
TensorRT Implementations of Model Quantization
on Edge SoC

Yuxiao Zhou
Texas State University

y z37@txstate.edu

Zhishan Guo
North Carolina State University

zguo32@ncsu.edu

Zheng Dong
Wayne State University

dong@wayne.edu

Kecheng Yang
Texas State University

yangk@txstate.edu

Abstract—Deep neural networks have shown remarkable capa-
bilities in computer vision applications. However, their complex
architectures can pose challenges for efficient real-time deploy-
ment on edge devices, as they require significant computational
resources and energy costs. To overcome these challenges, Ten-
sorRT has been developed to optimize neural network models
trained on major frameworks to speed up inference and minimize
latency. It enables inference optimization using techniques such
as model quantization which reduces computations by lowering
the precision of the data type. The focus of our paper is to
evaluate the effectiveness of TensorRT for model quantization. We
conduct a comprehensive assessment of the accuracy, inference
time, and throughput of TensorRT quantized models on an edge
device. Our findings indicate that the quantization in TensorRT
significantly enhances the efficiency of inference metrics while
maintaining a high level of inference accuracy. Additionally, we
explore various workflows for implementing quantization using
TensorRT and discuss their advantages and disadvantages. Based
on our analysis of these workflows, we provide recommendations
for selecting an appropriate workflow for different application
scenarios.

Index Terms—deep neural networks, Network quantization,
SoC, TensorRT, PyTorch, ONNX, edge device.

I. INTRODUCTION

Over the last few years, deep learning (DL) has undergone

significant advancements and become one of the most suc-

cessful machine learning techniques. DL has enabled a wide

range of applications, including computer vision, natural lan-

guage processing, and autonomous control, which have been

widely integrated into various software systems, including

embedded ones. Unlike classical machine learning methods,

deep networks can achieve high accuracy with large and

over-parameterized models. The ImageNet classification leader

board [1] indicates that the parameter number in state-of-the-

art models for image classification have increased from 61

million to 2100 million since 2013.

Despite the high accuracy and precision achieved by large

and sometimes enormous deep neural networks, their training

and inference runtimes can become very slow and sluggish.

Moreover, such large model architectures require significant

amount of computing resources, even for inference alone.

However, many applications and systems, particularly embed-

ded ones, require real-time inference while utilizing limited

hardware resources due to size, weight, power, and cost

(SWaP-C) constraints. For example, autonomous vehicles must

This work is supported in part by NSF grants CNS-2104181, CCF-2028481,
CNS-2103604, CNS-2140346, CNS-2231523, and a REP grant from Texas
State University.

quickly process data from various sensors such as cameras and

lidars to make proper control decisions in System-on-Chip

(SoC). Similarly, a video surveillance system must analyze

videos in real-time to detect abnormal activities. Nevertheless,

for privacy and reliability reasons, this computation must

often be performed on the embedded platform with limited

computing resources.

The challenge posed by the inference computation barrier

has resulted in a significant gap between the success of

neural networks and their practical application in real-world

scenarios. To address this issue, several technologies have been

proposed and developed. These technologies can be broadly

categorized as follows: designing low-power, highly efficient

SoC chips specialized for DL inference, such as Google’s Ten-

sor Processing Unit (TPU) [6] and Intel’s Vision Processing

Unit (VPU) [8]; designing efficient DL model architectures

by optimizing the DL model architecture in terms of its

micro-architecture, designing Automated Machine Learning

(AutoML) and Neural Architecture Search (NAS) [12] meth-

ods; co-designing neural network architecture and hardware

together.

Despite such efforts and advances, the common, general-

purpose DL framework, such as PyTorch [13], is not particu-

larly optimized for the computing resource and time consump-

tion of inferences. To address this issue, NVIDIA published

TensorRT [2], a high-performance DL inference engine for

production deployments of deep learning models.

One of the optimizations that TensorRT provides is quan-

tization, which can reduce the precision of the weights and

activations of a deep learning model. Quantization in TensorRT

involves mapping the high-precision floating-point values in

a model to lower-precision fixed-point or integer values.

Reduced-precision inference significantly minimizes latency,

which is required for many real-time services, as well as

autonomous and embedded applications [2]. This quantization

by TensorRT is the focus of this paper.

In this paper, we examine the effectiveness of quantization

in TensorRT by comparing it to the Vanilla PyTorch (without

TensorRT and Quantization) framework on edge SoC. In

particular, there are three workflows that can convert the

PyTorch models to quantized TensorRT engines. We evaluate

the performance of three TensorRT quantization workflows

under a variety of workloads and identify the performance

bottlenecks in the inference using TensorRT quantization.

Contribution. Our main objective is to highlight the TensorRT



quantization on edge SoC. We conducted a thorough assess-

ment of the inference performance of quantized TensorRT en-

gines that were converted and deployed through various work-

flows using different software tools. Our assessment focused

on quantized model accuracy, inference time, throughput, and

accuracy vs calibration batch size for each workflow. The

results indicate that TensorRT quantization can significantly

improve inference efficiency without compromising accuracy.

There are several alternative workflows to adopt TensorRT

quantization, each with its advantages and disadvantages. We

analyze each workflow and suggest which one would be best

suited for different application scenarios.

Organization. The rest of this paper is organized as follows:

Sec. II gives a background overview of model quantization,

PyTorch, ONNX, and TensorRT in these three deep learning

frameworks. Sec. III presents a summary of the existing

research. Sec. IV describes the methodology for our exper-

iments, including evaluated models, workflows, and perfor-

mance measuring. Sec. V provides experiment results and

discussions, while Sec. VI concludes our work.

II. BACKGROUND AND RELATED FRAMEWORKS

In this section, we provide an overview of quantization,

TensorRT, and other related deep-learning frameworks.

Model quantization. Model quantization is a technique used

to reduce the memory and computation requirements of ma-

chine learning models by representing the model parameters in

a smaller number of bits [9]. Traditionally, the weights and bi-

ases are typically represented as 32-bit floating-point numbers,

which can be computationally expensive to store and process.

Model quantization aims at reducing the number of bits used

to represent these parameters, typically to 8-bit integers or

even lower, without significantly impacting the performance

of the model [5]. Model quantization can be applied to a

wide range of machine learning models, including deep neural

networks, convolutional neural networks, and recurrent neural

networks. It has become increasingly popular in recent years

due to the growing demand for deploying machine-learning

models in embedded systems where the computing resources

are constrained.

Quantization methodology. There are two common ap-

proaches to realize model quantization, namely post-
training quantization (PTQ) and quantization-aware training
(QAT) [11]. In PTQ, the models are trained using standard

non-quantization techniques until it achieves the desired ac-

curacy. Then, the weights and biases of the trained model

are quantized by replacing the original 32-bit floating-point

numbers with 8-bit or lower-precision fixed-point numbers.

In the end, a fine-tuning step can be performed to adjust the

quantized weights and biases to compensate for the loss of

accuracy caused by quantization. By contrast, QAT involves

training a neural network using quantization-aware optimiza-

tion algorithms. During training, the model is trained to mimic

the behavior of a quantized model by adjusting the weights and

biases in such a way that the resulting model is better suited

for hardware with limited precision.

PyTorch. PyTorch is a machine-learning framework that al-

lows for easy transitions from research to deployment. It is

primarily used as a deep learning research platform, pro-

viding speed and flexibility. It supports Tensor operations

on both CPU and GPU, resulting in faster computations.

It also offers various tensor routines for different scientific

computation needs. Unlike other frameworks where users must

repeatedly build the same neural network structure, PyTorch

uses reverse-mode auto-differentiation. This technique allows

users to change the network’s behavior without significant

overheads. PyTorch is integrated with acceleration libraries

like Intel MKL and NVIDIA (cuDNN, NCCL) to maximize

speed, making it fast for running networks of varying sizes.

It is also memory-efficient, enabling users to train large

deep-learning models [13]. Currently, PyTorch only supports

running quantized operators efficiently on x86 CPUs with

AVX2 support or higher and ARM CPUs. The support for

NVidia GPU via TensorRT through fx2trt is still an early-stage

prototype [14].

ONNX. The Open Neural Network Exchange (ONNX) [4]

is an open-source artificial intelligence ecosystem that uses a

common set of operators and a common file format to promote

collaboration and innovation in the AI sector. The standard

was created by many technology companies and research

organizations to facilitate interoperability between different

frameworks, tools, compilers, and runtimes. It supports multi-

ple software frameworks such as PyTorch, TensorFlow, Caffe2,

and Apache MXNet, and enables model optimization for

various hardware devices. This allows users to deploy ONNX

models using runtimes designed for specific hardware, which

accelerates the inference execution on the device. ONNX

Runtime leverages the TensorRT Execution Provider for per-

forming quantization on GPU. TensorRT generated quantized

models by taking in a full precision model and a calibration

result as inputs [15].

TensorRT. TensorRT is an SDK that enables high-

performance deep learning inference and is included in the

NVIDIA CUDA X AI Kit. The SDK provides a deep learning

inference optimizer and runtime, which ensure low latency and

high throughput during deep learning inference [2]. TensorRT

offers support for both PTQ and QAT techniques for creating

quantized networks. PTQ involves a calibration workflow in

which TensorRT measures the activation tensor distribution

during network execution on representative input data and then

uses that information to estimate a scale value for the tensor.

Additionally, TensorRT’s Quantization Toolkit is a PyTorch

library that can assist in producing QAT models that are

optimized by TensorRT. The toolkit also includes a recipe for

PTQ that can be used to perform PTQ in PyTorch and export

to ONNX [18].

III. RELATED WORK

Xu et al. quantify the inference performance using Ten-

sorRT. They compared the TensorRT inference for Resnet50

with INT8 vs FP32, which shows that INT8 mode is -

3.7x faster than FP32. The experiments that they did also



concluded that INT8 can also achieve the comparable accuracy

with FP32 [26]. Stacker et al. evaluated the runtime of the

deployed DNN using TensorRT and TorchScript. They chose

to work with two DNN architectures: RetinaNet and Point-

Pillars. They observed that quantization significantly reduces

the runtime while having only little impact on the detection

performance. [23]. Ulker et al. presented an evaluation of

the inference performance of deep learning software tools

using CNN architectures for multiple hardware platforms.

They benchmarked these hardware-software pairs for a broad

range of network architectures, inference batch sizes, focusing

on latency and throughput. They considered both single and

and half-precision floating point numbers computation in the

DL frameworks. Their results reveal that TensorRT delivers

minimum average execution time and highest throughput for

the network models that can be translated into TensorRT en-

gines. The performance gain from half-precision floating-point

is dependent on both hardware and software tool support [24].

In Shin and Kim’s recent work, they introduced a performance

inference method that fuses the Jetson monitoring tool with

TensorFlow and TRT source code on the Nvidia Jetson AGX

Xavier platform. The CPU utilization, GPU utilization, object

accuracy, latency, and power consumption of the deep learning

framework were also compared and analyzed [22].

IV. METHODOLOGY

A. Neural Network Models to Evaluate

In the field of computer vision, image classification plays a

crucial role in categorizing images into specific labels. Con-

volutional Neural Networks (CNNs) are specifically designed

to handle this task. These networks employ multiple layers to

detect visual patterns directly from pixel images, making them

a popular choice for image classification tasks. The advantage

of using CNNs lies in their ability to automatically identify

significant features without any human intervention, result-

ing in high efficiency. This study focuses on the quantized

TensorRT engine inference of the Residual Neural Networks

(ResNet) [7], which was first introduced in ‘”Deep Residual

Learning for Image Recognition.” ResNet uses skip connec-

tions to improve the performance and convergence of deep

neural networks. Several variants of ResNet architectures use

the same concept but with varying numbers of layers. Our

experiment specifically tests ResNet-50 and ResNet-152.

We also experiment with MobileNet, a small network that

are well suited for platform with limited resources. It applies

smart tricks in their architecture to keep the models small and

efficient without sacrificing too much accuracy. MobileNet is

known to be challenging to quantize [25].

B. Workflows

We designed our experiments to evaluate the performance of

all possible workflows to speed up the PyTorch DL model in-

ference by quantizing the TensorRT engine. Fig. 1 provides an

overview of our experiment workflows and the software tools

used in each stage. We have also highlighted the quantization

tools employed in each workflow, which accelerates model

inference by reducing the required precision calculations at

runtime.

Pre-trained model loading. As illustrated in Fig. 1, all

workflows begin with loading a pre-trained PyTorch model.

During this stage, the pre-trained models are loaded using the

PyTorch TorchVision library, which includes both the model

architecture and pre-trained weights.

Quantization implementation. There are multiple alternative

workflows to choose to quantize a full precision model for

efficient inference. In this work, we compare the conventional,

default workflow in PyTorch that does not involve quantization

at all (denoted as W0) with three workflows that do integrate

TensorRT quantization (tagged by W1, W2, W3, respectively).

These four workflows we evaluate in this work are explained

in more detail as follows.

W0: PyTorch Default

The pre-trained models are loaded on the CPU by default.

To execute the inference on the GPU, we need to transfer

the model from the CPU to the GPU. We also transfer the

input data to the GPU to ensure that the inference executes on

the GPU as well. We perform the model inference by using

PyTorch Python API [13].

W1: PyTorch-Quantization

In this workflow, we quantize a PyTorch model using

PyTorch-Quantization, a toolkit provided by NVIDIA for

training and evaluating PyTorch models with simulated quan-

tization. The quantized PyTorch model can be exported to

ONNX and imported by TensorRT.

There are six steps in this workflow: 1) adding quantized

modules, 2) PTQ, 3) QAT, 4) exporting to ONNX, 5) building

the engine, and 6) engine inference.

The first step is to add quantizer modules to the neural

network graph. This package provides a number of quan-

tized layer modules, which contain quantizers for inputs and

weights. These quantized layers can be substituted automati-

cally or by manually modifying the model definition. We apply

the automatic layer substitution by using quant-modules.

During the process of PTQ, a fixed range is selected for

each quantizer. One way to achieve this is through calibration.

To calibrate the activation ranges, we use a histogram-based

method. To collect activation histograms, we feed sample data

into the model. This is done by creating data loaders, enabling

calibration in each quantizer, and feeding the calibration data

into the model. A total of 1024 samples from the subset of

ImageNet training data are used to estimate the distribution of

activations.

Once the calibration process is complete, the quantizers will

have amax set, which indicates the maximum input value that

can be represented in the quantized space. The weight ranges

are typically defined per channel, whereas the activation ranges

are typically defined per tensor by default.

During the QAT, we fine-tune the calibrated model to

improve accuracy further [21].

It should be noted that the ONNX file exported from the

quantized PyTorch model cannot be directly used to build the

TensorRT engine. This is because the operator ”Identity 0,”



Fig. 1. An illustration of experiment workflows.

which produces an int8 zero-point, is currently not supported

by TensorRT. We use Polygraphy’s surgeon tool, which in-

cludes a constant folding function [20], to resolve this issue.

W2: TensorRT API Quantization

There are six steps in this workflow: 1) exporting the

PyTorch model to the ONNX file, 2) defining the network, 3)

setting up the calibrator, 4) configuring the builder 5) building

the engine, and 6) running the engine.

In the first step, We use the torch.onnx.export()
function in the PyTorch library exporting the PyTorch model to

ONNX files. The torch.onnx.export() function takes

an input tensor to run the model tracing its execution and then

exports the traced model to an ONNX file.

Defining a network for INT8 execution is exactly the

same as for any other precision. It involves operations such

as creating a network definition and importing the exported

ONNX model through the ONNX parser [19].

Similar to calibration in W1, we need to supply repre-

sentative input data on which TensorRT runs the network to

collect statistics for each activation tensor. In this project, we

use 1024 images from the training set in ImageNet [3] for

calibrating CNN models. Given the statistics for an activation

tensor, TensorRT uses calibrators to calculate the scale val-

ues. Among four different calibrators provided by TensorRT,

the IInt8EntropyCalibrator2 is recommended for CNN-based

networks. It chooses the tensor’s scale factor to optimize the

quantized tensor’s information-theoretic content and usually

suppresses outliers in the distribution [21].

In the TensorRT Python API calibration is implemented

by the INT8 calibrator class. Setting up the calibrator

consists of the following two sub-steps: 1) create an

ImageBatchStream object used to retrieve batch data

while calibrating. ImageBatchStream is a helper class

that takes care of file I/O, creating batch data for processing,

and applying image preprocessing functions, 2) create an Int8

calibrator object with input nodes names and batch stream.

The customized INT8 calibrator class must provide an im-

plementation for getBatchSize() and getBatch() to

retrieve data from the ImageBatchStream object.

During the TensorRT builder configuration, we set the

builder precision to INT8 in addition to FP32. We also pass

the calibrator object to the builder.

After we configure the builder, we can build and serialize

the engine similar to the FP32 engine. Firstly, an inference

execution context needs to be created. Then, memory needs

to be allocated for input and output on the CUDA device.

The next step is to transfer the input data from the host to

the input memory that was allocated on the CUDA device.

After that, TensorRT engine inference can be performed using

the asynchronous execute API. The output then needs to be

transferred back to the host memory. Lastly, the stream that

was used for data transfers and inference execution needs

to be synchronized to ensure that all operations have been

completed [19].

W3: ONNX Runtime Quantization

This workflow also starts with exporting a model from

PyTorch to ONNX. After obtaining the ONNX model, we

perform the ONNX model quantization on GPU using the

ONNX Runtime execution provider (EP).

ONNX Runtime uses its EP framework to work with various

hardware acceleration libraries. This provides the flexibility to

deploy ONNX models in different environments and optimize

execution by taking advantage of the platform’s computation

capabilities. The software interacts with the EP(s) using an

API to assign specific nodes or sub-graphs for execution by

the EP library on supported hardware.

ONNX Runtime uses the TensorRT Execution Provider

to perform quantization on the GPU. TensorRT Execution

Provider requires a full precision model and a calibration result

as inputs and then determines how to quantize based on its own

logic [15].

We first need to configure TensorRT settings to enable

model inference in INT8 precision. Then we perform quantiza-

tion using TensorRT EP. This process involves implementing

a CalibrationDataReader, computing the quantization

parameters using a calibration dataset, and saving the param-

eters into a flatbuffer file. Finally, the model and quantization

parameter files are loaded and run using the TensorRT EP [16].

C. Inference Performance Measurements

Quantized model accuracy. We assess the classification ac-

curacy of our quantized models using the ImageNet validation

dataset. This dataset comprises 50,000 photographs that have

been manually labeled with the presence or absence of 1000

object categories[3]. To evaluate the performance of the quan-

tized model, we employ two metrics: top-1 accuracy and top-5

accuracy. Top-1 accuracy measures the percentage of instances

where the predicted label matches the single target label. On



the other hand, top-5 accuracy considers a classification as

correct if any of the top five predictions align with the target

label. These metrics provide a comprehensive assessment of

the model’s classification performance.

Execution time measuring. To accurately measure the infer-

ence time of the model on the GPU, we conducted several

warm-up operations before taking measurements. This is be-

cause the execution speed can take some time to reach its

maximum capacity. We conducted 50 hot runs of the model

inference and tracked the execution time after the warm-up

steps to obtain an accurate measurement of the inference

time [24].

Throughput measuring. Throughput is a measure of the

amount of data processed or the number of tasks completed in

a specific time, usually one second. To calculate throughput,

divides the number of inputs by processing time. According

to [26], increasing the batch size may increase throughput.

Therefore, we measure inference throughput with various

batch sizes starting from one and doubling it until reaching

128 or the maximum batch size that can accommodate GPU

memory.

GPU usage measuring. To monitor GPU usage, we create a

separate thread alongside the inference script that is currently

running. This thread is responsible for tracking GPU usage

by reading the /sys/devices/gpu.0/load file, which

provides a value representing 10 times the GPU usage. The

GPU usage recording begins when the inference execution

starts and ends once the inference is finished.

D. Hardware Specifications

The NVIDIA® Jetson™ is a family of embedded computing

devices created by NVIDIA, designed for use in AI and

machine learning applications. These devices are small, low-

power, and feature-rich platforms that can run complex deep-

learning models in real time. We carry out our experiments

on the latest Jetson device, the NVIDIA Jetson AGX Orin

64GB. This SoC is based on the NVIDIA Ampere architecture

and includes a 12-core NVIDIA Carmel ARMv8.2 CPU, a

384-core NVIDIA Volta GPU, and a 32-core NVIDIA Deep

Learning Accelerator (DLA) [10].

E. Software Specifications

In our experiment, we use the latest JetPack 5.1.1 which

include key components such as CUDA 11.4, TensorRT 8.5.2,

cuDNN 8.6.0 and VPI 2.2 [17].

V. EXPERIMENT RESULTS

We present our experiment results in the following five sub-

sections: model accuracy, inference execution time, inference

throughput, GPU usage and model accuracy versus calibration

batch size.

A. Model Acccuracy

Quantization has many benefits but the reduction in the

precision of the parameters and data can easily hurt a model’s

task accuracy. We verify the quality of quantized models by

Fig. 2. Inference execution time for evaluated network architectures.

comparing their accuracy with the pre-trained PyTorch CNN

models offered by TorchVision. Table I to Table III presents

the highest top-1 accuracy and top-5 accuracies, respectively,

for three evaluated models that have been quantized using

different workflows.

Torch-Quantization and TensorRT API Quantization achieve

better accuracy than ONNX Runtime Quantization. Both of

them maintain accuracy within 1% of the floating-point base-

line on ResNets.

As reported in Table III, MobileNet v2, incurres a substan-

tial loss in accuracy when quantized with PTQ of all three

workflows. However, QAT in Torch-Quantization is able to

maintain accuracy to within 1% of fp32 accuracy.

Observation 1. Networks with more parameters like ResNets

are more robust to quantization compared to MobileNets

which have fewer parameters. ONNX Runtime Quantization

have higher accuracy loss compared to two other workflows.

The method used to create the calibration dataset in ONNX

Runtime may be the underlying cause.

B. Inference Execution Time

Time-critical applications often prioritize minimal forward

execution time, where minimizing latency is more important

than achieving higher throughput. In such deployments, the

batch size is typically set to a minimum value.

As shown in Fig. 2, we demonstrate that quantized Ten-

sorRT engines, acquired through the TensorRT API quanti-

zation, can achieve an inference speed up about ten times

faster than the PyTorch models on the NVIDIA Jetson AGX

Orin platform. For MobileNet and SqueezeNet, the quantized

TensorRT engine can make about 14.87 times speed up. Fig. 3

shows that the inference time of PyTorch model on GPU has

higher variability and includes more outliers compared to the

quantized TensorRT engines.

Observation 2. Applying TensorRT quantization can signifi-

cantly improve the inference time. For example, the quantized

TensorRT engine can perform up to 14.87X faster than the Py-

Torch model in full precision for MobileNet during inference.

Observation 3. The quantized TensorRT engines exhibit

much less variation in inference time compared to the PyTorch

model on ResNet architectures, indicating that they also result

in more predictable and consistent execution time.



TABLE I: Best achieved top-1 accuracy and top-5 accuracy by the default and quantized ResNet-50 models
Model PyTorch Default Torch-Quantization TensorRT API Quantization ONNX Runtime Quantization

Top-1 Accuracy 76.15% 75.524% 76.092% 75.524%

Top-5 Accuracy 92.87% 92.5% 92.938% 92.478%

TABLE II: Best achieved top-1 accuracy and top-5 accuracy by the default and quantized ResNet-152 models
Model PyTorch Default Torch-Quantization TensorRT API Quantization ONNX Runtime Quantization

Top-1 Accuracy 78.312% 77.762% 78.104% 74.862%

Top-5 Accuracy 94.046% 93.802% 94.030% 92.482%

TABLE III: Best achieved top-1 accuracy and top-5 accuracy by the default and quantized MobileNet models
Model PyTorch Default Torch-Quantization TensorRT API Quantization ONNX Runtime Quantization

Top-1 Accuracy 71.878% 71.088% 70.644% 69.782%

Top-5 Accuracy 90.286% 89.942% 89.664% 89.342%

Fig. 3. Inference execution time for ResNet-50.

C. Inference Throughput

Inference throughput is important for applications that in-

volve multiple inference operations in a single time frame.

In certain instances, delayed batch processing is acceptable.

An application can benefit from increased throughput by

increasing the inference batch size.

The throughput-vs-batch size curves shown in Fig. 4 and

Fig. 5 demonstrate that increasing the batch size leads to a

significant increase in throughput for both quantized and un-

quantized models until performance converges at a certain

batch size. A further increase produces a limited gain in

throughput because further parallelization inside the GPU is

not possible.

Observation 4. Quantization can lead to a considerable im-

provement in inference throughput across all three workflows.

Inference throughput continues to increase with an increase in

batch size until it reaches the hardware limitation.

D. GPU Utilization

For inference, our goal is to minimize inference time

and maximize inference throughput. Therefore, it is crucial

to maximize GPU utilization during inference, particularly

on embedded devices. Under-utilizing a GPU can leaves

application-level performance (e.g., frames per second) on the

table.

Fig. 4. Inference throughput for ResNet-50 with varying batch size.

Fig. 5. Inference throughput for MobileNet-v2 with varying batch size.

Among all TensorRT Quantization deployment workflows,

both PyTorch-Quantization and TensorRT API Quantization

have very high GPU utilization, close to 100%. The GPU

utilization of ONNX Runtime with TensorRT Integrated ranges

from 80% to 96.5% with varying input batch size and model

architecture.

Observation 5. TensorRT Quantization, especially via the

workflow PyTorch-Quantization and TensorRT API Quantiza-

tion, maximizes the GPU utilization during inference on the

edge SoC. This explains the noticable performance between

TensorRT and native PyTorch specially with relative small



Fig. 6. GPU usage for ResNet-152 with varying batch size.

Fig. 7. GPU Usage for MobileNet-V2 with varying batch size.

input batch size.

E. Accuracy vs Calibration Batch Size

In all three workflows, we use calibration to enhance the ac-

curacy of quantized models. During the calibration, TensorRT

updates the histogram distribution for each activation tensor.

If there is a new absolute max in the incoming calibration

batch data, the histogram is expanded by a power of two to

accommodate the new maximum value. Therefore, the size of

the calibration batch can also affect the accuracy of the result

TensorRT engine.

Fig. 8 to Fig. 13 display the top-1 and top-5 accuracy-vs-

calibration batch size curves. From these figures, we can see

that the calibration batch size does not have much impact on

W2 and W3. However, calibrating with multiple calibration

data of small batch size (equal to or smaller than four) can

lead to poor scale value and model accuracy degradation for

quantizing with the torch-quantization toolkit.

Observation 6. We need to carefully choose calibration batch

size as well as other hyper parameters during model quan-

tization especially when using the torch-quantization toolkit.

Using an inappropriate batch size can result in a decrease in

model accuracy.

VI. CONCLUSION

This paper presents an extensive comparative inference

performance evaluation of a set of workflows accelerating

PyTorch models with quantization using TensorRT on SoC.

We focus on the local computation of CNN model inference.

Fig. 8. Top-1 accuracy with batched calibration on ResNet-50.

Fig. 9. Top-5 accuracy with batched calibration on ResNet-50.

Based on our evaluation results, we discuss framework perfor-

mance in terms of quantized model accuracy, throughput, and

accuracy vs calibration batch size characteristics.

We supplemented our interpretation with an investigation

of weakness and strength in each workflow. Our discussions

include workflow selection for common scenarios in deep

learning inference deployment for computer vision tasks.

The results indicate that TensorRT API Quantization offers

the most favorable overall performance for enhancing Py-

Torch model inference. In terms of latency and throughput,

ONNX Runtime Quantization outperforms Torch-Quantization

on ResNet, however, it exhibits the longest overall execution

time for MobileNet. Additionally, Torch-Quantization provides

QAT, which allows for fine-tuning of the calibrated model.

In our experiment, the calibrated model was only fine-tuned

for one epoch, but further improvement in accuracy can be

achieved by employing QAT for more epochs with learning

rate annealing.

We determine that no single inference workflow is optimal

for all scenarios. If high inference performance is needed

with limited computational resources, we recommend utiliz-

ing the TensorRT API Quantization. For applications that

employ lightweight neural networks, Torch-Quantization can

be employed. ONNX Runtime Quantization is suitable for

accelerating inference in systems that consist of multiple

frameworks like PyTorch, TensorFlow, and Apache MXNet.

Future work. In our future work, we plan to propose a new

PTQ scheme that can achieve comparable accuracy to the

QAT method. We also aim to conduct experiments with model



Fig. 10. Top-1 accuracy with batched calibration on ResNet-152.

Fig. 11. Top-5 accuracy with batched calibration on ResNet-152.

quantization in 4-bit. Additionally, we intend to broaden our

research to include other model compression techniques such

as model pruning, and to co-design the system with real-time

schedulers and analysis to provide end-to-end guarantees.

REFERENCES

[1] Meta AI. Image classification on imagenet. Online at https://
paperswithcode.com/sota/image-classification-on-imagenet.

[2] NVIDIA Corporation. Nvidia tensorrt. Online at https://developer.nvidia.
com/tensorrt.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
A Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[4] The Linux Foundation. Open neural network exchange. Online at https:
//onnx.ai/.

[5] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W.
Mahoney, and Kurt Keutzer. A survey of quantization methods for
efficient neural network inference, 2021.

[6] Google. Cloud tensor processing units (tpus). Online at https://cloud.
google.com/tpu/docs/tpus.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[8] Intel. Intel® vision accelerator design with intel® movidius™
vision processing unit (vpu). Online at https://www.intel.com/
content/www/us/en/developer/topic-technology/edge-5g/hardware/
vision-accelerator-movidius-vpu.html.

[9] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.
Quantization and training of neural networks for efficient integer-
arithmetic-only inference, 2017.

[10] Leela Karumbunathan. Nvidia jetson agx orin series technical brief.
Online at https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/
jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf.

[11] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks
for efficient inference: A whitepaper, 2018.

[12] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua,
Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy.

Fig. 12. Top-1 accuracy with batched calibration on MobileNet.g p y

Fig. 13. Top-5 accuracy with batched calibration on MobileNet.

Progressive neural architecture search. In Proceedings of the European
conference on computer vision (ECCV), pages 19–34, 2018.

[13] Meta. From research to production. Online at https://pytorch.org/.
[14] Meta. Quantization. Online at https://pytorch.org/docs/stable/

quantization.html.
[15] Microsoft. Quantize onnx models. Online at https://onnxruntime.ai/docs/

performance/model-optimizations/quantization.html.
[16] Microsoft. Tensorrt execution provider. Online at https://onnxruntime.

ai/docs/execution-providers/TensorRT-ExecutionProvider.html.
[17] NVIDIA. Jetpack sdk. Online at https://developer.nvidia.com/embedded/

jetpack.
[18] NVIDIA. Nvidia deep learning tensorrt documentation. Online at https:

//docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html.
[19] NVIDIA. Nvidia tensorrt developer guide. Online at https://docs.nvidia.

com/deeplearning/tensorrt/pdf/TensorRT-Developer-Guide.pdf.
[20] NVIDIA. Onnx-tensorrt faq. Online at https://github.com/onnx/

onnx-tensorrt/blob/main/docs/faq.md.
[21] NVIDIA. Quantizing resnet50. Online at https://docs.nvidia.com/

deeplearning/tensorrt/pytorch-quantization-toolkit/docs/tutorials/quant
resnet50.html.

[22] Dong-Jin Shin and Jeong-Joon Kim. A deep learning framework
performance evaluation to use yolo in nvidia jetson platform. Applied
Sciences, 12(8):3734, 2022.

[23] Lukas Stäcker, Juncong Fei, Philipp Heidenreich, Frank Bonarens, Jason
Rambach, Didier Stricker, and Christoph Stiller. Deployment of deep
neural networks for object detection on edge ai devices with runtime
optimization. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 1015–1022, 2021.

[24] Berk Ulker, Sander Stuijk, Henk Corporaal, and Rob Wijnhoven. Re-
viewing inference performance of state-of-the-art deep learning frame-
works. In Proceedings of the 23th International Workshop on Software
and Compilers for Embedded Systems, pages 48–53, 2020.

[25] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius
Micikevicius. Integer quantization for deep learning inference: Principles
and empirical evaluation. arXiv preprint arXiv:2004.09602, 2020.

[26] Rengan Xu, Frank Han, and Quy Ta. Deep learning at scale on
nvidia v100 accelerators. In 2018 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems
(PMBS), pages 23–32. IEEE, 2018.


