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Covariance-Free Sparse Bayesian Learning
Alexander Lin, Student Member, IEEE, Andrew H. Song, Student Member, IEEE,
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Abstract—Sparse Bayesian learning (SBL) is a powerful frame-
work for tackling the sparse coding problem while also pro-
viding uncertainty quantification. The most popular inference
algorithms for SBL exhibit prohibitively large computational
costs for high-dimensional problems due to the need to maintain
a large covariance matrix. To resolve this issue, we introduce a
new method for accelerating SBL inference – named covariance-
free expectation maximization (CoFEM) – that avoids explicit
computation of the covariance matrix. CoFEM solves multiple
linear systems to obtain unbiased estimates of the posterior
statistics needed by SBL. This is accomplished by exploiting
innovations from numerical linear algebra such as preconditioned
conjugate gradient and a little-known diagonal estimation rule.
For a large class of compressed sensing matrices, we provide
theoretical justifications for why our method scales well in high-
dimensional settings. Through simulations, we show that CoFEM
can be up to thousands of times faster than existing baselines
without sacrificing coding accuracy. Through applications to
calcium imaging deconvolution and multi-contrast MRI recon-
struction, we show that CoFEM enables SBL to tractably tackle
high-dimensional sparse coding problems of practical interest.

I. INTRODUCTION

SPARSE coding is a fundamental problem in signal pro-
cessing that seeks a sparse solution z to the equation

y = Φz + ε, (1)

where z ∈ RD is a latent sparse vector, y ∈ RN is an observed
measurement vector, Φ ∈ RN×D is a known dictionary, and
ε ∈ RN is an unknown noise vector.

Sparse Bayesian learning (SBL) is an effective methodology
for sparse coding. It has been employed in several popular
models, such as sparse Bayesian regression [1], relevance
vector machines [2], and Bayesian compressed sensing [3]–[5].
The practical applications of SBL are numerous, encompassing
diverse examples such as medical image reconstruction [6],
[7], direction of arrival estimation [8], human pose estimation
[9], structural health monitoring [10], seismic exploration [11],
and visual tracking [12].

SBL offers several advantages compared to other common
approaches to sparse coding (e.g. `0 or `1 regularization). As
a Bayesian method, SBL provides uncertainty quantification
and the ability to recover credible intervals over z instead of
a single point solution. Moreover, SBL does not need to tune
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regularization parameters since it can learn them or integrate
them out using hyperpriors [4]. As a generative model, SBL
can be embedded as a submodule within a larger framework to
enforce more complex structure for z (e.g. group sparsity [13],
block sparsity [14]). Finally, SBL has favorable optimization
properties, such as a sparser global minimum than `1 methods
and fewer local minima than `0 methods [15].

One often-noted limitation of SBL is the heavy compu-
tational cost of its inference algorithm [2], [6]. On the one
hand, the fact that SBL requires more computation than non-
Bayesian approaches should be unsurprising, since SBL re-
covers an entire distribution instead of a single point estimate.
On the other hand, the most widely-used options for SBL
inference scale poorly to high-dimensional problems, which
are becoming increasingly common in many domains. This
limitation threatens to render the SBL paradigm obsolete for
large-scale settings, as inference cannot be performed in an
acceptable timeframe for practical applications.

The principal inference procedure of SBL is the expectation-
maximization (EM) algorithm [1], [2]. Each iteration of EM is
computationally expensive, requiring O(D3)-time and O(D2)-
space to invert a large covariance matrix, where D is the di-
mension of the sparse codes. There have been several attempts
to reduce the costs of EM, using iteratively reweighted least-
squares (IRLS) [16], approximate message passing (AMP)
[17], and variational inference (VI) [18]. A popular alternative
to EM called the sequential algorithm (Seq) [19] is often faster
in practice. However, these methods lack either scalability at
very high dimensions D or accuracy in recovering ground-
truth sparse codes when compared to EM.

A. Contributions

We introduce a novel method for accelerating SBL’s EM
algorithm for high-dimensional problems. We call our method
covariance-free expectation maximization (CoFEM) be-
cause it eliminates the main bottleneck of EM – i.e. the storage
and inversion of the covariance matrix. We demonstrate that
CoFEM has significant advantages in both scalability and
accuracy over other SBL approaches (reviewed in Section II).
Our contributions are categorized into four types – methodol-
ogy (Section III), theory (Section IV), experimentation (Sec-
tion V), and applications (Section VI).

Methodology: We develop CoFEM, which solves multiple
linear systems and exploits a little-known diagonal estimation
rule to obtain unbiased estimates of the posterior moments
needed by EM. The multiple systems can be solved in parallel
using an iterative solver, such as the conjugate gradient (CG)
algorithm, without constructing the covariance matrix. This
simple, yet powerful principle reduces EM’s per-iteration time
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complexity from O(D3) to O(UKτD), where τD is the time
needed for matrix-vector multiplication and U,K � D are
hyperparameters for the number of CG steps and the number
of linear systems. Furthermore, CoFEM reduces EM’s space
complexity from O(D2) to O(DK).

Theory: We prove new theorems that further characterize
CoFEM’s asymptotic complexities. In applying this theory to
matrices Φ that satisfy the restricted isometry property (RIP)
and commonly occur in compressed sensing applications, we
show that, in the limit of a large number of EM iterations,
CoFEM’s hyperparameters U and K can be kept small even
as the dimensionality of the problem D grows very large. We
use this theory to justify practical choices for U and K that
need not increase with D, leading to signficant computational
savings compared to existing SBL algorithms.

Experimentation: We perform simulations comparing
CoFEM to several existing SBL algorithms [2], [16], [17],
[18], [19], for high-dimensional sparse signal recovery. Across
all of our settings, CoFEM is able to maintain the same level
of accuracy as EM due to its unbiased estimation of poste-
rior moments. In addition, CoFEM’s highly-parallelized and
space-saving design enables further acceleration via graphics
processing units (GPUs); most other approaches cannot fully
realize this benefit due to their heavy memory requirements. In
practice, CoFEM with GPU acceleration can reduce hours of
computation for covariance-based algorithms to a few seconds.

Applications: We apply CoFEM-equipped SBL in two set-
tings of practical interest: (1) calcium deconvolution and (2)
multi-contrast MRI reconstruction. In these high-dimensional
settings, CoFEM attains competitive computation time with
non-Bayesian approaches, while providing several benefits
(e.g. superior performance, uncertainty quantification). These
applications require extensions of the SBL model to multi-task
learning and to settings with non-negativity constraints, which
we demonstrate CoFEM is flexible enough to handle.

II. SPARSE BAYESIAN LEARNING

A. Generative Model

To solve Eq. (1), SBL imposes the following model:

z ∼ N (0, diag{α}−1),

y | z ∼ N (Φz, 1/βI), (2)

where β ∈ R is the inverse of the variance of the noise
(commonly called precision) and I is the identity matrix. Given
y, SBL performs inference on this model to recover z.

The main identifying feature of SBL is the diagonal Gaus-
sian prior with precision parameters α ∈ RD for z. The
notation diag{α} in Eq. (2) maps α to a D×D matrix with
α along its diagonal and zero elsewhere. SBL performs type
II maximum likelihood estimation [20] by integrating out z
and optimizing α. Thus, SBL learns a posterior distribution
with uncertainty over z. The overall learning objective is:

max
α

log p(y |α) = log

∫
z

p(y | z)p(z |α)dz. (3)

As this objective is optimized, many of the elements of α
diverge to ∞. For these elements, the independent Gaussian

priors converge to point masses at zero, forcing their respective
posteriors to follow suit. Thus, upon convergence of α to
α̂, the recovered posterior distribution p(z | y, α̂) is often
highly sparse. This phenomenon is called automatic relevance
determination [15] because SBL learns which elements of z
are “relevant” (i.e. non-zero) from the data.

In the remainder of this section, we review several inference
schemes that have been proposed to optimize Eq. (3) and
comment on their respective shortcomings.

B. Expectation-Maximization Algorithm

Most SBL inference schemes are built on the expectation-
maximization (EM) algorithm, a general framework for param-
eter estimation in the presence of latent variables [2], [21]. EM
iteratively alternates between an expectation step (E-Step) and
a maximization step (M-Step). Let α(t) be the solution at the
start of the t-th iteration. The E-Step computes the expectation
Q(α;α(t)) of the complete data log-likelihood log p(z,y |α)
with respect to the latent posterior p(z | y,α(t)):

Q(α;α(t)) = Ep(z | y,α(t))[log p(z,y |α)]

= Ep(z | y,α(t))[log p(z |α) + log p(y | z)]

∝
D∑

j=1

logαj − αj · Ep(z | y,α(t))

[
z2j
]

+ const, (4)

where “const” absorbs all terms that are constant with respect
to α. The posterior p(z | y,α(t)) is a multivariate Gaussian
distribution N (µ,Σ) with mean and covariance parameters

µ = βΣΦ>y, Σ = (βΦ>Φ + diag{α(t)})−1. (5)

The second moment of each zj in Eq. (4) can be decomposed
into a sum over the squared mean and variance, i.e.

Ep(z|y,α(t))[z
2
j ] = Ep(z|y,α(t))[zj ]

2 + Varp(z|y,α(t))[zj ]

= µ2
j + Σj,j , (6)

The M-Step updates each α(t)
j by maximizing Eq. (4) with

respect to αj . Given µ and Σ, this can be done in closed-form
by differentiating Q:

∂Q

∂αj
=

1

αj
− µ2

j + Σj,j = 0 =⇒ α
(t+1)
j =

1

µ2
j + Σj,j

, (7)

EM repeats Eqs. (5) and (7) for T iterations until convergence,
while guaranteeing non-negative change in the log-likelihood
objective of Eq. (3) at each step.

Despite its simplicity, the EM algorithm is limited by its
computational cost. The E-Step of Eq. (5) is expensive for
large D. Storing Σ requires O(D2)-space and computing it
through matrix inversion requires O(D3)-time. This makes the
standard EM algorithm challenging at high dimensions.

C. Previous Attempts to Accelerate EM

There have been several attempts to accelerate the EM
algorithm for SBL inference. One approach is based on
iteratively reweighted least squares (IRLS) [16], which applies
the Woodbury matrix identity to Σ in Eq. (5), yielding

Σ = C−CΦ>(I + ΦCΦ>)−1ΦC, (8)
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where C = diag{α(t)}−1. By inverting an N ×N matrix (as
opposed to a D × D matrix), IRLS reduces the per-iteration
time complexity of EM to O(N3 + N2D). For problems in
which N � D, IRLS is more efficient than EM. However, if
N = O(D), the time complexity is still O(D3). Furthermore,
like EM, IRLS requires storage of Σ, which remains an
expensive O(D2)-space cost.

Another line of work is based on variants of approximate
message passing (AMP). AMP combines quadratic and Taylor
series approximations with loopy belief propagation to iter-
atively estimate the means and variances of z in Eq. (6),
circumventing matrix inversion [17], [22]. Though faster than
EM in practice, AMP is known to diverge for dictionaries Φ
that do not satisfy zero-mean, sub-Gaussian criteria [23].

A third common strategy is to employ variational inference
(VI), which approximates the true posterior p(z |y,α) with a
simpler surrogate q(z) [24]–[26]. This allows for SBL infer-
ence that is inverse-free [18], [27]. However, VI approaches
optimize a lower bound on Eq. (3) instead of the true log-
likelihood objective. Thus, they may converge to a sub-optimal
solution for α. Both AMP and VI are ultimately limited by
the fact that their approximations to the means and variances
of z can be biased for general dictionaries Φ [23], [27]. In
Section III, we present a new method that ensures an unbiased
estimation of these moments, regardless of the structure of Φ.

D. Sequential Algorithm

The sequential (Seq) algorithm, is a notable alternative to
EM that reduces computation time and space in practice [3],
[19]. Seq maintains a set S ⊆ {1, 2, . . . , D} of “active” indices
such that αj is finite for each j ∈ S and αj = ∞ for all
j 6= S . Initially, S = ∅. Indices are sequentially added to
or deleted from S if making such a change can increase the
log-likelihood objective (Eq. (3)).

At any given point, Seq only needs to store parts of the mean
vector µ and covariance matrix Σ corresponding to S; all other
components are assumed to be zero. Thus, for truly sparse
vectors z with d non-zero components such that d � D,
Seq is more efficient than EM. Yet unlike EM, the number of
iterations needed for Seq depends on d, since at least d steps
must be taken to fully recover z. The overall time complexity
is O(d2D) and the space complexity is O(d2 +D) [4].

However, Seq has several limitations. It is often the case
that d is a fraction or percentage of D. If d grows linearly
with D, the asymptotic time cost is O(D3), similar to EM.
This may explain why Seq can still be up to hundreds of times
slower than non-Bayesian methods for large D [6]. Also, the
algorithm’s sequential nature hinders its potential for speedup
on parallel machines. Lastly, for large D, it remains costly to
store parts of the quadratically-sized covariance matrix Σ.

III. COVARIANCE-FREE EXPECTATION-MAXIMIZATION

We introduce covariance-free expectation-maximization
(CoFEM), a new SBL inference scheme for accelerating
EM that removes the need to compute (let alone invert) the
covariance matrix Σ. Our method is built on several advances
from numerical linear algebra [28], [29].

Our key observation is that not all elements of Σ are needed
for the M-Step in Eq. (7). Indeed, we only need µ (which
depends on Σ via Eq. (5)) and the the diagonal elements of
Σ to update α̂. Thus, we propose a simplified E-Step that
can estimate the two desired quantities {µj ,Σj,j} for all j
from solutions to linear systems, thereby avoiding the need
for matrix inversion. We can re-express Eq. (5) for µ as

Σ−1µ = βΦ>y, (9)

where Σ−1 = βΦ>Φ+diag{α(t)}. Thus, µ is the solution x
to the linear system Ax = b for A := Σ−1 and b := βΦ>y.

A. Diagonal Estimation

We leverage a result from [28] to obtain the diagonal of Σ.

Proposition 1 (Diagonal Estimation Rule). Let M ∈ RD×D

be a square matrix. Let p1,p2, . . . ,pK ∈ RD be random
probe vectors, where each pk comprises independent and
identically distributed elements such that E[pk,j ] = 0 for all
j = 1, . . . , D. For each pk, let xk = Mpk. Consider the
estimator s ∈ RD, where, for each j = 1, . . . , D,

sj =

∑K
k=1 pk,j · xk,j∑K

k=1 p
2
k,j

. (10)

Then, each sj is an unbiased estimator of Mj,j .

Proof. Consider sj , the j-th element of s. We have

sj =

∑K
k=1

(
pk,j ·

(∑D
j′=1 Mj,j′ · pk,j′

))
∑K

k=1 p
2
k,j

= Mj,j +
∑
j′ 6=j

Mj,j′ ·
∑K

k=1 pk,j · pk,j′∑K
k=1 p

2
k,j

. (11)

Thus, E[sj ] is equal to the following:

Mj,j +
∑
j′ 6=j

Mj,j′ ·

 K∑
k=1

E[pk,j′ ]︸ ︷︷ ︸
=0

·E

[
pk,j∑K
k=1 p

2
k,j

] , (12)

where we have applied the fact that the j and j′ components of
pk are independent to arrive at a product of expectations. Since
E[pk,j′ ] = 0 for all k and j′, it follows that E[sj ] = Mj,j .

We apply this rule to Σ to estimate its diagonal elements.
Following [28], we use the Rademacher distribution for draw-
ing the probe vector pk, where each pk,j is either −1 or +1
with equal probability. This simplifies Eq. (10) to

sj =
1

K

K∑
k=1

pk,j · xk,j . (13)

The diagonal estimation rule turns an explicit property of a
matrix (i.e. the diagonal elements) into an implicit quantity
that can be estimated without physically forming the matrix.
To exploit this rule, we only need a method for applying Σ
to each vector pk to obtain xk; this can be done by solving a
linear system Ax = b, where A := Σ−1 and b := pk.

In summary, the quantities {µj ,Σj,j} needed for the sim-
plified E-Step update can be obtained by solving K + 1
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Algorithm 1 COVARIANCEFREEEM(y, Φ, β, T , K)

1: Initialize α(1)
j ← 1 for j = 1, . . . , D.

2: for t = 1, 2, . . . , T do
3: // Simplified E-Step
4: Define A← βΦ>Φ + diag{α(t)}.
5: Draw p1,p2, . . . ,pK ∼ Rademacher distribution.
6: Define B← [p1 | p2 | . . . | pK | βΦ>y].
7: [x1 | x2 | . . . | xK | µ]← LINEARSOLVER(A,B).
8: Compute sj ← 1/K

∑K
k=1 pk,j ·xk,j for j = 1, . . . , D.

9: // M-Step
10: if t < T then
11: Update α(t+1)

j ← 1/(µ2
j + sj) for j = 1, . . . , D.

12: end if
13: end for
14: return α(T ),µ, s

separate linear systems. These systems can be solved in
parallel by considering the matrix equation AX = B with
inputs A ∈ RD×D and B ∈ RD×(K+1) defined as follows:

A := βΦ>Φ + diag{α(t)},
B :=

[
p1 | p2 | . . . | pK | βΦ>y

]
. (14)

If we enumerate the columns of the solution matrix X ∈
RD×(K+1) as x1,x2, . . . ,xK ,µ, then our desired quantities
for the simplified E-Step are µ and s, as calculated by Eq.
(13). We can then perform the M-Step update in Eq. (7) as

α
(t+1)
j =

1

µ2
j + sj

, (15)

completely avoiding the need to compute or invert the covari-
ance matrix Σ. Algorithm 1 gives the full CoFEM algorithm.

The diagonal estimator in Eq. (13) is unbiased for any
K ≥ 1, yet its variance is proportional to 1/K, as we will
show in Section IV-A. We will provide theoretical justification
that small K suffices for CoFEM in practice, and that this K
can be constant with respect to the dimensionality D for a
large class of compressed sensing matrices Φ.

B. Parallel Conjugate Gradient

Among potential options for the linear solver in Algorithm
1, we choose the conjugate gradient (CG) algorithm due to
its efficiency and flexibility [29], [30]. CG is an iterative
approach with a series of matrix-vector multiplication steps
to solve a linear system Ax = b. At each step, CG does not
need a physical manifestation of A; it only requires a way
to apply A to an arbitrary vector v to yield Av. For SBL,
A := βΦ>Φ + diag{α(t)}, which implies the complexity of
CG is dominated by the time τD it takes to apply Φ and its
transpose to v. In many applications, Φ is a structured and
matrix-free operation. Examples include convolution, discrete
cosine transform, Fourier transform, and wavelet transform –
all of which require at most τD = O(D logD)-time [31].

CG can also easily generalize to solving multiple linear
systems AX = B by simply replacing the matrix-vector
multiplications with matrix-matrix multiplications. For faster
computing, these operations can be parallelized on GPUs. In

addition, CG is space-efficient and only needs O(D)-space to
solve the linear system; this is the minimum requirement for
any solver given that the output x ∈ RD.

C. Preconditioning

The time complexity of CG depends on the number of CG
steps U . It is guaranteed that U ≤ D [29], yet D can be
very large for high-dimensional problems. In general, if A has
a small condition number κ(A) := λmax(A)/λmin(A) where
λmax(A) and λmin(A) are the largest and smallest eigenvalues
of A, then U � D steps are needed to find an x̂ such that
‖Ax̂− b‖2/‖b‖2 ≤ εmax for small εmax. However, optimizing
the SBL objective function pushes many diagonal elements of
A to ∞, resulting in large κ(A) and necessitating large U .

To resolve this issue, we incorporate a preconditioner matrix
M ∈ RD×D in CG. Instead of directly solving Ax = b,
we solve an equivalent system A′x′ = b′, where A′ :=
M−1/2AM−1/2, b′ := M−1/2b and x′ := M1/2x. We
consider two criteria for choosing M in CoFEM. First, we
want κ(A′)� κ(A) to reduce the number of steps U that are
necessary to achieve small εmax. Next, we want to maintain
the scalability of CoFEM (e.g. absence of matrix inversion,
O(D)-space complexity) by avoiding a dense matrix for M.

We thus propose to use a diagonal preconditioner M =
diag{βθ + α(t)}, where θ ∈ RD is a set of customizable
positive values. This M is easy to invert, only requires O(D)-
space, and can be quickly applied to vectors. By varying θ,
we can arrive at different choices for M. For example, setting
θj =

∑N
i=1 Φ2

i,j leads to the popular Jacobi preconditioner
satisfying Mj,j = Aj,j [30]. In Section IV-B, we provide novel
theoretical analysis for our diagonal preconditioner within
the context of SBL. We illustrate that for a large class of
compressed sensing dictionaries Φ, setting θj = 1 for all j is
a favorable choice that leads to small κ(A′) and enables U to
be constant with respect to the dimensionality D.

Algorithm 2 summarizes the parallel CG algorithm for
inputs A ∈ RD×D, M ∈ RD×D, and B ∈ RD×Q, where
Q is the number of parallel systems. For CoFEM, we have
Q = K + 1. The computation is dominated by line 5, in
which A is applied to vectors stored as columns of a matrix.

D. Complexity Comparisons

Each of the T iterations of CoFEM requires at most U
steps of CG – in which we apply Φ (and Φ>) in τD-time
to K vectors – giving us an overall time complexity of
O(TτDUK). CoFEM’s space complexity is dominated by CG,
which requires O(D)-space for each of the (K + 1) systems.
Table I shows the complexities of CoFEM and other SBL
inference schemes. While many other methods improve upon
EM, they introduce dependencies on N or d, which typically
grow with D. For example, if the size of the signal z is
doubled, we may also expect the number of measurements N
to be doubled (to achieve same reconstruction error), as well
as the number d of non-zero values in z. Thus, increasing D
compounds the increase in complexities of these algorithms.
In contrast, CoFEM’s dependencies on U and K can be held
constant as D increases, which we demonstrate in Section V.
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Algorithm 2 PARALLELCONJGRADIENT(A,B,M, U, εmax)
1: Initialize X as a D ×Q matrix of all zeros.
2: Initialize R← B and P← B and W←M−1B.
3: Compute ρq ←

∑D
j=1 Rj,q ·Wj,q for q = 1, . . . , Q.

4: for u = 1, 2, . . . , U do
5: Compute Ψ← AP. // Apply matrix.
6: Compute πq ←

∑D
j=1 Pd,q ·Ψd,q for q = 1, . . . , Q.

7: Compute γq ← ρq/πq for q = 1, . . . , Q.
8: Update X← X + PΓ, where Γ = diag{γ}.
9: Update R← R−ΨΓ, where Γ = diag{γ}.

10: Let δ ← ||R||F /||B||F , where F is Frobenius norm.
11: if δ ≤ εmax then
12: return X
13: end if
14: Compute W←M−1R. // Apply preconditioner.
15: Let ρold

q ← ρq for q = 1, . . . , Q.
16: Compute ρq ←

∑D
j=1 Rj,q ·Wj,q for q = 1, . . . , Q.

17: Compute ηq ← ρq/ρ
old
q for q = 1, . . . , Q.

18: Update P← R + PH, where H = diag{η}.
19: end for
20: return X

TABLE I
COMPUTATIONAL COMPLEXITIES OF SBL INFERENCE SCHEMES.

Method Time Space
EM [2] O(TD3) O(D2)
IRLS [16] O(T (DN2 +N3)) O(D2)
AMP [17] O(TDNTamp) O(DN)
VI [18] O(TτD) O(D)
Seq [19] O(Dd2) O(D + d2)
CoFEM (ours) O(TτDUK) O(DK)

E. CoFEM for SBL Extensions

To further highlight the flexibility of CoFEM, we show how
it can handle two common extensions of the SBL model.

1) Multi-Task Learning: In multi-task learning, there are L
different sparse vector recovery problems that one wishes to
solve at once. These problems may have different observation-
dictionary pairs (y1,Φ1), (y2,Φ2), . . . , (yL,ΦL), yet the
tasks are related in the sense that their corresponding vectors
z1, z2, . . . , zL have similar non-zero supports. Some exam-
ples include multiple measurements vector (MMV) problems
[32], multi-task compressed sensing [4], and sparse Bayesian
learning with complex numbers [33].

A simple way to enforce joint sparsity among all tasks in
SBL is to have them share a common α vector:

z` ∼ N (0, diag{α}−1), ` = 1, 2, . . . , L,

y` ∼ N (Φ`z`, 1/βI), ` = 1, 2, . . . , L. (16)

Learning takes place through the task-separable objective:

max
α

log p(y1,y2, . . . ,yL |α) =
L∑

`=1

log p(y` |α). (17)

To optimize Eq. (17), EM runs a E-Step for each task `,

µ` = βΣ`Φ
>
` y`, Σ` = (βΦ>` Φ` + diag{α(t)})−1, (18)

followed by a M-Step to combine these moments,

α
(t+1)
j =

L∑L
`=1 µ

2
`,j + Σ`,j,j

. (19)

To accelerate EM, CoFEM can simply replace the E-Step
for each task ` with a covariance-free version, as described in
Section III-A. We can further parallelize these L E-Steps by
solving their L · (K + 1) systems all at once through Alg. 2.

2) Non-Negativity Constraints: In some applications, we
may want to enforce non-negativity on z. In these cases, we
can use an independent rectified Gaussian prior NR(0, 1/αj)
for each component zj of z [34], which places zero probability
mass on the negative values. Specifically, we have

p(zj | αj) =


√

2αj/π exp(−αjz
2
j /2), zj > 0,

1/2, zj = 0,

0, zj < 0.

(20)

Due to conjugacy between the rectified Gaussian and Gaus-
sian distributions, the posterior p(z | y, α̂) is also a rectified
Gaussian. However, this posterior’s density function is not
analytically tractable, so we can follow [34] and approximate
it with a diagonal rectified Gaussian whose second moment is

Ep(z | y,α̂)[z
2
j ] = µ2

j + Σj,j + µj ·
√

Σj,j

π
·

exp(−ξ2j )

erfc(−ξj)
, (21)

where ξj = µj/
√

2Σj,j and erfc(x) = 2/
√
π
∫∞
x

exp(−t2)dt
is the complimentary error function. To compute Eq. (21),
CoFEM can replace Σj,j with sj from Eq. (13). The M-Step
then updates αj as the reciprocal of Eq. (21).

IV. THEORETICAL ANALYSIS OF COFEM

The two main hyperparameters of CoFEM are the number
of probe vectors K and the number of conjugate gradient steps
U . These values determine the per-iteration time complexity
of CoFEM as O(UKτD) and its space complexity as O(DK).
Thus, it is important to control U and K. In this section, we
present new theoretical results illustrating that, for a large class
of dictionaries Φ, these hyperparameters can be kept small
even as the dimensionality of the problem D grows very large.

The ultimate goal of SBL is to solve a Bayesian variant of
the sparse coding problem in which we (a) identify which zj =
0 and (b) provide uncertainty quantification for the non-zero
zj . To achieve true sparsity for a particular zj , it is necessary
for its prior parameter αj →∞, which is only attained as the
number of iterations t→∞. Thus, our study of U and K is
based on the following SBL Convergence property:

Definition 1 (SBL Convergence). In Alg. 1, consider the
sequence of iterates α(t) for t = 1, 2, . . . , and let α̂ :=
limt→∞α

(t). Then, (S,U , α̂)-convergence is satisfied for SBL
if the indices ND := {1, 2, . . . , D} can be partitioned into an
“active” set S ⊆ ND and an “inactive” set U := ND \ S ,
where α̂j > 0 is finite if j ∈ S and α̂j =∞ if j ∈ U .

Of course, it is impossible to run t→∞ iterations in prac-
tice and to the best of the authors’ knowledge, there does not
exist a formal proof characterizing EM’s behavior after finitely
many iterations in the context of SBL. However, many works
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within the SBL literature [2]–[5] have illustrated (and even
relied on) a well-accepted phenomenon in which the inactive
αj grow very large and can be treated as “reaching infinity”
after T finite iterations. This justifies the practical applicability
of Definition 1 and our ensuing theoretical analysis.
Notation For any positive integer P , let NP := {1, 2, . . . , P}.
For any vector v ∈ RP and set B ⊆ NP , define the sub-
vector vB := [vb | b ∈ B] ∈ R|B|. Similarly, for any
matrix M = [v(1), . . . , v(P )] ∈ RQ×P , define the sub-matrix
MB := [v(b) | b ∈ B] ∈ RQ×|B|. For any two sets A ⊆ NQ

and B ⊆ NP , define the sub-matrix block MA,B := [v
(b)
A | b ∈

B] ∈ R|A|×|B|. Let ‖v‖2 denote the Euclidean norm of vector
v and ‖v‖M :=

√
v>Mv denote the M-weighted norm of

v. Let ‖M‖2 denote the spectral norm (i.e. largest singular
value) of matrix M. Let σmin(M), λmax(M) and λmin(M)
denote the smallest singular value, largest eigenvalue, and
smallest eigenvalue of M, respectively. For a matrix M, let
κ(M) := ‖M‖2/σmin(M) be the condition number of M.

A. A Theory for the Number of Probe Vectors K

First, we analyze the dependency of the diagonal estimator
s on the number of probe vectors K. We aim to characterize
the standard deviation (i.e. the square root of the variance) of
each sj , which leads to this lemma:

Lemma 1. Let M ∈ RD×D. Consider the estimator s defined
in Prop. 1, where p1, . . . ,pK are independent Rademacher
variables. Then, the standard deviation νj of sj is

νj :=
√
E[(sj − E[sj ])2] =

√
1

K

∑
j′ 6=j

M2
j,j′ . (22)

Proof. Within Eq. (22), we substitute the expression for sj
from Eq. (11) and the fact that E[sj ] = Mj,j to yield

νj =

√√√√√√E


∑

j′ 6=j

Mj,j′ ·
∑K

k=1 pk,j · pk,j′∑K
k=1 p

2
k,j

2


=

√√√√√E

∑
j′ 6=j

∑
j′′ 6=j

Mj,j′ ·Mj,j′′ ·
gj,j′

gj,j
· gj,j

′′

gj,j

, (23)

where we define gj,` :=
∑K

k=1 pk,j ·pk,` for all (j, `) ∈ ND×
ND. In the denominator, we have gj,j = K for all j since p2 =
1 for a Rademacher variable. In the numerator, if j′ = j′′, we
have E[gj,j′ · gj,j′′ ] = E[g2j,j′ ] = K. Otherwise, if j 6= j′′,
E[gj,j′ · gj,j′′ ] = 0. Thus, Eq. (23) simplifies to Eq. (22).

Lemma 1 tells us that the standard deviation of our estimator
decreases with K and increases with the norm of the off-
diagonal entries. Analyzing Lemma 1 within the context of
SBL leads to our first main theoretical result, as stated below.

Theorem 1. Let Σ(t) := (βΦ>Φ+diag{α(t)})−1 be the SBL
covariance matrix at the t-th iteration of Alg. 1. Let s(t) be the
Rademacher diagonal estimator for Σ(t) defined in Eq. (13)
with K probe vectors. Let ν(t)j denote the standard deviation

of s(t)j . Assume that (S,U , α̂)-convergence is satisfied. Then,
for any inactive index j ∈ U , we have

lim
t→∞

ν
(t)
j = 0, (24)

and for any active index j ∈ S , we have

lim
t→∞

ν
(t)
j ≤

1√
K
· infΘ∈O‖Θ−1Φ>SΦS − I‖2

β · σ2
min(ΦS)

, (25)

where O is the set of |S| × |S| diagonal matrix with positive
diagonal elements and I is the identity matrix.

Theorem 1 offers several insights in the limit of EM
iterations: (1) the estimator becomes deterministic with zero
standard deviation for the inactive indices, (2) K only affects
the estimator’s standard deviation for the active indices, and (3)
if Φ>SΦS is close to any diagonal matrix Θ (i.e. the columns
of ΦS are close to orthogonal), then the standard deviation
for the active indices converge to a small quantity. The proof
of Theorem 1 is given in Appendix A.

B. A Theory for the Number of Conjugate Gradient Steps U

Next, we analyze the number of CG steps U needed for con-
vergence. We build on the following well-known result [30]:

Lemma 2 (CG Convergence). Consider the CG algorithm for
solving Ax = b, where A ∈ RD×D is a positive definite
matrix and b ∈ RD. Let x0 ∈ RD be the initial solution. Let
xu denote the algorithm’s solution and ru := b−Axu denote
the algorithm’s residual at the u-th step of CG. Then,

‖ru‖A−1 ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)u

‖r0‖A−1 , (26)

where ‖r‖A−1 :=
√
r>A−1r for any vector r ∈ RD.

Corollary 1. Let CG with matrix A and any b ∈ RD start
with the initialization x0 = 0. Let ε := ‖rU‖A−1/‖b‖A−1

denote the relative residual error of CG after U steps1. Then,

ε ≤ 2 exp(−U/
√
κ(A)). (27)

Proof. Since r0 = b, we can apply Eq. (26) to obtain

ε ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)U

≤ 2

(
1− 1√

κ(A)

)U

. (28)

The inequality 1 − 1/x ≤ exp(−1/x) holds for any x ∈ R.
Taking x =

√
κ(A) in Eq. (28) gives the result.

Corollary 1 indicates that the relative residual error of
CG decreases exponentially with U , yet the precise exponent
depends on κ(A). In the t-th iteration of CoFEM, we wish to
solve linear systems with A(t) := βΦ>Φ+diag{α(t)}. How-
ever, since α(t)

j → ∞ for j ∈ U , this leads to κ(A(t)) → ∞
and a vacuous bound on ε for any finite number of steps U .
Therefore, CoFEM introduces a preconditioner M to construct

1Theoretical results for CG often define ε in terms of the norm weighted
by A−1 (or A), even though ε2 := ‖rU‖2/‖b‖2 is used to determine
convergence in software. We follow this convention while noting that one can
exploit the relation ε2 ≤ ε

√
κ(A) to extend our results for ε2.
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a new CG matrix A′
(t) with a reduced condition number. In

our second main theoretical result, we analyze κ(A′
(t)

), the
bound that it induces on error, and the implications for U .

Theorem 2. Let A(t) := βΦ>Φ + diag{α(t)} denote the
SBL inverse-covariance matrix at the t-th iteration of Alg.
1. Let M(t) := diag{βθ + α(t)} denote the preconditioner,
where θ ∈ RD is a vector of positive values. Define the
preconditioned matrix A′

(t)
:= (M(t))−1/2A(t)(M(t))−1/2.

Let b(t) ∈ RD be any vector and b′(t) := (M(t))−1/2b(t). Let
ε(t) be the relative residual error after running U conjugate
gradient steps to solve the system A′

(t)
x′(t) = b′

(t) with
x′(t)

0 = 0. Given (S,U , α̂)-convergence, it follows that

lim
t→∞

ε(t) ≤ 2 exp

(
−U

√
1− ‖Θ−1Φ>SΦS − I‖2
1 + ‖Θ−1Φ>SΦS − I‖2

)
, (29)

where Θ = diag{θS} and I is the identity matrix.

Eq. (29) indicates that faster convergence is achieved for
θS ∈ R|S| that minimizes ‖diag{θS}−1Φ>SΦS − I‖2. In
practice, the support S is not known in advance, so we may
instead choose θ ∈ RD to minimize ‖diag{θ}−1Φ>Φ− I‖2.
For example, if Φ>Φ is a diagonal matrix (i.e. all columns
of Φ are mutually orthogonal), then the optimal choice is
θj =

∑N
i=1 Φ2

i,j , which corresponds to the Jacobi precondi-
tioner. The proof of Theorem 2 is given in Appendix B.

C. A Theory for U and K for Compressed Sensing Matrices

We now show that our bounds in Theorems 1 and 2 can
be simplified for a large class of matrices Φ satisfying the
restricted isometry property (RIP) and commonly employed
in compressed sensing applications.

Definition 2 (Restricted Isometry Property). Let Φ ∈ RN×D,
d ≤ D, and δ > 0. Then, Φ satisfies (d, δ)-RIP if for every
set C ⊆ {1, . . . , D} of size |S| = d and every vector v ∈ Rd,

(1− δ)‖v‖22 ≤ ‖ΦCv‖22 ≤ (1 + δ)‖v‖22. (30)

Corollary 2. Let Φ ∈ RN×D satisfy (d, δ)-RIP. For any C ⊆
ND with |C| = d, let ∆C,C := Φ>CΦC−I. Then, ‖∆C,C‖2 ≤ δ.

Proof. From Eq. (30), we have for any vector v ∈ Rd,

1− δ ≤ v
>Φ>CΦCv

v>v
≤ 1 + δ =⇒

∣∣∣∣v>∆C,Cv

v>v

∣∣∣∣ ≤ δ. (31)

Eq. (31) bounds the Rayleigh quotient (and eigenvalues) of
∆C,C between [−δ, δ]. The spectral norm of a symmetric
matrix is equal to its largest absolute eigenvalue.

Corollary 3. In Theorem 1, let Φ ∈ RN×D satisfy (d, δ)-RIP,
where d = |S|. Then, for j ∈ S , the standard deviation of the
diagonal estimator ν(t)j satisfies

lim
t→∞

ν
(t)
j ≤

1√
K
· δ

β(1− δ)
. (32)

Proof. In Eq. (25), take Θ = I, which reduces the numerator
to ‖Φ>SΦS − I‖2. By Corollary 2, this quantity is at most δ.
Finally, by Definition 2, σ2

min(ΦS) ≥ (1− δ).

Corollary 4. In Theorem 2, let Φ ∈ RN×D satisfy (d, δ)-RIP,
where d = |S|. Let θj = 1 for all j ∈ ND. Then, the relative
residual error ε(t) of conjugate gradient satisfies

lim
t→∞

ε(t) ≤ 2 exp

(
−U
√

1− δ
1 + δ

)
. (33)

Proof. This follows from applying Corollary 2 to Eq. (29).

One may have expected that as N and D increase, CoFEM’s
hyperparameters U and K must also increase proportionally
to ensure that νj and ε remain small. However, Corollaries 3
and 4 illustrate that for RIP matrices2, the bounds on U and K
only depend on δ (not N or D). In compressed sensing, δ can
be small even as N and D grow very large [35]. In Section
V, we use this insight to demonstrate that even for very large
D, CoFEM can accurately perform sparse coding with small
constant values for U and K.

V. SIMULATED EXPERIMENTS

In this section, we run a series of experiments to compare
the accuracy and scalability of CoFEM to that of other SBL
inference methods across a broad range of different settings.

A. Experimental Setup

1) General Structure: We design all simulations with a
structure inspired by Section V-A of [3]. We form a ground-
truth latent vector z∗ ∈ RD of spikes by drawing d of its
components from a distribution P and setting the other D−d
components to zero. The location of the spikes are chosen
uniformly at random. Given a dictionary Φ ∈ RN×D, the
observed data y ∈ RN is generated as y = Φz∗ + ε,
where ε ∼ N (0, σ2I) ∈ RN with σ = 0.01. The goal
is to apply SBL for reconstructing z∗. Success is measured
through minimization of normalized root mean squared error
(NRMSE), ||ẑ−z∗||2/||z∗||2×100, where ẑ = µ is the mean
of the distribution p(z | y, α̂) upon convergence.

2) Dictionary: We consider three types of dictionaries Φ:
• Dense Gaussian: We draw each element Φi,j indepen-

dently from N (0, 1/N) to form a dense matrix Φ. The
spike distribution of z∗ is P := Uniform(−2, 2).

• DCT: We let Φ = MΩ−1, where Ω ∈ RD×D is the
matrix corresponding to the 1D discrete cosine transform
of size D and M ∈ RN×D is an undersampling operator
that selects N out of D components (where N ≤ D).
The spike distribution is P := N (0, 5).

• Convolutional: We set N = D and Φ ∈ RD×D to
a convolution in which its columns are delayed (and
truncated) repetitions of an exponentially decaying filter
φ ∈ RD. That is, φj := (1− ρ)j−1 for 0 < ρ < 1. Thus,
Φ is a lower triangular matrix in which the j-th column is
a concatenation of j − 1 zeros and {φ1, . . . , φN−(j−1)}.
The spike distribution is P := Exponential(1.5).

2RIP is one mathematical notion for the idea of “close to orthonormality”
for a set of dictionary columns. There exist other notions (e.g. incoherence,
null space property) [35]. We conjecture there are bounds similar to Corol-
laries 3 and 4 that hold for matrices that satisfy these other properties.
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Fig. 1. Comparing the accuracy of different SBL inference schemes. Each point represents the mean of 25 trials.

B. Accuracy Analysis

For our first analysis, we fix D = 1024 and evaluate the
accuracy of various SBL inference schemes across different
settings. We compare among EM/IRLS [2], AMP [17], VI
[18], Seq [19], and CoFEM. Note that EM and IRLS always
yield the same result; IRLS is just the Woodbury identity (Eq.
(8)) applied to EM. All EM-based methods (EM/IRLS, AMP,
VI, CoFEM) are executed for T = 50 iterations. AMP employs
Tamp = 10 inner loops. For CoFEM, Corollary 3 tells us that
we can keep the number of probes K very small since δ ≈ 0
and β = 1/(0.01)2 = 10,000. We use K = 20 probe vectors,
though we have found that even smaller values for K do not
change the results. We employ U = 400 maximum CG steps
with early termination if the residual error drops below the
threshold εmax = 10−4. Results are displayed in Fig. 1.

1) Performance vs. Sparsity: In Fig. 1(a), we consider
the dense Gaussian dictionary with N = bD/4c, which is
typical in a compressed sensing setting. Let the sparsity factor
f ∈ [0, 1] determine the number of non-zero coefficients in the
latent signal z∗ as d = bf · Dc. We vary f and observe its
impact on NRMSE. At low f , all algorithms perform well
except VI. As f increases, EM/IRLS, AMP, and CoFEM
exhibit the same decay in performance, while Seq decays more
rapidly. In Fig. 1(b), we consider the DCT dictionary with
N = bD/3c measurements, again varying f . We see the same
overall trend as in Fig. 1(a). In Fig. 1(c), we compare NRMSE
versus sparsity level f for the convolutional dictionary. The
decay rate is set to ρ = 0.04. EM/IRLS, Seq, and CoFEM have
near-perfect NRMSE at all f . However, VI fails again due to
its biased objective and AMP fails due to the convolutional
dictionary not being zero-mean and sub-Gaussian.

2) Performance vs. Undersampling: In Fig. 1(d), we revisit
the Gaussian dictionary and fix f = 0.06. We vary the
undersampling rate r > 0, where N = bD/rc. We see that
EM/IRLS, AMP, and CoFEM have similar performance at all

r, while VI and Seq degrade more rapidly with increasing r.
A similar trend is shown in Fig. 1(e), in which we vary r for
the DCT dictionary while fixing f = 0.12.

3) Performance vs. Decay Rate: Finally, in Fig. 1(f), we
consider the convolutional dictionary with fixed f = 0.2 and
vary the decay factor ρ. Smaller ρ leads to slower decay of the
exponential filter, which increases the correlations between the
columns of Φ. We observe that EM/IRLS, Seq, and CoFEM
are all robust to changes in ρ. The performance of VI is heavily
correlated with ρ, while AMP diverges for all values of ρ.

CoFEM is the only algorithm that is as robust as EM/IRLS
to changes in sparsity level, undersampling rate, and correla-
tion between dictionary columns. We attribute this robustness
to the fact that CoFEM performs an unbiased estimation of
the posterior variances, regardless of the dictionary structure.

C. Scalability Analysis
We now analyze the scalability of CoFEM and other al-

gorithms, by considering how computation time and memory
requirements change as D is increased. In all settings, CoFEM
has K = 20 probes and U = 400 maximum CG steps (with
εmax = 10−4), regardless of D. The preconditioner employs
θj = 1 for all j. Results are in Fig. 2.

1) CoFEM vs. EM-based Algorithms: We begin by com-
paring CoFEM against the other EM-based algorithms (EM,
IRLS, AMP). In each setting, we run each EM-based algorithm
for T = 30 EM iterations, as this is sufficient to obtain low
NRMSE (i.e. < 2%). VI is omitted because it is unable to
reach this threshold in many cases, as illustrated by Fig. 1.

For our first setting (Fig. 2(a)), we consider the dense
Gaussian Φ with D = 2p for p = {9, 10, . . . , 15}. For each
D, we let N = bD/4c and d = b0.06Dc. As D increases, we
observe that CoFEM becomes faster than EM by an order of
magnitude. CoFEM is slower than AMP and IRLS, yet the gap
decreases for large D. This is because it takes τD = O(DN)-
time to apply a dense Φ to a vector, so CoFEM has the same
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Fig. 2. Comparing the scalability of different SBL inference schemes on log-log scales. Some lines omit points for high dimensions due to memory issues.

asymptotic complexity as AMP for the dense case (see Table
I). Furthermore, due to its space-saving and parallelization-
friendly design, CoFEM can exploit a GPU3 to be up to 7×
faster than IRLS/AMP and 100× faster than EM.

Next, in Fig. 2(b) and Fig. 2(c), we repeat the experiment
of increasing D for the two structured Φ (DCT and convolu-
tional). In both cases, there are fast algorithms for applying Φ
to an arbitrary vector in τD = O(D logD)-time. As a result,
CoFEM is faster at high D than all other algorithms. In the
DCT case, we let d = b0.12Dc and N = bD/3c for all D.
We observe that CoFEM can be faster than EM by up to 360×
on the CPU and 3800× on the GPU, reducing over two hours
of computation for EM at D = 215 to two seconds. In the
convolutional case, we let d = b0.2Dc. For D = 215, EM and
IRLS have memory issues due to the large N = D. AMP is
unable to yield a sensible solution (see Fig. 1(c)). In contrast,
CoFEM (on both CPU and GPU) is accurate while being faster
than EM/IRLS and not experiencing memory issues at high D.

2) CoFEM vs. Seq: Finally, we compare CoFEM to the
sequential algorithm. Both of these algorithms have low space
complexity (see Table I), preventing memory issues at very
high D. Since CoFEM and Seq have different optimization
procedures, we run both algorithms until they reach 2%
NRMSE. We repeat the experimental settings from Fig. 2(a)-
(c) at higher dimensions D = 2p for p = {12, 13, . . . , 18}.

For the dense dictionary (Fig. 2(d))4, we observe that Seq
is faster than CoFEM on the CPU for low D, but the gap
decreases for high D. On the GPU, CoFEM is faster than Seq
at moderate D due to its greater ability to exploit parallelized
hardware. For the two structured dictionaries (Fig. 2(e) and
2(f)), CoFEM is faster across all settings. We further observe
that for many of the larger dimensions, Seq inevitably encoun-

3We use a 16-GB Nvidia T4 GPU and a 32-GB, 2.3 GHz Intel Xeon CPU.
4We could not run D > 216 for the dense case because there is not enough

memory on our devices to store all the entries of Φ.
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Fig. 3. Empirical insights into U and K based on theory of CoFEM.

ters memory issues as a covariance-based method. In contrast,
CoFEM has no such issue due to its low space complexity.
For example, at D = 218, CoFEM can leverage the GPU to
be 5000× faster than Seq. In summary, CoFEM’s ability to
obviate covariance computation provides many advantages in
terms of scalability over existing SBL inference schemes.

We emphasize that across all of our experiments, U and
K are kept at small values despite substantially increasing D,
demonstrating CoFEM’s scalability at very high dimensions.

D. Empirical Insights from the Theory of CoFEM

Finally, we give some insights into our theory for CoFEM’s
hyperparameters U and K (Section IV). We use the DCT dic-
tionary setup of Section V-A with N = bD/3c measurements.

In Fig. 3(a), we let D = 1024 and plot the relationship
between (1) the number of probes K and (2) the maximum
standard deviation maxD

j=1 ν
(T )
j over all D coordinates of the

diagonal estimator at iteration T = 50 of CoFEM. We present
a “theoretical” curve calculated using Theorem 1 with Θ =

I and an “empirical” curve in which each ν
(T )
j is estimated

through the empirical standard deviation of 1000 Monte Carlo
trials. Fig. 3(a) shows that our theoretical bound (1) captures
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Fig. 4. Results of running SBL-CoFEM for calcium imaging and comparison with FOOPSI.

the true decay of the standard deviation as a function of K
and (2) accurately upperbounds the empirical curve after T
finite iterations despite Theorem 1’s condition of T →∞.

In Fig. 3(b), we consider different orders of magnitude for
D and plot the number of CG steps U needed to achieve
small error εmax = 10−4 at the T = 50-th and T = 100-th
iterations of CoFEM. We explore the impact of our diagonal
preconditioner (Section III-C) on U . The figure reveals that our
theoretical insights from Section IV-B and Theorem 2 hold
in practice: (1) when there is no preconditioner and εmax is
fixed, U needs to grow substantially with increasing iterations
T and/or dimensionality D, yet (2) when a preconditioner is
used, U can be small and constant for large T and large D.

VI. REAL-DATA EXPERIMENTS

We now demonstrate the utility of CoFEM for two real data
applications – calcium deconvolution and MRI reconstruction.

A. Calcium Deconvolution

Calcium imaging is a widely used tool in neuroscience
for monitoring the electrical activity of neurons [36]. It is
a method for indirectly observing the spiking activity of a
neuron through a fluorescence trace y ∈ RD, approximated
as the convolution of an intrinsically sparse spiking pattern
z∗ ∈ RD with a decaying calcium response φ ∈ RD. In
calcium deconvolution, we aim to recover z∗ from y and φ.

1) SBL Model: We can cast calcium deconvolution as a
SBL problem with a dictionary Φ ∈ RD×D consisting of
delayed (and truncated) versions of φ as its columns, similar
to the setting in Section V-A2. The data is then assumed to be
generated as y = Φz∗+ε, where each εi ∼ N (0, 1/β). Since
z∗ for calcium deconvolution is a non-negative vector, we
employ SBL with non-negativity constraints (Section III-E2).

2) Spike Inference: We use the CoFEM inference algorithm
adapted for non-negativity constraints. Since Φ represents a
discrete-time convolution, we can efficiently apply Φ to any
vector v through fast Fourier transforms and an element-
wise product. Non-negative SBL yields a rectified Gaussian
posterior p(z | y, α̂) over the latent spikes z. To obtain a
point estimate ẑ, we find a filtered mode.Specifically, we first
filter z by selecting components zj that are highly likely to

be non-zero, i.e. zj such that p(zj = 0 | y, α̂) < q, where
q is some small percentile (e.g. 0.05, 0.01). This query is
possible only because SBL models uncertainty in z. Setting
the unselected components of z to zero, we then find the most
likely values for all selected zj’s according to the posterior,
resulting in ẑ. More details can be found in Appendix C-1.
This is analogous to thresholding heuristics commonly used
by `1-based sparse coding algorithms [37]. However, unlike
those value-based strategies, the percentile filtering for SBL is
value-agnostic and instead operates on the learned posterior.

3) Data and Hyperparameters: We apply SBL to five
fluoresence traces from the GENIE dataset [38]. Each y
contains data at a sampling rate of ν = 60 Hz for a total
of D = 14,400 time points, which is a high-dimensional
problem. The response φ has φi = (1 − ψ)i−1 for ψ =
1/(ν × 0.7) = 0.0238, a widely-used value for the calcium
indicator GCaMP6f. CoFEM employs T = 20, K = 20 and
U = 400. The noise precision β is estimated from y through
a Fourier domain procedure, as described in [39]. To obtain
ẑ, we use a filter percentile of q = 0.05.

4) Results: To evaluate ẑ, we employ the following stan-
dard practice [39]: The GENIE dataset has ground-truth times
for neural spikes. Let z∗ ∈ RD be a zero-one vector indicating
when true spiking occurred. For bin length b, we reduce z∗

and ẑ to vectors c∗ and ĉ of length dD/be by summing across
windows of b consecutive components. We then compute the
Pearson correlation coefficient ρb between c∗ and ĉ. A high
value for ρb indicates agreement between ẑ and z∗.

Fig. 4(a) plots sample SBL-CoFEM outputs and compares
its inferred spike times with the ground truth. Fig. 4(b) shows
an averaged curve over the five traces of ρb versus b at various
bin lengths b ∈ {10, 20, 30, 40, 50, 60} for SBL-CoFEM and
a popular `1-based method called FOOPSI [40]. The figure
shows that SBL-CoFEM outperforms FOOPSI, with the gap
growing for larger bin sizes b.

B. Multi-Contrast MRI Reconstruction

Magnetic resonance imaging (MRI) is one of the dominant
modalities for imaging the human body [41]. The standard data
acquisition practice samples a set of points (called “k-space”)
k ∈ CN from the two-dimensional Fourier transform (2DFT)
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Fig. 5. Undersampling k-space masks and SBL-CoFEM reconstrutions for
the SRI24 atlas. Error maps are scaled by 15× to aid visualization.

of the image x ∈ RD.5 In practice, one may aim to collect
N < D points to reduce the amount of time a patient needs to
remain in the scanner. However, doing so leads to an ill-posed
inverse problem MFx = k for x, where F ∈ CD×D is the
2DFT and M ∈ RN×D is an undersampling operator. Thus,
compressed sensing strategies often exploit the sparsity of x
with respect to some transform for accurate reconstruction.

In multi-contrast MRI reconstruction, there are L images
x1, . . . ,xL of an object that one wishes to recover from cor-
responding undersampled k-space measurements k1, . . . ,kL.
Bilgic et al. [6] showed that SBL with multi-task learning
(Section III-E1) achieves successful joint recovery of the mul-
tiple images. They outperformed `1-based methods by exploit-
ing common sparsity patterns among the horizontal/vertical
image gradients (i.e. row-wise/column-wise finite differences)
of x1,x2, . . . ,xL. However, the main drawback is the com-
putation time for reconstruction, which is many times slower
than `1 methods. We demonstrate how CoFEM can accelerate
this method while maintaining its superior performance.

1) SBL Model and Inference: For each contrast `, let
Φ` = M`F denote the `-th undersampled 2DFT operator
with undersampling mask M`. The task is to infer the sparse
latent vector zhorz

` = ∂horzx` ∈ RD, where ∂horz denotes
the horizontal image gradient operator. Note that ∂horz is
a convolution, implying that it corresponds to a diagonal
matrix ∆horz in the Fourier domain. Let the observed data be

5Though MRIs are generally complex-valued, the data we use here are
real-valued. See [6] for how to generalize SBL to the complex case.

TABLE II
RESULTS ON MULTI-CONTRAST MRI RECONSTRUCTION

Algorithm NRMSE Computation Time
SparseMRI 5.4% 22.3 min
SBL-Seq 3.4% 89.9 min
SBL-CoFEM 2.9% 2.5 min (CPU), 0.2 min (GPU)

yhorz
` = M`∆

horzM>
` k` for all `. We impose a multi-task SBL

model on (zhorz
` ,yhorz

` ,Φ`), as per Eq. (16). We use a shared
αhorz to ensure that we will learn grouped sparsity patterns
among {zhorz

` }L`=1. The same procedure is repeated for zvert
`

based on the operator ∂vert. Further details are in [6].
We employ CoFEM for multi-task SBL (Section III-E1) to

recover p(zhorz
` | yhorz

` , α̂horz) and p(zvert
` | yvert

` , α̂vert) for all `.
The reconstructed image x̂` are computed from these posterior
distributions. More details are given in Appendix D-1.

2) Data and Hyperparameters: We consider the SRI24
atlas [42], a set of L = 3 MRI contrasts with dimensions
200×200 for a total of D = 40,000 pixels. For each image x∗` ,
we undersample its 2DFT by a factor of four in the horizontal
dimension, observing N = 10,000 points to form k`. The
mask M` is randomly determined according to a power rule
favoring the center of k-space [43]. For CoFEM, we have
T = 15, β = 106, K = 8, εmax = 10−5 and U = 200. The
algorithm is not sensitive to variations in these values.

3) Results: Fig. 5 provides images of the masks M`

and SBL-CoFEM’s reconstructions x̂`. Success is measured
through NRMSE between the vectorized forms of x̂ ∈ RD·L

and x∗ ∈ RD·L. Table II compares SBL-CoFEM against
SparseMRI (`1-based compressed sensing [43]) and SBL-Seq
(SBL with sequential algorithm [6]). Although SBL-Seq has
lower NRMSE than SparseMRI, it requires high computation
time. In contrast, SBL-CoFEM attains the lowest error and can
exploit the GPU to be 450× faster than SBL-Seq.

Finally, the bottom half of Fig. 5 displays error maps of
absolute differences between x̂` and x∗` , along with variance
maps for each image. Each variance map captures the model’s
confidence over different areas of its reconstruction; pixels
with high variance indicate more potential to deviate from the
point estimate x̂`. SBL can create variance maps because it
models uncertainty; non-Bayesian methods that do not model
uncertainty (e.g. `1 methods) cannot generate these maps.
Appendix D-2 explains how SBL-CoFEM can generate these
variance maps using the diagonal estimation rule. The variance
maps bear similarity to the ground-truth error maps, suggesting
that SBL-CoFEM can predict its errors in reconstruction.

VII. CONCLUSION

We developed covariance-free expectation-maximization
(CoFEM) to accelerate sparse Bayesian learning (SBL). By
solving linear systems to circumvent matrix inversion, CoFEM
exhibits superior time-efficiency and space-efficiency over ex-
isting SBL inference schemes, especially when the dictionary
Φ admits fast matrix-vector multiplication. We theoretically
analyzed CoFEM’s hyperparameters, such as the number of
linear systems and number of solver steps, showing that they
can remain small even at high dimensions. Coupled with GPU
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acceleration, CoFEM can be up to thousands of times faster
than other SBL methods without sacrificing sparse coding
accuracy. Finally, we used CoFEM for real-data applications,
showing that it can adapt to multi-task learning and non-
negativity constraints, while enabling SBL to be competitive
with non-Bayesian methods in accuracy and scalability.

APPENDIX A
PROOF OF THEOREM 1

Proof. We begin by characterizing Σ̂ := limt→∞Σ(t). By the
block matrix inversion formula [44], any symmetric positive
definite matrix with diagonal blocks X,Z and off-diagonal
block Y and can be inverted as[

X Y
Y> Z

]−1
=

[
X−1 + X−1YWY>X−1 −X−1YW

−WY>X−1 W

]
, (34)

where W := (Z − Y>X−1Y)−1 is the inverse Schur
complement. We apply Eq. (34) to Σ(t), with X := βΦ>SΦS+

diag{α(t)
S }, Y := βΦ>SΦU , and Z := βΦ>UΦU+diag{α(t)

U }.
As t → ∞, we have α

(t)
j → ∞ for j ∈ U , which forces

W→ 0, where 0 is the zero-matrix. Then, by Eq. (34),

Σ̂ = lim
t→∞

Σ(t) =

[
(βΦ>SΦS + diag{α̂S})−1 0

0 0

]
. (35)

Eq. (24) follows from applying Eq. (35) to Lemma 1 for
j ∈ U ; since all rows of Σ̂ that correspond to U are zero, the
estimator’s standard deviation must also converge to zero.

We now prove Eq. (25) for an active index j ∈ S . Let
ψj > 0 be any positive real number. Using Lemma 1 and Eq.
(35), we can bound ν̂j := limt→∞ ν

(t)
j with

ν̂j =

√√√√ 1

K

∑
j′∈Tj

Σ̂2
j,j′ ≤

1√
K

√
(Σ̂j,j − ψj)2 +

∑
j′∈Tj

Σ̂2
j,j′ , (36)

where Tj := S \ {j}. Let Ψ ∈ R|S|×|S| be a diagonal matrix
with ψj for all j ∈ S along its diagonal. Let ej be the standard
unit vector in R|S| corresponding to j. From Eq. (36), we have

ν̂j ≤ 1√
K
‖(Σ̂S,S −Ψ)ej‖2

≤ 1√
K
‖Σ̂S,S −Ψ‖2 = 1√

K
‖Ψ(Σ̂

−1
S,S −Ψ−1)Σ̂S,S‖2

≤ 1√
K
‖Ψ(Σ̂

−1
S,S −Ψ−1)‖2‖Σ̂S,S‖2

= 1√
K
‖Ψ(βΦ>SΦS + diag{α̂S} −Ψ−1)‖2‖Σ̂S,S‖2, (37)

where the last step uses Eq. (35) to expand Σ̂
−1
S,S .

We now perform a change-of-variables: Let Θ ∈ R|S|×|S|
be any diagonal matrix of positive diagonal values. We define
Ψ := (βΘ + diag{α̂S})−1 and re-write Eq. (37) as

ν̂j ≤ 1√
K
‖(βΘ + diag{α̂S})−1(βΦ>SΦS − βΘ)‖2‖Σ̂S,S‖2

≤ 1√
K
‖(βΘ)−1(βΦ>SΦS − βΘ)‖2‖Σ̂S,S‖2

= 1√
K
‖Θ−1Φ>SΦS − I‖2‖Σ̂S,S‖2. (38)

Finally, we can bound the last term of Eq. (38) with

‖Σ̂S,S‖2 =
1

λmin(Σ̂
−1
S,S)

≤ 1

β · λmin(Φ>SΦS)
, (39)

where we use the fact that the singular values coincide with
the eigenvalues for a symmetric positive definite matrix.

APPENDIX B
PROOF OF THEOREM 2

Proof. The statement follows from Eq. (27) and showing
that κ̂ := limt→∞ κ(A′

(t)
) ≤ (1 + ξ)/(1 − ξ), where

ξ := ‖Θ−1Φ>SΦS − I‖. Let ∆ := βΦ>Φ−diag{βθ}. Then,

A(t) = M(t) + ∆ =⇒ A′
(t)

= I + (M(t))−
1
2 ∆(M(t))−

1
2

=⇒ Â′ := lim
t→∞

A′
(t)

= I +

[
M̂
− 1

2

S,S∆S,SM̂
− 1

2

S,S 0

0 0

]
, (40)

where M̂ := diag{βθ + α̂}.
Our goal is to bound κ̂ = λmax(Â′)/λmin(Â′). Eq. (40)

shows that if η is an eigenvalue of M̂
−1/2
S,S ∆S,SM̂

−1/2
S,S , then

1+η is an eigenvalue of Â′. This reduces our task to bounding
η. A matrix X ∈ RD×D is similar to another matrix Y ∈
RD×D if there exists an invertible matrix Z ∈ RD×D such
that Y = Z−1XZ, and this further implies that X and Y have
the same eigenvalues [44]. Since X := M̂

−1/2
S,S ∆S,SM̂

−1/2
S,S

is similar to Y := M̂−1
S,S∆S,S for Z := M̂

1/2
S,S , it follows that

η is also an eigenvalue of Y. The absolute eigenvalues of a
matrix cannot exceed its spectral norm, implying

|η| ≤ ‖M̂−1
S,S∆S,S‖2 = ‖M̂−1

S,S(βΦ>SΦS − βΘ)‖2
≤ ‖(βΘ)−1(βΦ>SΦS − βΘ)‖2 = ‖Θ−1Φ>SΦS − I‖2. (41)

It follows that λmax(Â′) ≤ 1 + ‖Θ−1Φ>SΦS − I‖2 and
λmin(Â′) ≥ 1−‖Θ−1Φ>SΦS−I‖2, which bounds κ(Â′).

APPENDIX C
DETAILS OF SBL FOR CALCIUM DECONVOLUTION

1) Filtered Mode: Let S ⊆ {1, 2, . . . , D} be the set of
selected indices after percentile filtering of p(z | y, α̂) recov-
ered by CoFEM. Let ΦS ∈ RN×|S| denote the sub-matrix of
Φ composed of the columns corresponding to S . Then, the
filtered mode is the solution to the following problem:

û = arg min
u≥0∈R|S|

||y −ΦSu||22 +
∑
j∈S

(α̂j/β)u2j , (42)

which can be obtained using non-negative least-squares
solvers. Solving Eq. (42) is fast in practice, because it is a
low-dimensional problem (i.e. |S| � D). Our point estimate
solution is ẑ, where ẑj = uj for j ∈ S and ẑj = 0 for j 6∈ S .

APPENDIX D
DETAILS OF SBL FOR MRI RECONSTRUCTION

1) Final Reconstruction: Let µhorz
` and µvert

` denote the re-
spective means of p(zhorz

` |yhorz
` , α̂horz) and p(zvert

` |yvert
` , α̂vert).

These quantities are combined through solving a constrained
least-squares problem to yield a final reconstruction x̂`:

x̂` = arg min
x`

‖∂horzx` − µhorz
` ‖22 + ‖∂vertx` − µvert

` ‖22,

s.t. M`Fx` = k`. (43)

We use Parseval’s Theorem [31] to cast Eq. (43) to the Fourier
domain. This converts ∂horz and ∂vert into diagonal matrices
∆horz and ∆vert in the Fourier domain, giving an element-wise
separable problem with a closed-form solution [6].
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2) Variance Map: For each MRI contrast `, SBL learns
posterior distributions N (µhorz

` ,Σhorz
` ) and N (µvert

` ,Σvert
` ) for

the image gradients. We use the fact that for z ∼ N (µ,Σ)
and a matrix E, we have Ez ∼ N (Eµ,EΣE>). The solution
to Eq. (43) has the form x̂` = E1µ

horz
` +E2µ

horz
` +e for some

matrices E1,E2 ∈ RD×D and some vector e ∈ RD. To obtain
variance maps for x̂`, we find the diagonal elements of its
covariance matrix Ψ := E1Σ

horz
` E>1 +E2Σ

vert
` E>2 . We can do

this by drawing probes and applying the diagonal estimation
rule (Section III-A). In doing so, we need to apply Σhorz

` =
(Φ>Φ + α̂horz)−1 and Σvert

` = (Φ>Φ + α̂vert)−1 to arbitrary
vectors, which can be done via parallel CG (Section III-B).
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