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Abstract
We study infinite limits of neural network quantum states (∞-NNQS), which exhibit
representation power through ensemble statistics, and also tractable gradient descent dynamics.
Ensemble averages of entanglement entropies are expressed in terms of neural network correlators,
and architectures that exhibit volume-law entanglement are presented. The analytic calculations of
entanglement entropy bound are tractable because the ensemble statistics are simplified in the
Gaussian process limit. A general framework is developed for studying the gradient descent
dynamics of neural network quantum states (NNQS), using a quantum state neural tangent kernel
(QS-NTK). For∞-NNQS the training dynamics is simplified, since the QS-NTK becomes
deterministic and constant. An analytic solution is derived for quantum state supervised learning,
which allows an∞-NNQS to recover any target wavefunction. Numerical experiments on finite
and infinite NNQS in the transverse field Ising model and Fermi Hubbard model demonstrate
excellent agreement with theory.∞-NNQS opens up new opportunities for studying entanglement
and training dynamics in other physics applications, such as in finding ground states.

1. Introduction

Quantum states are fundamental objects in quantum mechanics. Generically, the dimensionality of a
quantum state grows exponentially with the system size, which provides one fundamental challenge for
classical simulations of quantummany-body physics. This is the so-called curse of dimensionality, which also
regularly arises in machine learning (ML), where a judicious choice of neural network architecture and
optimization method can help address the problem.

Inspired by progress in machine learning, neural networks have have been proposed [1] as a useful way to
represent quantum wavefunctions, an idea known as a neural network quantum state (NNQS). The goal is to
find a compact neural network representation of the high dimensional quantum state, which is possible
because the neural network is a universal function approximator [2, 3]; furthermore, they also give exact
representations of certain quantum states [4–11], demonstrating their representation power. Recent research
has demonstrated that NNQS can achieve state-of-the-art results for computing ground states and the real
time dynamics properties of closed and open quantum systems across a variety of domains, including
condensed matter physics, high energy physics, and quantum information science [8, 9, 12–35]. Despite this
progress, there is ample room for an improved understanding of the representation power and training
dynamics of NNQS.
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The neural tangent kernel (NTK) [36] has recently emerged as a theoretical tool for understanding the
gradient descent dynamics of large neural networks. NTK theory utilizes architectures with a discrete
hyperparameter N, such as the width of a fully-connected network. In general, gradient descent updates to
the network are controlled by a parameter-dependent NTK, but in the infinite-N limit the network evolves as
a linear model, with dynamics governed in a ordinary differential equation by a deterministic constant NTK
[36–38]. This ODE becomes linear and analytically solvable for a mean-squared-error loss (see the
supplementary material for a review of the NTK). Similarly, in the infinite-N limit, networks are often drawn
from Gaussian processes [39–42], in which case they may be trained with Bayesian inference via another
deterministic constant kernel, the neural network Gaussian process (NNGP) kernel [39].

In this work we study infinite NNQS (∞-NNQS), which exhibit both representation power through
ensemble statistics and also tractable training dynamics. Specifically, we relate ensemble averages of
entanglement entropy bound to neural network correlation functions. For appropriate∞-NNQS, the
ensemble statistics are Gaussian and the correlators are exactly computable. Architectures are presented that
approach Gaussian i.i.d. wavefunctions with volume-law entanglement. Furthermore, we develop a general
framework for the gradient descent dynamics of NNQS, using a quantum state NTK (QS-NTK). Our
framework is general and may be applied to various learning setup, such as ground state optimization,
quantum state tomography and quantum state supervised learning. In appropriate infinite limits, gradient
descent of the∞-NNQS is governed by a constant deterministic QS-NTK. In the case of quantum state
supervised learning, we prove that an∞-NNQS trained with a positive-definite QS-NTK can recover any
target wavefunction. We experimentally demonstrate that the QS-NTK can predict the training dynamics of
ensembles of finite width NNQS.

2.∞-NNQS

Consider a quantum state |ψ⟩ represented by a neural network with continuous learnable parameters θ and a
discrete hyperparameter N. The wavefunction is ψθ,N : D→ C, where the domain D is problem-dependent.
The subscripts θ,N will often be implicit.

An∞-NNQS is a neural network representation in the N→∞ limit. There are many such limits,
according to the identification of a candidate N in a given network architecture, We study cases where this
limit is useful either for understanding the entanglement of an ensemble of wavefunctions, via increased
control over their statistics, or their gradient descent dynamics. For instance, in many architectures the
N→∞ limit is also one in which the network is drawn from a Gaussian process (GP), where, e.g. N is the
width a of a fully-connected network [39–42] or the number of channels in a CNN [43, 44]. The existence of
such NNGP limits is quite general [45–47], and allows for training with Bayesian inference [39, 41].

3. Quantum state NNGP and entanglement

NNQS exhibit unique and interesting entanglement properties [6, 10, 48, 49]. The statistical control offered
by this NNGP correspondence allows us to study the entanglement entropy properties of the ensembles of
∞-NNQS. Consider an ensemble of normalized NNQS {|ψθ⟩}. We split the input domain D into a
subregion A and its complement B as D= A∪B, which makes the wavefunction arguments consisted of two
variables xA and xB from subregions A and B.

Denote the ensemble average of the nth Rényi entanglement entropy as ⟨Sn⟩ ≡ EθSn, where
Sn =

1
1−n logTrρ

n
θA is the nth Rényi entropy of the ensemble over a sub-region A. According to Jensen’s

inequality, ⟨Sn⟩⩾ 1
1−n logEθTrρ

n
θA for n> 1. It provides a lower bound for entanglement entropy which can

be computed from EθTr[ρnθA] using the replica-trick [50, 51]:

EθTr[ρnθA] =
∑
xkA,x

k
B,k

Eθ

[
n∏

k=1

ψθ(x
k,k
AB)ψ

∗
θ(x

k+1,k
AB )

]
(1)

=
∑
xkA,x

k
B,k

G(2n)(x1,1AB ,x
2,1
AB , . . . ,x

n,n
AB ,x

1,n
AB ), (2)

where G(2n) are the NNQS correlation functions, defined implicitly, and xi,jAB := (xiA,x
j
B) (here we have the

convention xn+1
A/B ≡ x1A/B). The sum

∑
xkA,x

k
B,k

is over all k and possible xkA and xkB. This provides a means for
analyzing the different entanglement entropies. The entanglement entropy bound is particularly tractable for
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Figure 1. Von Neumann entanglement entropy of CosNet with width= 400, 1000, 4000 average over 100 ensembles. Max
indicates the maximum entropy of the subsystem and Page indicates the page value entropy of the subsystem.

∞-NNQS, since in the GP limit the correlation functions are determined in terms of the two-point function
(GP kernel) via Wick’s theorem. See the supplementary materials for more details.

Consider ψ(x) = ψ1(x)+ iψ2(x), where both ψ1(x) and ψ2(x) are drawn from any NN architecture. For
example, we analyze the Cos-net [52] NNQS, where ψ1(x) and ψ2(x) come from the following function form:

f(x) =
N∑

i=1

ai

d∑
j=1

cos(wijxj + bj) (3)

where d is the input dimension, N is the number of hidden dimension, ai ∼N (0, σ
2
a
N ),wij ∼N (0, σ

2
w
d ),

bj ∼ U [−π,π]). It has been shown that in the infinite N limit, f (x) gives rise to the following 2-pt
function [52]

E( f(x), f(y)) = G(2)(x,y) =
σ2
a

2
e−

σ2
w

2d (x−y)2 , (4)

By tuning σw →∞, it yields a zero-mean Gaussian process so that ψ1(x) and ψ2(x) are both drawn from
i.i.d Gaussian for different values of x. After normalization, such an ensemble of wavefunctions is known to
reach the Page value of entanglement entropy and exhibits a volume law entanglement behavior [53, 54]. We
compare the Von Neumann entanglement entropy of CosNet with N= 400,1000,4000 with respect to the
Page Value entropy subsystem scaling in figure 1, which demonstrates nice consistency between our theory
and simulations. More details on the simulations can be found in the supplementary materials.

More generally, neural networks provide a means for defining ensembles of wavefunctions with
entanglement entropy ensemble average bound expressed in terms of NN correlators even away from the GP
limit. This provides a new mechanism for engineering ensembles of wavefunctions whose typical states could
have interesting entanglement properties. In general, finite-N effects introduce non-Gaussianities into the
ensemble [55, 56] that correct the entanglement entropies. For instance, Gauss-net [56] and Cos-net yield
dual GPs as N→∞ [57], but have different statistics and even symmetries [58] at finite-N. It opens up the
possibility of entanglement engineering of NNQS and provides a framework for studying entanglement
structure of NNQS.

4. QS-NTK

∞-NNQS also have interesting gradient descent properties.
We begin with a study of gradient descent for general NNQS. The dynamics of the network are governed

by the parameter update θ̇i =−∇θiL=−
∑

x ′∈B∇θiL(x ′), where we have expressed the update in terms of a
total loss L and also a pointwise loss L, summed over a batch B. Applying the chain rule,

dθi
dτ

=−η
∑
x ′∈B

[
∂ψ(x ′)

∂θi

∂L
∂ψ(x ′)

+
∂ψ∗(x ′)

∂θi

∂L
∂ψ∗(x ′)

]
, (5)
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where x′ is data from B and the loss derivatives are also evaluated on the batch; the structure of B will be
further specified in examples, including any labels associated to x′. The associated wavefunction update is

dψ(x)

dτ
=

∑
i

∂ψ(x)

∂θi

∂θi
∂dτ

=−η

[∑
x ′∈B

Θ(x,x ′)
∂L

∂ψ(x ′)
+Φ(x,x ′)

∂L
∂ψ∗(x ′)

]
, (6)

where

Θ(x,x ′) =
∑
i

∂ψ(x)

∂θi

∂ψ(x ′)

∂θi

Φ(x,x ′) =
∑
i

∂ψ(x)

∂θi

∂ψ∗(x ′)

∂θi
. (7)

Θ(x,x ′) is the NTK [36].
Since we are using a complex-valued neural network to represent quantum wavefunctions, we also see the

appearance of Φ(x,x ′), which we call the Hermitian NTK, since it is Hermitian, Φ∗(x,x ′) = Φ(x ′,x). Putting
the wavefunction and its conjugate on equal footing, we write

d

dτ

[
ψ(x)
ψ∗(x)

]
=−η

∑
x ′∈B

[
Θ(x,x ′) Φ(x,x ′)
Φ∗(x,x ′) Θ∗(x,x ′)

][ ∂L
∂ψ(x ′)
∂L

∂ψ∗(x ′)

]
(8)

and for simplicity re-express it as

d

dτ
Ψ(x) =−η

∑
x ′∈B

Ω(x,x ′)
∂L

∂Ψ(x ′)
, (9)

a matrix ODE where Ω(x,x ′) is the block matrix in equation (8).
We call Ω(x,x ′) the QS-NTK, as it determines the gradient descent dynamics of NNQS, and more

generally of complex functions. In general, it depends on parameters θi and the initialization of ψ(x), though
we will see in appropriate limits that the QS-NTK is deterministic and frozen during training. See also [59],
which utilizes a quantum NTK in the context of variational quantum circuits, and appeared while we were
finishing this work.

In practice, instead of representing the wavefunction as one complex output from the neural network, it
is also common to have the neural network output the real and imaginary part of the wavefunction. In this
case, we have the real imaginary NNQS representationΨRI := (ψ1,ψ2) such that

d

dτ
ΨRI(x) =−η

∑
x ′∈B

ΩRI(x,x
′)

∂L
∂ΨRI(x ′)

. (10)

where ΩRI is the NTK in real imaginary representation; see the supplementary materials.
The QS-NTK is generic and may be applied to the various NNQS learning schemes, which correspond to

the choice of loss function L. For Variational Monte Carlo study of ground states associated to a given

Hamiltonian H, L= ⟨ψ⟩Hψ
⟨ψ⟩ψ . For quantum state tomography, with observables |x⟩⟨x| in a different basis

rotation, L=−
∑

x log |⟨x⟩ψ|2. For quantum state supervised learning with a target wavefunction ψT ,
L= ||ψ −ψT||2. In general, equation (10) is a nonlinear ODE with rich structure. In this work, we focus on
the quantum state supervised learning setup, which yields a linear ODE. The study of other loss functions
will left for future exploration.

4.1. QS-NTK for∞-NNQS
Let ψθ,N be a NNQS and ΩN(x,x ′) the associated QS-NTK. For many architectures, the infinite QS-NTK
Ω∞(x,x ′) is parameter-independent at initialization. This is established by the kernel trick, which turns
Ω∞(x,x ′) into an expectation value over parameters via the law of large numbers. See the supplementary
materials for a concrete example and discussion of generality, using NTK results. Utilizing this trick generally
requires i.i.d. parameters, a property generally spoiled by training.
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Fortunately, the initialization QS-NTK plays a special role that can resolve the issue. Consider the
linearized model associated toΨ(x),

Ψl(x) := Ψ0(x)+
∑
i

(θi − θ0,i)
∂Ψ(x)

∂θi

∣∣∣∣
θ=θ0

(11)

where θ0 are the parameters at initialization andΨ0(x) := Ψ(x)|θ=θ0 is the initialization wavefunction. The
linearized model is the truncated first-order Taylor expansion ofΨ(x) around θ0; we emphasize the model is
linear in parameters, not inputs. The QS-NTK is

Ωl(x,x
′) = Ω(x,x ′)

∣∣
θ=θ0

, (12)

which is a crucial conceptual result. It says that the QS-NTK Ωl associatedΨl is the QS-NTK Ω ofΨ(x,x ′) at
initialization, which is parameter-independent.

In summary, a∞-NNQSΨ with parameter-independent QS-NTK has a linearizationΨl that evolves
under gradient descent according to a parameter-independent, time-independent QS-NTK Ωl(x,x ′), with
dynamics governed by equation (10), but withΨ (Ω) replaced byΨl (Ωl). This is a remarkable simplification.

5. Quantum state supervised learning

We focus on quantum state supervised learning. This technique has important applications, such as
initializing states for ground state and real time simulations, as well as understanding the representation
power of the neural network architecture [60]. The loss function of quantum state supervised learning for a
target wavefunction ψT is the mean square loss L= 1

|B|
∑

x |ψT(x)−ψ(x)|2.
Given a target quantum state ψT and a batch of samples B, the dynamics equation (10) become

d

dτ
Ψl(x) =− η

|B|
∑
x ′∈B

[ΩM](x,x ′) [Ψl(x
′)−ΨT(x

′)] (13)

whereM=

(
0 1
1 0

)
, we have usedΨ∗ =MΨ, andΨ (Ω) have been replaced byΨl (Ωl) in (10).

The exact solution to this linear ODE is given by

Ψl,x(τ) = µx(τ)+ γx(τ) (14)

where

µx(τ) =
∑
i,j,k

Ωxi

(
Ω−1

)
ij
(1− e−ΩMτ )jkΨT,k (15)

γx(τ) = Ψx(0)−
∑
i,j,k

Ωxi

(
Ω−1

)
ij
(1− e−ΩMτ )jkΨk(0).

We use subscripts to denote input dependence, with x for a test point and Latin indices as batch indices. For
instance, Ωxi := Ω(x,xi) for xi ∈ B is an x-dependent |B|-vector and Ωij := Ω(xi,xj) for xi,xj ∈ B is a
|B| × |B|-matrix. The initial wavefunction appears only in γx(t).

This analytic solution for an∞-NNQS deserves comment. First, when the QS-NTK is positive definite
(see the supplementary materials), the solution converges as τ →∞ and the converged wavefunction agrees
with the target on every train point. Therefore, if the batch B is the entire domain, the∞-NNQS trained with
the QS-NTK perfectly reproduces the target wavefunction. This is a NNQS analog of a major result from the
NTK literature, which can be understood with geometric intuition via projection from high-dimension
spaces [61]. Equivalently, one can view ΩM as an effective Hamiltonian, in which case equation (13) is the
analog of imaginary time evolution and converges to the ground truth. Second, for many architectures, the
expectation value of the ensemble of initial wavefunctions is E[Ψx(0)] = 0, in which case E[Ψl,x(τ)] = µx(τ).
In such a case, µx(τ) is the mean function of the ensemble at time τ , and therefore µx(∞) is the mean
function of the infinite ensemble of converged∞-NNQS.

EitherΨl,x(τ) or µx(τ) could be utilized to make predictions relative to targets. This motivates two
different losses,

Lµ =
1

|B|
∑
x ′∈B

|µx ′(∞)−ΨT,x ′ |2, (16)

5
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which uses converged mean for predictions, or

LΨl =
1

K|B|

K∑
i=1

∑
x ′∈B

|Ψ(i)
l,x ′(∞)−ΨT,x ′ |2, (17)

which takes the average of losses for an ensemble of K linearized networks, trained to convergence, where

Ψ
(i)
l,x ′(∞) is the ith network in the ensemble. Since E[γ] = 0 as K→∞, at large K we have

LΨl ≃ Lµ+
1

K|B|

K∑
i=1

∑
x ′∈B

|γ(i)x ′ |2 ≡ Lµ+ Lγ , (18)

the last term becomes the variance of the linearized model in the K→∞ limit. Notice that equation (15)
shows both Lµ and Lγ will converge both to zero on the training set in infinite time, which implies that
∞-NNQS will be perfectly optimized. For the test set, both Lµ and Lγ will converge to a finite value at infinite
time, which provides an indicator of the performance of the ensemble of finite neural network, in practice.

6. Numerical experiments

We perform numerical simulations for∞-NNQS and an ensemble of finite-N NNQS in two important
models in quantum many-body physics, which are the spin-1/2 transverse field Ising model and the Fermi
Hubbard model

Hs =−
∑
⟨i,j⟩

σz
i σ

z
j − J

∑
i

σx
i , (19)

Hf =−
∑
⟨i,j⟩,σ

(c†i,σcj,σ + h.c.)+U
∑
i

ni↑ni↓. (20)

For the transverse field Ising model, we consider Hs on a 3× 4 lattice with J= 0.1. The target state |ψT⟩ is
prepared through |ψT⟩= e−iHsτ |ψ0⟩ with |ψ0⟩ as the fully polarized state |+⟩⊗n and τ = 2.1. There are in
total 4096 basis elements in the target wavefunction. For the Fermi Hubbard model, we consider Hf on a a
3× 4 lattice with 2 spin up fermions and 2 spin down fermions. The target state in the Fermi Hubbard model
is prepared through |ψT⟩= e−iHfτ |ψ0⟩, where Hf has U = 8, |ψ0⟩ is the ground state of Hf with U = 4 and
τ = 2.1. There are 4356 basis elements in the target wavefunction. We choose |ψT⟩ in the above way such that
they are complex-valued and related to the quench experiments with different coupling parameters in real
time quantum dynamics.

For the numerical simulations, we consider two independent neural networks that represent the real part
and the imaginary part of the wavefunction, ψ(x) = ψ1(x)+ iψ2(x); this is the case of decoupled dynamics
discussed in the supplementary materials. Both ψ1(x) and ψ2(x) are single-layer fully-connected networks,
i.e. 1√

N
W2σ(

W1√
12
x+ b1)+ b2, with entries drawn asW1,2 ∼N (0,0.25) and b1,2 ∼N (0,0.01), σ taken to be

ReLU, and N ∈ {300,1000,5000} is the dimension of the hidden layer.
Since both models utilize 12 lattice sites, the input is encoded in a 12-d vector. For the transverse field

Ising model, spin-up and spin-down configuration take values±1. For the Fermi Hubbard model, the
possibilities of a hole, spin-down, spin-up, and double occupancy take values ∈ {−1.5,−0.5,0.5,1.5},
respectively. For the training data set, we uniformly draw basis elements with dataset size 2400,3200,4000
from the target wavefunctions, and leave the rest (the basis complement) as the test dataset. For each
experiment, we train an ensemble of 10 finite width NNQS with full-batch gradient descent and compare
with the QS-NTK predictions. The learning rate is chosen to be 0.9 times the maximum NTK learning
rate [62], which ensure that the finite networks evolve in a linearized regime. We do not need to train the
∞-NNQS because the exact solution equation (15) makes predictions for all epochs. All simulations are
implemented with neural-tangents library [62].

Figure 2 compare the training dynamics of finite NNQS and∞-NNQS in both the transverse field Ising
model and the Fermi Hubbard model. It is shown that the finite NNQS training dynamics agree rather well
with the QS-NTK predictions. The training loss for the∞-NNQS should drop to zero as τ →∞, while the
test losses will converge to a finite number, represented by the dashed line in the figure, which is the NTK
prediction equation (18) in the infinite time limit. Figure 3 show the total MSE loss over various training
dataset sizes and finite width NNQS ensembles. As the training batch size increases, the overall performances
of different ensembles improve as expected. As the finite width increases, the performances of the NNQS
ensembles converge to the NTK prediction, which is the infinite width limit.

6



Mach. Learn.: Sci. Technol. 4 (2023) 025038 D Luo and J Halverson

Figure 2. Performance of finite-width NNQS ensembles and QS-NTK predictions of∞-NNQS for (a) Top: the transverse
field Ising model; (b) Bottom: the Fermi-Hubbard model. The Ensemble train and test are from finite NNQS with a width
equal to 5000 and ensemble size 10. The QS-NTK train and test, as well as test convergence are from infinite width NTK
dynamics. The training points for both ensemble and QS-NTK cases are 2400.

Figure 3. Total MSE loss for various training batch sizes and finite width neural network quantum states of ensemble size 10 at
training time step τ = 104 for (a) Top: the transverse field Ising model; (b) Bottom: the Fermi Hubbard model.

7
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7. Conclusion

In this work, we introduced∞-NNQS. We demonstrated that ensemble average entanglement entropy
bound may be computed in terms of neural network correlators. For appropriate∞-NNQS, these
calculations become tractable due to the NNGP correspondence. We demonstrate that certain architectures
such as CosNet NNQS exhibit volume-law entanglement. We also developed the QS-NTK as a general
framework for understanding the gradient descent dynamics of NNQS. Appropriate∞-NNQS have
parameter-independent QS-NTK at initialization, which in the linearized regime is frozen to its initialization
value throughout training, leading to tractable training dynamics. In quantum state supervised learning, we
proved that training a linearized∞-NNQS with a positive definite QS-NTK allows for the exact recovery of
any target wavefunction. In numerical experiments, we showed that these new techniques yield accurate
predictions for the training dynamics of ensembles of finite width NNQS. Systematic studies from the
infinite network literature [63] suggest that NTK or NNGP Bayesian training for∞-NNQS may exhibit
increasing performance over finite networks.

More broadly, our work provides theoretical insights on understanding the training dynamics of NNQS.
It also offers practical guidance for choosing neural network architectures: convergence rates during training
depend on the spectrum of the QS-NTK, evaluated on the training data. This development also opens up
various interesting research directions for understanding NNQS optimization in other physics contexts, such
as quantum state tomography and variational Monte Carlo study of NNQS. Another interesting direction is
to significantly generalize the NNQS architecture beyond the fully-connected case by using Tensor
Programs [64], a flexible language for connecting general architectures with NTK limits. Recently, there are
applications and generalizations of NTKs to quantum computation and quantum machine learning [59,
65–67], and it will be interesting to integrate QS-NTK into hybrid classical-quantum machine learning.
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