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A B S T R A C T   

Mid-infrared spectroscopy (MIR) using photon up-conversion provides advantages over near-infrared spectros
copy (NIR) for plastic waste recycling, including comparable data collection speed and the ability to detect black 
plastics. However, high-speed MIR spectra suffer from the presence of significant noise. While convolutional 
neural networks (CNNs) have been utilized for accurate classification of noisy MIR spectra, the analysis of 
extracted features by the CNN has received less attention. In this study, we analyzed features extracted by a CNN 
from high-speed MIR spectra collected at 200 spectra per second. Visualizing salient features through the Grad- 
CAM method revealed that, although the CNN model achieved 100% accuracy, the predictions were not reliable 
or robust, as the model is susceptible to noise interference. To address this limitation, we propose a wavelet 
transform-based multi-resolution analysis (MRA) as a preprocessing method for noisy MIR spectra. We show that 
MRA reconstruction effectively captures features related to characteristic IR peaks, enabling the CNN model to 
extract informative features from noisy MIR spectra and significantly improves the prediction fidelity and 
robustness.   

1. Introduction 

Plastic waste is a pressing global issue, both economically and 
environmentally (EPA 2020). Addressing this problem necessitates an 
efficient and sophisticated system for recycling plastic waste. This pro
cess forms a pipeline that necessitates a sequence of stages such as 
collection, transportation, sorting, and recovery, as shown in Fig. 1. A 
great challenge within this recycling chain, particularly prior to the 
recovery stage, is the task of sorting or classification of plastics. To 
ensure high-quality and high-value recycled plastic, the waste must be 
meticulously sorted, segregating different types of plastics in prepara
tion for the recovery process. 

To effectively recycle mixed plastic wastes (MPW) on a large scale, 
fast detection and accurate sorting or classification are crucial. Many 
waste facilities, including municipal recycling centers and commercial 
recycling companies, have adopted near-infrared spectroscopy (NIR) 
technology as a standard practice for their operations. NIR is a non- 
destructive method for identifying materials based on their molecular 
structure, making it well-suited for recycling applications where the goal 
is to separate materials for reuse or further processing. One of the most 

important advantages of NIR is its high data acquisition speed up to 
hundreds of spectra per second. However, NIR suffers from the limita
tions in detecting black plastics (Ragaert et al., 2017; Faraca and Astrup, 
2019), which comprise approximately 15% of MPW (Turner, 2018). As a 
result, most black plastic items end up in our landfills and incinerators, 
because the NIR used by recycling facilities cannot “see” the color black. 
A promising alternative to NIR is mid-infrared spectroscopy (MIR) using 
photon up-conversion technique (Becker et al., 2017), in which photons 
are transformed from the IR spectral range into the near infrared spectral 
range and fast silicon detectors can be used. MIR spectroscopy combines 
the high accuracy of the infrared spectral range with the high speed of 
NIR. More importantly, MIR spectroscopy can detect black plastics, 
which can improve the overall recycling efficiency of MPW. 

For industrial application purposes, both NIR and MIR spectroscopic 
data have low signal-to-noise ratio (SNR) due to the fast measurement 
speed. In addition, the plastic samples are moving on a conveyer belt 
which introduces more sources of noise due to the vibration and 
disturbance. To accurately classify the noisy spectra, many convolu
tional neural network (CNN) models have been developed (Jiang et al., 
2021; Zinchik et al., 2021; Michel et al., 2020; Zhu et al., 2019). CNN is a 
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type of deep learning method that can automatically learn to extract 
distributed features of input data. The primary advantage of CNN is that 
it provides automatic feature extraction by loads of convolutional and 
pooling layer pairs (Liu et al., 2021). Despite the tremendous success, 
the non-linear nature of these models as well as the noise and other 
sources of variability in the spectra make it difficult to extract mean
ingful information. To alleviate concerns regarding the fidelity of 
data-driven model predictions, various preprocessing methods have 
been developed to improve the quality of IR spectra and enhance their 
interpretability (Guillemé et al., 2019; Pandey et al., 2022). Wavelet 
analysis has emerged as a promising approach for preprocessing spec
troscopic data. Wavelet analysis is a mathematical technique used to 
break down a signal into various frequency components, enabling a 
comprehensive analysis of the signal across multiple scales. In the realm 
of IR spectroscopy, wavelet analysis proves beneficial by eliminating 
noise and other sources of variability from spectra (Shabani et al., 2018; 
Chen and Lu, 2022). The main advantage of wavelet analysis compared 
with other noise-filtering methods is the possibility of localizing the 
frequency information to selected parts of the data. In IR spectra, 
complex characteristic peaks are located at different regions with 
different shapes. Fourier Transform (FT) or smoothing window denois
ing methods apply a single cut-off frequency for all peaks, which may 
either include too much noise or filter out important peaks. Wavelet 
analysis outperforms in such cases because it is localized in both the 
wavelength and frequency domains. This process enhances the quality of 
the spectra, facilitating the extraction of meaningful features (Alsberg 
and B, 1997; Xie et al., 2017; Raczkowska et al., 2019; Trevisan et al., 
2012; Lu et al., 2020). 

In this study, we investigate the effectiveness of wavelet transform- 
based MRA for preprocessing noisy MIR spectra. We compare the MIR 
features extracted by a CNN model with and without MRA preprocessing 
and visualize them using Grad-CAM (Selvaraju et al., 2019). Without 
preprocessing, the CNN achieves nearly 100% classification accuracy on 
test spectra, but the predictions are not based on the characteristic IR 
peaks of the plastics. In contrast, with the wavelet-based preprocessing, 
CNN successfully identifies the characteristic IR peaks and achieves 
100% classification accuracy based on these features. Our results 
demonstrate that MRA preprocessing improves CNN feature selection, 
leading to a more explainable machine learning model with enhanced 
fidelity and robustness. 

2. Experimental data collection 

2.1. MIR measuring system 

The schematic experimental setup is shown in Fig. 2. The IR source (a 
1000 ◦C silicon nitride, Si3N4 light source, 4.5 mm in diameter and 17 
mm long, heated by 70 W electric power, Hawkeye Technologies model 
IR-Si311) was placed at the focus of an aluminum elliptical reflector 
which focused the light at 200 mm from the front surface of the reflector, 
projecting the light on a gold diffuser, generating a circular area with 

around 10 mm diameter. Some of the reflected light from the plastic 
surface was collected by a 1 in. parabolic gold-coated aluminum mirror 
(with a focal length of 200 mm) that collimated light from the diffuser, 
after which a 40 mm CaF2 lens focused the light into a 200 μm core 
indium fluoride (InF3) fiber that was connected to an MIR spectrometer 
(NLIR S2050, Denmark). In our previous work (Jiang et al., 2021), we 
provided detailed information about the up-conversion MIR spectrom
eter. Briefly, spectrometer (NLIR S2050) is based on sum-frequency 
generation in a χ(2)-nonlinear LiNbO3 crystal that upconverts MIR 
light from the band 2.0 − 5.0 μm to the near-visible region 695− 877 nm 
(Barh et al., 2017; Friis and Høgstedt, 2019; Jahromi et al., 2019; Meng 
et al., 2018). The upconversion spectrometer offers several advantages, 
including the exclusion of most thermal noise (Pedersen et al., 2018) and 
the utilization of silicon-based CMOS array detectors that exhibit su
perior detectivities compared to traditional MIR detectors such as 
HgCdTe (MCT) or PbSe array detectors. The CMOS detector comprises 
2048 pixels, and the spectral resolution is <6 cm− 1. 

To replicate the conveyor belt in an industrial setting, the plastic 
samples were placed on a moving platform. This platform was operated 
by a 12 V DC motor, with an angular velocity set at 2.5 rad/s. The MIR 
source was positioned at a fixed focal point, located 40 mm away from 
the center of the platform. This distance corresponded to a linear speed 
of 100 mm/s of the samples. The platform surface was made of urethane, 
a common material used for conveyor belts in industrial applications. 

2.2. Spectroscopic data collection 

In this study, we focused on 5 commercially available plastic mate
rials commonly found in mixed plastic waste (MPW): black polystyrene 
(PS), black polyethylene (PE), deep blue polypropylene (PP), white 
polyvinyl chloride (PVC) and black polycarbonate (PC). These plastic 
samples were 1 mm thick sheets obtained from ePlastics (San Diego, 

Fig. 1. A common workflow for mixed plastic waste recycling. Accurate and high-throughput sorting is an important step for subsequent recovery phases.  

Fig. 2. Experimental setup. The plastic samples are placed on the moving 
platform to mimic the industrial application. 
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California, United States). In addition, we also considered the black 
urethane, which is a common conveyer belt material, referred to as the 
background (BK) in the following context. The plastic sheets were cut to 
match the size of the platform and MIR spectra were collected by placing 
the samples on the moving platform to include vibration noise. We 
selected 900 data points in each spectrum within the wavenumber range 
of 2350 cm− 1 to 3950 cm− 1 for the wavelet analysis and machine 
learning classification. For each sample, 1000 spectra were collected at a 
measurement rate of 200 spectra per second, resulting in a total of 6000 
spectra. 

The 20 randomly selected spectra of each sample are shown in Fig. 3. 
PE and PP exhibit discernible characteristic peaks within the 2900 cm− 1 

to 3000 cm− 1 range attributed to C-H stretching. The peaks in the 
remaining samples are obscured by noise. Furthermore, PC, PS and PVC 
demonstrate closely resembling spectral patterns, which makes it chal
lenging for accurate and robust classification. 

3. Wavelet preprocessing and CNN 

3.1. Multiresolution analysis 

In the realm of signal processing and image analysis, the wavelet 
transform serves as a pivotal mathematical instrument. Its significance is 
particularly highlighted in the field of multiresolution analysis (MRA), a 
complex yet profoundly insightful process which fractionates a signal 
into multiple constitutive elements. These segmented parts, when 
combined, precisely reconstruct the original signal. By decomposing the 
inherent variability of the data, the wavelet transform elucidates the 
underlying structures and makes it feasible to interpret the data in 
physically meaningful ways. An in-depth exploration of the theoretical 

foundation and the comprehensive mathematical description of the 
wavelet transform can be found in the literature (Alsberg et al., 1997). 
Briefly, a wavelet can be defined as a function of the following form: 

ψa,b(t) =
1̅
̅̅
a

√ ψ
(

t − b
a

)

a, b ∈ R (1)  

where a and b are called scale and position parameters, respectively. The 
functional form, ψa,b(t), represents a waveform of effectively limited 
duration which is characterized by an average value of zero. The scale 
parameter a defines the width of the wavelet duration, and the position 
parameter b determines the position where the wavelet convolutes with 
the original signal. 

For a particular signal denoted by f(t), the coefficients of the wavelet 
transform corresponding to a given scale a can be computed as: 

wt(a, b) =

∫+∞

− ∞

f (t)⋅ψa,b(t)dt (2) 

In its operation, the wavelet transforms capture high-frequency in
formation from f(t) at lower scale values a, similar to adjusting the 
resolution of a microscope. This attribute of the wavelet transform 
empowers it to dissect information across different resolution levels, 
bringing forth valuable insights concealed within original data. 

Fig. 4(a) shows a randomly selected PE spectrum, the inset is the 
Daubechies 4 wavelet (db2 wavelet) used for the decomposition. The 
selection of db2 wavelet was primarily due to its morphological simi
larity to the peaks observed in MIR spectra, thereby enhancing the 
capability of feature extraction. 

Fig. 4(b) delineates the coefficients corresponding to eight levels of 

Fig. 3. MIR spectra measured at the rate of 200 spectra per second. 20 randomly selected spectra of each sample are plotted.  
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decomposition, ranging from L1 to L8. It also includes an additional 
representation of the approximation (Appr.) coefficients. The L1 level 
captures the highest frequency information, while the approximation 
coefficient embodies the lowest frequency information, effectively rep
resenting the baseline trend in the spectrum. 

After the decomposition, we reconstructed the spectrum by summing 
the coefficients from L5 to L8. This reconstruction process effectively 
eliminated the high frequency components and removed the baseline. As 
depicted in Fig. 4(c), the reconstructed spectrum effectively reduces 
noise while enhancing the characteristic IR peaks. The reconstructed 
spectra of other plastic samples are presented in Fig. S1. Both the raw 
spectra and the reconstructed spectra were normalized before the ma
chine learning training and classification. 

When juxtaposed with popular low-pass filter denoising, the wavelet 
transform has clear advantages. It allows for multiresolution analysis, 
capturing both high and low-frequency details, whereas low-pass filters 
might miss such nuances. Furthermore, wavelets are inherently local
ized in both wavelength and frequency, enabling precise noise removal 
especially when noise varies across the signal. In contrast, low-pass fil
ters operate globally, potentially missing localized signal characteristics. 

3.2. CNN model 

The reconstructed MIR spectra were analyzed with a 1D CNN. The 
architecture of the proposed 1D CNN is shown in Fig. 5. The 1D CNN, 
employing both convolution and pooling methods, extracts important 
features from the reconstructed MIR spectra. Each convolutional filter in 
our design is represented as a 3D vector. The convolved signal, which is 
a scalar value, signifies the presence (high value) or absence (low value) 
of the pattern the filter aims to detect. Convolutional operations then 
perform a nonlinear transformation (e.g., rectified linear units) to 
transform one vector into another of identical dimension. These filters 
are referred to as convolutional layers. Convolutional operations sub
stantially augment the information to be processed. Hence, it becomes 
essential to summarize this information. To achieve this, we apply a 
max-pooling operation to diminish the dimension, taking a portion of a 
given vector (specifically, a size 2 subset in our model) and reduces it to 
a single value by extracting the maximum value. This effectively reduces 
the vector dimensions emerging from the convolutional layer, distilling 
the important information. 

The 900 datapoints reconstructed MIR spectra were fed into the 1D 
CNN. The first two convolutional layers contained 32 filters with a size 
of 7 each. The third convolutional layer comprised 64 filters, each of size 

Fig. 4. (a) MIR spectra of PE. The inset shows the ‘db2’ wavelet function used for the decomposition. (b) MRA Coefficients of 8 level decomposition from L1 to L8, as 
well as the approximation (Appr.) (c) Reconstructed spectrum by summing the components in (b) from L5 to L8. 

Fig. 5. The architecture of the proposed 1D CNN.  
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7, and the fourth convolutional layer had 128 filters of size 7. Each fully 
connected layer incorporated 128 nodes, and every max-pooling layer 
utilized a filter of size 2. Between the layers, Rectified linear units 
(ReLUs) functioned as activation functions. A dropout ratio of 0.2 was 
introduced between each pair of fully connected layers to mitigate 
overfitting. The output layer operated with the softmax activation 
function, and categorical cross-entropy served as the loss function. The 
output vector, having a dimension of 6, signified the probability that the 
MIR spectra derived from a specific plastic type. The convolutional 
layers and max-pooling layers were organized recursively in 1D CNN to 
extract information at both the local and global scales. In addition, this 
arrangement facilitated the condensation of data essential for the clas
sification of the corresponding type of plastic. 

We leveraged a 5-fold cross-validation strategy to ensure the reli
ability of our CNN model. Initially, we evenly split the dataset into five 
random subsets. During each cross-validation iteration, we dedicated 
one subset (20% of the total data) to testing, and the remaining four 
subsets (80%) to model training. This five-fold procedure assured each 
subset was used as test data exactly once, enabling a comprehensive 
model evaluation across diverse data sections. To ensure homogeneity in 
each subset before sampling, we applied stratification, maintaining an 
equivalent proportion (16.7%) of each plastic type in the training and 
testing sets. 

The training data was further divided, allocating 75% for model 
training and 25% for validation. This division resulted in 3600 training, 
1200 validation, and 1200 testing samples per fold. The final accuracy, 
computed as the mean accuracy over the five folds, represents the 
overall performance of the model and its generalizability. 

The data and codes can be found at: https://github.com/zavalab/M 
L/tree/master/Plastic_Wavelet. 

3.3. Grad-CAM 

In this study, the Gradient-weighted Class Activation Mapping 
(Grad-CAM) (Selvaraju et al., 2019) method is employed to augment the 
interpretability of CNNs. Its implementation does not affect the classi
fication performance of CNNs. It achieves this by visualizing the regions 
of focus during the classification process. A heat map is generated, 
overlaying the input, and highlighting important regions involved in 
classification. The essence of Grad-CAM lies in its usage of the gradients 
of the output label, i.e., types of plastic, directed into the final con
volutional layer to generate a saliency map, which emphasizes the sig
nificant regions in the IR spectral input. 

The Grad-CAM algorithm is applied as follows:  

1. The final convolutional layer consists of K = 128 output channels, 
each resulting in a feature map vector represented by ak ∈ R225, for k 
= 1,⋯,128  

2. After model training, the gradients of the output probability for true 
plastic type c, yc, relative to the feature map vector ak are calculated.  

3. The gradients are then averaged to derive the importance weights 
(ωc

k) using the formula: 

ωc
k =

1
N
∑

i

∂yc

∂ak
i

(3)  

where N = 225 is the dimension of the feature map vector. These 
weights reflect the importance of feature map vector k for a target 
plastic type c.  

4. The final step involves linearly combining the feature map vectors 
weighted by these importance weights, followed by a ReLU activa
tion, to generate the Grad-CAM saliency map S c

∈ R225: 

S
c

= ReLU

(
∑

k
ωc

kak

)

(4)   

ReLU activation ensures that we only consider features that have a 
positive impact on the relevant plastic type, thus effectively removing 
negative entries that may have a high impact on other plastic types. 

Due to the downscaling in convolutional and pooling layers, the 
Grad-CAM saliency map, denoted as S

c, typically has a smaller 
dimension than the input. To visualize important regions in the input 
spectra, interpolation techniques are employed for upsampling. The 
default “antialiased” interpolation method from the Python Matplotlib 
package is used for this purpose. 

Given the implementation of 5-fold cross-validation in training the 
CNN models, we computed Grad-CAM for each model corresponding to 
each fold. Subsequently, we derived an average saliency map S c

avg, 
aggregating the results across all models as shown in Fig. 8. 

4. Results and discussion 

4.1. Principal component analysis 

To investigate the direct impact of MRA, we employed principal 
component analysis (PCA) on both the raw and MRA reconstructed 
spectra. The first two principal components of each spectrum are visu
ally represented in Fig. 6. In the inspection of the raw spectra, we found 
three distinct clusters, corresponding to PE, PP, and BK samples. How
ever, these clusters were notably compact. On the other hand, the PC, 
PS, and PVC samples displayed an overlapping pattern, highlighting 
spectral similarities and complicating their differentiation using CNN. 
For the MRA reconstructed spectra, the distinct clusters corresponding 
to PE, PP, and BK maintained their isolation but with a marked expan
sion, indicating a more extensive distribution. Additionally, PC, PS, and 
PVC samples still had an overlapping pattern, but with larger cluster 
sizes. 

The compact clustering observed in the raw spectra could be ascribed 
to measurement-dependent features such as baseline trends. These fac
tors may enable precise predictions within a single measurement batch, 
yet potentially compromise generalizability to future applications due to 
potential baseline variations. By minimizing these measurement- 
dependent factors through MRA, the reconstructed spectra exhibited 
larger, well-regularized clusters. 

The spread of PC clusters suggests that the variability of random 
noises within high-throughput measurements is effectively captured. 
Despite this, the overlapping of PC, PS, and PVC samples remained 
observable, indicating that inherent spectral similarities persist, even 
after MRA reconstruction. 

4.2. Convolutional neural network classification 

The CNN models were trained utilizing both raw and MRA- 
reconstructed spectra. Notably, overlapping clusters were observed in 
the PC, PS, and PVC samples in Fig. 6, potentially complicating classi
fication. Nevertheless, both datasets produced near 100 % prediction 
accuracies. The confusion matrices of the test datasets are shown in 
Fig. 7. Despite the high prediction accuracy, the robustness of the CNN 
model depends on the features extracted by the convolutional layers. 
When classifying the infrared spectroscopic data, it is essential that the 
features are directly related to the characteristic absorption peaks. 

4.3. Grad-CAM feature analysis 

We utilized Grad-CAM to investigate the salient features extracted by 
the CNN models from each data set, with the corresponding heatmaps 
presented in Fig. 8. In general, the raw spectra resulted in the extraction 
of a larger number of features, which were observed to be dispersed and 
manifested as narrow bands in the generated heatmaps, as shown in 

F. Long et al.                                                                                                                                                                                                                                     

https://github.com/zavalab/ML/tree/master/Plastic_Wavelet
https://github.com/zavalab/ML/tree/master/Plastic_Wavelet


Computers and Chemical Engineering 181 (2024) 108516

6

Fig. 8(a). This may render the CNN model more susceptible to noise 
interference. Furthermore, when examining PC, PS, and PVC in Fig. 8(a), 
it was observed that these samples exhibited a scarcity of features within 
the wavenumber range of 2600 cm− 1 to 3400 cm− 1, which corresponds 
to the range where the characteristic peaks of these polymers exist. This 
observation suggests that the CNN model struggled to extract the char
acteristic IR peak information from the raw data. Consequently, despite 
achieving 100 % prediction accuracy on the raw spectra, the reliability 
of CNN predictions is compromised in the absence of features directly 
related to the crucial characteristic IR peak information. 

Conversely, the datasets reconstructed with MRA exhibited a 
reduced but more concentrated set of features, visualized as denser and 
more focused color bands within the heatmaps, as shown in Fig. 8(b). 
Moreover, a subset of the features extracted through wavelet analysis 
directly corresponded to the characteristic peaks associated with the 
plastic samples. For example, in the MRA reconstructed BK (urethane) 
spectrum, while the peaks centered around 3000 cm− 1 and 3400 cm− 1 

may appear inconspicuous, they are indeed attributed to the stretching 
vibrations of C-H and N-H bonds, respectively. 

Remarkably, the CNN model successfully recognized and assigned 
substantial importance to these features, leveraging them as influential 

factors in making accurate predictions. For the MRA reconstructed PC, 
several features were extracted between 3200 cm− 1 to 3500 cm− 1 cor
responding to the broad peak of OH stretch. And there was another 
feature around 3000 cm− 1 due to C-H stretch. For PE, the features 
around 2900 cm− 1 and 2850 cm− 1 are associated with the CH2 asym
metric C-H stretch and CH2 symmetric C-H stretch, respectively. Simi
larly, in the PP spectrum, multiple peaks around 2850 cm− 1 are selected 
as features relating to CH3 and CH2 asymmetric and symmetric 
stretches. For PVC, the CH2 stretch around 3000 cm− 1 is also correctly 
identified as an important feature. The only exception is PS, there is one 
light band shown around 2900 cm− 1, and most of the significant features 
are in the range of 3200 cm− 1 to 3700 cm− 1, indicating the existence of 
hydroxyl. The hydroxyl may have come from ambient humidity during 
the experiment. Similar hydroxyl features can also be observed in the PP 
spectrum. 

Our investigation of the CNN models trained with raw and MRA 
reconstructed spectra revealed notable differences in the extracted fea
tures. While the raw spectra exhibited a larger number of dispersed 
features, leading to high prediction accuracy, these features did not 
align with the characteristic IR peaks of the plastic samples. Therefore, 
prediction accuracy was susceptible to noises and disturbances, 

Fig. 6. Scatter plots of the first and second principal components of (a) the raw spectra and (b) the MRA reconstructed spectra.  

Fig. 7. The confusion matrices of the proposed 1D CNN on the test datasets of (a) the raw spectra and (b) the MRA reconstructed spectra.  
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resulting in a less robust model for future applications. On the other 
hand, with the help of MRA preprocessing, both the high frequency 
noise and the low frequency trend were removed from the spectra. The 
MRA reconstructed datasets displayed a more focused set of features, 
directly corresponding to the characteristic peaks associated with the 
plastics. The CNN models successfully identified and prioritized these 
informative features, resulting in not only accurate but also robust and 
reliable predictions. In summary, The MRA preprocessing method 
proved effective in enhancing CNN feature selection towards a more 
explainable model and can improve the fidelity and robustness of CNN 
prediction. 

5. Conclusions 

In this study, we utilized Grad-CAM visualization to investigate the 
features extracted by CNN model with both the raw MIR spectra and 
MRA reconstructed spectra. The results demonstrated that MRA serves 
as an effective preprocessing technique for noisy MIR spectra by 
removing the high frequency noise and low frequency trend while 
keeping all the important spectroscopic information. It significantly aids 
the CNN model in extracting informative features associated with the 
characteristic IR peaks of the plastic samples. This improves the fidelity 

and robustness of the CNN-based predictions. In future work, we plan to 
further assess the robustness of our model in the face of noise variations 
stemming from alterations in conveyor speeds, temperature, and 
humidity. 

CRediT authorship contribution statement 

Fei Long: Methodology, Formal analysis, Software, Writing – orig
inal draft, Visualization. Shengli Jiang: Methodology, Formal analysis, 
Software, Writing – original draft, Visualization. Ezra Bar-Ziv: 
Conceptualization, Supervision, Writing – review & editing, Funding 
acquisition. Victor M. Zavala: Conceptualization, Supervision, Writing 
– review & editing, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Fig. 8. Heatmap of the salient features extracted from (a) the raw spectra of each plastic sample and (b) the MRA reconstructed spectra of each sample. One 
randomly selected spectrum of each data set is overlayed on the heatmap to correlate the features with the spectrum. 

F. Long et al.                                                                                                                                                                                                                                     



Computers and Chemical Engineering 181 (2024) 108516

8

Data availability 

Link embedded 

Acknowledgments 

E.B.-Z. acknowledges funding from U.S. National Science Foundation 
(NSF) under: (i) PFI-RP-182736 and from (ii) GOALI-203366, and (iii) 
PFI-RP-2234450. 

We acknowledge financial support from the US National Science 
Foundation under grants IIS-1837812 and 1837821. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.compchemeng.2023.108516. 

References 

Alsberg, B.K., et al., 1997. Wavelet denoising of infrared spectra. Analyst 122 (7), 
645–652. 

Barh, A., Pedersen, C., Tidemand-Lichtenberg, P., 2017. Ultra-broadband mid-wave-IR 
upconversion detection. Opt. Lett. 42 (8), 1504–1507. 

Becker, W., Sachsenheimer, K., Klemenz, M., 2017. Detection of black plastics in the 
middle infrared spectrum (MIR) using photon up-conversion technique for polymer 
recycling purposes. Polymers 9 (9), 435 (Basel).  

Chen, J., Lu, X., 2022. How to resolve the maximum valuable information in complex 
NIR signal: a practicable method based on wavelet transform. Front. Chem. 10. 

EPA, 2020. Advancing Sustainable Materials Management: 2018 Fact Sheet Assessing 
Trends in Material Generation and Management in the United States. United States 
Environmental Protection Agency Research Triangle Park, Durham, NC.  

Faraca, G., Astrup, T., 2019. Plastic waste from recycling centres: characterisation and 
evaluation of plastic recyclability. Waste Manag. 95, 388–398. 

Friis, S.M.M., Høgstedt, L., 2019. Upconversion-based mid-infrared spectrometer using 
intra-cavity LiNbO3 crystals with chirped poling structure. Opt Lett 44 (17), 
4231–4234. 
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