflected by a foreground lens galaxy en
route to the detector. Strong gravitational lensing specifically refers
to the case where the projected surface mass density of the lens
is greater than the critical surface density X.q. In this scenario, the
bending of source light is significant enough to result in characteristic
arcs of light in observed images.

To simulate the source light, we use galaxy images taken by
the HST Cosmic Evolution Survey (COSMOS; Koekemoer et al.
2007; Scoville et al. 2007) processed by PALTAS (Wagner-Carena
et al. 2023). The PALTAS package takes a subsample of the HST
COSMOS survey galaxy images (Mandelbaum et al. 2012, 2014)
and filters out suitable source candidates. To simulate the source
for each mock image, we randomly draw a galaxy image from the
COSMOS catalogue and randomly vary the rotation angle and the
source coordinates (Xsource, Ysource)- From the 2262 available source
galaxies, we use 2163 (96 per cent) for the training set, 70 (3 per cent)
for the validation set, and the remainder (1 per cent) for testing and
evaluation.

We model the main lens mass distribution using an elliptical power
law (EPL) profile (Barkana 1998). The convergence of an EPL profile
at position (x, y) on the lens plane is given as follows:

y—1
3— V4 9]5

2 \/axs + vila

where 05 is the Einstein radius, ¢ is the minor/major axis ratio, x,,
Yy are positions on the axes aligned with the major and minor axes,
and y is the power-law slope of the mass distribution. To model each
main lens, we draw its Yy (y of the main lens) from N(2,0.1)
and truncate the tails of the normal distribution so that the range of
possible values is bounded by 1.1 and 2.9. Slope values outside of
the (1, 3) interval lead to non-physical or divergent mass profiles
and are thus not included in our modelling. Adding variations in y mp
simulates the natural stochasticity in lens density profiles that deviate
from an isothermal profile (¥ = 2). Note that ¢ indicates the angle
between the major/minor axes and the fixed (x, y) axes of an image.
The inputs into LENSTRONOMY are the ellipticity moduli, which are
directly related to ¢ and ¢:

K(x,y) = (D

e = }%Z cos(2¢), 2
e = 7 sin(2¢). 3)

In addition, we add multipole moments m = 3, 4 to the EPL lens mass
distribution in order to more realistically model the mass distribution
of more complex lenses that may deviate from an elliptical profile.
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Table 1. Parameters of the main components of a galaxy—galaxy strong gravitational lensing system and their
respective training distributions in our forward simulation pipeline.

Parameter

Distribution

Source

Source redshift
x-coordinate
y-coordinate

Main lens

Lens redshift

x-coordinate

y-coordinate

Einstein radius

Ellipticities

Multipole moments (m = 3, 4)
EPL slope of density profile
External shear

Lens light
Apparent magnitude

Half-light radius

Sérsic index

Ellipticities

LoS haloes

EPL ellipticities

EPL slope of density profile per lens system
EPL slope of density profile per subhalo
LoS halo mass

Halo mass function normalization

Subhaloes

EPL ellipticities

EPL slope of density profile per lens system
EPL slope of density profile per subhalo
Subhalo mass function power-law slope
Subhalo mass

Zsource ™ 1/1(05, 07)
Xsource ~ U(—0.1 arcsec, 0.1 arcsec)
Ysource ™~ U(—0.1 arcsec, 0.1 arcsec)

Zlens ~ U(0.15,0.25)
Xiens ~ U(—0.2 arcsec), 0.2 arcsec)
Yiens ~ U(—0.2 arcsec, 0.2 arcsec)
O ~ U(0.9 arcsec, 1.3 arcsec)
e ~U(—0.2,0.2) e ~U(-0.2,0.2)
am ~U(0,0.05) ¢ ~U(—m, )
L ~ N(2,0.1)
Vshear,1 ™~ U(-0.1,0.1) Vshear,2 ™~ U(-0.1,0.1)

m~U(7,19)
Rsersic ~ N(O& 015)
Rsersic ™~ N(Z, 0.5)
e; ~U(—0.1,0.1) er ~U(-0.1,0.1)

e ~U(—0.2,0.2) ey ~U(—0.2,0.2)
y ~U(.1,2.9)
vi ~N(y,0.1y)
Mago € [107, 10101 Mg
S1os ~ U(0, 2)

e ~U(=0.2,0.2) e ~U(-0.2,0.2)

y ~U(1.1,2.9)
vi ~N(y,0.1y)
—-1.9

Mago € [107, 10101 Mg

We also include an external shear parametrized by ¥ shear,1 and ¥ shear2
(Keeton, Kochanek & Seljak 1997). The shear parameters y spear,1 and
¥ shear2 are the diagonal and off-diagonal terms of the shear matrix,
respectively.

In Zhang, Mishra-Sharma & Dvorkin (2022), it is assumed that the
light produced by the lens galaxy has already been subtracted from
the original observed image through a coarse modelling process.
However, for real observed images, removing the lens light may
involve imperfect modelling and high computational cost. To bypass
this assumption, we include lens light in our mock image modelling.
We assume that the centre of the lens light coincides with the centre
of its mass density profile and that the lens light takes on an elliptical
Sérsic profile (Sérsic 1963), with the brightness parametrized as:

1
1(r) = loexp <—b< - ) ) @
Fsersic

where ngsic 18 the Sérsic index, b, . & 1.999nic — 0.327. Here,
Tsersic 18 the half-light radius, and I is determined by the apparent
magnitude (Birrer & Amara 2018). We draw the apparent magnitude
of the lens light from a uniform distribution between 17 and 19.
We choose this range to be consistent with the apparent magnitude
measurements of lens galaxies in the observed images used in our
analysis (Auger et al. 2009), which are discussed in detail in Section
2.2. In each mock image, we vary all parameters governing the
lens model, including its centre position, Einstein radius, shear
parameters, apparent magnitude, and its ellipticity. The variation
ranges of these parameters are summarized in Table 1.

In simulating our training set images, we take into account the
spectroscopic redshifts of the real HST observations used during
inference. To simulate each image in our training set, the source
galaxy redshift is drawn from a uniform distribution of Zsource ~
U(0.5, 0.7), while the lens galaxy redshift is drawn from a uniform
distribution of zjens ~ U(0.15, 0.25). These redshift ranges roughly
match with those of the real observations that we use for inference.
We deliberately chose to work with systems with relatively low-
source redshifts because they align better with the redshifts of
the COSMOS galaxies that are used in our modelling pipeline,
minimizing the difference between our simulated images and the
real observations.

2.1.2 Subhaloes and line-of-sight haloes

Aside from the main lens, the observed strong lensing images of the
source light are affected by additional structures: subhaloes, which
are small haloes residing inside the main host halo, and LoS haloes,
which are located along the LoS between the source galaxy and the
observer. If these (sub)haloes are found within the bright lensed arcs
in the observed image, they can leave detectable perturbations on
the observed images. Analysing these perturbations provides us with
information about the properties of these substructures.

In our pipeline for simulating the training and validation set
images, we add subhaloes and LoS haloes that follow the EPL profile
given in equation (1). The y parameter in the EPL profile controls
the steepness of the halo density profiles: a larger y implies a denser
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halo density profile. We model our training and validation set images
with EPL (sub)haloes because it allows us to label each image with
its underlying power-law slope, which is the ultimate parameter of
interest during our inference. We include a uniform prior on y in
our training set so that we do not unnecessarily bias our model.
To model the subhaloes and LoS haloes in each image, we first
draw y from a uniform distribution: y ~ U/(1.1, 2.9); we then draw
normally distributed slopes y; ~ N (y, 0.1y ) for the ith subhalo. This
normal distribution is truncated so that y; is constrained between 1.01
and 2.99. The number of subhaloes added to each image is drawn
from a uniform distribution Ny, ~ U{0, 3000}. Note that the upper
bound of 3000 subhaloes is an overestimate of a realistic number of
subhaloes for our host halo mass, but we include a higher number
of subhaloes so that our neural network can successfully learn the
signatures in the lensed images corresponding to the changes in the
density slope y. During model evaluation, we will use a smaller Ny,
range to simulate a more realistic substructure fraction, as will be
discussed in Section 4.

Because only subhaloes near the bright arcs of an image have
observable effects, in our simulated images, we place subhaloes
solely in pixels whose brightness is more than a fifth of the maximum
brightness in the smooth model image, which is the image modelled
with only the lens and source galaxies and no substructure (and
in this case no lens light). The Einstein radius of each subhalo is
determined by its mass Mgy, which is drawn from a subhalo mass
function d Ny, /d Mooy M2_0§)'9. The mass M5 is defined as the total
mass enclosed by rg, which is the radius within which the average
mass density is 200 times the critical density of the Universe. In our
simulated images, we only add subhaloes with masses between 107
and 10'° Mg, because subhaloes heavier than this range are scarce
and can often be individually modelled.

To add the LoS haloes in our modelling, we use the pipeline
provided by PALTAS, with several added modifications. The properties
of each LoS halo are determined by the following parameters: its
mass Mgy, density slope y;, ellipticities e;, e, redshift zj5, and
position coordinates Xjos, Yios- PALTAS determines the mass Mgy of
each LoS halo using a modified Sheth—Tormen halo mass function,
which includes two additional free parameters to the mass function
proposed originally in Sheth, Mo & Tormen (2001): (1) an overall
scaling factor that accounts for uncertainties in the normalization of
the mass function; (2) a parameter that accounts for the contribution
from the two-point halo correlation function, due to the fact that DM
haloes are biased tracers of the overall matter distribution. The two-
point halo correlation function correction is only added for haloes
along the LoS that are sufficiently close to the main halo of the lens.
For a more comprehensive discussion of the modified Sheth—Tormen
mass function used in PALTAS, we refer readers to Wagner-Carena
et al. (2023). The density slopes and ellipticities of LoS haloes are
drawn from the same uniform distributions as subhaloes, as discussed
above. To determine the position of LoS haloes, we divide the space
between the observer and the source galaxy into thin slices of redshift
with uniform thickness. The position coordinates, (Xios, YVios), are
bounded by a double cone whose bases lie in the lens plane and
whose apexes lie at the observer and the source. The position of each
LoS halo is sampled uniformly in the volume of the double cone.

The addition of subhaloes causes an enlarged effective Einstein
radius, so to restore the effective Einstein radius to its smooth model
counterpart, we add a negative mass sheet in the lens plane for the
subhaloes. In addition, to avoid making the region along our LoS
overdense compared to the rest of the Universe, we add a negative
mass sheet in each redshift slice for the LoS haloes. The negative
mass sheet is a constant sheet of convergence such that the sum over
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all its pixels cancels out the total convergence added by the subhaloes
or LoS haloes.

2.1.3 Instrumentation details and data pre-processing

To make the mock images as similar to real observations as possible,
we incorporate HST instrumentation details in the production of
our training set. We model our images using the HST Advanced
Camera for Surveys Wide Field Channel (ACS/WFC) F814W filter
configuration and apply an empirical point spread function, obtained
from examining the exposure of point-like stars (Anderson & King
2000). We add noise using an exposure time of 2200 s, in approximate
agreement with the noise level of the observed HST images discussed
in Section 2.2.

Moreover, in real observations, there are often bright structures
close to the strong lens system of interest that can potentially distract
our analysis. During training, we apply a circular mask to cover the
region outside of the lensed arcs, so that our model learns to not
get confused by potential confounders. To mask out the edges of the
images, we set the area outside of a circular mask to zero after an
image has been whitened. We vary the radius of the circular mask
based on the Einstein radius of the image.

2.2 HST observations

We demonstrated, in Zhang, Mishra-Sharma & Dvorkin (2022), that
a neural likelihood-ratio estimator is capable of extracting subhalo
population density slope information from simulated strong lensing
images. In this work, we apply the same method to real strong lensing
data taken by the HST. Specifically, we use strong lens systems
identified by the Sloan Lens ACS (SLACS) survey (Bolton et al.
2008) and followed up by HST observations.

In the SLACS strong lens systems, the redshifts of the foreground
galaxies range from 0.05 to 0.5, while the redshifts of the background
galaxies range from 0.2 to 1.2. For our analysis, we choose observed
images that share the same set of properties, and then simulate a
matching training set. The shared properties include 0.04 arcsec pixel
resolution, F814W camera band, and exposure time of approximately
2200 s. We also select lens systems with source redshifts, lens
redshifts, and Einstein radii that fall in a reasonably narrow range
to limit the span of the overall parameter space. From the HST
observations, we made (100 x 100) pixel? cutouts in which the lens
systems of interest are located roughly at the centre. Out of these
cutouts, we then selected a subset of them that contain visible lensed
arcs. The selected HST observations share the same instrumentation
details with our training set so as to avoid having an unnecessary
distribution shift between training and testing. Our selection process
led to a subset of 13 images that we ultimately used for inference, as
shown in Fig. 1.

3 MODEL AND INFERENCE

To infer the subhalo density slopes, we use a simulation-based in-
ference (SBI) machine learning technique. SBI methods have gained
increasing popularity in parameter inference problems in cosmology
because of their ability to approximate intractable likelihoods due to
complicated physical processes. In our application, we train a neural
likelihood-ratio estimator as a parametrized classifier to learn the
likelihood function (Cranmer, Pavez & Louppe 2015; Baldi et al.
2016; Hermans, Begy & Louppe 2019).

In this section, we will give a high-level summary of our model
and inference method. For a more detailed description of the theory

20z Arenuer Lg uo1sanb Aq y9Ly2h//€8 1 ¥/2/L2G/PI0IMe/SeIuw/Wwod"dno-olWapeo.//:sd)y WOy papeojumod



SDSSJ1023+4230 SDSSJ1627-0053

SDSSJ0822+2652 SDSSJ2300+0022

SDSSJ0728+3835

0
20
i
0 50 0 50

Pixel

SDSSJ0946+1006

0
20
=

SDSSJ0936+0913

SDSSJ1205+4910

Pixel

Subhalo density slopes from HST data 4187

SDSSJ2238-0754

SDSSJ0956+5100

SDSSJ1103+5322 SDSSJ1402+6321

SDSSJ1142+1001

o

50
Pixel

Figure 1. For our inference, we selected 13 image cutouts from observations that share similar instrumental configurations taken by the HST F814W filter.
Each image cutout has 100 pixels of size 0.04 arcsec per side. The pixel values of the images are shown in logscale so that features of the lensed arcs are visible

by eye. The title of each image corresponds to the name of the strong lens system.

underpinning the neural likelihood-ratio method, we refer readers
to Cranmer, Pavez & Louppe (2015), while for more details on its
application to analysing subhalo density slopes in strong lensing
images, we refer readers to Zhang, Mishra-Sharma & Dvorkin
(2022).

3.1 Inference method

Suppose 6 denotes the parameters of our interest and x denotes
the observed data. The core idea of likelihood-ratio estimation is
training a classifier to distinguish between samples from two different
probability distributions: the joint data—parameter distribution p(x,
0), which is the distribution of our interest, and the product of the
marginal distributions of the data and the parameter p(x)p(6). In our
case, x corresponds to observed strong lensing images, while 6 is the
subhalo density slope y underlying each image. We train a neural
network as a classifier to learn the decision function s(x, 8) = p(x,
0)/(p(x, 8) + p(x)p(6)), which is in one-to-one correspondence with
the likelihood ratio r(x|60) = p(x, 6)/(p(x)p(0)) as follows:

s(x,0)

r(x|9)=m

(&)
This allows us to convert a likelihood inference task to a classification
task (Cranmer, Pavez & Louppe 2015; Baldi et al. 2016; Mohamed &
Lakshminarayanan 2016). At test time, to compute the likelihood-
ratio profile as a function of y for a given lensed image, we obtain
the classifier logits for a linearly spaced array of input y values. The
likelihood-ratio estimation method is amortized: after spending an
initial overhead for model training, minimal computational cost is
needed during inference.

If we have an ensemble of strong lensing observations {x} that
are independently and identically distributed when conditioned on
y, then we can obtain their combined likelihood ratio by computing
the product of the individual likelihood ratios,

Fxy 1y =[G I o). (©)
This offers a way for us to efficiently combine results of multiple
observations with little additional computational cost.

3.2 Uncertainty quantification

If our likelihood-ratio estimator is a perfect classifier, then the test
statistic 2 (InAyrg — In#) should be x2-distributed (Wilks 1938),
where In 7 is the loglikelihood evaluated at the true y and In 7y g is
the loglikelihood at the maximume-likelihood estimate (MLE) y .
However, we found that with our imperfect classifier, the test-statistic
distribution deviates slightly from a true x2. Therefore, instead of
quoting the 68 per cent uncertainty interval using a x> distribution,
we empirically determine the threshold for the 68 per cent confidence
interval (CI) of the test statistic. In practical terms, we do this by
computing the test statistic of many samples and then determining
a threshold value under which approximately 68 per cent of the test
statistic of these samples are included. Then, for a likelihood-ratio
profile, the y values whose likelihood ratios evaluate to this threshold
determine the upper and lower uncertainties on the MLE. Because we
found that combining different numbers of likelihood ratios leads to
slightly different test-statistic distributions, this empirical threshold
is determined separately for combining different numbers of images.
This uncertainty quantification procedure ensures that approximately
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68 per cent of the ground truths fall within the uncertainties quoted,
and is used to determine the error bars presented in Section 4.

3.3 Model and training details

For our application, we use as our classifier a modified version of a
common computer vision model, the ResNet-50 convolutional neural
network implemented in PYTORCH (He et al. 2016; Paszke et al.
2019). We add a sigmoid projection after all of the dense layers
in the ResNet in order to output the classification score §(x, 0). At
training time, we append the true y for each input image to the
latent vector after the convolutional layers in order to ensure that the
model learns the true label. At test time, we instead append test y
values in order to obtain likelihood-ratio estimates over a range of y.
Our training objective is the canonical binary cross-entropy loss for
classification. We provide more details of our customized ResNet-50
architecture in Appendix A.

To help with model convergence, we pre-process our training
set images. We normalize image pixel values to having zero mean
and unit standard deviation across the training set; in addition, we
normalize the y values to zero mean. To ensure consistency at test
time, we use the training set mean and standard deviation to whiten
our test data.

We use the AdamW optimizer (Kingma & Ba 2014; Loshchilov &
Hutter 2017) with an initial learning rate of 10~3. We follow a
learning rate schedule that decays by an order of magnitude when
the validation loss stagnates for three epochs, followed by a two-
epoch cool-down period. We use a batch size of 1000 based on the
maximum GPU memory available. There are 5000 000 mock images
in our training set and 1000 in our validation set, all of which are
generated using the forward model described in Section 2. Training
terminates when the validation loss plateaus under a threshold of
1073, We carried out our neural network training on NVIDIA V100
GPUs for ~20 epochs, with each epoch taking ~5 h. We found
that scaling up the size of the training set and the model complexity
significantly improved the model performance during inference, and
we expect there to be more improvement if the computing resource
availability allows for more upscaling.

4 RESULTS

After our model has been trained, we first need to evaluate its
convergence. To do this, we compare model predictions of the
subhalo density slope with their ground truths using individual
images in our validation set. In Fig. 2, we show the MLE (along
with their 68 per cent uncertainties) compared to the true y for 93
images with 1.2 < y < 2.8.

The validation images have parameters drawn from the same
distributions as the training set, except for Ny, which is drawn
from U/{0, 1800} to simulate a more realistic substructure fraction.
Note that because each image in our training and validation set
is labelled with a true underlying y value for EPL subhaloes, we
ideally would like the neural network to predict the ground truths
and be agnostic to the number of subhaloes. Therefore, having a
more realistic number of subhaloes in our validation set serves as
a way for us to ensure that changing the number of subhaloes does
not incur a bias in our neural network predictions. The source galaxy
images used in validation were held out in training. These images
contain EPL subhaloes whose true underlying subhalo density slopes
are known in the forward simulation pipeline, making this direct
comparison possible. As shown in Fig. 2, our model predictions
follow the ground truths in trend. This demonstrates that despite the
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Figure 2. Scatter plot of the MLEs y Mg and their associated 68 per cent
ClIs (as discussed in Section 3.2) predicted using the trained likelihood-ratio
estimator compared to the true underlying y of 93 test images. The images
contain EPL subhaloes with Mag € [107, 1011 Mg and Ny, ~ U{0, 1800}.
The model was trained on images containing EPL subhaloes with Mpgo €
[107, 10'°1 Mg and Ny, ~ U{0, 3000}.
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Figure 3. Maximum-likelihood estimated y g and associated 68 per cent
ClIs predicted from combined likelihoods of sets of 13 images containing
EPL subhaloes compared to the true y underlying each set of images (with
Mago € [107, 10'°) Mg and Ny, ~ U{0, 1800}). The model was trained on
images containing EPL subhaloes with Mago € [107, 10191 Mg and Ngy, ~
U{0, 3000}.

addition of several layers of complexities into training images, our
neural network remains sensitive to the signature imprinted on strong
lensing images by changes in the subhalo density slope. However, the
relatively large Cls indicate that the constraining power of individual
images is limited, which makes it imperative to combine multiple
images for inference. Note that the uncertainties are larger at the
lower end of the y range because smaller y values indicate less
concentrated subhaloes, which leave less detectable signatures in the
lensed images.

In addition, we check the model predictions of combining likeli-
hood ratios of multiple images. In Fig. 3, we show y g compared
to the ground truth y for combined likelihoods of sets of 13 images,
with each set sharing the same underlying slope y. Note that we still
simulate the natural spread in y;, so the slope for each subhalo varies
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slightly. These images share the same parameter distributions as the
images used in Fig. 2 except that the source galaxies come from the
held-out set for validation. In Fig. 3, we see that the MLE predictions
of our model closely follow the ground truths with relatively small
error bars. Comparing the uncertainties between Figs 2 and 3, we see
that combining images significantly improves constraining power.

4.1 Simulated images with NFW subhaloes

To obtain the expected subhalo density slopes under the CDM model,
we simulate images containing subhaloes and LoS haloes following
the Navarro—Frenk—White (NFW) profile (Navarro, Frenk & White
1997). Its radial density profile given by:

L0

e
()

where r is the distance from the centre of a subhalo, and the
normalization po and the scale radius r; are free parameters. The
NFW profile is the most common fit for the universal density
profile of haloes from CDM N-body simulations. In addition to
a normalization and a scale radius, the NFW profile can also be
parametrized by the (sub)halo mass M,y and concentration c;gp.
The concentration ¢y relates to the scale radius and virial radius
200 (as defined in Section 2.1.2) following 0 = ca007s. In our
simulated images with NFW subhaloes, we relate M5y and ¢, with
a mass—concentration relation extrapolated from Dutton & Maccio
(2014), which is an empirical relation determined using haloes in
CDM simulations. We add a dex scatter of A(0, 0.1) to the mass—
concentration relation for each subhalo in order to mimic the natural
spread in the relationship. Note that a dex scatter of 0.1 corresponds
to a ~26 per cent variation in concentration. If we denote the CDM
mass—concentration as fepm(Mago), then we can modify the CDM
mass—concentration relation by multiplying it by a constant factor
(which will be referred to as concentration multiplicative factor) in
order to simulate different density slopes of subhalo populations. In
other words, this means that for a given concentration multiplicative
factor a, we set the concentration of a subhalo with mass Mg to be
a X fepm(Mago). To test the robustness of our neural network with
as realistic images as possible, we add subhaloes everywhere in the
image in these test sets.

In addition, due to tidal stripping from the host halo, subhaloes
typically lose mass in their outer region (Hayashi et al. 2003;
Diemand & Moore 2011). This means that, instead of an NFW
profile, they can be more realistically modelled by a truncated NFW
(tINFW) profile. The tNFW profile is parametrized by the NFW
parameters as well as a truncation radius r;:

p(r) = )

e
p(r) = —>3 3
re r/rs(L+r/rs)
Because the truncation steepens the subhalo density profile past
the truncation radius, we expect tNFW subhaloes to have steeper
power-law density slopes than their NFW counterparts. To model
the tNFW subhaloes in our pipeline, we first determine their NFW
parameters following the procedure described for NFW subhaloes
and subsequently set their truncation radii. The choice of truncation
radii affects subhalo density profiles in the intermediate and outer
region and thereby their measured slopes (Sengiil & Dvorkin 2022).
For our test images, we set the truncation radii following Wagner-
Carena et al. (2023):

1 2
Moo 3 Fsub 3
rn=14 ( , )
mtrunc,pivot rlrunc,pivot

(3
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Figure 4. The median maximum-likelihood predictions (scatter points) and
68 percent Cls (error bars) obtained by combining 13 images of Mago €
[107, 10'0] M NFW subhaloes or tNFW subhaloes as a function of the
concentration multiplicative factor.

With Myunc pivot = 10"Mg and Fune pivor = 50 kpe. Here, My is the
subhalo mass and rg, is the distance of the subhalo from the main
halo centre. Note that in the test sets where subhaloes are modelled
with tNFW, LoS haloes are still modelled with the NFW profile as
they experience less tidal stripping than subhaloes.

One question that might arise is why our trained likelihood-ratio
estimator can be applied to images with (t)NFW subhaloes and
LoS haloes even though the training set only contains their EPL
counterparts. The justification for this has been demonstrated in
Sengiil & Dvorkin (2022) and Zhang, Mishra-Sharma & Dvorkin
(2022): given limited resolution and appropriate noise level, the
observable changes in the surface brightness due to the presence of
()NFW subhaloes can be well approximated by that of a power-law
profile subhalo.

Because the density slopes of (t)NFW subhaloes vary with mass
(i.e. larger masses have more extended density profiles and thereby
smaller density slopes), the intrinsic stochasticity in the masses of a
(NFW subhalo population introduces intrinsic aleatoric uncertainty
into the slope measurement. To account for this uncertainty in each
of our measurements, we generate 100 separate sets of images
with shared properties and then obtain the MLE of each combined
likelihood; using the set of 100 MLEs, we empirically determine the
68 per cent Cls.

In Fig. 4, we sample an array of varying concentration multi-
plicative factors and show our model MLE from the combined
likelihood of 13 images that contain (t)NFW subhaloes and LoS
haloes at each multiplicative factor. As expected, subhaloes with
higher concentrations lead to larger y predictions. In particular, the
data points for a concentration multiplicative factor of 1 correspond
to the expected subhalo density slope measurements under the CDM
model, and they will be compared with the predicted slope of the
HST observations in Section 4.2. From the figure, we find that INFW
subhaloes in general produce higher density slope measurements
than NFW subhaloes, consistent with findings presented in Sengiil &
Dvorkin (2022).

4.2 Result with HST images

Having done model validation and obtained the expected density
slope of CDM subhaloes, we will now use our model to infer
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Figure 5. Representative examples of the individual likelihood-ratio test-
statistic profiles for HST images. Each profile is labelled with the name of its
corresponding lens system.
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Figure 6. The 68 percent CI of combined likelihood-ratio test-statistic
profiles of 13 images containing Mgy € [107, 10'0] Mg NFW subhaloes
and tNFW subhaloes, both with a concentration multiplicative factor of 1,
as well as the combined likelihood-ratio test-statistic profile of the 13 HST
images shown in Fig. 1. The uncertainties corresponding to the 68 per cent
CI are shown in dashed lines for the likelihood-ratio test-statistic profile.

the subhalo slope of observed HST strong lensing images, which
are described in Section 2.2. These images are masked at the
edges and whitened with the training mean and standard deviation
before being fed into our neural network. In Fig. 5, we show the
individual likelihood-ratio test-statistic profiles for several of the
HST observations. In comparison with the predictions of NFW and
tNFW subhaloes under the CDM model, as discussed in Section 4.1,
we see that the predicted slopes of these HST observations are larger
than the predicted slopes of the CDM model.

We subsequently combine these individual likelihood ratios using
equation (6) in order to obtain tighter constraints. In Fig. 6, we show
the combined likelihood-ratio test-statistic profile for all of the 13
images. From this profile, we get a measurement of the subhalo
density slope of ymig = 2.5118:8‘5‘, with the quoted uncertainties
indicating the 68 per cent credible interval shown in dotted lines.
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In the same figure, we also show the 68 percent CIs for the
combined likelihood-ratio test-statistic profiles of 13 images con-
taining NFW subhaloes or tNFW subhaloes. These correspond to
data points shown in Fig. 4 for a concentration multiplicative factor
of 1. Comparing the slope prediction of the HST images with that
of the simulated images with NFW subhaloes, we see that the
measured density slope of the HST data is significantly steeper than
the expected slope under the assumption that CDM subhaloes follow
an NFW profile. The predicted slope of the images containing tNFW
subhaloes is also less than the HST measurement, but their difference
is less statistically significant than that with the NFW prediction.
While surprising, this is in agreement with previous works that also
measured a higher than expected concentration (Minor et al. 2021b;
Sengiil & Dvorkin 2022). In particular, our 13 HST images include the
SDSSJ09464-1006 system analysed by Minor et al. (2021b), which
measured a much higher concentration than the CDM prediction. The
individual likelihood-ratio test-statistic profile for the same system
in our analysis is shown in Fig. 5, and it is in broad agreement
with the result in their work. It is also worth noting that our method
provides a stronger constraint due to the neural network’s ability to
efficiently combine multiple observations. It would also be useful to
compare our results with those obtained by Sengiil & Dvorkin (2022)
of the JVAS B1938+4-666 lens system, but to our knowledge, there
is no suitable HST observation of this lens system that matches our
training set configuration. Thus, we leave this for future work when
more observations become available.

One possible explanation of the difference between our result and
the CDM predictions lies in the assumptions made in our subhalo
modelling. Several assumptions about subhalo density profiles went
into modelling the lens system in the image; in particular, the density
profile parametrization and the choice of mass—concentration relation
affect the predicted slope measurements of subhaloes under the CDM
model. Modelling these properties for subhaloes is an ongoing area
of research (Green, van den Bosch & Jiang 2021), and an improved
understanding of subhalo profiles may change the predicted CDM
density slopes. Another possible reconciliation is accounting for the
selection effects. Subhaloes with steeper density slopes are more
concentrated and, therefore, are easier to detect in observations.
Within our current resolution constraint and noise level, the less
concentrated smaller subhaloes are not detectable, hence biasing our
statistics. This effect of the selection function on slope measurements
is important, and we leave a careful study of it for future work, when
more observations become available from ongoing and upcoming
surveys.

5 CONCLUSIONS AND OUTLOOK

Observations at sub-galactic scale are essential for examining
alternate DM models and contrasting them against the standard
CDM model. Among the small-scale observables, subhaloes provide
a promising avenue for DM studies. In addition to constraining
the subhalo mass function, studying the subhalo density slope
(concentration) can help to potentially differentiate various classes
of DM models. Subhalo properties can be probed by analysing
strong gravitational lensing images. Traditional strong lensing image
analyses model individual subhaloes through a forward modelling
pipeline, but this process can only provide limited statistics; to model
more subhaloes in a system or to combine statistics from many
images, direct lens modelling becomes computationally infeasible.
The rapid progress in machine learning enables the development
of techniques that have the power to leverage the collective effect of
subhalo populations in strong lensing images, as well as to efficiently
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analyse a large ensemble of observations. Despite showcases of
success on simulated images, many of these machine learning
methods require further validation and improvements before they
can be successfully applied to real strong lensing observations.

In this work, we built upon the likelihood-ratio estimation method
developed in Zhang, Mishra-Sharma & Dvorkin (2022) and trained
a neural network capable of making inference from observed strong
lensing images. To make the leap from mock to real images, we added
numerous layers of realism in the forward pipeline of the training
set. This includes complexifying the lens model to account for the
lens light, multipole moments as well as external shear, incorporating
realistic noise levels, and adding LoS haloes. We demonstrated that
the likelihood-ratio estimator retains its sensitivity to changes in the
subhalo density slope in simulated strong lensing, even after adding
these layers of realism. Furthermore, we obtained the expected
subhalo density slope measurements in simulations under the CDM
model. This measurement comes from using our trained neural
network to predict the slope of simulated lensing images containing
(t)NFW subhaloes that follow a mass—concentration relation derived
from CDM simulations. Finally, we measured the subhalo slopes
of a set of 13 HST observations and statistically combined their
constraints. By comparing the subhalo slope in the HST observations
with the measurement from simulated CDM images, we found an
unexpectedly high slope measurement in the HST observations, in
tension with CDM predictions.

Several recent works in cluster lensing have also suggested that
substructures in galaxy clusters are more compact than expected of
the CDM model (Meneghetti et al. 2020, 2022, 2023). Combined
with several similar results in the literature, our measurement has
important implication for DM studies as it may motivate more careful
examination of alternate DM models. The most common alternatives
to CDM, the WDM model, and many SIDM models, predict a
lower than CDM subhalo density slope and would exacerbate the
tension that we observe (Lovell et al. 2012, 2014; Vogelsberger,
Zavala & Loeb 2012; Rocha et al. 2013; Kahlhoefer et al. 2019).
However, certain SIDM models [e.g. with large self-interacting cross-
sections (Nishikawa, Boddy & Kaplinghat 2020)] also predict that
SIDM subhaloes can undergo core collapses that result in unusually
concentrated inner profiles in a time-scale relevant for observations
today (Lynden-Bell & Wood 1968; Kochanek & White 2000; Colin
et al. 2002; Elbert et al. 2015; Nadler, Yang & Yu 2023). This
gravitothermal core collapse due to DM self-interactions has been
suggested as a possible explanation of these high-density central
regions in cluster galaxies (Yang & Yu 2021). Resolving galactic
subhaloes in simulations is harder due to their lower masses. A
hybrid approach in Zeng et al. (2022), which includes a combination
of semi-analytical methods and N-body simulations has shown that
some SIDM models can produce subhaloes with collapsed cores at
subgalactic mass scales (< 10'°Mg). This phenomenon provides
a possible explanation for the high subhalo density slope that we
measured. Based on our work, it is still not possible to pinpoint
the mechanism that causes this outlier measurement from the CDM
model, but there are several directions of future work that can take
us closer to answering this question. For instance, one can study
the subhalo slope predictions under different microphysical DM
models and compare them with the predictions from observed lensing
images. In addition, one can examine the effect of assumptions about
CDM subhalo properties on the likelihood-ratio estimator’s slope
predictions. As more lensing systems are expected to be discovered
with upcoming surveys (and followed up by observations), the
likelihood-ratio estimator will be a valuable tool for obtaining more
measurements to help elucidate the nature of DM.
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APPENDIX: MODEL ARCHITECTURE

We describe in this appendix the customized ResNet-50 architecture
used in this work. The original ResNet-50 model used in computer
vision consists of a series of convolution blocks followed by pooling
and dense layers. We made two modifications to this model for our
inference task. First, we append the truth label y of each image during
training to the flattened latent space vector after the convolution
blocks, as indicated by the top arrow in Fig. A1. This ensures that the
neural network incorporates information about y into its prediction.
In addition, we add a logistic activation function after the last layer
of ResNet-50 to ensure that the final output is a valid classification
score §(y, x) (i.e. between O and 1). As discussed in Section 3.3,
when we train the neural network as a classifier, the value given by
the ResNet before the logistic activation gives us the loglikelihood
estimate In 7, as indicated in Fig. Al.

£

|

ResNet-50

Figure Al. Graphical illustration of the neural network architecture used in
this work.
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