
Green Energy and Intelligent Transportation 3 (2024) 100157
Contents lists available at ScienceDirect

Green Energy and Intelligent Transportation

journal homepage: www.journals.elsevier.com/green-energy-and-intelligent-transportation
Full length article
A reinforcement learning approach to vehicle coordination for structured
advanced air mobility

Sabrullah Deniz, Yufei Wu, Yang Shi, Zhenbo Wang *

Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
H I G H L I G H T S
* Corresponding author.
E-mail address: zwang124@utk.edu (Z. Wang).

https://doi.org/10.1016/j.geits.2024.100157
Received 19 July 2023; Received in revised form 9
Available online 11 January 2024
2773-1537/© 2024 The Authors. Published by Elsev
NC-ND license (http://creativecommons.org/licens
G R A P H I C A L A B S T R A C T
� A novel deep reinforcement learning
approach to safe and efficient AAM
traffic separation.

� A new MARL framework for AAM
vehicle coordination in merging and
intersection scenarios.

� Trade-off studies that reveal impacts of
network design and hyperparameters on
the performance of the algorithms.

� Extensive simulations that demonstrate
the performance of the proposed
methods.
A R T I C L E I N F O

Keywords:
Advanced Air Mobility (AAM)
Urban Air Mobility (UAM)
Air Traffic Control (ATC)
Multi-Agent Reinforcement Learning (MARL)
A B S T R A C T

Advanced Air Mobility (AAM) has emerged as a pioneering concept designed to optimize the efficacy and
ecological sustainability of air transportation. Its core objective is to provide highly automated air transportation
services for passengers or cargo, operating at low altitudes within urban, suburban, and rural regions. AAM seeks
to enhance the efficiency and environmental viability of the aviation sector by revolutionizing the way air travel is
conducted. In a complex aviation environment, traffic management and control are essential technologies for safe
and effective AAM operations. One of the most difficult obstacles in the envisioned AAM systems is vehicle co-
ordination at merging points and intersections. The escalating demand for air mobility services, particularly
within urban areas, poses significant complexities to the execution of such missions. In this study, we propose a
novel multi-agent reinforcement learning (MARL) approach to efficiently manage high-density AAM operations in
structured airspace. Our approach provides effective guidance to AAM vehicles, ensuring conflict avoidance,
mitigating traffic congestion, reducing travel time, and maintaining safe separation. Specifically, intelligent
learning-based algorithms are developed to provide speed guidance for each AAM vehicle, ensuring secure
merging into air corridors and safe passage through intersections. To validate the effectiveness of our proposed
model, we conduct training and evaluation using BlueSky, an open-source air traffic control simulation envi-
ronment. Through the simulation of thousands of aircraft and the integration of real-world data, our study
November 2023; Accepted 10 November 2023

ier Ltd on behalf of Beijing Institute of Technology Press Co., Ltd. This is an open access article under the CC BY-
es/by-nc-nd/4.0/).

mailto:zwang124@utk.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geits.2024.100157&domain=pdf
www.sciencedirect.com/science/journal/27731537
www.journals.elsevier.com/green-energy-and-intelligent-transportation
https://doi.org/10.1016/j.geits.2024.100157
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.geits.2024.100157

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
demonstrates the promising potential of MARL in enabling safe and efficient AAM operations. The simulation
results validate the efficacy of our approach and its ability to achieve the desired outcomes.
Fig. 1. AAM merging scenario.

Fig. 2. AAM intersection scenario.
1. Introduction

1.1. Background and motivation

The global population growth has led to an increase in the need for
mobility, resulting in surface traffic congestion. Traffic congestion
negatively affects the environment, mobility, accessibility, and socio-
economic activity. Infrastructure expansions and adaptive traffic control
have been primarily used to reduce road congestion. In response to
ground traffic congestion, Advanced Air Mobility (AAM) and Urban Air
Mobility (UAM) have gained popularity in recent years due to several
factors, including technological advances, sustainability, traffic conges-
tion, increased demand for air transportation, and investment. AAM is a
novel concept that leverages new aircraft designs and revolutionary flight
technologies to transport people and cargo between places in unexplored
or underexplored airspace. UAM, a subset of AAM, focuses on air trans-
portation services in urban areas. Both aim to improve efficiency, sus-
tainability, and reduce environmental impact [1].

Leading government agencies and corporate entities, including
NASA, Uber, Airbus, Volocopter, Bell, and Embraer, are developing their
AAM/UAM concepts as AAM and UAM become more promising for
future transportation [2–5]. Electric vertical takeoff and landing (eVTOL)
vehicles that utilize three-dimensional airspace for personal commutes or
on-demand air taxis are the most popular concept. An eVTOL aircraft can
take off without using a runway. It is considerably more energy efficient
than traditional helicopters and can carry three, five, or even more pas-
sengers depending on the manufacturer and vehicle design. The eVTOL
vehicles are powered by electricity, which minimizes emissions and en-
ables an energy-efficient solution to alleviate surface traffic congestion.

The initial AAM ecosystem will make use of the pre-existing heli-
copter infrastructure, encompassing established routes, helipads, and Air
Traffic Control (ATC) services. Millions of unmanned aerial vehicles
(UAVs) are expected to operate in U.S. airspace by 2040, according to a
report by the Federal Aviation Administration (FAA) [6]. As a result, the
workload of ATC is constantly increasing. The traffic management of
AAM vehicles is a crucial issue that must be resolved in order to maintain
airspace safety and alleviate airspace traffic congestion. The existing ATC
system, which relies on human controllers to handle air traffic, presents
significant challenges and complexities. The requirement for human
operators to multitask in managing the immense volume of air traffic
renders the task laborious and formidable. In 2018, the FAA NextGen
Office published a preliminary concept of operations (ConOps) for UAS
Traffic Management (UTM), facilitating low-altitude UAS operations.
The FAA and NASA have updated the UTM ConOps to v2.0 [7], aiming to
increase airspace capacity for more intricate UTM operations.

The first published ConOps v1.0, the FAA and NASA outlined that
UAM operations would occur within an air corridor established and
announced by the FAA. However, it was emphasized that the industry
and other stakeholders would play a key role in modifying this corridor.
AAM corridors are envisioned as effective and secure channels to facili-
tate high-density air traffic operations, ensuring both safety and effi-
ciency. The vehicles entering the AAM corridors are required to comply
with stringent performance standards and regulations, which may vary
based on the specific characteristics of the local airspace and vary from
one corridor to another [8]. The corridors will either merge or intersect
alongside the route. ATC will evaluate the availability of corridors based
on adjacent conditions and activities; however, no tactical separation
facilities will be provided within corridors, and pilots in commandwill be
responsible for ensuring safe operations [8]. Despite substantial devel-
opment, many technical issues remain unresolved [9,10]. In this
research, we aim to address one of the key research challenges, i.e., how
2

to safely and efficiently manage the movements of multiple AAM vehicles at a
merging point and an intersection within a large-scale structured airspace
consisting of multiple airways or air corridors [8]. At a merging point, ve-
hicles operating on a secondary air corridor merge into themain corridor,
as shown in Fig. 1. At a two-dimensional (2-D) AAM intersection, vehicles
approach the intersection from different directions and pass the inter-
section as shown in Fig. 2. The primary research focus of our study refers
to the management of traffic within the corridors, specifically at the
merging points and intersections.

In this paper, it is assumed that vehicle operations are handled by a
highly trained reinforcement learning agent, enabling fully autonomous
piloting and flight. Reinforcement learning has attracted considerable
interest, primarily driven by the impressive performance demonstrated
by reinforcement learning agents such as AlphaGo [11] and OpenAI [12].
AlphaGo made history as the first computer program to defeat skilled
human Go players, including a world champion. This notable progress in
AI has shown the underlying theoretical foundations and computational
capacities of intelligent agents and AI technologies, which have the po-
tential to enhance and facilitate human tasks. Reinforcement learning, as
a model-free self-learning algorithm, presents significant potential for
advanced air traffic control and management. By enabling an agent (such
as an AAM vehicle) to learn the optimal policy through interactions with
its environment (i.e., airspace) and maximizing cumulative rewards,
reinforcement learning offers a promising approach. The reward serves
as feedback from the environment, providing the agent with positive
reinforcement for good behavior and imposing penalties for undesirable
behavior. In the domain of AAMmanagement and control, it is feasible to
generate real-time conflict resolution advisories for aircraft by framing
the tasks typically performed by human air traffic controllers as a

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
reinforcement learning problem that can be solved with minimal
computation time. Moreover, to apply reinforcement learning in orga-
nizing AAM traffic flow, which involves tasks such as routing and colli-
sion avoidance, it becomes crucial to have a platform capable of
simulating air traffic management. This platform allows for the testing
and evaluation of the effectiveness of reinforcement learning models in
this context.

This work presents a deep multi-agent reinforcement learning
(MARL) framework that enables autonomous AAM traffic separation to
minimize conflicts during flight. The framework employs a centralized
learning approach and decentralized execution for efficient decision-
making by AAM agents. The proposed framework has the capability to
effectively manage a variety of vehicles at merging points or intersections
by offering speed advisories to each vehicle within the air corridor. To
store and retain information about the environment, a Long Short-Term
Memory (LSTM) network [13] is employed. This LSTM network captures
and encodes all pertinent information into a fixed-length vector, facili-
tating comprehensive representation of the environment. This work has
the potential to effectively address the autonomous traffic control prob-
lem for AAM vehicles, facilitating smooth merging and conflict-free
passage at intersections within the air corridors. Furthermore, the per-
formance of the developed model in this paper is demonstrated using the
BlueSky air traffic control simulator [14]. This simulator enables the
vehicle to interact with the environment, providing a platform to
showcase the model's effectiveness.

1.2. Related work

During the flight, ATC systems must ensure that a safe distance be-
tween the vehicles must be maintained. Conflict is deemed to exist when
horizontal and vertical distances are simultaneously smaller than the
minimum separation. There are usually three kinds of conflict resolution
methods to handle safe separation problems between aircraft by adjust-
ing heading, altitude, and speed. Heading adjustment can be used for
conflict resolution by changing the heading angle, which turns the
aircraft right or left in the angle. This method will change the aircraft
route and may lead to a delay in arriving the destination when there are
many aircraft in the conflict zone. Adjusting altitude is one of the most
promising methods for separation problems. The conflicts will be
determined in advance, and the aircraft will make necessary adjustments
to its flight level to avoid them. Lastly, speed adjustment for the aircraft
at the same flight level will solve most of the conflict resolution problems
by only adjusting the speed around the aircraft's cruise speed. In this
paper, we use the speed adjustment method for safe separation of AAM
vehicles in the conflict zone with the help of deep reinforcement learning
approaches.

In addition to traditional rule-based and optimization-based ap-
proaches, deep reinforcement learning has been successfully applied to
merging control on highways and traffic control at signalized in-
tersections in ground transportation. These applications aim to minimize
travel delays for travelers and enable safe autonomous passage at
merging roadways and intersections [15–17]. For ground vehicles,
entering into congested traffic lanes is a significant difficulty. To ensure a
secure merging process, one strategy is to position an agent at the
merging point, which would provide speed advisories to the vehicles.
Alternatively, each vehicle could operate as an independent agent within
the environment, making its own decisions regarding merging time and
speed [18]. Our research provides speed advisories to each AAM vehicle
to prevent conflicts at merging points and intersections. Each AAM
vehicle acts as an agent, and a learning-based algorithm is employed to
offer speed advisories to effectively manage potential conflicts.

Autonomous ATC has been researched and implemented for AAM
traffic control. An auto-resolver was developed in previous works [19,20]
to iteratively compute air traffic trajectories. This auto-resolver tests
different candidate trajectories until a suitable trajectory is identified
that satisfies all conflict resolution conditions. This detecting system also
3

contains aircraft speed, altitudes, flight plans, and locations. Through the
utilization of a physics-based auto-resolver approach, the detection and
resolution of conflicts were achieved with commendable performance. In
another work, the researchers employed a multi-agent method to solve
intersection problems for AAM by using reinforcement learning with a
comprehensive reward function [21]. In that approach, the authors
treated each agent independently in a 2-D space, addressing computa-
tional limitations by considering fixed locations. They utilized three
distinct actions for airspace navigation: adjusting aircraft separation,
managing departures and ground delay, and rerouting aircraft. By
applying reinforcement learning, agents learned optimal actions, result-
ing in congestion reduction of up to 80%. However, limitations in the
learning process suggested the possibility of developing more efficient
and effective methodologies.

Advancements in deep learning techniques and computer hardware
have facilitated the computation and evaluation of real-time multi-agent
policies in increasingly realistic environments. Air Traffic Control (ATC)
automation using Multi-Agent Reinforcement Learning (MARL) was
formulated recently in Ref. [22] introduced the concept of utilizing
MARL for ATC automation. In that work, a deep MARL framework was
proposed to handle the separation problem for ATC. The specific focus
was on solving the air traffic intersection problem by formulating it as an
MARL model and leveraging the DD-MARL framework. This approach
demonstrated remarkable performance in addressing complex sequential
decision-making problems characterized by uncertainty, highlighting its
potential for enhancing ATC operations. Their results showed the great
potential of the MARL model for high-performance ATC. Furthermore,
current research in the area of ground transportation for merging control
applies comparable methodologies to identify the most optimal merging
strategies. In Ref. [18], the ground transportation merging problem was
addressed through the formulation of a multi-agent model. This problem
was approached as a model-free scenario and resolved using a
multi-agent network as described in Ref. [23]. In this decentralized
MARL model, each agent's observation is limited to a specific portion of
the environment, allowing communication only with nearby neighbors.
However, this restricted observation capability may lead to traffic flow
instability and might not be suitable for scenarios involving heavy traffic
merging.

In the field of UAM and ATM, a comprehensive retrospective review
was conducted in Ref. [24] research covering work from 1995 to 2022.
The review highlighted the evolution of airspace users, starting from
helicopters to UAVs and passenger-carrying UAVs for UAM. It empha-
sized the complexity of integrating various vehicle types and
high-density operations in urban environments. The review outlined the
multidisciplinary nature of implementing UAM systems, addressing
vehicle design, certification, airspace integration, operational aspects,
infrastructure requirements, and public acceptance. It also stressed the
importance of advanced U-space services, strategic conflict avoidance,
and efficient airspace management in the context of UAM. A compre-
hensive survey on deep learning in Air Traffic Management (ATM) in Ref.
[25] provides valuable insights into various deep learning applications in
ATM, opportunities, and open challenges. This survey offers a detailed
examination of how deep learning techniques are applied within ATM,
including their potential applications and areas that require further
research. It serves as a valuable resource for understanding the landscape
of deep learning in ATM and can be used as a reference for comparing
different methods and approaches in the field. In another research [26],
the authors address the challenges of airspace deconfliction in the
context of AAM and explores the need for strategic and tactical coordi-
nation to ensure safe and efficient operations. It highlights the use of
predefined airways or corridors in conventional ATM and their limita-
tions when applied to the dense and complex operations of AAM. The
authors propose an alternative approach by examining the feasibility of
not using corridors, backed by a simple and scalable simulation model.
The paper also discusses the importance of redundancy and diversity in
traffic coordination methods for enhanced system safety. It identifies a

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
gap between cooperative ground-based approaches and non-cooperative,
aircraft-centered methods like Detect-And-Avoid (DAA). The paper in-
troduces an airborne cooperative method that aims to safely resolve
conflicts involving multiple aircraft, offering improved efficiency
compared to DAA alone. This method could serve as an alternative or
supplementary approach to ground-based traffic coordination.

Despite the significant advances in deep reinforcement learning
(DRL), its application to ATM systems is facing several formidable chal-
lenges. It is crucial to acknowledge these challenges to provide context
for the research presented in this paper. While our proposed method aims
to address specific aspects of these challenges, it does not resolve all of
them comprehensively. Below, we outline the primary challenges in
applying DRL to ATM: 1) High Dimensionality: the air traffic manage-
ment system is a highly complex, dynamic environment with many state
and action variables, making it challenging for DRL algorithms to learn
optimal policies in a reasonable amount of time; 2) Data Requirements:
unlike traditional machine learning approaches, DRL methods, including
the one proposed in this paper, do not rely on extensive pre-existing
datasets for training. Instead, they learn from interactions with the
environment. However, data collection in ATM can present its own
challenges, and the quality and quantity of data can impact the effec-
tiveness of DRL methods; 3) Safety: ensuring the safety of passengers and
crew is paramount in ATM. This challenge involves not only training DRL
algorithms to optimize policies but also guaranteeing the safety of the
learned policies, which can be a complex and critical concern; 4) Real-
time Constraints: air traffic management is a real-time system with
strict time constraints, and the DRL algorithms must operate in real-time,
making the learning process and policy optimization challenging; 5)
Complex Interactions: the interactions between aircraft and between
aircraft and ATC are complex, and it is challenging for DRL algorithms to
capture these interactions accurately; 6) Regulation: the aviation in-
dustry is highly regulated, and any new technologies must comply with
existing regulations and standards. The integration of DRL algorithms
into air traffic management systems must comply with these regulations.
These challenges must be addressed to ensure the successful imple-
mentation of DRL algorithms in air traffic management systems and
realize DRL's potential benefits for AAM.

Motivated by the previous work in Ref. [22] and building on our
preliminary results in Refs. [27,28], we develop a novel MARL model in
this paper for coordinating AAM vehicles under two scenarios – merging
points and intersections – with an aim of enabling a more realistic AAM
control model. Our model, as mentioned earlier, will operate in struc-
tured airways or air corridors within the AAM concept proposed by NASA
and Uber Elevate [29]. The main contribution of this work is threefold.
First, a novel deep MARL framework is designed to enable safe and
efficient AAM traffic separation and reduce conflicts during flight based
on a centralized learning, decentralized execution approach. Second, the
proposed MARL framework is applied to mitigate the potential risks and
optimize the movements of AAM vehicles in real time under the merging
and intersection scenarios by allowing the vehicles to interact with the
dynamic AAM environment and the changing traffic conditions. Third,
the effect of the network design and hyperparameters on the performance
of the algorithms is investigated. Furthermore, the proposed framework's
efficacy and performance in generating real-time conflict resolution ad-
visories are demonstrated through its implementation in the BlueSky air
traffic control simulator.

The rest of this paper is structured as follows. Section 2 provides an
introduction to the foundational concepts, including reinforcement
learning, policy-based learning, and MARL. System models and prob-
lem formulation are detailed in Section 3. In Section 4, the network
design and parameter tuning of our deep MARL framework are pre-
sented in great details. Section 5 introduces the simulation environ-
ment and shows the outcomes that effectively illustrate the efficacy of
our proposed model. Finally, in Section 6, this paper concludes by
summarizing the key findings and contributions discussed throughout
the study.
4

2. Preliminaries

2.1. Reinforcement learning

Reinforcement learning is a distinct type of machine learning that
differs from both supervised learning and unsupervised learning ap-
proaches [30]. Reinforcement learning uses training data to evaluate the
actions taken, while other types of learning use the data to correct actions
as a reference. Reinforcement learning problems can be treated as Mar-
kov Decision Process (MDP) [31]. There has been a growing interest in
the application of reinforcement learning techniques to address chal-
lenges related to vehicle coordination and management in both the fields
of ground transportation and air mobility. In reinforcement learning, an
agent interacts with unknown environments, learning policies through
trial and error by receiving rewards based on its actions. The objective is
to maximize the cumulative rewards in an interactive environment,
where the agent's actions influence the rewards it receives. The rein-
forcement learning model can be represented using the variables states S,
actions A, reward function R, and discount factor γ. In reinforcement
learning, the learning component involves finding the optimal actions for
each state to maximize rewards. The ultimate objective is to discover an
optimal policy, denoted as π*, which maximizes the cumulative rewards
for future steps starting from any initial state:

π* ¼ arg max
π

E

"XT
t¼0

ðrðst; atÞÞ
�����π
#

(1)

where t represents the current time, T represents the total time, and π
represents the policy. By formulating the reward function and maxi-
mizing the cumulative rewards, the optimal solution can be reached.
2.2. Policy-based learning

There are two fundamental algorithms in reinforcement learning,
particularly value-based algorithms and policy-based algorithms. Value-
based algorithms, such as Deep Q-Network (DQN) and its variations,
and policy-based algorithms, including Deep Deterministic Policy
Gradient (DDPG) [32] and Proximal Policy Optimization (PPO) [33], can
solve conflict resolutionproblems. In our study,we employ the actor-critic
(A2C) reinforcement learning algorithm [34] based on policy iteration
and compare the performance of the algorithm with DDPG. These algo-
rithms learn stochastic policies in amodel-free environment, allowing it to
effectively handle unknown environments and uncertainties arising from
other agents’ actions, which is a distinguishing advantage compared to
value-based algorithms [35]. In addition, to address learning instability
and improve performance, we combine A2C learning with PPO optimi-
zation in this paper. Specifically, we use A2C for policy learning and value
learning and use the PPO algorithm for policy optimization. The PPO al-
gorithm is a cutting-edge policy optimization technique that was recently
developed. It is simple to adjust, performs well, updates at each step, and
minimizes the cost function for the problem being solved. PPO optimizes
the policy function by limiting the update to a certain trust region,
resulting in more stable training and better exploration of the action
space. We will take advantage of the benefits of these algorithms to
improve the performance and stability of our reinforcement learning tasks
by combining the A2C learning technique with PPO optimization.

While A2C and PPO are well-suited for tasks with discrete action
spaces and high-dimensional state spaces, there exist many reinforce-
ment learning tasks that require dealing with continuous action spaces.
One of the state-of-the-art algorithms tailored for such tasks is the DDPG
[36]. DDPG is an actor-critic algorithm that extends the ideas of DPG
(Deterministic Policy Gradient) to leverage deep neural networks for
approximating both policy and value functions. Since the action space is
continuous, the policy outputs a deterministic value for each action given
a state, rather than a distribution over actions.

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
� Policy network (actor): the actor network in DDPG is deterministic.
For a given state st, the actor network μ(st|θμ) outputs a specific action.
This contrasts with the stochastic policy outputs in A2C;

� Q-value network (critic): the critic network computes the action-value
function Q(st, at|θQ) which provides an estimate of the expected re-
turn for taking action at in state st.

DDPG also introduces the use of target networks for both the actor
and critic to stabilize training. The target networks are copies of the actor
and critic networks but with slowly updated parameters. The objective is
to adjust the policy parameters θμ to maximize the expected reward:

max
θμ

Est�ρβ ;at�μ½Qðst; atjθQÞ� (2)

The critic is updated by minimizing the mean squared error between
the estimated Q-value and the target Q-value:

LðθQÞ ¼ Est�ρβ ;at�μ

h
ðQðst; atjθQÞ � ytÞ2

i
(3)

where:

yt ¼ rt þ γQ
0 ðstþ1; μ

0 ðstþ1jθμ0 ÞjθQ0 Þ (4)

Q0 and μ0 denote the critic and actor target networks, respectively. The
target Q-value, yt, is the reward rt plus the discounted expected return
from the next state.

One major advantage of DDPG over traditional methods is its ability to
handle tasks with high-dimensional continuous action spaces without the
need for action discretization. Moreover, by leveraging experience replay
and target networks,DDPGcanachievemore stable and faster convergence.

Value-based reinforcement learning algorithms implicitly find the
optimal policy by finding the optimal value function, while policy-based
reinforcement learning algorithms directly optimize the objective func-
tion. Policy-based reinforcement learning is very effective in learning
stochastic policies in high-dimensional and stochastic continuous action
spaces. The actor-critic method [37] is a combination of policy learning
and value learning. While the policy function plays the actor's role, the
value function is in the critic role. The actor-critic method has two net-
works. In the A2C algorithm, the actor-network is responsible for
determining which action to take, while the critic-network provides
feedback to the actor by evaluating the quality of the chosen action and
providing guidance on how to adjust it to achieve the optimal policy.

Actor-critic is similar to REINFORCE algorithm [38], which is one of
the policy gradient algorithms. In the REINFORCE algorithm, the policy
parameter is updated through Monte Carlo updates, which take random
samples. The policy gradient expression for REINFORCE algorithm is:

ΔJðθÞ ¼ ΔE πθ ½RðτÞ� ¼ E πθ

" XT�1

t¼0

Δθlogπθðat jstÞ
!
RðτÞ

#
(5)

The advantage function for REINFORCE algorithm is as follows:

Aðst ; atÞ ¼
XT�1

t0 ¼0

rt0 � bðstÞ (6)

where RðτÞ ¼PT�1
t¼0 represents the reward of the trajectory, and b(st)

represents the baseline function [39].
The A2C algorithm combines both policy-based and value-based

reinforcement learning. It learns a stochastic policy that maps states to
actions, and a state-value function that estimates the expected return
from a given state. The value function is optimized to provide a precise
estimate of the expected return, and the policy is optimized to choose
behaviors that maximize the expected return.

The expected return is defined as the sum of discounted rewards from
the current time step t to the end of the episode T, given a state st and
action at:
5

Rt ¼
XT�t

γkrtþk (7)

k¼0

where γ is the discount factor that determines the importance of future
rewards, and rt þ k is the reward received at time step t þ k.

The actor network in A2C outputs a probability distribution over
actions given the current state. It is defined as:

πθðatjstÞ ¼ softmax
�
f θðstÞTgθðatÞ

�
(8)

where θ represents the weights of the actor network, fθ(st) is the
feature vector of the state, gθ(at) is the parameter vector of the
action, and softmax is a function that normalizes the output to sum
to one.

The critic network in A2C estimates the expected return from a given
state. It is defined as:

VθðstÞ ¼ f θðstÞThθ (9)

where hθ is the parameter vector of the critic network.
The advantage function At measures how much better the chosen

action was compared to the expected value from the current state, and is
defined as:

At ¼ Rt � VθðstÞ (10)

The policy and value function parameters are updated using the
following formulas:

Δθpolicy ¼ αpolicyrθlogπθðatjstÞAt (11)

Δθvalue ¼ αvaluerθðVðstÞ � VθðstÞÞ2 (12)

where αpolicy and αvalue are the learning rates for the policy and value
networks, respectively.

The A2C algorithm's learned policy settings are further optimized by
the PPO algorithm. PPO maximizes a surrogate objective function that
approximates the ratio of the new policy to the old policy in order to
improve the policy. The clipped surrogate objective is defined as:

LclipðθÞ ¼ E t½minðrtðθÞAt ; clipðrtðθÞ; 1� ϵ; 1þ ϵÞAtÞ� (13)

where rt(θ) is the ratio of the new policy to the old policy, and ϵ is a
hyperparameter that determines the size of the trust region.

The policy is then updated by maximizing this objective function
using stochastic gradient ascent. The update is constrained by a trust
region, which ensures that the updated policy does not deviate too far
from the old policy. The trust region is controlled by the hyperparameter
ϵ in the clipped surrogate objective function. By limiting the updates to a
certain trust region, PPO is able to achieve more stable training and
better exploration of the action space.

To further improve the training of the A2C algorithm, PPO also uses
the value function to estimate the advantage function. The advantage
function measures how much better the chosen action was compared to
the expected value from the current state. It is defined as:

At ¼ Rt � VθðstÞ (14)

where Rt is the total-discounted reward received after taking action at in
the state st, and Vθ(st) is the estimate of the state-value function for the
current state.

The value function is updated using the standard temporal difference
update rule:

Vθ
0 ðstÞ ¼ VθðstÞ þ αvðRt �VθðstÞÞ (15)

where Vθ0(st) is the updated estimate of the state-value function, and αv is
the learning rate for the value network.

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
Finally, the policy and value function parameters are updated using
the calculated gradients. The policy is updated using the clipped surro-
gate objective function:

θ ← θ þ Δθpolicy (16)

where Δθpolicy is the gradient of the policy function. The value function is
updated using the mean squared error loss:

θ ← θ þ Δθvalue (17)

where Δθvalue is the gradient of the value function.
In summary, the A2C algorithm utilizes two neural networks to learn

the policy and state-value function, combining policy-based and value-
based reinforcement learning. The PPO algorithm is used to further
optimize the policy parameters learned by the A2C algorithm by maxi-
mizing a clipped surrogate objective function that approximates the ratio
of the new policy to the old policy. The advantage function is used to
measure how much better the chosen action was compared to the ex-
pected value from the current state, and the value function is updated
using the standard temporal difference update rule. By combining the
benefits of A2C and PPO, we can achieve more stable training, better
exploration of the action space, and improved performance in our rein-
forcement learning tasks.

In the upcoming algorithm performance subsection, we present a
comprehensive comparison of the performance of both A2C combined
with PPO and DDPG. The motivation behind this is to understand the
strengths and weaknesses of each algorithm in the context of our specific
reinforcement learning tasks. While A2C with PPO offers robustness in
environments with discrete action spaces and uncertainties arising from
other agents, DDPG shines in tasks with continuous action domains. The
comparative analysis provides insights into the practical efficacy of these
algorithms, guiding future endeavors in choosing the appropriate algo-
rithm for similar tasks.
2.3. Multi-agent reinforcement learning

Multi-agent reinforcement learning (MARL) has demonstrated
remarkable achievements in various multi-agent systems, including
traffic light control, games, power grid control, and more [23,40].
MARL is a framework that involves the interaction between multiple
agents within a shared environment, as well as their interactions with
each other. In contrast, single-agent reinforcement learning focuses
solely on the interaction between a single agent and the environment
[41]. One of the main challenges in MARL is that each agent has its
own individual goal to achieve within the shared environment. This
goal might be unknown to other agents, leading to increased
complexity in the decision-making process for each agent. Every new
agent significantly expands the problem's complexity [42]. One of the
well-suited approaches to address MARL problems is independent
Q-learning. In this method, each agent maintains its own
action-observation system and network parameters, treating the other
agents as components of the environment [43]. However, the inde-
pendent Q-learning method may face challenges, as changes in the
policy of one agent can impact the policies of other agents. This
interdependence can lead to instability and difficulties in achieving
desired coordination among the agents [44]. To handle this learning
instability, a solution involves training a group of agents in a
centralized manner with an open communication channel for coordi-
nated learning [45]. To effectively interact and resolve agent negoti-
ations, the communication channel is crucial. In this work, we use the
A2C method to address learning instability concerns, while utilizing
the Proximal Policy Optimization (PPO) algorithm to approximate the
policy and value functions for each agent [33]. Additionally, we
conduct a comparative study with the Deep Deterministic Policy
6

Gradient (DDPG) algorithm to evaluate and contrast the performances
of both methodologies in our reinforcement learning tasks.

3. System model and problem formulation

The systemmodel and problem formulation refer to the mathematical
representation and definition of the problem to be solved. In the context
of AAMmanagement and deep reinforcement learning (DRL), the system
model would describe the components of the air traffic management
system and how they interact with each other. The problem formulation
would define the objective of the system, such as ensuring safe separation
between aircraft, and how that objective can be achieved through the use
of DRL. The system model and problem formulation are important
because they provide the foundation for developing and evaluating the
effectiveness of the DRL approach for AAM. By defining the problem and
the components of the system, the DRL algorithm can be designed and
tested in a controlled environment to ensure that it can meet the system's
objective.

As discussed above, this research focuses on the applicability of DRL
for AAM merging and intersection case scenarios for safe separation
between AAM vehicles during the flight. The DRL model comprises a
deep neural network and an agent interacting with the environment. The
relative position and velocity of each aircraft define the state of the
system. The actions of the agent are the speed adjustments for each
aircraft, which are selected based on the state of the system. The reward
function is designed to incentivize safe separation between aircraft and to
minimize any potential conflicts. The objective of the reinforcement
learning model is to learn a policy that maps the state of the system to the
best action to take to maximize the total reward over time. The rein-
forcement learning model is trained using a trial and error approach,
where the agent interacts with the environment, selects actions based on
the state of the system, and receives rewards based on the outcomes of its
actions. Over time, the agent learns a policy that maps the state of the
system to the best action to take to maximize the total reward. This policy
is used to control the speed adjustments of each aircraft during the flight,
to ensure safe separation and to minimize any potential conflicts.

The BlueSky simulator environment [14] is used for demonstrating
the performance of the reinforcement learning model in this research.
This simulation software is not built for eVTOL vehicles, but it provides a
realistic environment for testing the effectiveness of the proposed deep
MARL framework for autonomous air traffic separation. BlueSky allows
the agent to interact with the environment, making it an ideal platform
for testing the performance of the model developed for safe separation
between vehicles during the flight. We develop two case studies to test
our MARL model for merging vehicles at a single point and an intersec-
tion scenario. There are several different aircraft types in the BlueSky
simulator. In the BlueSky simulation, we choose Airbus A318 as the
vehicle type for all the aircraft. In our assumptions, it is considered that
all aircraft maintain their designated routes throughout the flight. Fig. 3
illustrates the interaction between an agent and the environment, as well
as the structure of the reward function that guides decision-making
throughout its flight.
3.1. Problem formulation

Amulti-agent system refers to a collection of autonomous entities that
operate within the same environment, with each agent striving to achieve
its individual goals within that shared environment [46]. Multi-agent
systems have been used in diverse applications, including robotics,
data mining, distributed control, resource management, and game
planning [46]. In our research, we use multi-agent systems concept to
understand the behavior of each AAM vehicle during the flight to avoid
potential conflicts. The goal of the MARL model is to learn a policy that
maximizes the expected cumulative reward of each agent over a long

Environment

UAV 1

UAV 2

UAV n

Action at1

Action at2

Action atn

st(n)

st(2) rt(2)

st(1) rt(1)

rt(n) rt+1
(n)

st+1
(n)

rt+1
(2)

st+1
(2)

rt+1
(1)

st+1
(1)

Fig. 3. Multi-agent reinforcement learning scheme.

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
period of time. The policy maps each state to a set of actions that the
agent should take to maximize the reward.

In the AAM traffic control problem considered in this paper, the state
space and action space are continuous; therefore, the policy is typically
represented by a deep neural network. The problem is framed as an
MARL problem, where each AAM vehicle is treated as an agent. The
model algorithm runs on each vehicle, offering speed guidance to ensure
safe and timely arrival at the destination by avoiding the long waiting
times and potential conflicts at merging points and intersections. In the
upcoming subsections, we will outline the definitions of states, actions,
and reward structures for each agent.
3.2. State space

The state contains the necessary information for an agent to make
decisions. In our context, each AAM vehicle is considered an agent that
bases its decision-making on the information stored in the state. We as-
sume that the position and the dynamics of each agent are available
continuously. In our scenario, the ownship represents the vehicle
approaching the merging point from either the main or merging air cor-
ridors. The intruders, on the other hand, are the nearest vehicles in either
the main or merging corridor in relation to the ownship. These intruders
can be positioned ahead or behind the ownship within the corridors. To
capture the intruder information effectively, an LSTM network is used.
This network processes intruder details such as speed, acceleration, dis-
tance to the goal, distance to the merging point, and distance between
intruders, and converts them into a fixed-length vector. Subsequently, the
LSTM network encodes this information and is trained to assist the own-
ship in determining which intruder(s) require consideration.

To formulate the state and intruder state information for the agents,
we adopt a similar approach as outlined in Ref. [22]:

S0t ¼ ðd0
goal; v

0; a0; r0; dLOSÞ (18)

h0t ðiÞ ¼ ðdi
goal; v

i; ai; ri; di0; d
0
int; d

i
intÞ (19)
7

where S0t represents the state of the ownship, and h0t ðiÞ represents the
information of the ith intruder that is available at time t. Other involved
variables are defined below.

d0
goal :Distance to the ownship’s goal

v0 :Velocity of the ownship

a0 :Acceleration of the ownship

r0 :Rate of change of acceleration of the ownship

dLOS :Loss of separation distance between the ownship and the intruder

di
goal :Distance to the intruder’s goal

vi :Velocity of the intruder

ai :Acceleration of the intruder

ri :Rate of change of acceleration of the intruder

di
0 : Initial distance between the ownship and the intruder

d0
int : Initial relative distance between the intruder and the ownship

di
int :Current relative distance between the intruder and the ownship

3.3. Action space

In the MARL model, the objective is to provide suitable actions,
specifically speed advisories, to the AAM vehicle to prevent conflicts
during the flight. There are three possible actions that any vehicle on the
same route can take: accelerating, decelerating, or maintaining the cruise
speed (no acceleration). To manage the complexity of decision-making,
we impose a constraint where each agent is allowed to choose an ac-
tion every 5 s. This limitation ensures safe separation for the AAM vehicle
considered as a case study in this paper. The action space is defined as
follows:

At ¼ ½V�; 0;Vþ�

where V� means the vehicle will decelerate, 0 denotes no acceleration or
the vehicle will maintain the current speed, and Vþ means that the
vehicle will accelerate. It is important to note that our focus is on action

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
selection within this discrete action space, represented as At, rather than
specifying the exact magnitudes of real-world acceleration. The goal of
our MARL model is to provide suitable action recommendations (speed
advisories) to the AAM vehicle to prevent conflicts during flight while
considering these discrete action choices.
3.4. Reward function

The reward function comprises two components: an immediate
reward and a terminal reward. The immediate reward, given to the agent
at each time step, is proportional to the difference between the current
separation distance and the minimum safe separation distance. The ter-
minal reward is given to the agent at the end of the episode, which is
based on the total flight time and the final separation distance from other
agents. The agent's goal is to maximize the cumulative reward, which
represents the trade-off between safety and efficiency.

We formulate identical reward functions for all agents, where each
agent aims to maximize its local reward. In case of a conflict between two
agents, a penalty is imposed to account for the negative impact resulting
from the conflict. A conflict is defined when the distance between two
aircraft is less than two nautical miles (i.e., dLOS ¼ 2 NM), which is a
parameter setting for the aircraft model we use in BlueSky for demon-
stration purposes and can be adjusted for AAM missions. The reward
function utilized for the actor-critic network is defined as follows:

Rt ¼
Xn�1

k¼0

γkrrþkþ1 þ γnVϕðrtþnþ1Þ (20)

rt ¼
8<
:

�1 if dLOS < 2 NM
ϵ if 2 NM � dLOS � 4 NM
0 otherwise

(21)

where the discounted sum of the next n rewards
Pn

k¼0γ
krtþkþ1 is

computed for each state encountered, and the value of the state Vφ(rt þ
nþ1) encountered n steps later is estimated by the critic network. Rt is the
total return; ϵ is some small negative reward when the vehicle gets to the
conflict distance; and γ(0 � γ � 1) is the discount factor, which de-
termines the present value of future rewards: a reward received k time
steps in the future is worth only γk�1 times what it would be worth if it
were received immediately. The agent will be trained to optimize its
performance and achieve higher rewards based on our model.

The terminal state is defined as the state in which all agents have
successfully reached their designated target positions. The structure of
the terminal state reward is defined as follows:

⋅ þ 25 when all the vehicles successfully reach their target positions;
⋅ � 5 when a vehicle has not yet reached its target position;
⋅ � 10 when the vehicles collide along the way.

Each agent's objective is to maximize its long-term performance and
accumulate long-term rewards, even though feedback is provided only
based on the one-step performance at a time. By combining the A2C and
PPO algorithms, it is possible to achieve the optimal policy. The Actor
component is responsible for the policy π and is utilized for selecting the
agent's actions and updating the policy network accordingly. The Critic
component corresponds to the value function Q(s, a) for action value or
V(s) for state value. The actor-network receives an observation (e.g.,
state) as input and generates a probability distribution for selecting ac-
tions. Sampling from this distribution allows the selection of an action.
The critic-network also takes the state as input and outputs a single
integer representing the estimated value of that state, which serves as an
approximation of the state value function.

Gradient descent is used to optimize the objective function in policy
gradient techniques. Initially, we define the probability ratio r(θ) between
the old policy πθold and the new policy πθ using the following definition:
8

rtðθÞ ¼ πθðsjaÞ
πθ

(22)

old

where θ represents the weights of the neural network. The probability
ratio r(θ) indicates that when r(θ) > 1, the action is more likely to be
selected in the new policy, whereas when r(θ)< 1, the action is less likely
to be chosen. Based on this probability ratio, a simple objective function
can be formulated as follows:

LCPIðθÞ ¼ Et

�
πθðsjaÞ
πθold

At

�
¼ Et ½rtðθÞAt� (23)

In the PPO algorithm, a truncated version of the Generalized Advantage
Function (GAE) [47] is used, which is defined as follows:

At ¼ δt þ ðγλÞδtþ1 þ………:þ ðγλÞT�tþ1δT�1 (24)

where δt ¼ rt þ γV(stþ1) � V(st).
When the action selection probability is low with the old policy, the

objective function LCPI(θ) can be unstable because rt(θ) is high, causing
the updates to be enormously high. PPO recommends two solutions: PPO-
Clip and PPO-Penalty [48]. We use PPO-Clip since it is the most preva-
lent. To minimize the number of updates, PPO-Clip simply clips the
probability ratio rt(θ). The ratio must fall within a certain interval (1 � ϵ,
1 þ ϵ), where ϵ is a clipping hyperparameter. After that update, the
objective function becomes:

LCLIPðθÞ ¼ Et½minðrtðθÞAt ; clipðrtðθÞ; 1� ϵ; 1þ ϵÞAt � (25)

Since the objective function in PPO only utilizes the policy (actor)
network, an additional term is required to update the critic network. The
role of the critic network is to minimize the discrepancy between the
estimated and actual values. By employing squared loss, the objective
function for the critic network can be expressed as:

LVPðθÞ ¼ ðVθ � VTargetÞ2 (26)

Furthermore, to encourage exploration, an entropy term is incorpo-
rated into the objective function. The final objective function can be
defined as follows:

LðθÞ ¼ �LCLIPðθÞ � c1LVPðθÞ þ c2S½πθ�ðsÞ
�

(27)

4. Network design and hyperparameter tuning

In the previous section, we presented the formulation of the merging
and intersection problems within the air corridor as an MARL problem.
We also established the reward structure of the problem, which guides
the agent in seeking the optimal policy. In this section, we proceed with
the development of a solution to this problem utilizing neural networks
and conduct an investigation into the impact of hyperparameters on the
algorithm's performance.
4.1. Network design

To train and evaluate our MARL model, we use a single neural
network that distributes optimal speed advisories to each agent, ensuring
conflict-free flights at merging points and intersections. In order to
formulate this environment as an MARL problem, we adopt a centralized
learning, decentralized execution (CLDE) approach, employing a shared
neural network for all agents. Through this approach, the MARL model is
trained to facilitate cooperation among all agents by utilizing the shared
network. While the policy-based MARL model is formed as CLDE that
helps the agent to learn their local policies [49] and all the agents share
the same neural network, their actions can still be different in the
execution. Fig. 4 shows the MARL neural network architecture. The
shared neural network can be implemented in all AAM vehicles to ensure

Fig. 4. MARL neural network architecture.

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
safe separation during flight, eliminating the need for individual neural
networks for each vehicle.

The first layer of the network is an LSTM layer that encodes all the
intruder information into a fixed-length vector. Subsequently, this in-
formation is passed through two fully connected layers to generate out-
puts for the policy and value function. Each vehicle then follows this
policy until the termination of the episode. As the environment is sto-
chastic, a single episode's policy may not provide clear decision-making
guidance for each agent. Therefore, by collecting multiple episodes, the
neural network policy can be updated, allowing the network to produce
different outcomes from the same policy.

Our chosen reinforcement learning algorithm is a combination of A2C
and the PPO loss function, which is a policy-based approach. We utilize a
shared layer between the actor and the critic in our network architecture. In
this network,we utilized two identical layers, each consisting of 512 nodes,
alongwithanLSTMencoderwith32nodes.Theactivation functionsused in
our neural networks are the rectified linear activation function (ReLU) for
the hidden layers and the hyperbolic tangent function (tanh) for the LSTM
layer.ReLU isawidelyusedactivation function inneural networksdue to its
performanceandeaseof training. The softmaxactivation function is applied
to the output of the actor's network, as it scales numbers into probabilities,
while the linear activation function is used for the output of the critic's
network. The softmax activation function is commonly used as the final
activation function in neural networks [50]. At the end of the network, two
fully connected layers (hidden layers) generate the policy and value outputs
for the given state. The policy is initialized at the beginning of each episode
and updated at the end of each episode.

The neural network design allows us to update the policy of each
agent at the start of each episode. Each AAM vehicle then follows its
individual policy until it reaches its destination. The key parameters for
the model include a learning rate of 0.000,1, a PPO ratio bound of 0.2
(represented as ϵ), a discount factor of 0.99 (represented as γ), a reward
coefficient of 0.1 (represented as α), a reward coefficient of 0.005 (rep-
resented as δ), and an entropy coefficient of 0.000,1 (represented as β).
These parameters play a crucial role in determining the performance and
convergence of the MARL model.

To further enhance the capability of our MARL model and to ensure
that we capture relevant patterns in the intruder information efficiently,
we experimented with the attention mechanism as an alternative to the
LSTM layer. Attention mechanisms [51] have been revolutionary in
several machine learning tasks due to their ability to dynamically focus
on different parts of the input sequence, highlighting relevant features
while downplaying others. This potentially offers a way to better encode
9

the intruder information by emphasizing critical parts that can influence
the policy and value predictions. The intruder data is first processed via a
fully connected layer, then passed to an attention network which pro-
duces a weighted, fixed-length vector. This vector is concatenated with
the ownship state data and sent through two fully connected layers of
512 nodes each. The final layer, consisting of 4 nodes, generates the
policy and value outputs, ensuring our model captures relevant details
while making efficient decisions.

We designed an alternative MARL neural network architecture where
the LSTM layer was replaced with a self-attention mechanism. The
attention mechanism dynamically weighs the sequence of intruder in-
formation and produces a fixed-length vector, just as the LSTM layer
does. This encoded information was then passed through the subsequent
fully connected layers, identical to the original architecture.

After trainingmodels using both the LSTM and attentionmechanisms,
maintaining uniform conditions such as identical hidden layers and
activation functions, we embarked on a performance comparison. From
Figs. 5 and 6, it is evident that the LSTM model (green line) converges
faster and demonstrates a higher success rate (fewer collisions) compared
to the attention-based model. This underlines the superior performance
of the LSTM layer in ensuring safe and efficient paths for the agents in our
MARL framework. Even though the attention mechanism brought a so-
phisticated approach to encoding input sequences, the LSTM layer was
distinctly superior in our particular context. Remarkably, the LSTM-
based model not only converged more swiftly but also exhibited supe-
rior proficiency in orchestrating conflict-free flights, especially at crucial
merging points and intersections.

Several factors illuminate the edge of LSTM in our framework. LSTMs,
with their recurrent nature, are intrinsically tailored to map temporal
dependencies within sequences. In contrast, attention mechanisms, while
offering a broader perspective by prioritizing diverse segments of an
input sequence, can occasionally overlook the temporal intricacies
pivotal to our application's challenges. Additionally, the LSTM's archi-
tectural design, characterized by its gating mechanisms, excels at pre-
serving long-term dependencies, proving especially potent for the
dynamics of our MARL setting.

In conclusion, while attention layers have shown success in many
areas, our tests emphasize the importance of choosing the right model
structure for the specific problem. In our MARL framework, LSTMs
clearly stood out, converging faster and ensuring safe, conflict-free paths
for agents in short time.

In the upcoming subsection, we will provide a detailed explanation of
how the hyperparameters were tuned. Once the parameters are set, the

Attention layer - success

LSTM layer - success

LSTM layer - collision

Attention layer - collision

0 5,000 10,000 20,000 30,00015,000 25,000
Number of episode

0.0

5.0

10.0

20.0

15.0

12.5

17.5

2.5

7.5

N
u

m
b

er
 o

f
U

A
V

s

Fig. 5. Performance comparison of MARL models: LSTM vs. attention layers.

LSTM layer

Attention layer

0 5,000 10,000 20,000 30,00015,000 25,000

Number of episode

1.0

0.9

0.8

0.7

0.6

0.5C
u
m

u
la

ti
v
e

av
er

ag
e

su
cc

es
s

ra
te

Fig. 6. Cumulative success rate: LSTM vs. attention layers.

0 5,000 10,000 20,000 30,00015,000 25,000

Number of episode

0.0

5.0

10.0

20.0

15.0

12.5

17.5

2.5

7.5

N
u

m
b

er
 o

f
U

A
V

s RMS ~ LR = 0.000,1

RMS ~ LR = 0.001

RMS ~ LR = 0.01

RMC ~ LR = 0.000,1

RMC ~ LR = 0.001

RMC ~ LR = 0.01

Fig. 7. Learning rate for MARL model performance.

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
model is trained over 10,000 episodes, allowing it to learn different
scenarios in the environment. With the utilization of a single network,
each AAM vehicle is able to determine its own speed at the merging point
or intersection by following the optimal policies. The ultimate objective
of our research is to achieve conflict-free flights for every AAM vehicle. In
our case studies, we focus on a single merging point and intersection
scenario. However, it is expected that our model can be extended to
handle multiple merging points and intersections within the same air
corridor.

4.2. Hyperparameter tuning

Hyperparameter tuning is a process of selecting the best set of
hyperparameters for a reinforcement learning agent. The values of
hyperparameters, such as the learning rate or discount factor, are set
prior to training and determine the learning process. Finding the optimal
hyperparameters for a reinforcement learning agent requires performing
experiments with different values to see how they impact the perfor-
mance. In MARL, the same process applies, but for multiple agents. The
hyperparameters for each agent may be different, and finding the best
hyperparameters for each agent can be a challenging task. The selection
of a model's hyperparameters can affect how long it takes to train and test
the model design.

Hyperparameter tuning in the context of AAM traffic control and
management using reinforcement learning involves finding the optimal
values for the parameters that control the behavior of the reinforcement
learning algorithm. The goal is to achieve efficient and safe traffic control
in airspace. Some important hyperparameters to tune in this context
include: 1) learning rate that determines the step size of weight updates
10
in the reinforcement learning algorithm; 2) discount factor that de-
termines the relative importance of future rewards in the reinforcement
learning algorithm; and 3) exploration rate that controls the level of
exploration vs. exploitation in the reinforcement learning algorithm.

Hyperparameter tuning can be done using various methods such as
grid search [52], random search [53], or Bayesian optimization [54]. The
choice of method will depend on the specific requirements and con-
straints of the AAM traffic control problem. While Bayesian optimization
is a powerful method for hyperparameter tuning, in our specific imple-
mentation, we opted for a sample-based approach to determine suitable
values for the hyperparameters. We conducted a series of experiments
using different combinations of hyperparameter values and evaluated
their impact on the performance of the AAM traffic control model.

Learning rate is an important hyperparameter to tune in reinforce-
ment learning. The learning rate determines how quickly the agent up-
dates its policy in response to new information. A high learning rate will
result in rapid updates, while a low learning rate will result in slower
updates. Finding the right balance between learning too quickly and
learning too slowly is crucial for the agent's performance. Also, the
optimal learning rate depends on the specific reinforcement learning
problem and the size and complexity of the state space and action space.
Specifically, a small learning rate is typically used when the reinforce-
ment learning problem is complex, the environment is non-stationary, or
the agent is dealing with a high dimensional state or action space. This
helps to ensure a stable and robust learning process, even if the conver-
gence may be slower. On the other hand, a big learning rate can cause the
learning process to converge faster, but may also result in instability or
divergence of the algorithm. When a big learning rate was used, over-
shooting may occur because the algorithm updates the weights too
quickly that may cause it to oscillate. Big learning rates are typically used
when the reinforcement learning problem is simple, the environment is
stationary, or the agent has a clear understanding of the reward function.
In these cases, the learning process can converge faster, allowing the
agent to learn quickly and make better decisions.

In our MARL model, we use different learning rates to find out the
best fit for our model to reduce learning instability, as shown in Fig. 7,
where RMS represents the running model success and RMC represents
the running model collision. As can be seen from Fig. 7, the choice of
learning rate has a significant impact on the performance of the learning
algorithm. A small learning rate means that the weight updates in the
learning process will be slow, which can lead to a more stable but slower
convergence. Based on these results and analysis, the learning rate is
selected as LR ¼ 0.000,1 in our proposed MARL setting to deal with the
complexity of the problem and the high dimensional state or action
space.

The discount factor is also an important hyperparameter that needs to
be tuned in reinforcement learning. The discount factor determines the

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
relative importance of future rewards in the reinforcement learning al-
gorithm. A high discount factor means that future rewards are valued
more than immediate rewards, while a low discount factor means that
immediate rewards are valuedmore. In the context of AAM traffic control
using reinforcement learning, the choice of discount factor depends on
the specific problem formulation and the trade-off between immediate
and long-term rewards. If the goal is to reduce congestion in the airspace,
a high discount factor may be appropriate, as reducing congestion may
require taking actions that result in delayed rewards. On the other hand,
if the goal is to ensure safety, a low discount factor may be more
appropriate, as immediate rewards (e.g., avoiding collisions) are more
important. To determine the appropriate discount factor for the problem,
a range of discount factor values should be tested and their impact on the
performance of the reinforcement learning algorithm should be evalu-
ated. The choice of discount factor should be based on a balance between
the long-term goals of the AAM traffic control system and the need for
immediate actions that ensure safety. Different values of the discount
factor, such as 0.1, 0.5, 0.9, and 0.99 have been tested to see how they
impact the performance of the MARL algorithm.

Fig. 8 shows the learning curves for our reinforcement learning al-
gorithm with different discount factors (i.e., 0.1, 0.5, 0.9, and 0.99). The
x-axis represents the number of episodes, and the y-axis represents the
performance metric (e.g., cumulative reward). Each line in the figure
represents the learning curve for a specific discount factor. The learning
curve for a discount factor of 0.1 starts with a steep increase in perfor-
mance; however, it quickly plateaus and remains at a low level for the
rest of the training. The learning curve for a discount factor of 0.5 shows a
more gradual increase in performance, with a slower initial improvement
but eventually achieving better performance than a discount factor of
0.1. The learning curve for a discount factor of 0.9 shows an even slower
initial improvement, but performs better than a discount factor of 0.5.
Finally, the learning curve for a discount factor of 0.99 leads to the
slowest initial progress, but it eventually achieves the best performance
of all the discount factors. In sum, Fig. 8 illustrates how the choice of
discount factor can impact the performance of the proposed MARL al-
gorithm and highlights the trade-off between immediate and long-term
rewards.

Exploration rate is another important hyperparameter that needs to
be adjusted in the MARL algorithm, particularly in the setting of AAM
traffic control. A high exploration rate indicates that the agent is willing
to try new states and actions, even if it means foregoing short-term re-
wards. This can be helpful when the agent is first becoming familiar with
the environment and needs to explore different possibilities to develop a
good policy. On the other hand, a low exploration rate indicates that the
agent is more likely to exploit short-term rewards by taking advantage of
its current knowledge, even if it means giving up on possible long-term
Fig. 8. Learning curves for different discount factors.

11
rewards. This can be useful when the agent has already learned a good
policy and wants to optimize its performance.

In the MARL setting, there are multiple agents that interact with each
other and the environment, which can make the learning process more
complex. The exploration strategy used by each agent can affect the
overall performance of the system. In our experiment, we have explored
different exploration rates to find the optimal value for our MARL model.
We have tested a high exploration rate of 1.0, a decaying exploration rate
that started at 0.5 and decayed by a factor of 0.99 every 1,000 time steps,
and a low exploration rate of 0.1. Decaying exploration rate is a useful
strategy for MARL for balancing exploration and exploitation. Decaying
exploration rate is a strategy that starts with a high exploration rate and
gradually decreases it over time as the agent becomes more familiar with
the environment. The idea behind this strategy is that the agent needs to
explore different actions and states early on in the training process to
learn about the environment and build a good policy. As the agent gains
more knowledge and experience, it can shift towards exploiting its cur-
rent knowledge to maximize rewards.

The performance of our MARL model with different exploration rates
is shown in Fig. 9, from which we can see that the high exploration rate
initially performed well, but its performance shortly plateaued and
remained relatively low throughout training. The low exploration per-
formed better than high exploration rate, but its performance still un-
stable and fluctuated over time. The decaying exploration rate, on the
other hand, started with low performance in the beginning with high
exploration and gradually shifted towards exploitation as the agent
gained more knowledge that is leading to more stable and consistent
performance over time. The experiments showed that the decaying
exploration rate approach resulted in the best overall performance, and
we therefore chose the decaying exploration rate for our model.
4.3. Performance evaluation: A2C vs. DDPG

In the complex world of autonomous vehicle operations, selecting the
right reinforcement learning algorithm plays a pivotal role in achieving
efficient and safe vehicular behaviors. To elucidate the capabilities and
limitations of contemporary algorithms, we employed two widely recog-
nized reinforcement learning methods, A2C and DDPG, to a vehicle
merging scenario, which is emblematic of real-world complexities and
challenges. Given the dynamic nature of this problem, which involves
multiple agents (in our case, 10 vehicles) with intertwined actions and
outcomes, achieving optimal policies while ensuring safety is paramount.
Our experiments spanned over 30,000 episodes as shown in Fig. 10, and
for a fair evaluation, we ensured that both algorithms utilized identical
network architectures. The intent was to delve deep into the nuances of
each algorithm's learning curve, rate of convergence, and overall perfor-
mance, while isolating the algorithm as the primary variable of interest.
Fig. 9. Cumulative reward over time for different exploration rates.

A2C algorithm - success

DDPG algorithm - success

0 5,000 10,000 20,00015,000 25,000

Number of episode

7.5

8.0

9.0

10.0

8.5

9.5

N
u

m
b

er
 o

f
U

A
V

s

Fig. 10. Comparison of learning curves for A2C and DDPG.

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
Training time and efficiency: from a time-efficiency perspective, there
was a notable difference between the two algorithms. Training the A2C
model took approximately 96 h, equivalent to 4 days. In contrast, the
DDPG model required around 126 h to train for the same number of
episodes, a significant 31% increase in training time. Convergence rate:
regarding the learning curves and convergence rates, A2C outperformed
DDPG. The A2C model demonstrated a smoother learning curve and
reached optimal policies at a faster pace. DDPG, on the other hand, dis-
played initial challenges, particularly during the early phases of training.
The convergence for DDPG was observed around 10,000 episodes, which
is notably slower than A2C. Safety and accidents: safety is paramount in
vehicle merging scenarios. While A2C showed superior performance in
this regard, DDPG struggled initially, recording a higher number of ac-
cidents during the early training episodes. Even post-convergence, DDPG
still sporadically experienced accidents, indicating potential instability in
its policy updates or exploration mechanisms.

In sum, in the merging scenario involving 10 vehicles, A2C demon-
strated superior reliability and efficiency compared to DDPG. While A2C
exhibited faster convergence and a smoother learning curve, indicating
an enhanced capability to optimize in the environment, DDPG faced
initial challenges and a longer training duration. The observed disparities
might stem from the intrinsic differences between the algorithms,
particularly DDPG's deterministic policy gradient in contrast to A2C's
stochastic nature. Consequently, for this specific scenario, A2C emerged
as the more effective and reliable reinforcement learning approach.
4.4. Algorithm performance by choosing random sample

In reinforcement learning, the mean, median, and midrange of a
sample can provide some insight into the learning process. The mean is
the average of the sample, calculated as the sum of the values divided by
the number of values. The mean is a useful measure of central tendency,
as it provides a single number that summarizes the distribution of the
sample. However, it is sensitive to outliers and can be misleading if the
sample is not normally distributed. The median is the middle value of the
sample, calculated by arranging the values in order and selecting the
middle value (or the average of the twomiddle values if the sample size is
even). The median is a robust measure of central tendency, as it is not
sensitive to outliers. It is especially useful in reinforcement learning when
the sample distribution is not normal. The midrange is the average of the
minimum and maximum values of the sample. The midrange provides a
simple measure of the spread of the sample and can be useful for deter-
mining the range of values in the sample.

By calculating these statistics, one can get an idea of the distribution
of the sample and how the learning process is progressing over time. For
example, the mean or median can be used to track the progress of the
12
reinforcement learning algorithm and monitor how the reward signal
changes over time. Similarly, the midrange can provide information on
the range of values in the sample, which can be useful for detecting
outliers or unusual events in the learning process.

Figs. 11 and 12 show the performance of the MARL algorithm based
on the mean, median, and midrange statistics values. The mean value of
the success is measured as 9.6 out of 10, while the median is 9.7 and the
midrange is 9.4. The mean and median provide a measure of the typical
reward received by the agent. High values of the mean and median in
reinforcement learning typically indicate that the agent is performing
well and receiving high rewards for its actions. This may be a result of the
agent learning an optimal policy or a good strategy for performing the
task.

It is important to note that a high value for the mean and median does
not guarantee that the agent has learned an optimal policy. There may be
other factors that contribute to high rewards, such as a favorable initial
state or a lucky sequence of actions. To ensure that the agent has learned
an optimal policy, it may be necessary to evaluate its performance on a
held-out test set or by comparing it to other algorithms. In summary, a
high value of the mean and median in reinforcement learning is generally
a positive sign that the agent is performing well and receiving high re-
wards, but further evaluation may be necessary to ensure that the agent
has learned an optimal policy.
4.5. Experiment on method efficiency

In this section, we present the results of our experiments focused on
evaluating the conflict avoidance rate in merging case and intersection
case scenarios involving 20 AAM vehicles. This result is instrumental in
assessing the effectiveness of our MARL approach, shedding light on its
capacity to manage high-density AAM operations while ensuring safety
and efficiency.

The conflict avoidance rate as shown in Figs. 13 and 14 for merging
and intersection cases, which serves as a crucial indicator of the safety
and effectiveness of our MARL-based AAM management approach, is a
key focus of our analysis. It measures the percentage of conflicts suc-
cessfully avoided during AAM operations. In the intricate merging and
intersection scenarios featuring 20 AAM vehicles, our MARL model
demonstrated exceptional performance, achieving a conflict avoidance
rate of 99%. This remarkable outcome underscores the capability of our
approach to mitigate potential conflicts, enhance the safety of AAM op-
erations in congested airspace, and instill confidence in the feasibility of
autonomous, high-density air transportation.

In conclusion, the outcomes of our experiments in both scenarios
involving 20 AAM vehicles provide compelling empirical evidence of the
effectiveness of our MARL approach. The outstanding conflict avoidance
rate underscores the capabilities of our model in managing high-density
AAM operations while prioritizing safety. These findings align with the
broader goals of AAM, emphasizing the potential of advanced learning-
based algorithms to transform urban, suburban, and rural air trans-
portation into a safer and more efficient mode of travel.

5. Simulation results

Deep reinforcement learning agents need to undergo training in an
environment that allows them to learn and develop decision-making
capabilities. To evaluate the performance of our MARL model, we use
the BlueSky air traffic control simulator, which is an open-source and
open-data multi-platform simulation tool [14]. BlueSky has been used in
previous research to demonstrate reinforcement learning algorithms and
assess the performance of MARL models. Although the BlueSky simula-
tion environment does not include an eVTOL vehicle model, we conduct
our experiments using the fixed-wing Airbus A318 aircraft. Two specific
case scenarios are created within the BlueSky environment to evaluate
the effectiveness of our proposed MARL approach.

0 200 400
Sample

0 200 400
Sample

0 200 400
Sample

Mean Median Midrange

60

40

20

0

0.3 0.4 0.5 0.3 0.4 0.5 0.5 1.0

0.50

0.5 1.4

1.2

1.0

0.8

0.6

0.4

0.4

0.3

0.40

0.30

0.45

0.35

100

125

100

75

25

0

50

80

60

40

20

0

Fig. 12. Performance of MARL algorithm based on mean, median, and midrange statistics for collision of random training sample.

9.70

9.60

9.50

9.65

9.55

9.45

0 200 400
Sample

9.70

9.60

9.75

9.65

9.55

8.6

8.8

9.0

9.2

9.4

9.6

0 200 400
Sample

0 200 400
Sample

9.5 9.6 9.7

Mean

9.6 9.7

Median

9.0 9.5

Midrange

0

20

40

60

80

100

0

20

0

25

75

50

100

125

40

60

80

Fig. 11. Performance of MARL algorithm based on mean, median, and midrange statistics for success of random training sample.

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157

13

Conflict avoidance rate

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000

Episode

50

60

70

80

90

C
o
n
fi

ct
 a

v
o
id

an
ce

 r
at

e
(%

)

Fig. 13. Conflict avoidance rate in merging case scenario.

Conflict avoidance rate

0 5,000 10,000 20,000 30,00015,000 25,000

Episode

65

75

85

95

70

80

90

100

C
o
n
fl

ic
t

av
o
id

an
ce

 r
at

e
(%

)

Fig. 14. Conflict avoidance rate in intersection case scenario.

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
5.1. Merging scenario

It is undeniable that the coordination between vehicles is a critical
enabler for safe and effective merging maneuvers. While merging is
relatively easy for fully autonomous ground vehicles in a smart surface
transportation environment, coordination of air vehicles in the AAM
environment is a significantly more challenging task due to the complex
scenarios and a lack of communication between vehicles. In fact,
autonomous traffic control and management at merging airways has
been deemed as one of the main challenges for AAM operations. The
vehicles on the merging airway needs to efficiently merge into the main
air corridor without collision. In a cooperative environment, the AAM
vehicles on the main corridor should proactively slow down or speed up
Fig. 15. Merging control case stu

14
to create enough room for the vehicles on the merging corridor to join
safely. The merging vehicles should also adjust their speeds quickly to
join the main corridor when it is safe to prevent the collision. With our
proposed data-driven methods, the communication between the AAM
vehicles is assumed to be maximized for safe merging operations.

Fig. 15 illustrates the merging case scenario in the BlueSky simulation
environment. The horizontal lane symbolizes the primary corridor,
whereas the adjacent lane represents the merging lane or the secondary
aerial corridor. The aircraft along the route are symbolized by green
triangle shapes, while the airports on the map are represented by white
triangle and square shapes. Our case study focuses on generating an
optimal policy for the main aircraft (ownship) to safely merge with other
aircraft without causing conflicts at the merging point. To achieve this
goal, we define a reward structure that considers the ownship's speed,
acceleration, and distance to the merging point and other aircraft. The
policy-based MARL model is implemented using the CLDE approach,
where all agents share the same neural network and the policy is learned
through cooperation.

Each simulation run in the BlueSky is referred to as one episode. For
this case study, each episode comprises 10 aircraft that enter the airspace
randomly. This aircraft arrival pattern or aircraft entry sequence is uti-
lized for training the model. In our training process, each aircraft is
assigned its own objective to accomplish within the environment. We
conduct 100,000 episodes to train the agents and evaluate the perfor-
mance of our model. Through the training, we observe that each agent is
able to successfully reach its destination without causing any conflicts. In
each episode, the initial positions, initial speeds, and destinations of the
aircraft are randomly generated within the BlueSky environment. It is
important to note that training and testing our model with a higher
number of vehicles or increased air traffic density would yield more ac-
curate results for AAM operations. However, due to the limitations of
available aircraft models in the BlueSky environment, we specifically test
our model using the Airbus A318, which is one of the smaller aircraft in
the simulation, as an example to showcase the effectiveness of our
approach.

We evaluate our MARL model's performance in two different merging
case scenarios with varying numbers of aircraft (i.e., different aircraft
density levels). The first case scenario involves 10 aircraft, while the
second case scenario involves 50 aircraft.

Fig. 16 shows the results of 40,000 episode runs with 10 aircraft,
where we can see that the model behavior gets better over time. While
the orange curve represents the number of collisions, the blue curve
shows the successful pass at the merging point. After 10,000 episode
runs, our model starts a better performance and generates better pol-
icies that lead each agent to safe separations and merging. In Fig. 17,
training of the model with 10 vehicles over 100,000 episodes clearly
demonstrate the model performance and test all the possible merging
cases in our simulation. As can be seen from Fig. 17, the performance of
the model can be evaluated by the mean value of the model's success
and collision at the end of the episode. The proposed method consis-
tently outperforms the benchmark in all traffic levels during the
dy in BlueSky environment.

0

0

2

4

6

8

10

20,000 40,000 60,000 80,000 100,000
Number of episode

N
u

m
b

er
 o

f
U

A
V

s

Mean success

Mean collision

Fig. 17. MARL model performance with 10 vehicles.

0 5,000 10,000 20,000 30,00015,000 25,000 35,000

Number of episode

10

8

6

4

2

0

N
u

m
b

er
 o

f
U

A
V

s

Running model success

Running model collision

Fig. 16. MARL model training with 10 vehicles.

0 10,000 20,000 30,000 40,000 50,000 60,000
Number of episode

0

10

20

30

40

50

Running model success

Running model collision

N
u

m
b

er
 o

f
U

A
V

s

Fig. 18. MARL model training with 50 vehicles.

10

20

30

40

50

N
u
m

b
er

 o
f

U
A

V
s

Mean success

Mean collision

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
merging. The model can learn the optimal policy for the ownship to
safely merge with other aircraft, and the results show that the average
speed and acceleration of the ownship are within the safe limits during
the flight.

To further assess the performance of the merging algorithm in the
context of different aircraft density levels, we run the simulations with 50
vehicles and record metrics such as the distance between the vehicles and
any conflicts or collisions that occur during the merging process, as
shown in Figs. 18 and 19. The results suggest that the proposed data-
driven air traffic management system is capable of effectively man-
aging complex air traffic scenarios and maintaining safe separation be-
tween aircraft, even under high aircraft density levels. Testing and
development in practical real-world implementations are necessary to
ensure the system's reliability and efficacy. Additionally, the algorithm's
performance may depend on other factors such as the merging point's
geometry, vehicle size and speed, and external factors like weather and
structural constraints of the AAM system. Therefore, comprehensive
testing under various conditions is essential to fully evaluate the algo-
rithm's performance in future studies.
0 10,000 20,000 30,000 40,000 50,000 60,000
Number of episode

0

Fig. 19. MARL model performance with 50 vehicles.
5.2. Intersection scenario

The intersection is another important AAM scenario in which two or
more AAM vehicles cross each other's path at a point in the air. Like the
15
merging scenario, the intersection scenario also requires safe separation
between the vehicles to prevent any collision. In the intersection sce-
nario, the state includes information about the position and dynamics of
each vehicle. The actions in this scenario are the speed adjustments of
each vehicle, and the reward is defined based on the minimum safe
separation distance between the vehicles. The reinforcement learning
model's objective is to adjust the speed of each vehicle to ensure safe
separation while passing the intersection.

An intersection case scenario is created in BlueSky as shown in
Fig. 20, and the parameters for the intersection case are modified. The
simulator allows us to observe the interactions between vehicles and
evaluate the performance of our MARL model in terms of safety, effi-
ciency, and fairness. We modify the parameters for the intersection case
and test two different aircraft density levels: 10 aircraft and 20 aircraft.
Figs. 21–24 show the performance of the intersection scenario for two
density levels. Our proposed algorithm effectively avoids conflicts by
providing speed advisories to each vehicle, ensuring safe and efficient
intersection control for AAM.

In the first intersection case study, each episode consists of 10
randomly entering aircraft in the airspace for model training. Our MARL
model undergoes 40,000 episode runs to train the agents and evaluate its
performance. By the end of the training, we observe that each agent
successfully reaches its destination and passes the intersection without
conflicts. Fig. 21 shows the results of 30,000 episode runs for 10 vehicles,
illustrating the gradual improvement in model behavior over time. The
orange curve represents the number of collisions, while the blue curve
shows the successful pass at the intersection. After 5,000 episode runs,

Fig. 20. Intersection case study in BlueSky environment.

0 5,000 10,000 20,00015,000 25,000

Number of episode

Running model success

Running model collision

10

8

6

4

2

0

N
u
m

b
er

 o
f

U
A

V
s

Fig. 21. MARL model training with 10 vehicles.

0 5,000 10,000 20,00015,000 25,000

Number of episode

Mean success

Mean collision

10

8

6

4

2

0

N
u
m

b
er

 o
f

U
A

V
s

Fig. 22. MARL model performance with 10 vehicles.

0 5,000 10,000 20,000 30,00015,000 25,000

Number of episode

0.0

5.0

10.0

20.0

15.0

12.5

17.5

2.5

7.5

Running model success

Running model collision
N

u
m

b
er

 o
f

U
A

V
s

Fig. 23. MARL model training with 20 vehicles.

0 5,000 10,000 20,000 30,00015,000 25,000
Number of episode

Mean success

Mean collision

N
u

m
b

er
 o

f
U

A
V

s

0.0

5.0

10.0

20.0

15.0

12.5

17.5

2.5

7.5

Fig. 24. MARL model performance with 20 vehicles.

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
our model demonstrates better learning performance and generates
improved policies for ensuring safe separations at the intersection.

The density of air traffic significantly impacts the performance of our
MARL approach, particularly in the intersection scenario. A higher
density implies a greater number of aircraft in the airspace simulta-
neously, increasing the likelihood of conflicts and safety issues during the
intersection crossing. In the BlueSky simulation environment, increasing
the aircraft density introduces more complex air traffic scenarios,
16
requiring real-timemanagement of a larger number of aircraft. This poses
a greater challenge for ensuring safe separation between the aircraft,
ultimately putting the reinforcement learning-based autonomous air
traffic management system to the test.

To assess the influence of aircraft density on our MARL approach's
performance in the intersection case, we conduct tests with 20 aircraft
and record the model's behavior, as shown in Fig. 23. The results
indicate that our model successfully resolves conflicts at the intersec-
tion, even with a high number of vehicles present. The proposed
approach efficiently handles increased aircraft density, and its per-
formance remains robust even as the density increases. In fact, Fig. 24
shows that training and testing our model with a higher number of

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
vehicles will be giving slightly more accurate results for AAM opera-
tions, as has been already observed in the merging scenario. The
higher number of aircraft in the model allows the algorithm to
encounter and learn from a wider range of scenarios and situations,
which can improve its ability to handle the conflicts at the intersec-
tion. As the number of aircraft increases, the model has more oppor-
tunities to experience different scenarios, which can help it learn to
identify patterns and strategies that are more effective when dealing
with larger numbers of aircraft. Additionally, the increased complexity
of the scenario with more aircraft can help the model develop more
robust policies that can handle a wider range of situations, leading to
better overall performance. Therefore, training and testing the model
with a higher number of aircraft can lead to more accurate and
effective results for autonomous air traffic management operations.
Given that the traffic scenarios simulated in this case assume the same
flight level, the maximum number of vehicles in the same corridors is
limited by safety conditions dictated by the AAM concept of operation.
Consequently, further testing with higher aircraft densities is necessary
to investigate the performance and potential limitations of our model
comprehensively.

The presented simulation results demonstrate the effectiveness of our
proposed data-driven air traffic management system in handling complex
air traffic scenarios and ensuring safe separation between aircraft. The
merging and intersection case scenarios illustrate the capability of our
MARL model to address critical challenges in AAM operations. However,
it is important to continue testing and refining the system to enhance its
reliability, especially for practical real-world implementations. Addi-
tionally, considering other factors such as the geometry ofmerging points,
vehicle size and speed, and external influences (e.g., weather conditions
and AAM system constraints) will contribute to a more comprehensive
evaluation of the algorithm's performance in diverse conditions.

6. Conclusion

Autonomous traffic control and management at merging points and
intersections are raising problems in advanced air mobility (AAM). In
conclusion, this paper addresses the challenge of autonomous traffic
control andmanagement at merging points and intersections in advanced
air mobility (AAM). The proposed solution involves formulating and
solving model-free problems for AAM vehicles operating within air cor-
ridors, with the aim of achieving safer andmore efficient AAMmissions. A
multi-agent reinforcement learning (MARL) model is developed to tackle
the problem, and a neural network architecture is designed to train and
evaluate the model using the BlueSky environment. The use of LSTM ar-
chitecture enables effective encoding of intruder information and facili-
tates decision-making. The trainedmodel provides policies for each agent
to followduringflight, ensuring conflict-free operations atmerging points
and intersections. The simulation results demonstrate the convergence of
the proposed approach, highlighting the successful guidance of vehicles in
different scenarios. This research contributes to the advancement of
autonomous air traffic control in the context of AAM, paving the way for
enhanced safety and efficiency in future air transportation systems.

CRediT authorship contribution statement

Sabrullah Deniz: Methodology, Validation, Formal analysis, Writing -
Original Draft.

Yufei Wu: Writing - Review & Editing.
Yang Shi: Writing - Review & Editing.
Zhenbo Wang: Writing - Review & Editing, Supervision, Project

administration, Funding acquisition.

Data availability statement

The data and materials used to support the findings of this study are
available from the corresponding author upon reasonable request.
17
Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was funded in part by the National Science Foundation
(NSF) CAREER Award CMMI-2237215.

References

[1] Goodrich KH, Theodore CR. Description of the nasa urban air mobility maturity
level (uml) scale. In: AIAA Scitech 2021 forum; 2021. p. 1627.

[2] Hasan S. Urban air mobility (uam) market study. Tech Rep 2019.
[3] Holden J, Goel N. Fast-forwarding to a future of on-demand urban air

transportation. 2016. San Francisco, CA.
[4] Airbus. Urban air mobility by airbus. 2018.
[5] Corgan. Connect evolved. 2019.
[6] Forecast FA. Office of aviation policy and plans (apo-100) faa u.s. passenger airline

forecasts, fiscal years 2020-2040. 2020.
[7] FAA. Concept of operations v2.0", enabling civ. low-altitude airsp. unmanned aircr.

syst. oper. 2020. https://utm.arc.nasa.gov/index.shtml.
[8] Bradford S. Urban air mobility (uam) concept of operations v1. 0. Boston:

EmbraerX; 2020. p. 5.
[9] Johnson M, Jung J, Rios J, Mercer J, Homola J, Prevot T, et al. Flight test evaluation

of an unmanned aircraft system traffic management (utm) concept for multiple
beyond-visual-line-of-sight operations. In: USA/Europe air traffic management
research and development Seminar (ATM2017). ARC-E-DAA-TN39084; 2017.

[10] Jung J, Rios JL, Drew CR, Modi HC, Jobe KK. Small unmanned aircraft system off-
nominal operations reporting system. 2020.

[11] Google. Alphago — deepmind. 2018.
[12] OpenAI. Openai. 2019.
[13] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9(8):

1735–80.
[14] Hoekstra JM, Ellerbroek J. Bluesky atc simulator project: an open data and open

source approach. In: Proceedings of the 7th international conference on research in
air transportation, vol. 131. FAA/Eurocontrol USA/Europe; 2016. p. 132.

[15] Bouton M, Nakhaei A, Fujimura K, Kochenderfer MJ. Cooperation-aware
reinforcement learning for merging in dense traffic. In: 2019 IEEE intelligent
transportation systems conference (ITSC). IEEE; 2019. p. 3441–7.

[16] Liang X, Du X, Wang G, Han Z. Deep reinforcement learning for traffic light control
in vehicular networks. arXiv preprint arXiv:1803.11115 2018.

[17] Genders W, Razavi S. Using a deep reinforcement learning agent for traffic signal
control. arXiv preprint arXiv:1611.01142 2016.

[18] Chen D, Li Z, Wang Y, Jiang L, Wang Y. Deep multi-agent reinforcement learning for
highway on-ramp merging in mixed traffic. arXiv preprint arXiv:2105.05701 2021.

[19] Erzberger H. Automated conflict resolution for air traffic control (25Th Int. Congr.
Aeronaut. Sci., no. March. 2014. p. 1–28.

[20] Erzberger H, Heere K. Algorithm and operational concept for resolving short-range
conflicts. Proc Inst Mech Eng G J Aerosp Eng 2010;224(2):225–43.

[21] Tumer K, Agogino AK. Adaptive management of air traffic flow: a multiagent
coordination approach.. In: AAAI; 2008. p. 1581–4.

[22] Brittain M, Yang X, Wei P. A deep multi-agent reinforcement learning approach to
autonomous separation assurance. arXiv preprint arXiv:2003.08353 2020.

[23] Chu T, Wang J, Codec�a L, Li Z. Multi-agent deep reinforcement learning for large-
scale traffic signal control. IEEE Trans Intell Transport Syst 2019;21(3):1086–95.

[24] Schuchardt BI, Geister D, Lüken T, Knabe F, Metz IC, Peinecke N, et al. Air traffic
management as a vital part of urban air mobility—a review of dlr’s research work
from 1995 to 2022. Aerospace 2023;10(1):81.

[25] Pinto Neto EC, Baum DM, Almeida Jr JRd, Camargo Jr JB, Cugnasca PS. Deep
learning in air traffic management (atm): a survey on applications, opportunities,
and open challenges. Aerospace 2023;10(4):358.

[26] de Oliveira �IR, Neto ECP, Matsumoto TT, Yu H. Decentralized air traffic
management for advanced air mobility. In: 2021 integrated communications
navigation and surveillance conference (ICNS). IEEE; 2021. p. 1–8.

[27] Deniz S, Wang Z. A multi-agent reinforcement learning approach to traffic control at
future urban air mobility intersections. In: AIAA SCITECH 2022 Forum; 2022. p. 1509.

[28] Deniz S, Wu Y, Shi Y, Wang Z. A multi-agent reinforcement learning approach to
traffic control at merging point of urban air mobility. In: AIAA AVIATION 2022
forum; 2022. p. 3912.

[29] Elevate U. Operations inside corridors. 2020. October.
[30] Morales EF, Zaragoza JH. An introduction to reinforcement learning. In: Decision

theory models for applications in artificial intelligence: concepts and solutions. IGI
Global; 2012. p. 63–80.

[31] Garcia F, Rachelson E. Markov decision processes, Markov decision processes in
artificial intelligence. 2013. p. 1–38.

[32] Pham D-T, Tran NP, Goh SK, Alam S, Duong V. Reinforcement learning for two-
aircraft conflict resolution in the presence of uncertainty. In: 2019 IEEE-RIVF
international conference on computing and communication technologies (RIVF).
IEEE; 2019. p. 1–6.

http://refhub.elsevier.com/S2773-1537(24)00009-4/sref1
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref1
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref2
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref3
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref3
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref4
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref5
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref6
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref6
https://utm.arc.nasa.gov/index.shtml
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref8
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref8
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref9
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref9
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref9
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref9
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref10
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref10
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref11
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref11
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref12
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref13
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref13
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref13
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref14
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref14
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref14
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref15
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref15
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref15
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref15
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref16
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref16
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref17
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref17
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref18
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref18
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref19
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref19
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref19
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref20
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref20
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref20
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref21
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref21
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref21
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref22
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref22
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref23
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref23
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref23
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref23
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref24
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref24
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref24
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref24
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref25
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref25
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref25
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref26
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref26
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref26
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref26
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref26
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref27
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref27
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref28
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref28
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref28
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref29
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref30
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref30
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref30
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref30
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref31
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref31
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref31
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref32
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref32
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref32
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref32
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref32

S. Deniz et al. Green Energy and Intelligent Transportation 3 (2024) 100157
[33] Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 2017.

[34] Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, et al. Asynchronous
methods for deep reinforcement learning. In: International conference on machine
learning. PMLR; 2016. p. 1928–37.

[35] Nachum O, Norouzi M, Xu K, Schuurmans D. Bridging the gap between value and
policy based reinforcement learning. Adv Neural Inf Process Syst 2017;30.

[36] Peters J. Policy gradient methods. Scholarpedia 2010;5(11):3698.
[37] Sutton RS, Barto AG. Reinforcement learning: an introduction. MIT press; 2018.
[38] Sutton RS, McAllester D, Singh S, Mansour Y. Policy gradient methods for

reinforcement learning with function approximation. Adv Neural Inf Process Syst
1999;12.

[39] Morimura T, Uchibe E, Doya K. Natural actor-critic with baseline adjustment for
variance reduction. Artif Life Robot 2008;13(1):275–9.

[40] Berner C, Brockman G, Chan B, Cheung V, Dębiak P, Dennison C, et al. Dota 2 with
large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680 2019.

[41] Busoniu L, Babuska R, De Schutter B. A comprehensive survey of multiagent
reinforcement learning. IEEE Trans Sys Man Cybernet Part C (Applications and
Reviews) 2008;38(2):156–72.

[42] Kumar RR, Varakantham P. On solving cooperative marl problems with a few good
experiences. arXiv preprint arXiv:2001.07993 2020.

[43] Tan M. Multi-agent reinforcement learning: independent vs. cooperative agents. In:
Proceedings of the tenth international conferenceonmachine learning; 1993. p. 330–7.

[44] Matignon L, Laurent GJ, Le Fort-Piat N. Independent reinforcement learners in
cooperative markov games: a survey regarding coordination problems. Knowl Eng
Rev 2012;27(1):1–31.
18
[45] Kraemer L, Banerjee B. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing 2016;190:82–94.

[46] Weiss G. Multiagent systems: a modern approach to distributed artificial
intelligence. Int J Comput Intell Appl 2001;1:331–4.

[47] Schulman J, Moritz P, Levine S, Jordan M, Abbeel P. High-dimensional continuous
control using generalized advantage estimation. arXiv preprint arXiv:1506.02438
2015.

[48] Wang Y, He H, Tan X. Truly proximal policy optimization. In: Uncertainty in
artificial intelligence. PMLR; 2020. p. 113–22.

[49] Chen G. A new framework for multi-agent reinforcement learning–centralized
training and exploration with decentralized execution via policy distillation. arXiv
preprint arXiv:1910.09152 2019.

[50] Nwankpa C, Ijomah W, Gachagan A, Marshall S. Activation functions: comparison
of trends in practice and research for deep learning. arXiv preprint arXiv:
1811.03378 2018.

[51] Niu Z, Zhong G, Yu H. A review on the attention mechanism of deep learning.
Neurocomputing 2021;452:48–62.

[52] Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach
Learn Res 2012;13(2).

[53] Probst P, Wright MN, Boulesteix A-L. Hyperparameters and tuning strategies for
random forest. Wiley Interdisciplinary Rev: Data Min Knowl Discov 2019;9(3):
e1301.

[54] Wu J, Chen X-Y, Zhang H, Xiong L-D, Lei H, Deng S-H. Hyperparameter
optimization for machine learning models based on bayesian optimization. J Electr
Sci Tech 2019;17(1):26–40.

http://refhub.elsevier.com/S2773-1537(24)00009-4/sref33
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref33
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref34
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref34
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref34
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref34
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref35
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref35
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref36
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref37
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref38
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref38
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref38
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref39
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref39
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref39
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref40
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref40
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref41
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref41
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref41
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref41
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref42
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref42
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref43
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref43
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref43
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref44
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref44
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref44
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref44
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref45
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref45
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref45
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref46
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref46
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref46
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref47
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref47
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref47
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref48
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref48
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref48
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref49
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref49
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref49
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref49
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref50
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref50
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref50
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref51
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref51
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref51
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref52
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref52
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref53
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref53
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref53
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref54
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref54
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref54
http://refhub.elsevier.com/S2773-1537(24)00009-4/sref54

	A reinforcement learning approach to vehicle coordination for structured advanced air mobility
	1. Introduction
	1.1. Background and motivation
	1.2. Related work

	2. Preliminaries
	2.1. Reinforcement learning
	2.2. Policy-based learning
	2.3. Multi-agent reinforcement learning

	3. System model and problem formulation
	3.1. Problem formulation
	3.2. State space
	3.3. Action space
	3.4. Reward function

	4. Network design and hyperparameter tuning
	4.1. Network design
	4.2. Hyperparameter tuning
	4.3. Performance evaluation: A2C vs. DDPG
	4.4. Algorithm performance by choosing random sample
	4.5. Experiment on method efficiency

	5. Simulation results
	5.1. Merging scenario
	5.2. Intersection scenario

	6. Conclusion
	CRediT authorship contribution statement
	Data availability ​statement
	Declaration of competing interest
	Acknowledgements
	References

