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1 Introduction

Despite being high dimensional, physics datasets are highly structured since physical laws
strictly govern the data generating process. Although the data is complicated, it is not
hard to imagine that physics data can exist within low-dimensional manifolds inside a
high-dimensional ambient space.

There is a growing recent interest in endowing the space of collider events with a
metric structure calculated directly in the space of its inputs. Metrics based on optimal
transport, such as energy mover’s distance (EMD) [1], Hellinger distance [2], and sliced
Wasserstein distance [3] , allow us to compare raw inputs directly and quantify the global
structural difference between any pair of collider events. Since the advent of these studies, a
broad range of use cases has been emerging for these metrics. These include event tagging,
anomaly tagging [4–6], representation learning of jets [7], and measurements of Quantum
Chromo Dynamical (QCD) properties [8].

However, the input dimension is usually very large for collider data; thus, the induced
manifold of the metric lives in a very high dimensional space, making it challenging to work
with directly. With just 50 particles and 3 features per particle, the induced manifold lives
in R150, a prohibitively large dimensional space subject to the curse of dimensionality.

After decades of searching at the LHC, no new physics beyond the Standard Model
has been observed despite a large variety of targeted searches for new physics models. In
light of this, we are starting to consider that maybe we are not looking in the right area
of the collider data, and we should go beyond our existing new physics models. The shift
from targeted searches to model agnostic searches is happening rapidly, and a diverse and
rich variety of model agnostic search methods has been proposed by the community, based
on a wide variety of different underlying principles [9–13, 13–17, 17–36].

However, ways to evaluate and quantify the performance of these algorithms are less
studied. We can’t systematically study different anomaly detection methods without a
good method to quantify and study how each algorithm performs. Consequently, there is a
strong need to come up with ways to quantify each method, especially to understand how
far in the search space the algorithm can reach and how wide of a net is cast in the space
of total possible physics events.

This paper introduces a flexible framework for embedding the manifold of collider
events in lower-dimensional spaces. This framework allows physicists to get the most out
of metric space properties of collider events and demonstrate that it can be used to quantify
different anomaly detection algorithms for model agnostic searches. Moreover, we show this
embedding space captures core physical features and self assembles events into physically
meaningful categories.

Standard jet finding algorithms embed events into lower-dimensional manifolds taking
the individual particle energies and angles and replacing them with a single jet energy
and direction. However, jet finding is the result of a complex iterative computation and
the ensuing embedded manifold structure makes it difficult to compare jets from different
decays with limitations in how to interpret jets from a variety of physical processes. This
paper aims to tackle the problem of metric embedding: when we have some well defined
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metric already defined on the original space of jets that captures jets from a variety of
processes and we seek to construct a lower dimensional space that preserves our metric
so as to extract maximal information. By preserving the metric, the embedding allows us
to define the notion of volume in the manifold, which leads to a strategy to quantify the
space of jets selected by some means including through the identification of anomalies with
model agnostic search algorithms.

We primarily focus on learning embedding functions into lower-dimensional spaces with
the goal of approximating the given original metric on the space of collider events. We will
show that low distortion and robust embedding can be achieved in very low dimensions,
down to two dimensions. Different choices of space where we can embed the physics event
are also explored. We discuss the advantage of learning the embedding by training the
embedding function to approximate the metric distance in the original space over out-of-
the-box manifold learning methods such as t-SNE [37] and UMAP [38].

The strength of the proposed method is presented with emphasis on quantifying
anomaly detection algorithms. The embedding is a useful method of anomaly detection
itself, but more importantly, it can address the bigger problem of quantifying the effective-
ness of each technique. Using the notion of volume in the embedded space, we propose
the volume-adjusted ROC curve, which in two dimensions becomes the area-adjusted ROC
curve that tries to measure the “volume” of the total search space encompassed by an al-
gorithm. We then quantify the performance of two different anomaly detection algorithms
on a fixed dataset. We additionally show that low distortion embedding is useful for many
different aspects of physics analysis by presenting a visualization and exploration of what
is learned by the embedding.

Outside the realm of anomaly detection, we demonstrate that with embedding, we
can tackle many problems. Mapping complicated metrics to simpler metrics gives access
to a powerful algorithmic toolkit that allows us to do approximation, online analysis,
data compression, and classification. Furthermore, mapping the original space to a lower-
dimensional space makes many tasks, such as visualization, much easier. Embedding can
also be used for data compression [7] by compressing the information about jets down to
a few numbers corresponding to the dimension of the embedded space and the metrics
learned in the embedding process.

Embedding is particularly computationally tractable and scales better than the pair-
wise computation of the distance between events. Since embedding is embarrassingly par-
allel and can be calculated relatively cheaply through a single forward pass of the neural
network, embedding can be computed in real-time, leading to further possibilities for low
latency event classification and online decision-making within a trigger system.

Different embedding techniques have led to successes in many fields, such as dealing
with biological sequences and phylogenetic analysis [39], graph and network analysis [40–
43], natural language processing [44–47], computer vision [48, 49], amongst others. This
technique is quickly gaining popularity and falls within a large space of machine learning
aimed at effectively, scientifically motivated data representation.

For this paper, we demonstrate the embedding of hadronically decaying final states
consisting of resonances that subsequently decay to intermediate resonances resolved as
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jets with as many as 4-prongs over a large variety of masses. With this diverse set of
events, we apply embedding and show that even with two dimensions, we can capture the
core physical features. Furthermore, we developed a simplified “toy jet” generator to create
complex objects under strict kinematic restrictions and a minimal set of parameters.We
use this toy dataset as a testing ground for our method to check whether the embedding
learns the proper latent structure and self-organizes the space into distinct features.

Embedding into a lower-dimensional space can also be seen as an alternate way of
building a simpler space to perform physics measurements, searches, and classification. In
papers such as [50, 51], mapping to lower dimensional space was performed using contrastive
loss metric, and the study of the anomaly detection using this mapping with the contrastive
loss metric was performed. We perform the metric distance embedding, starting with the
given distance between events, by directly building the space through embedding with
optimal transport distances on the original space, yielding a new handle on how to organize
and classify data.

2 Neural embedding

In this paper, we develop a neural embedding to take collider events and embed them
into a manifold governed by physically motivated principles. The key to performing this
analysis is to show that this embedding is robust across a variety of datasets. In the
following section, we will outline the core idea of the neural embedding, and motivate the
choice and design of the simulated collider datasets. Our goal is to progressively build
more complicated datasets towards an intuitive understanding for how this approach can
be applied on fully realistic collider data.

2.1 Problem setting

Suppose we have a metric space (X , d) of collider events, where X denotes the space of
collider events and d is some metric defined on the space. For collider events, this space is
often represented by a list of all the particles in the event with their subsequent features.
With collisions comprising hundreds of particles in the final state, the resulting space is
high dimensional and metrics on the space are computationally difficult. Starting with the
energy mover’s distance (EMD) [1], many metrics based on ideas from optimal transport
have been proposed on the collider events where the space X is represented as a subset of
high dimensional input space RD [2]. These metrics are capable of effectively interpreting
collider events, but are often computationally intractable and hard to interpret within RD.

Our goal in this paper is to simplify the interpretation of RD by learning an embedding
map to a low dimensional space that preserves our metrics d on the higher dimensional
space. In other words, we aim to create a low dimensional space Y through φ : (X , dX )→
(Y, dY). While a perfect embedding where the distance between any two events is perfectly
preserved is not guaranteed, we aim to learn a mapping that satisfies a low distortion,
namely it satisfies the relation

∀u, v ∈ X , L · dY(φ(u), φ(v)) < dX (u, v) < C · dY(φ(u), φ(v)) (2.1)
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Figure 1. Diagrammatic representation of the distance preserving embedding. Grey region repre-
sents the data manifold, three different types of jets represent three points on the manifold which
gets mapped to (R2, l2) by the learned embedding. The energy mover’s distance in the original
space is preserved in the embedded space.

For some 0 < L < 1 and C ≥ 1, where smaller C indicates a smaller overall distortion
in the space and the metric on the space dY is a simpler metric than the original metric
dX . The constant L is the inverse of the Lipschitz constant for the mapping φ, and it
guarantees that the metric distance doesn’t blow up in the embedded space.

Therefore our learning objective can be formulated as eq. 2.2. For a family of functions
parameterized by θ, the goal is to minimize the empirical risk for the distortion for N pairs
(ui, vi), i ∈ 1, . . . , N from our training dataset, and we can do this with standard gradient
descent algorithms such as PyTorch [52] on θ given as

θ̂ = arg min
θ

1
N

N∑
i=1

|dY(φθ(ui), φθ(vi))− dX (ui, vi)|
dX (ui, vi)

, φθ ∈ F (2.2)

We denote this empirical risk minimization procedure as neural embedding (NE).
In this learning framework, we have to make two critical choices (1) which family of

functions φθ ∈ F do we chose to approximate the embedding, and (2) which geometrical
space Y do we choose to embed into.

The family of functions φθ ∈ F we choose in this paper is a family of deep neural
networks. An appropriate choice of the neural network is made depending on the input
format of the data.

In this paper, we will look at two types of data. As a first demonstration of embedding,
we embed the MNIST [53] handwritten digit images into a 2-dimensional Euclidean space.
As result, we choose convolutional neural networks (CNN) to handle image data. For
the rest of the datasets, we use simulated collider events defined by a pT-sorted sequence
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of final state particles. For the collider data, we use transformer networks with positional
encoding. Since our input is a pT-sorted sequence of particles where the flow of information
between any particle is allowed, we believe this is a good choice and reflects the state of
the art in data assimilation.

The choice of metric space for Y is quite flexible. Previous studies, outside of physics,
have considered Euclidean spaces, Hyperbolic spaces [39], and Wasserstein spaces [45, 54].
Here, we focus on a Euclidean space with a l2-norm, (Y, dY) = (Rn, l2), and the Hyber-
bolic space defined by the Poincaré ball (Y, dY) = (Bn, dp). Lastly, to make the training
tractable, we only train on the subset of available event pairs, by randomly sampling pairs
from a total set of 106 available events, and subsequently not considering all O(1012) total
possible pairings.

3 Datasets and neural network

Before we embark on the construction of the full NE, we would like to elaborate on the
dataset construction used for these studies. Our ultimate goal with these studies is to
demonstrate the broad applicability of this framework through the use of a variety of
datasets including MNIST [53].

Furthermore, we will show the flexibility of the NE construction on progressively more
complicated datasets leading towards a realistic dataset. Our goal with adding hierarchies
of complexity is to show how NE is capable of transcending the obfuscation present from
a more complicated dataset to extract the core physics features embedded within.

To study NE, we utilize hadronically decaying particles at the LHC. This dataset
consists of both new physics resonances with quarks in the final state or standard model
production of quarks and gluons (QCD). Quarks, and gluons at the LHC will shower into
many particles eventually leading to final state hadrons. These showers are then resolved
at the LHC through jet clustering algorithms, yielding jets [55, 56]. In this paper, we will
focus on applying NE to a single jet. The large number of particles and complex topologies
within a jet make them a difficult tool to study, and in many studies, it has been shown
that jets benefit enormously from machine learning approaches.

Since jets are complicated objects, we created a series of hierarchical datasets whereby
we progressively made each dataset more and more complicated. As a consequence, we
developed several jet simulations that allow for the isolation of a fixed number of hidden
parameters, so that we can effectively study how NE can extract the critical patterns
hidden within the data. In this section we present the two main simulations used to study
NE on jets, the toy jet generator, and the realistic jet generator.

3.1 Toy jet generator

In order to be able to progressively add levels of complexity in the data generation, a toy jet
generator was constructed. The toy jet emulates a typical parton shower, while also storing
the individual latent variables, so that we can later extract them directly, and explicitly
check what information is learned.
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3.1.1 Jet generation

The main goal of the toy jet generator is to isolate parameters of the parton shower so
that we can see how the NE organizes the embedded space. In light of this, we constructed
the toy jet generator such that the masses and momentum of each splitting can be fixed,
and the angles of the subsequent splittings can be sampled from a fixed prior. For these
studies, we fixed the momentum to be 400GeV, while we allowed the masses to be sampled
from a fixed distribution.

We implemented two different versions of the toy jet generator, a simple version where
the hard and soft splittings are distinctly different and a realistic version where the soft
splittings approximate the matrix element of normal quark and gluon fragmentation.

In both types of jet generators, jets are generated with specified fixed “prongs”, a
fixed total number of particles, a fixed momentum, and fixed mass distributions. The hard
splittings are designed to mimic the decays of a resonance. Namely, they are sampled
from an angular distribution in the rest frame of the mother particle of the shower. The
number of prongs within a jet defines the number of hard splittings used in the shower.
To reach the total number of particles required by the generation, we continue to shower
the jet with soft splitting until we reach the final multiplicity. In all cases, we force the
jet construction to be in a fixed coordinate system whereby the original parton direction
is at the origin of the three-dimensional vector space, and the first splitting occurs along
the x-axis. Subsequent splittings are then randomized in φ about the particle direction,
with the angle of the two particle split, θ, being defined by a sampling prior that varies
depending on the jet generator type. The sampling prior for the soft and hard splittings is
what defines the difference between the simplified and realistic toy jet generator. All other
components of the generation remain the same.

For the hard splitting “signal” models, we force a decay chain of resonances character-
istic of the top quark. In particular, we set the mass of the first “signal” parton always to be
172 GeV, and with potential decay components having a resonance of 80 GeV and 4 GeV.
As a result, when we simulate two prong signal jets, we take the jet mass to be 172 GeV,
with its decay components being massless quarks. For 3-prong jets, we have the 172 GeV
resonance decays to a secondary resonance of 80GeV that decays to quarks and a massless
quark. For 4 prong jets, we have a final splitting with a mass of 4GeV that then decays
to two massless quarks. We do not explore jets beyond four prongs. However, we continue
to decay the particles until we reach the particle multiplicity of the desired generator.

In the following subsections, we present the difference between the two toy jet genera-
tors. The only difference is the splitting angle in the rest frame. However, this has a large
impact on the resulting kinematics.

3.2 Simple jet generator

For the simple jet generator scenario, we want to enhance the ability to distinguish hard
scatters from soft scatters. To that extent, we define an unphysical sampling prior that
is distinctly different between the hard and the soft scatters. This is achieved by drawing
θbranch, the splitting in the rest frame of the parton, from two distinct distributions. The
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hard splitting angle θbranch is drawn from a normal distribution N (1/2, 0.1), about π/2
distribution with narrow variance. The soft splitting angle is drawn from the half-normal
distribution with a wide variance of 0.1 radians.

In addition to the angle in the rest frame, we also plot the splitting angle of the first
splitting, we define as

zg = max pT,1, pT,2
pT,1 + pT,2

(3.1)

where pT,1, pT,2 denote transverse momentum of two split partons, where the transverse
momentum pT is the component of the momentum transverse to the beam line, pT =√
p2
x + p2

y when the beam line direction is the z-axis.
For the simple jet generator, the splitting angle of the first splitting is shown in figure 3.

In addition to the splitting angle we observe a distinct difference in the splitting fraction
zg of the first splitting (figure 2). For this sample, we generated 2M simple toy jets with
prong numbers varying from 1 to 4 prongs (QCD(1p), 2p, 3p, 4p). We use 200k jets of
each type for validation and testing. Plots of sample jets are shown in B.1.

3.3 Realistic jet generator

For the realistic jet generator, we follow a sampling prior characteristic of real physical
decays. For the hard splitting, we sample θbranch from a flat prior. The soft splittings
are computed by sampling a probability distribution given by p = 1

θz where θ is the angle
of the splitting and z is the momentum fraction of the jet. This closely approximates a
typical true parton shower. Figure 3 shows the splitting energy fraction zg for a hard and
soft splitting. We observe a behavior similar to what is observed in previous studies in
data [57–59]. Similarly, figure 3 shows the splitting for both hard and soft splittings, the
bias towards small θ is very clear in this scenario.

For this study, we generate 1M realistic toy jets of each category (QCD(1p), 2p, 3p,
4p) and 200k for validation and testing. Plots of sample jets are shown in B.2.

3.4 Network architectures

The choice of a parametric family of functions φθ ∈ F used to approximate the embedding
is important since we have to choose a family of deep neural networks with strong expressive
power. We furthermore want the chosen neural network family to have properties (such as
invariance and equivariance) that is appropriate for the data we have.

As a first demonstration of how to apply NE to a generic dataset, we perform training
on the MNIST character recognition dataset [53]. For these collections of digit images, we
use CNNs to approximate the embedding.

Next, we aim to demonstrate NE in a simplified physics-like environment by creating a
“toy jet” generator that constructs jets with a fixed momentum, mass, and a fixed number
of particles but a varying number of hard and soft splittings. For this dataset, we rely
on transformer networks with multi-headed attention [60] applied to the pT-sorted particle
4-vector dataset.

Finally, we demonstrate the NE on a set of fully simulated jets with characteristic
detector resolutions using Delphes [61]. Since this dataset yields particles in a similar
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Figure 2. (Left) The distribution of parton momentum sharing variable zg for each parton split-
ting for hard and soft splitting, for simple toy jet generator. (Right) The distribution of parton
momentum sharing variable zg for each parton splitting for hard and soft splitting, for realistic toy
jet generator.

0.0 0.5 1.0 1.5
θbranch, simple

0

1

2

3

4

5

6

7

8

D
en

si
ty

Simple Toy Jet

Hard Splitting

Soft Splitting

0.0 0.5 1.0 1.5
θbranch, simple

0

2

4

6

8

D
en

si
ty

Realistic Toy Jet

Hard Splitting

Soft Splitting

Figure 3. (Left) The distribution of splitting angle θbranch for each parton splitting for hard and
soft splitting, for simple toy jet generator. (Right) The distribution of parton momentum sharing
variable θbranch for each parton splitting for hard and soft splitting, for realistic toy jet generator.

format to the “toy jet” dataset, we employ an identical network architecture to that of the
“toy jet” generator.

The details of the neural network architecture are explained in detail in appendix D.

3.5 Summary

The details of the studies are summarized in table 1.

– 9 –



J
H
E
P
0
7
(
2
0
2
3
)
1
0
8

Section Dataset Architecture Geometry
Appendix A MNIST [53] CNN Euclidean
Section 4.1.1 Simple Toy Jets 3.2 Transformer Euclidean
Section 4.1.2 Realistic Toy Jets 3.3 Transformer Euclidean
Section 4.2 Simulated Jets 4.2 Transformer Euclidean
Section 4.3 Simulated Jets 4.2 Transformer Hyperbolic

Table 1. Summary of datasets, network architecture and geometry of the embedded space presented
in this paper.

4 Experiment

4.1 Toy jets

To test the NE on a more complicated dataset, we consider varying sets of progressively
more complicated datasets using the toy jet generator. With each dataset, we take the first
K highest transverse momentum constituents, each with (pT, η, φ) information yielding a
mapping from R3K to the lower dimensional space. For the toy jets generator and future
particle based studies, we take K = 16, and our embedding function thus becomes:

φθ,Transformer : (Xjets ⊂ R48, dEMD)→ (R2, l2) (4.1)

4.1.1 Simple toy jets
For toy jets, we train on 1-prong(QCD) jets and resonant 2-prong and 3-prong jets with a
fixed mass at 172GeV and transverse momentum 400GeV, and we test on different 1-prong,
2-prong, 3-prong jets, with 4-prong generated jets added as well. We train the transformer
model on 2M jets for each type of jet and validate on 2k jets each. The 4-prong jets are
reserved just for prediction to see if the embedding can be extrapolated to jets drawn from
the toy jet model with different parameters compared to what was shown in the training.

The distribution of pairwise energy mover’s distance(EMD) for simple toy jets is shown
in figure 4.

From the observed EMD, we can start to infer the expected shape of the embedded
space. Since the distances between 1-prong jets are wide, we expect that they would
not form a closely grouped cluster in the embedded space. Also, since EMD distribution
between 1-prong and 3-prong is larger than between 1-prong and 2-prong, we can expect
that the distance between clusters of 1-prong and 3-prong jets would be larger than 1-prong
and 2-prong. Furthermore, we expect that 3-prong jets will form a small cluster since the
EMD between 3-prong jets are small. We see that 3-prong and 4-prong jets have a similar
distribution, and we can guess that 3- and 4-prong will form close clusters while 2-prong
and 1-prong(QCD) jets will form separate distinct clusters.

The result of the NE is shown in figure 5. We observe that all the points form a
small cluster according to their pronginess, with a small diffuse shape for 2-prong and
1-prong(QCD) jets, and 3-prong and 4-prong jets get mapped to an almost identical re-
gion. The embedding shows a simple structure and we see that it reflects the raw EMD
distribution in figure 4 well.
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Figure 4. (Left) The distribution of energy mover’s distance (EMD) between QCD jets and two-
prong, three-prong, and four-prong jets. (Middle) The distribution of energy mover’s distance
between QCD jets and two-prong, three-prong, and four-prong jets. (Right) The distribution of
the parton momentum sharing variable zg for each parton splitting for hard and soft splitting for
the realistic toy jet generator.
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Figure 5. (Left) The embedding of realistic toy jets for 1-prong(QCD), 2-prong, 3-prong, and
4-prong jets. The same embedding smoothed with kernel density estimator, with contour lines
corresponding to cdf value 0.5 and 0.8.

4.1.2 Realistic toy jets

The distribution of pairwise energy mover’s distance for realistic toy jets is shown in figure 6.
The NE is shown in figure 7. We observe a similar trend to that of the simple toy jets. We
see that 1-prong(QCD) jets form a cluster on their own, and 2-prong, 3-prong, and 4-prong
forming clusters around 1-prong jets.

We can further investigate what is learned in these embeddings by choosing different re-
gions of the embedded space and looking at the first splitting angle θbranch in the rest frame
of the jets. We see in figure 8 that in the case of realistic toy jets, the first splitting angle is
learned very well by the embedding, and it uses this feature to start organizing the dataset.
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Figure 6. (Left) The distribution of energy mover’s distance between QCD jets and other jets.
(Middle Left) The distribution of energy mover’s distance between 2-prong jets and other jets.
(Middle Right) The distribution of energy mover’s distance between 3-prong jets and other jets.
(Right) The distribution of energy mover’s distance between four prong jets and other jets.
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Figure 7. (Left) The embedding of realistic toy jets for 1-prong(QCD), 2-prong, 3-prong, and
4-prong jets. (Right) The same embedding smoothed with kernel density estimator, with contour
lines corresponding to cdf value 0.5.

4.2 Simulated jets

Finally, we consider a set of simulated true jets. For these events, we rely on events
generated with MADGRAPH 5 [62], showered with Pythia 8.1 [63, 64] and then smeared
using Delphes 3 [61]. Jets were clustered with FastJet 3 [65, 66]. In this scenario, we
generate events from a wide variety of different topologies consisting of QCD, 2-prong, and
3-prong jets of varying masses. From this dataset, we perform a single training on all of
these topologies to construct the embedded space. In all cases, we train on a single jet.

Table 2 summarizes the different samples utilized for the training and testing of the
embedded space. To demonstrate the robustness of the construction, we eliminated a
variety of mass points in the training, along with all 4-prong samples. However, we still
use these samples in the testing of the space.

The testing is done in two different datasets, the interpolation, and the extrapolation
dataset. The extrapolation set is a collection of jets of types not shown in training. This
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Figure 8. Selecting three different regions of the embedded space for realistic toy jets and plotting
the first splitting angle θbranch of the jets that fall into each of those regions.
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Events Jet Pronginess Jet Mass Used in Training Test Dataset
X → Y Y ′ 2 25GeV 7 Extrapolation
X → Y Y ′ 2 80GeV 3 Interpolation
X → Y Y ′ 2 170GeV 7 Extrapolation
X → Y Y ′ 2 400GeV 3 Interpolation
W ′ → B′T 3 25GeV 7 Extrapolation
W ′ → B′T 3 80GeV 3 Interpolation
W ′ → B′T 3 170GeV 7 Extrapolation
W ′ → B′T 3 400GeV 3 Interpolation

Vkk → (V V )V 4 170GeV 7 Extrapolation
Vkk → (V V )V 4 400GeV 7 Extrapolation

Table 2. Summary of simulated jet samples.

dataset includes 4-prong jets and 2-prong and 3-prong jets with masses eliminated from
the training. The interpolation set is a collection of jets of types shown in training that
shows the interpolation capability of these methods, such as 2-prong and 3-prong jets with
masses shown in training that were held out for testing and have no overlap with the
training dataset. For all jet types, one million jets were used in training, 200k jets each for
validation and testing, and 10k jets were used for presenting the results.

The QCD jets are constructed from events generated with MADGRAPH 5 [62] and
showered with PYTHIA 8 [63], with an HT range of 1500 to 2000GeV. A pre-selection on
the jets is applied so that the pT of the jets are greater than 300GeV. The two prong jets
are generated from X → Y Y ′ process, with Y and Y ′ masses 25,80, 170, 400 GeV. We
use masses 80, 400GeV for training and 25, 170GeV for testing in the interpolated dataset.
The 3-prong jets are generated from W ′ → B′T events, with both W ′ and Top quark mass
varied, both decaying to a 3-prong. As with the 2-prong sample masses, 80, 400GeV are
used for the training and 25 and 170GeV for testing. Lastly, one million 3-prong jets are
used for training, and 200k jets for validation and testing, just as in the 2-prong case. For
the 4-prong jets, two mass points 170 and 400 GeV are generated from triboson events
Vkk → (V V )V , where two bosons, both decaying 2-prong, get clustered in the same jet.
These jets weren’t shown in the training at all and constitute the extrapolation test dataset.
For the respective labels, we only take jets with explicitly 2,3,or 4 prongs for the NE.

The OT-based distances between the jets are very sensitive to preprocessing. As a
result, we apply a more complex pre-processing scheme. First, the jets are centered so
that the jet η and φ are centered to the origin. Then the jet constituents are rotated with
respect to the origin so that two most energetic components are aligned along the y axis
of the (∆η = ηi − ηjet,∆φ = φjet) coordinate system. Finally, the jets are flipped so that
the maximum sum of energy of constituents is placed in the first quadrant in the (∆η,∆φ)
plane. Examples of such jets are shown in appendix B.

Figure 9 shows the EMD for the jets, we observe that the energy mover’s distance
is more sensitive to varying the mass compared to varying the pronginess of the jets.
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Figure 9. (Left) The distribution of energy mover’s distance(EMD) between 2-prong jets with mass
25 GeV jets and other jets. (Middle Left) The distribution of energy mover’s distance between
different jets with fixed mass of 170 GeV. (Middle Right) The distribution of energy mover’s
distance between different jets with fixed mass of 170 GeV. (Right) The distribution of energy
mover’s distance between 2-prong jets with different masses.
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Figure 10. (Left) The embedding (Right) The same embedding smoothed with kernel density
estimator, with contour lines corresponding to CDF value 0.5 and 0.8. Labels indicate the pronginess
and the mass of the jet. For instance, 2p25 indicates 2-prong jets with mass 25GeV, generated from
X → Y Y ′ model.

Figure 10 shows the result of the NE applied to the extrapolation dataset. We observe
a strong grouping according to the jet masses with a general progression towards smaller
masses as one goes to smaller values on the y-axis. We also observe a trend towards lower
prongs as one moves closer to the origin in the embedded space. As a consequence of these
trends, we find 2-prong and 3-prong jets with 25GeV mass get grouped in the bottom left
corner, and 2-prong, 3-prong, and 4-prong jets with masses 170GeV get grouped above the
25GeV mass group. Above the 170GeV group, 4-prong jets with 400GeV mass are placed.

Figure 11 shows the result of the NE on the interpolated datasets. With these data-
points, we again observe that there is an even stronger grouping based on the mass, QCD
with all the 80GeV jets getting mapped to the bottom half of the space, and all the 400GeV
jets getting mapped to the top half of the space.
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Figure 11. (Left) The embedding (Right) The same embedding smoothed with kernel density
estimator, with contour lines corresponding to cdf value 0.5 and 0.8.

In order to further understand what is learned by the embedding functions, in figure 11,
we look at different regions of the NE and plot physical observables. We choose different
regions of the Euclidean space and plot the histograms of subjettiness variables τ21, τ32, τ43.
We find a strong correlation among selected subjettiness variables even for QCD jets. In
particular, the pronginess consistently goes down to lower values as one progresses towards
the origin of the embedded space. Already, we can see that with this embedded space, we
can start to classify jets into distinct regions based on their features and their generated
properties.

4.3 Hyperbolic embedding of jets

In the above section, we performed a NE into a Euclidean space. In this section, we present
results on embedding into non-Euclidean, Hyperbolic spaces. For this paper, we primarily
study embedding into the two-dimensional Poincaré disks. It is well known that tree-like
structure embeds well into the Poincaré disk since the distance gets stretched close to the
boundary of Poincaré disks [39, 67–69]. Thus it is interesting to view jets as tree structures
and embed them into Poincaré disks.

Hyperbolic space has a physical analog and is used to define the motion of high mo-
mentum objects within Minkowski space. The jet is a high momentum object that decays
into a spray of high momentum particles. As a result, its decay products and the forces
causing the decay undergo relativistic motion giving rise to a curved hyperbolic geome-
try. Lastly, since it is impossible to embed non-Euclidean manifolds into Euclidean space
without a big distortion, alternative geometries are well motivated extensions of NE and
should, in general, be pursued.

With the same metric space and EMD distribution as in figure 9 and the same training
set, we learn the function in eq. 4.2, the embedding into the Poincaré disk(B2) denoted as

φθ,Transformer : (Xjets ⊂ R48, dEMD)→ (B2, dp) , (4.2)
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Figure 12. (Left) The embedding (Right) The same embedding smoothed with kernel density
estimator, with contour lines corresponding to cdf value 0.5.

where the metric distance on the disk dp is given by Eq 4.3.

dp(x, y) = arcosh
(

1 + 2 · ‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
(4.3)

As in the Euclidean embedding cases in section 4.2, we present the results in two
different cases on the same extrapolation and interpolation prediction datasets. The result
of the embedding into Poincaré disks for the extrapolation dataset is shown in figure 13.
There is a clear trend towards heavier objects as one goes downwards along the y-axis.
Additionally, we observe a trend toward more prongs as one moves downwards and to the
left. As a consequence, we observe a strong grouping based on the mass of the jets. The
25GeV mass jets are grouped together and also 170GeV jets get mapped to the same
regions. Finally, The 400GeV jets form a cluster of their own. This grouping based on
mass seems to be stronger compared to the Euclidean embedding case.

To further see whether the latent structure is learned by the embedding, figure 15 shows
n−subjettiness variables of jets that get mapped to different regions of the embedded space.
We can see that the distributions of n-subjettiness are highly correlated within the local
regions of the space, even stronger than Euclidean embedding, and we conclude that inter-
pretability is better for embedding into hyperbolic spaces compared to Euclidean spaces.

The result of the embedding into Poincaré disks for the interpolation dataset is shown
in figure 14; the behavior is similar to that of the extrapolation dataset. Overall, we
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Figure 13. (Left) Scatterplot of Hyperbolic embedding of simulated jets into Poincaré disks
(B2, dp) (Right) The same embedding smoothed with kernel density estimator, with contour lines
corresponding to cdf value 0.5 and 0.8. Labels indicate the pronginess and the mass of the jet. For
instance, 2p25 indicates 2-prong jets with mass 25GeV, generated from X → Y Y ′ model.
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Figure 14. (Left) Scatterplot of Hyperbolic embedding of simulated jets into Poincaré disks
(B2, dp) (Right) The same embedding smoothed with kernel density estimator, with contour lines
corresponding to cdf value 0.5 and 0.8. Labels indicate the pronginess and the mass of the jet. For
instance, 2p25 indicates 2-prong jets with mass 25GeV, generated from X → Y Y ′ model.

observe there is a strong grouping of objects within this space. This implies the NE has
“self-organized” the dataset along the EMD criterion, yielding a physically interpretable
space consistent with that of EMD.

As we can see from the good separation between different types of events for both
Euclidean and Hyperbolic embeddings, we see that these NE can be used to flag interesting
anomalies by looking for events within this space. However, a related application that
we can also perform is to quantify the effectiveness of anomaly detection algorithms in
detecting interesting regions of phase space. This exciting application is covered in 5.
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Figure 15. (Left) The embedding (Right) The same embedding smoothed with kernel density
estimator, with contour lines corresponding to cdf value 0.5.

4.4 Empirical estimation of distortion

In addition to a physical clustering of events, we can also look to see how well the embedded
space preserves the embedded metric within the space [70]. With the given embedding
φ : (X , dX ) → (Y, dY), we define the distortion as the ratio of measured EMD after NE
compared to the true EMD, given by

ρφ(u, v) = dY(φ(u), φ(v))
dX (u, v) (4.4)

The distortion measures how far the new distances dY(φ(u), φ(v)) between the embedded
points deviate from the original distances dX (u, v) for an arbitrary pair of points (u, v) ∈ X .

To quantify the level of distortion, we condense the distortion response and variation
to two numbers the mean, µ, and the standard deviation, σ, of the distortion. Where
the variation for any embedding φ can be written in terms of the normalized ratio of the
distances, ρ̃φ(u, v), given by

ρ̃φ(u, v) = Mρφ(u, v)∑M
i=1 ρφ(ui, vi)

, (4.5)

where the summation is done for all pairs in the test dataset and M denoting the total
number of pairs. The distortion variation σ-distortion is defined as, letting Π = P × P ,
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Figure 16. (Left) Histogram of pairwise ratios on the extrapolation set. (Right) Histogram of
pairwise ratios on the interpolation set.

where P is a distribution over X ,

σ−distortion = EΠ(ρ̃φ(u, v)− 1)2 . (4.6)

When P is a uniform probability distribution over X , then σ-distortion measures the
variance of the distribution of the normalized ratio of distances, ρ̃φ(u, v). For the NE, we
aim for an embedding with low distortion and a small σ-distortion.

To test the embedding, we compute the distortion on both the extrapolation and inter-
polation test datasets. The result is shown in figure 16. Firstly, we verify that low distortion
and low σ-score embedding is achievable in very low dimensions, in two-dimensional Eu-
clidean and Hyperbolic spaces. Indeed, we see a sharp distribution that peaks near 1, the
ideal value. Comparing the performance of embeddings on the interpolation and extrapo-
lation datasets, we see that the performance of the two datasets is very similar. We can
conclude that the embedding is surprisingly good and has good extrapolation capabilities.

Figure 17 shows pairwise ratios and σ-distortion as a function of original metric dis-
tance. The performance is the worst (pairwise ratios deviate furthest from the ideal value
1 and σ-distortion is the largest) near extreme original metric distances 0 and 1.2, where
there is less training data available. However, even with significantly less training data
available, the learned neural embedding functions perform reasonably well with pairwise
ratios on the same scale as the best-achieved values.

We also see that Hyperbolic embedding performs better than Euclidean on both the in-
terpolation and extrapolation datasets. For both datasets, the Hyperbolic embedding gets
the mean of pairwise ratios closer to one and achieves a lower σ-distortion. The improve-
ment is even more striking for extreme values of the original metric distances. Looking at
figure 17, we see that for both interpolation and extrapolation cases, near the largest values
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Figure 18. (Left) Correlation between the distances in the original metric space and the distances
in the embedded space, for extrapolation dataset into Euclidean embedded space. (Middle Left)
The same plot for extrapolation dataset into Hyperbolic embedded space. (Middle Right) The
same plot for interpolation dataset into Euclidean embedded space. (Right) The same plot for
interpolation dataset into Hyperbolic embedded space.

of the original metric distances Hyperbolic embedding significantly outperforms Euclidean
embedding.

Lastly, in figure 18 we visualize the relation between the distances in the original metric
space and the distances in the embedded space. We see that they are very highly correlated
and almost fall in y = x line, as we expect, for all cases.

Overall, considering that we are working in two dimensions, a higher dimensional
embedding would likely perform even better. In higher dimensional embedded spaces,
Hyperbolic has the potential to further outperform Euclidean embedding due to inherent
geometry.

4.5 Comparison with other manifold learning methods

There are many well-studied methods to embed data into Euclidean spaces. In addition to
NE, t-SNE and UMAP are alternative approaches capable of embedding the original data
manifold into the lower-dimensional Euclidean space. Some exploration has been done to

– 21 –



J
H
E
P
0
7
(
2
0
2
3
)
1
0
8

-0.4 -0.2 0.0 0.2
Embed Dimension 1

-0.6

-0.4

-0.2

0.0

0.2

0.4

E
m

b
ed

 D
im

en
si

o
n
 2

Embedding ( 2, l2)
Simulated Jet

QCD

2p80

2p400

3p80

3p400

4p170

4p400

-100 -50 0 50 100
Embed Dimension 1

-100

-50

0

50

100

E
m

b
ed

 D
im

en
si

on
 2

t-SNE Embedding
Simulated Jet

QCD

2p80

2p400

3p80

3p400

4p170

4p400

-10 0 10 20 30
Embed Dimension 1

-10

-5

0

5

10

15

20

25

30

E
m

b
ed

 D
im

en
si

on
 2

UMAP Embedding
Simulated Jet

QCD

2p80

2p400

3p80

3p400

4p170

4p400

Figure 19. (Left) The neural embedding we propose smoothed with kernel density estimator,
with contour lines corresponding to the CDF value 0.4. (Middle) t-SNE result on the same dataset
(Right) UMAP result on the same dataset.

use these embeddings on jets. In particular, t-SNE has been used for embedding jets in
previous works [71].

Both t-SNE and UMAP are fundamentally different methods from NE and suffer from
limitations in their applicability. First, most out-of-the-box embedding methods such as
t-SNE [37] and UMAP [38] deal with embedding a fixed number of points into the space
by training and embedding on the same datasets. This means that we don’t have the
ability to perform parallel evaluation, which limits the scalability when compared with
NE. Secondly, since t-SNE and UMAP learn the specific relationship in a given dataset
yielding an unphysical metric. The mapping cannot be applied to alternative datasets. NE
avoids this problem and we have already demonstrated robust performance on a 4-pronged
dataset not used within the training.

Thirdly, t-SNE focuses on preserving the local structure of a dataset at the cost of
inducing severe global distortions. As a result, the Euclidean distance in t-SNE space is
hard to interpret since t-SNE does not preserve distance and global structure.

Both methods are tested with our setup in figure 19 along with the neural embedding
method we propose on a small subset of the jet interpolation dataset. Although there is
some benefit, low distortion for EMD is not guaranteed at all for UMAP and t-SNE limiting
our ability physically interpret the space. We also argue that by looking at figure 19, the
neural embedding method offers the best interpretability since it shows a characteristic
ordering of mass and pronginess.

5 Anomaly quantification

Following the construction of the embedded space, we can perform a variety of explorations
to understand what has been learned in the space. In this section, we look at how we can
use the NE space to define a diversity metric for the scope of signatures that anomaly
detection has identified.

When trying to quantify the effectiveness of an anomaly detection algorithm, the con-
ventional metrics fall short when the target is unknown. More specifically, in model agnostic
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searches at colliders, we can’t a priori know the beyond the standard model (BSM) physics
signal. The conventional metrics of evaluation, such as comparing ROC curves and the sig-
nificance of the extracted signal, often do not tell the full story since the performance of the
algorithm depends critically on the chosen evaluation dataset. Moreover, the significance
of a single dataset does not characterize the ability of the anomaly detection algorithm to
find unexpected signals.Good performance of the algorithm on one test dataset does not
guarantee performance on some very different collections of events. Currently, there is no
clear way to handle this notion of “wideness” of the search capability.

With the embedded space, we propose a new metric to indicate the coverage of phase
space of a single algorithm. Since the embedded space compresses high dimensional objects
into a low dimensional space of physical features, we can utilize the notion of the volume
in the embedded space as a way to define algorithm coverage. When the embedded space
is a Euclidean space, the volume is straightforward to calculate, and in two-dimensional
Euclidean space, this equates to the area within the embedded space.

To understand how area coverage characterizes the wideness of an anomaly search,
we introduce the idea of area adjusted ROC curve. To compute the area adjusted ROC
curve, we first prepare a signal evaluation ensemble that consists of a wide variety of event
topologies so that the phase space over which we wish to compare the two algorithms
is broadly covered. With the evaluation ensemble and the background dataset, we then
evaluate how the chosen algorithm covers the embedded space of the signal ensemble when
compared with the background. For each point on the regular ROC curve, we map the
selected signal points that pass the threshold for the true positive rate (TPR) of our chosen
algorithm to the embedded space and calculate the ratio of the total embedded space area
covered by the selected points; this yields the Area TPR defined in eq. 5.1.

Area TPR = εsig, area = Selected Signal Area
Total Signal Ensemble Area (5.1)

Similarly, we map the selected QCD background points to the embedded space and
calculate the ratio of selected background points to the total QCD area. This procedure
defines the Area FPR defined in eq. 5.2, and it tells us the efficiency of the area of QCD
rejection, defined as

Area FPR = 1− εbkg, area = Selected Background Area
Total QCD Area (5.2)

With Area TPR and Area FPR, we can construct area adjusted ROC curve. The roc
curve is adjusted based on whether the algorithm casts a wide net or only looks at the
narrow region of the phase space.

We diagrammatically show how this adjusted ROC curve is made in practice in fig-
ure 21, for a supervised learning algorithm constructed from an MLP network training
QCD vs 2-prong jet with a secondary mass of 170GeV.

In figure 21, we see how a point(a red star point) in the normal ROC curve gets
translated to a point on area adjusted ROC curve. For a given TPR, we compute the area
the selected points cover compared to the full area coverage of our ensemble set. Similarly,
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for the background, we compute the fraction of the area of the embedded space volume
that gets rejected by the chosen algorithm.

The area ratio is calculated for the Area TPR and Area FPR by dividing the embedded
space into grids and counting the number of bins that has data points above a certain
threshold, which we call a threshold parameter. By default, the regions with counts more
than 3 are considered, but the ROC curve is stable regarding the choice of the threshold
parameter. The stability of the area-adjusted ROC curve regarding the choice of this
threshold parameter is discussed in section C, figure 32.

This can be understood as a measure of the total phase space of events, represented
in the form of the NE. The area coverage is the portion of the total phase space volume
that the algorithm covers.

Careful consideration of these ROC curves should be taken into account since there
is a dependence of area adjusted ROC curve on the selection of this evaluation dataset.
To make this approach as general as possible for anomaly detection, we choose a dataset
where the area it spans in the embedded space is wide. Later we show in figure 23 that as
long as the evaluation ensemble covers the search space well, the dependence on this set of
an ensemble is very small.

To see the usefulness of this anomaly quantification method, we compare two different
anomaly detection algorithms, a fully supervised algorithm (MLP) trained to do QCD vs
2-prong jet with mass 170GeV, and an unsupervised algorithm comprising of an autoen-
coder trained on just QCD background. The evaluation dataset was the ensemble dataset
constructed by mixing QCD, two-prong jets with masses 25,80 170,400 GeV, three-prong
jets with masses 80, 170, 400GeV, and four-prong jets with masses 170, 400GeV with equal
proportion. The evauation dataset was chosen to measure sensitivity to a broad spectrum
of signal.

Figure 20 and figure 21 shows the construction of area adjusted ROC curve for these
two different algorithms.

Figure 22 compares the normal ROC and area-adjusted ROC directly for these two
algorithms. It aligns with our intuition that since MLP is hyper-optimized to do well on
one specific dataset, it has lower search capability and focuses on the narrow region of the
phase space. Therefore, we see that even though the MLP algorithm seems to be doing fine
on the regular ROC curve, the area adjusted ROC curve reveals that the AE algorithm is
more efficient at searching the wider area in the embedded space, which, here, acts as a
proxy for the phase space.

Another benefit of this procedure is that we can visualize which region of embedded
space each algorithm searches and compare this between different methods. By comparing
the colored area of the selected points in the embedded space in figure 20 and figure 21, we
can observe that for the same TPR working point, two algorithms presented in figure 20
and figure 21 choose complementary regions of the embedded space.

Finally, we show in figure 23 that area adjusted ROC curves reduce the dependence
on the test dataset we choose. Ensemble 1 dataset was constructed by mixing QCD,
two-prong jets with masses 25, 170 GeV, three-prong jets with masses 25, 170 GeV, and
four-prong jets with masses 170 and 400GeV , and Ensemble 2 was constructed by mixing
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Figure 20. The process of calculating area adjusted ROC curve for anomaly detection algorithm
trained with autoencoder on QCD.

Figure 21. The process of calculating area adjusted ROC curve for anomaly detection algorithm
trained with MLP architecture on QCD vs. 2-prong 170GeV jet task.

QCD, two-prong jets with masses 80, 400GeV, three-prong jets with masses 80, 400GeV,
and four-prong jets with masses 170 and 400GeV. Regular ROC curves can vary wildly
depending on what test dataset we choose, as can be seen in the upper left and lower left
plots comparing ROC curves on two different signal ensemble datasets. However, for area
adjusted ROC curves in the upper right and lower right panels, we observe a significantly
smaller variation across test datasets.

By adjusting the area with an ensemble dataset, we effectively reduce the sample
dependence of the evaluation at the same time.
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Figure 22. (Left) Comparison of regular ROC curves for two different algorithms, MLP and AE.
(Right) Comparison of area adjusted roc curves for the two algorithms, MLP and AE.

6 Conclusion

This paper introduces a method of embedding the physics data manifold with a metric
structure into different lower dimensional spaces with simpler metrics. We show neural
embedding is capable of condensing complex high-dimensional data into physically mean-
ingful spaces. Furthermore, we explore various types of embedding spaces covering both
Euclidean and Hyperbolic embedding.

Using collider physics simulated events of hadronically decaying objects, we demon-
strate a neural embedding algorithm that embeds jets into a space where the energy mover’s
distance is preserved. Using a hierarchical set of progressively more realistic simulations, we
find that our neural embedding can preserve the core physical features and self-organize jet
datasets into their respective decay types. Furthermore, we find that a Hyperbolic embed-
ding space improves the overall physics interpretation compared to a Euclidean embedding.

We further demonstrate that neural embedding can be used to provide a solution to
the complex problem of quantifying the performance of different model agnostic search
algorithms, which is an obstacle that needs to be solved if we plan to move towards model-
agnostic searches. With the notion of volume in lower dimensional Euclidean spaces, we
introduced volume-adjusted roc curves, which aim to quantify the true search breadth of a
given algorithm. We find that once we apply the volume-adjusted ROC curve, an autoen-
coder outperforms supervised learning in its ability to search across the whole manifold of
physics events.

Additionally, we note that the optimal transport computation between sets of jets can
be very time-consuming. By constructing a neural embedding with the energy mover’s dis-
tance metric, we avoid the need to recompute optimal transport, allowing for a significantly
faster calculation that is embarrassingly parallel.

– 26 –



J
H
E
P
0
7
(
2
0
2
3
)
1
0
8

0.00 0.25 0.50 0.75 1.00
1− εbkg

0.0

0.2

0.4

0.6

0.8

1.0
ε s
ig

Regular ROC
MLP

Ensemble 1

Ensemble 2

0.00 0.25 0.50 0.75 1.00
1− εarea, bkg

0.0

0.2

0.4

0.6

0.8

1.0

ε a
re
a
,s
ig

Area Adjusted ROC
MLP

Ensemble 1

Ensemble 2

0.00 0.25 0.50 0.75 1.00
1− εbkg

0.0

0.2

0.4

0.6

0.8

1.0

ε s
ig

Regular ROC
AE

Ensemble 1

Ensemble 2

0.00 0.25 0.50 0.75 1.00
1− εarea, bkg

0.0

0.2

0.4

0.6

0.8

1.0
ε a
re
a
,s
ig

Area Adjusted ROC
AE

Ensemble 1

Ensemble 2

Figure 23. Comparison of stability of regular ROC curves and area adjusted ROC curves for two
different anomaly detection algorithms, MLP and AE, on two different ensemble datasets. We see
that area adjusted ROC curves are more stable against changing test data ensemble. (Upper Left)
Regular ROC curves for MLP (Upper Right) Area adjusted ROC curves for MLP (Lower Left)
Regular ROC curves for AE (Lower Right) Area adjusted ROC curves for AE.

We conclude that given a complex physics manifold with a metric structure, it can be
beneficial to embed it into different spaces to extract meaningful information. With cheap
computational cost and good capability to learn the latent structure, embedding has the
potential to find use cases in different collider physics scenarios.

Embedding also provides an alternative way to build a more straightforward space for
various tasks without relying on latent variable or probabilistic modelings such as VAEs
and flow models. Embedding the QCD physics manifold into different manifolds with
desirable geometric properties such as the Poincaré ball has been studied for the first time.
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This paper realizes a neural embedding using hadron collider events. Despite only
exploring a few avenues within our embedded space, we are able to perform quantifications
that were previously difficult. As a result, we believe embedding will be an invaluable
tool in the physics data analysis pipeline. We believe neural embedding will find use in
solving a wide variety of practical problems, such as data compression, anomaly detection,
quantification of anomaly detection, organizing physics datasets, and many more.
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A MNIST

The MNIST dataset [53] consists of images of characters, each presented in a square array
of 28x28 pixels, or 784 total pixels. To perform the NE, we consider one million pairs of
MNIST images, including all ten digits. To define the distance between any image, we uti-
lize the optimal transport calculated by POT package [72]. The embedding function is ap-
proximated by convolutional neural networks (CNNs) with 4 hidden layers with MLP layers
attached at the end that output two numbers, yielding a two-dimensional embedding space.

The embedding into a two-dimensional Euclidean space with a l2-norm is achieved by
learning the function:

φθ,CNN : (Xdigits ⊂ R784,W2)→ (R2, l2) . (A.1)

The distributions of optimal transport distances between pairs of images for selected
digits are shown in figure 24. If we look at the histograms of the 2-Wasserstein distance
distributions, we can see that the distance between 0 and 1 is very far, and digit 9 is about
equidistant from both 0 and 1.

With the pairwise optimal transport distances, figure 25 shows the embedding into
the Euclidean space with l2-norm for five selected digits. We show both scatter plots
of embedded digits and the contours of the cumulative distribution function (CDF). The
contours are obtained by first applying kernel density estimation, then integrating from the
maximum probability density function (PDF) value of the two-dimensional distribution by
lowering the threshold of the PDF value until the desired enclosed probability mass is
achieved (usually chosen to be 0.5 and 0.8). The result of the corresponding NE yields a
space with the similarity between digits that we would naively expect from our knowledge
of digits and from the optimal transport distance between the images we observed from
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Figure 24. 2-Wasserstein distance W2 distribution for select digits. (Left) The optimal transport
distance with respect to digit 0. (Middle) The optimal transport distance with respect to digit 1.
(Right) The optimal transport distance with respect to digit 7.
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Figure 25. (Left) The scatterplot of embedding of select MNIST digits, 0,1,5,7,9. (Right) The
same embedding smoothed with kernel density estimator, with contour lines corresponding to cdf
value 0.8.

figure 24. In particular, we observe in the embedded space that the digit 0 and 1 form two
distant clusters, while the cluster of digits 5,7, and 9 are located between those two clusters.

B Example of jets

Some of the examples of jets visualized by plotting each constituent in the η−φ plane with
circles of sizes proportional to its pT is shown.

B.1 Simple toy jet

In figure 26 and figure 27 we show some examples of simple toy jets.

B.2 Realistic toy jet

In figure 28 and figure 29 we show some examples of realistic toy jets.
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Figure 26. Samples of simple toy jet, (Left) 1-prong(QCD) (Right) 2-prong.
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Figure 27. Samples of simple toy jet, (Left) 3-prong (Right) 4-prong.
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Figure 28. Samples of realistic toy jet, (Left) 1-prong(QCD) (Right) 2-prong.
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Figure 29. Samples of realistic toy jet, (Left) 3-prong (Right) 4-prong.
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Figure 30. Samples of simulated jet, (Left) QCD (Right) 2-prong 170 GeV.

B.3 Simulated jet

In figure 30 and figure 31 we show some examples of simulated jets.

C Stability of area adjusted ROC curve

We study the effect of binning by varying the threshold parameter when calculating the
area ROC curve. Figure 32 shows the area adjusted ROC curve with varying threshold
parameter for minimum required number of events in each 2D bin. We see that the new
ROC curve is robust against choosing binning and thresholding of this minimum number
of events. The cutoff was varied up to 1 percent of the evaluation set, and within that
range of the cutoff the area adjusted ROC curve is stable.
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Figure 31. Samples of simulated jet, (Left) 3-prong 170 GeV (Right) 4-prong 170 GeV.
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Figure 32. The area adjusted roc curve calculated for different thresholds.

D Neural network architecture details

D.1 CNN

The CNN architecture used in A is made of 3 2-D convolution layers with kernel size 5,
with max pooling and ReLU activation. The linear layers have 1000, 400, 200 neurons
with leaky ReLU activation, with batch normalization [73], and dropout [74]. There are
1M total number of parameters for this model.
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Section Dataset Attention Heads Linear Layers Dropout Prob. Params
Section 4.1.1 Simple Toy Jets 3.2 4 1200,450,30 0.25 1.6M
Section 4.1.2 Realistic Toy Jets 3.3 4 1000,400,20 0.2 1.3M
Section 4.2 Simulated Jets 4.2 4 1000,400,20 0.2 1.3M
Section 4.3 Simulated Jets 4.2 4 1000,500,20 0.25 1.4M

Table 3. Summary of network architectures for jet data.

D.2 Transformers

For the transformer architecture used in 4.1.1, 4.1.2, 4.2 4.3, architecture search was per-
formed for each setting to achieve the minimum distortion. Since the feature embedding
dimension was always fixed to 32, the positional encoding in eq. D.1 was used.

f(t)(i) :=

sin (ωt · t) if i = 2k
cos (ωt · t) if i = 2k + 1

where ω = 1
100002k/32 (D.1)

For transformers, dropout [74] was used for regularization. The details of architectures
for each cases is summarized in the table 3.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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