
Sparse Binary Transformers for Multivariate Time Series
Modeling

Matt Gorbett
matt.gorbett@colostate.edu
Colorado State University
Fort Collins, CO, USA

Hossein Shirazi
hshirazi@sdsu.edu

San Diego State University
San Diego, CA, USA

Indrakshi Ray
indrakshi.ray@colostate.edu
Colorado State University
Fort Collins, CO, USA

ABSTRACT
Compressed Neural Networks have the potential to enable deep
learning across new applications and smaller computational envi-
ronments. However, understanding the range of learning tasks in
which such models can succeed is not well studied. In this work, we
apply sparse and binary-weighted Transformers to multivariate time
series problems, showing that the lightweight models achieve accu-
racy comparable to that of dense �oating-point Transformers of the
same structure. Our model achieves favorable results across three
time series learning tasks: classi�cation, anomaly detection, and
single-step forecasting. Additionally, to reduce the computational
complexity of the attentionmechanism, we apply twomodi�cations,
which show little to no decline in model performance: 1) in the clas-
si�cation task, we apply a �xed mask to the query, key, and value
activations, and 2) for forecasting and anomaly detection, which
rely on predicting outputs at a single point in time, we propose an
attention mask to allow computation only at the current time step.
Together, each compression technique and attention modi�cation
substantially reduces the number of non-zero operations necessary
in the Transformer. We measure the computational savings of our
approach over a range of metrics including parameter count, bit
size, and �oating point operation (FLOPs) count, showing up to a
53⇥ reduction in storage size and up to 10.5⇥ reduction in FLOPs.

CCS CONCEPTS
• Computing methodologies ! Neural networks; Supervised
learning.

KEYWORDS
transformer; sparse; pruned; binary; deep learning; multivariate
time series; anomaly detection; classi�cation; forecasting; lottery
ticket hypothesis

ACM Reference Format:
Matt Gorbett, Hossein Shirazi, and Indrakshi Ray. 2023. Sparse Binary
Transformers for Multivariate Time Series Modeling. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3580305.3599508

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0103-0/23/08.
https://doi.org/10.1145/3580305.3599508

1 INTRODUCTION
The success of deep learning can largely be attributed to the avail-
ability of massive computational resources [27, 32, 53]. Models such
as the Transformer [59] have changed machine learning in funda-
mental ways, producing state-of-the-art results across �elds such
as natural language processing (NLP), computer vision [8, 57], and
time series learning [67]. Much e�ort has been aimed at scaling
these models towards NLP e�orts on large datasets [7, 16], however,
such models cannot practically be deployed in resource-constrained
machines due to their high memory requirements and power con-
sumption.

Parallel to the developments of the Transformer, the Lottery
Ticket Hypothesis [20] demonstrated that neural networks contain
sparse subnetworks that achieve comparable accuracy to that of
dense models. Pruned deep learning models can substantially de-
crease computational cost, and enable a lower carbon footprint and
the democratization of AI. Subsequent work showed that we can
�nd highly accurate subnetworks within randomly-initialized mod-
els without training them [47], including binary-weighted neural
networks [17]. Such “lottery-ticket” style algorithms have mostly
experimented with image classi�cation using convolutional archi-
tectures, however, some work has shown success in pruning NLP
Transformer models such as BERT [9, 21, 30].

In this work, we extend the Lottery Ticket Hypothesis to time
series Transformers, showing that we can prune and binarize the
weights of the model and still maintain an accuracy similar to that
of a Dense Transformer of the same structure. To achieve this,
we employ the Biprop algorithm [17], a state-of-the-art technique
with proven success on complex datasets such as ImageNet [15].
The combination of weight binarization and pruning is unique
from previous e�orts in Transformer compression. Moreover, each
compression technique o�ers separate computational advantages:
neural network pruning decreases the number of non-zero �oating
point operations (FLOPs), while binarization reduces the storage
size of the model. The Biprop algorithm’s two compression meth-
ods rely on each other during the training process to identify a
high-performing subnetwork within a randomly weighted neural
network. The combination of pruning and weight binarization is
depicted in Figure 1a.

We apply our approach to multivariate time series modeling. Re-
search has shown that Transformers achieve strong results on time
series tasks such as classi�cation [67], anomaly detection [58, 64],
and forecasting [39, 69]. Time series data is evident in systems such
as IoT devices [13], engines [41], and spacecraft [2, 54], where new
insights can be gleaned from the large amounts of unmonitored
information. Moreover, such systems often su�er from resource
constraints, making regular deep learning models unrealistic – for

544

https://doi.org/10.1145/3580305.3599508
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3580305.3599508
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599508&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ma� Gorbe�, Hossein Shirazi, and Indrakshi Ray

instance, in theMars rover missions where battery-powered devices
are searching for life [5]. Other systems such as satellites contain
thousands of telemetry channels that require granular monitoring.
Deploying large deep learning models in each channel can be ex-
tremely ine�cient. As a result, lightweight Transformer models
have the potential to enhance a wide variety of applications.

In addition to pruning and binarizing the Transformer architec-
ture, we simplify the complexity of the attention mechanism by
applying two modi�cations. For anomaly detection and forecast-
ing, which we model using overlapping sliding window inputs, we
apply an attention mask to only consider attention at the current
time step instead of considering attention for multiple previous
time steps. For classi�cation tasks, we apply a static mask to the
query, key, and value projections, showing that only a subset of
activations is needed in the attention module to achieve the same
accuracy as that obtained using all the activations.

Finally, we estimate the computational savings of the model in
terms of parameters, storage cost, and non-zero FLOPs, showing
that pruned and binarized models achieve comparable accuracy to
dense models with substantially lower computational costs.
Our contributions are as follows:

• We show that sparse and binary-weighted Transformers
achieve comparable accuracy to Dense Transformers on
three time series learning tasks (classi�cation, anomaly de-
tection, forecasting). To the best of our knowledge, this is the
�rst research examining the e�cacy of compressed neural
networks on time series related learning.

• We examine pruning and binarization jointly in Transformer-
based models, showing the bene�ts of each approach across
multiple computationalmetrics.Weight binarization of Trans-
former based architectures has not been studied previously.

These �ndings provide new potential applications for the Trans-
former architecture, such as in resource-constrained environments
that can bene�t from time series related intelligence.

2 RELATEDWORK
In this section, we describe existing research related to Transform-
ers in time series modeling, neural network pruning and compres-
sion, and �nally e�cient Transformer techniques.

2.1 Transformers in Time Series
Various works have applied Transformers to time series learning
tasks [61]. The main advantage of the Transformer architecture
is the attention mechanism, which learns the pairwise similarity
of input patterns. Moreover, it can e�ciently model long-range
dependencies compared to other deep learning frameworks such
as LSTM’s [39]. Zerveas et al. [67] showed that we can use un-
supervised pretrained Transformers for downstream time series
learning tasks such as regression and classi�cation. Additional work
in time series classi�cation has proposed using a “two tower" atten-
tion approach with channel-wise and time-step-wise attention [38],
while other work has highlighted the bene�ts of Transformers for
satellite time series classi�cation compared to both recurrent and
convolutional neural networks [49].

For anomaly detection tasks, Transformers have shown favorable
results compared to traditional ML and deep learning techniques.

Figure 1: A sparse binary linear layer (left) and various atten-
tion modules (right). a) An example of a sparse and binary
linear module, with binary weights B scaled to {�U,U}. b) A
fully-connected attention module, where each point repre-
sents a time step (F = 6). c) The Step-T attention module,
where each past time point attends to itself and the latest
time point C attends to all past time points. d) An attention
module with sparse Query (Q), Key (K), and Value (V) activa-
tions.

Notably, Meng et al. [42] applied the model to NASA telemetry
datasets and achieved strong accuracy (0.78 F1) in detecting anom-
alies. TranAD [58] proposed an adversarial training procedure to
exaggerate reconstruction errors in anomalies. Xu et al. [64] achieve
state-of-the-art results in detecting anomalies in multivariate time
series via association discrepancy. Their key �nding is that anom-
alies have high association with adjacent time points and low asso-
ciations with the whole series, accentuating anomalies.

Finally, Transformer variations have been proposed for time se-
ries forecasting to lower the attention complexity of long sequence
time series [37, 39, 69, 70], add stochasticity [63], and incorporate
traditional time series learning methods [62, 70]. Li et al. [37] in-
troduce LogSparse attention, which allows each cell to attend only
to itself and its previous cells with an exponential step size. The
Informer method [69] selects dominant queries to use in the at-
tention module based on a sparsity measurement. Pyraformer [39]
introduces a pyramidal attention mechanism for long-range time
series, allowing for linear time and memory complexity. Wu et al.
[63] use a Sparse Transformer as a generator in an encoder-decoder
architecture for time series forecasting, using a discriminator to
improve the prediction.

2.2 Compressed Neural Networks
Pruning unimportantweights fromneural networkswas �rst shown
to be e�ective by Lecun et al. [35]. In recent years, deep learning
has scaled the size and computational cost of neural networks. Nat-
urally, research has been directed at decreasing size [25] and energy
consumption [65] of deep learning models.

The Lottery Ticket Hypothesis [20] showed that randomly ini-
tialized neural networks contain sparse subnetworks that, when
trained in isolation, achieve comparable accuracy to a trained dense
network of the same structure. The implications of this �nding

545

Sparse Binary Transformers for Multivariate Time Series Modeling KDD ’23, August 6–10, 2023, Long Beach, CA, USA

are that over-parameterized neural networks are no longer neces-
sary, and we can prune large models and still maintain the original
accuracy.

Subsequent work found that we do not need to train neural
networks at all to �nd accurate sparse subnetworks; instead, we
can �nd a high performance subnetwork using the randomly ini-
tialized weights [10, 24, 40, 47]. Edge-Popup [47] applied a scoring
parameter to learn the importance of eachweight, using the straight-
through estimator [4] to �nd a high accuracy mask over randomly
initialized models. Di�enderfer and Kailkhuram [17] introduced
theMulti-Prize Lottery Ticket Hypothesis, showing that 1) multiple
accurate subnetworks exist within randomly initialized neural net-
works, and 2) these subnetworks are robust to quantization, such as
binarization of weights. In this work, we use the Biprop algorithm
proposed in [17] to binarize the weights of Transformer models.

2.3 Compressed and E�cient Transformers
Large-scale Transformers such as the BERT (110million parameters)
are a natural candidate for pruning and model compression [21, 56].
Chen et al. [8] �rst showed that the Lottery Ticket Hypothesis holds
for BERT Networks, �nding accurate subnetworks between 40%
and 90% sparsity. Jaszczur et al. [29] proposed scaling Transformers
by using sparse variants for all layers in the Transformer. Other
works have reported similar �ndings [18, 36], showing that sparsity
can help scale Transformer models to even larger levels.

Other works have proposed modi�cations for more e�cient
Transformers aside from pruning [56]. Most research has focused
on improving the O(=2) complexity of attention, via methods such
as �xed patterns [46], learnable patterns [31], low rank/kernel meth-
ods [12, 60], and downsampling [3, 68]. Various other methods have
been proposed for compressing BERT networks such as pruning
via post-training mask searches [33], block pruning [34], and 8-bit
quantization [66]. We refer readers to Tay et al. [56] for details.

Despite the various works compressing Transformers, we were
not able to �nd any research using both pruning and binarization.
Utilizing both methods allows for more e�cient computation (mea-
sured using FLOPs) as well as a signi�cant decrease in storage (due
to binary weights). Additionally, we �nd that our proposed model is
still a fraction of the size of compressed NLP Transformers models
when trained on time series tasks. For instance, TinyBERT [30] con-
tains 14.5 million parameters and 1.2 billion FLOPs, compared to
our models which contain less than 1.5 million binary parameters
and 38 million FLOPs.

3 METHOD
Our model consists of a Transformer encoder [59] with several mod-
i�cations. We base our model o� of Zerveas et al. [67], who propose
using a common Transformer framework for several time series
modeling tasks. To begin, we describe the base architecture of the
Transformer as applied tomultivariate time series. Subsequently, we
describe the techniques used for pruning and binarization. Finally,
we describe the two changes applied to the attention mechanism.

3.1 Dense Transformer
We denote fully trained Transformers with no pruning and �oating
point 32 (FP32) weights as Dense Transformers. Let Xt 2 RF⇥<

be a model input for time C with window size F and< features.
Each input contains F feature vectors x 2 R< : Xt 2 RF⇥< =
[xt�w, xt�w+1, ..., xt], ordered in time sequence of sizeF . In classi-
�cation datasetsF is prede�ned at the sample or dataset level. For
anomaly detection and forecasting tasks, we �xF to 50 or 200 and
use an overlapping sliding window as inputs.

The standard architecture (pre-binarization) projects< features
onto a 3-dimensional vector space using a linear module with learn-
able weights Wp 2 R3⇥< and bias bp 2 R3 . We use the stan-
dard positional encoder proposed by Vaswani et al. [59], and we
refer readers to the original work for details. For the Dense Trans-
former classi�cation models, we use learnable positional encoder
[67]. Zerveas et al. [67] propose using batch normalization instead
of layer normalization used in traditional Transformer NLP models.
They argue that batch normalization mitigates the e�ects of outliers
in time series data. We found that for classi�cation tasks, batch
normalization performed the best, while in forecasting tasks layer
normalization worked better. For anomaly detection tasks we found
that neither normalization technique was needed.

Each Transformer encoder layer consists of a multi-head atten-
tion module followed by ReLU layers. The self-attention module
takes inputZt 2 RF⇥3 and projects it onto a Query (Q), Key (K), and
Value (V), each with learnable weights W 2 R3⇥3 and bias b 2 R3 .
Attention is de�ned as �CC4=C8>=(Q,K,V) = (> 5 C<0G

⇣
QK|
p
3

⌘
V.

Queries, keys, and values are projected by the number of heads
(⌘) to create multi-head attention. The resultant output Zt0 under-
goes a nonlinearity before being passed to the next encoder layer.
The Transformer consists of # encoder layers followed by a �nal
decoder layer. For classi�cation tasks, the decoder outputs ; classi�-
cation labels: X0

t 2 R
F⇥; , which are averaged overF . For anomaly

detection and forecasting, the decoder reconstructs the full input:
X0
t 2 R

F⇥< .

3.2 Sparse Binary Transformer
Central to our binarization architecture is the Biprop algorithm
[17], which uses randomly initialized �oating point weights to
�nd a binary mask over each layer. Given a neural network with
weight matrixW 2 R8⇥ 9 initialized with a standard method such
as Kaiming Normal [26], we can express a subnetwork over neural
network 5 (G ;W) as 5 (G ;W � M), where M 2 {0, 1} is a binary
mask and � is an elementwise multiplication.

To �ndM, parameter S 2 R8⇥ 9 is initialized for each correspond-
ingW 2 R8⇥ 9 . S acts as a score assigned to each weight dictating the
importance of the weights contribution to a successful subnetwork.
Using backpropagation as well as the straight-through estimator
[4], the algorithm takes pruning rate hyperparameter ? 2 [0, 1],
and on the forward pass computes M: at layer< as

M: =

(
1 if |S: | 2 {g (:);<

:=1 � [;<?]}

0 otherwise
(1)

where g sorts indices {:};:=1 2 S such that |(g (:) |  |(g (:+1) |.
Masks are computed by taking the absolute value of scores for each
layer, and setting the mask to 1 if the value falls above the top ?C⌘
percentile.

546

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ma� Gorbe�, Hossein Shirazi, and Indrakshi Ray

To convert each layer to binary weights Biprop introduces gain
term U 2 R, which is common to Binary Neural Networks (BNN’s)
[45]. The gain term utilizes �oating-point weights prior to bina-
rization during training. During test-time, the alpha parameter
scales the binarized weight vector. The parameter rescales binary
weights B 2 {�1, 1} to {�U,U}, and the network function becomes
5 (G ;U (B � M)). U is calculated as

U =
| |M � W| |1

| |M| |1
(2)

with M being multiplied by U for gradient descent (the straight-
through estimator is still used for backpropagation). This calcula-
tion was originally derived by Rastegari et al. [48].

In our approach we create sparse and binary modules for each
linear and layer normalization layer. Our model consists of two
linear layers at the top most level: one for projecting the initial
input (embedding in NLP models) and one used for the decoder
output. Additionally, each encoder layer consists of six linear layers:
Q, K, and V projections, the multi-head attention output projection,
and two additional layers to complement multi-head attention.

3.3 Attention Modi�cations
In this section we describe two modi�cations made to the attention
module to reduce its quadratic complexity. Several previous works
have proposed changes to attention in order to lessen this bottle-
neck, such as Sparse Transformers [11], ProbSparse Attention [69],
and Pyramidal Attention [39]. While each of these works present
quality enhancements to the memory bottleneck of attention, we in-
stead seek to evaluate whether simple sparsi�cation approaches can
retain the accuracy of the model compared to canonical attention.
Our primary motivation for the following attention modi�cations
are to test whether a compressed Transformer can retain the same
accuracy as a Dense Transformer.

3.3.1 Fixed Q,K, and V Projection Mask. To reduce the computa-
tional complexity of the matrix multiplications within the attention
module, we apply random �xedmasks to theQ,K, andV projections.
We hypothesize that we can retain the accuracy of full attention
by using this “naive” activation pruning approach, which requires
no domain knowledge. We argue that the success of this approach
provides insight into the necessity of full attention computations. In
other words, Transformers are expressive and powerful enough for
certain tasks that we can prune the models in an unsophisticated
way and maintain accuracy. Moreover, many time series datasets
and datasets generated at the edge are often times simplistic enough
that we can apply this unsophisticated pruning [22, 23].

To apply this pruning, on model initialization we create random
masks with prune rate ?0 2 {0, 1} for each attention module and
each projection Q,K, and V. Attention heads within the samemodule
inherit identical Q, K, or V masks. The mask is applied to each
projection during train and test. In each of our models we set the
prune rate ?0 of the attention module equal to the prune rate of
the linear modules (?0 = ?).

3.3.2 Step-t A�entionMask. For anomaly detection and single-step
forecasting tasks, the Sparse Binary Transformer (SBT) algorithm
relies on reconstructing or predicting outputs at the current time
step C for each feature<, despiteF time steps of data being provided

Figure 2: Step-t Attention Mask Left: For the forecasting
task we mask inputs during training in order to simulate
unknown future time points. Right: The Step-T attention
mask used to calculate attention only at the current time-
step versus past values. Using this mask rather than setting
our Query dimension to one enables us to pass time window
vectors along multiple encoder layers.

to the model. Speci�cally, the SBT model is only interested in input
vector xt 2 R< . For anomaly detection, the model reconstructs xt
from the input, while in forecasting tasks the model masks xt = 0
prior to model input, reconstructs the actual values during training
and inference.

In both tasks, vector xt contains the only values necessary for
the model to learn, and our loss function re�ects this by only com-
puting error for these values. As a result, computing attention for
each other time step adds unnecessary computation. As depicted
in Figure 2, we pass a static mask to the attention module to com-
pute attention only at step-T. We additionally exclude attention
computation at step-T with itself, forcing the variable to attend
to historical time points for prediction. Finally, we add diagonal
ones to the attention mask at all past time points to add stability
to training. This masking method allows us to propagate the full
input sample to multiple attention layers, helping us retain relevant
historical information for downstream layers that would not be
possible by changing the sizes of Q, K, and V to only model the C
time step.

4 EXPERIMENTS
In this section we detail our experiments for time series classi�ca-
tion, anomaly detection, and forecasting. Common to each learning
task, we normalize each dataset prior to training such that each
feature dimension< has zero mean and unit variance. We use the
Transformer Encoder as described in Section 3, training each learn-
ing task and dataset using the Dense Transformer and the SBT to
compare accuracy. Finally, we run each experiment three times
with a di�erent weight seed, and present the average result. For
the SBT model, varying the weight seed shows evidence of the
robustness to hyperparameters. Speci�c modi�cations to the model
are made for each learning task, which we describe in the following
sections. Additional training and architecture details can be found
in the Appendix.

4.1 Classi�cation
For our �rst time series learning task we select several datasets from
the UCR Time Series Classi�cation Repository [1]. The datasets
contain diverse characteristics including varying training set size

547

Sparse Binary Transformers for Multivariate Time Series Modeling KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Model Arabic
Digits

Heart
Beat

Insect
W.B.

Japan.
Vowels

Face
Detect. Mean

XGBoost 69.6 73.2 36.9 96.2 63.3 67.8
LSTM 31.9 72.2 17.6 79.7 57.7 51.8
Rocket [14] 71.2 75.6 - 86.5 64.7 74.5
Fran et al. [19] 95.6 75.6 16.0 98.9 52.8 67.8
DTW_D 96.3 71.7 - 94.9 52.9 79.0
Dense Trans. 98.0 76.6 63.4 98.0 56.0 78.8

(⌫)?=0.5 98.2 77.2 64.1 95.3 66.1 80.2
(⌫)?=0.75 98.6 78.5 61.3 85.3 65.8 77.9

Table 1: Accuracy of time series classi�cation models on �ve
datasets. Results are obtained from [19, 67]. SBT models
achieve higher accuracy than prior works (excluding the
Dense Transformer) in each case, except for the Japanese
Vowels dataset. Additionally, SBT models achieve accuracy
within 2.7% of the Dense Transformer for each dataset.

(204-30,000), number of features (13-200), and window size (30-
405). We choose three datasets with the largest test set size (Insect
Wingbeats, Spoken Arabic Digits, and Face Detection) as well as
two smaller datasets (JapaneseVowels, Heartbeat). Each dataset
contains a set window size except for InsectWingbeats and Japanese
Vowels, which contain a window size up to 30 and 29, respectively.
In these datasets, we pad samples with smaller windows to give
them consistent window sizes. The decoder in our classi�cation
architecture is a classi�cation head, rather than a full reconstruction
of the input as is used in anomaly detection and forecasting tasks.
The SBT classi�cation model is trained and tested using the �xed
Q,K,V projection mask as described in Section 3.3.
Results In Table 1, we show that SBTs perform as well as, or sim-
ilar to, the Dense Transformer for each dataset at ? = 0.5 and
? = 0.75. Our models are averaged over three runs with di�erent
weight seeds. When comparing our model to state-of-the-art ap-
proaches, we �nd that the SBT achieves strong results across each
dataset, with the highest reported performance on three out of the
�ve datasets. Further, the SBT models perform consistently across
datasets while models such as Rocket [14] and Fran et al. [19] have
lower performance on one or more datasets.

Surprisingly, the SBT model achieves stronger average accuracy
than theDense Transformer (80.2% versus 78.8%), indicating that the
pruned and binarized Transformer achieves a robust performance
across datasets. Despite this, Insect Wingbeats and Japanese Vowels
datasets achieved a slightly lower performance at ? = 0.5 with a
more substantial dropo� at ? = 0.75, indicating the model may lose
some of its power on certain tasks.

4.2 Anomaly Detection
For the anomaly detection task we test the SBT algorithm on estab-
lished multivariate time series anomaly detection datasets used in
previous literature: Soil Moisture Active Passive Satellite (SMAP)
[28], Mars Science Labratory rover (MSL) [28], and the Server Ma-
chine Dataset (SMD) [54]. SMAP and MSL contain telemetry data

Dataset Metric
Manual Threshold POT Threshold

Dense (⌫)?=0.75 Dense (⌫)?=0.75

MSL
P 92.7 96.8 85.5 82.9
R 100 100 100 100
F1 96.2 96.8 92.1 91.1

SMD
P 85.4 85.3 99.9 100
R 100 100 100 100
F1 92.1 92.1 100 99.9

SMAP
P 93.9 93.7 85.9 84.9
R 100 100 100 100
F1 96.9 96.8 92.4 91.8

Table 2: Anomaly detection results with benign sample win-
dows. We evaluate Precision (P), Recall (R), and the F1 score
using both manual threshold and POT threshold technique.
We �nd that the single time step prediction window achieves
high accuracy when each past time-step in F is benign.
F = 200 for SMD andF = 50 for SMAP and MSL. These results
indicate that when given time to stabilize after an anoma-
lous event, our SBT framework can detect new anomalies
with high accuracy. We evaluate our results using a manual
threshold (g=0.5% for SMD, 1% for others) and the POT auto-
matic threshold selector.

such as radiation and temperature, while SMD logs computer server
data such as CPU load and memory usage. The datasets contain
benign samples in the training set, while the test set contains la-
beled anomalies (either sequences of anomalies or single point
anomalies).

Our model takes sliding window data as input and reconstructs
data at xt given previous time points. We use MSE to reconstruct
each feature in xt. We use the step-T attention mask as described in
Section 3. To evaluate our results, we adopt an adjustment strategy
similar to previous works [51, 54, 58, 64]: if any anomaly is detected
within a successive abnormal segment of time, we consider all
anomalies in this segment to have been detected. The justi�cation
is that detecting any anomaly in a time segment will cause an alert
in real-world applications.

To �ag anomalies, we retrieve reconstruction loss x0t and thresh-
old g , and consider anomalies where x0t > g . Since our model is
trained with benign samples, anomalous samples in the test set
should yield a higher x0t . We compute g using two methods from
previous works: A manual threshold [64] and the Peak Over Thresh-
old (POT) method [52]. For the manual threshold, we consider pro-
portion A of the validation set as anomalous. For SMD A = 0.5%, and
for MSL and SMAP A = 1%. For the POT method, similar to Om-
niAnomaly [54] and TranAd [58], we use the automatic threshold
selector to �nd g . Speci�cally, given our training and validation set
reconstruction losses, we use POT to �t the tail portion of a proba-
bility distribution using the generalized Pareto Distribution. POT
is advantageous when little information is known about a scenario,
such as in datasets with an unknown number of anomalies.

548

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ma� Gorbe�, Hossein Shirazi, and Indrakshi Ray

Model SMD MSL SMAP Avg.

LOF 46.7 61.2 57.6 55.2
IsolationForest 53.6 66.5 55.5 58.5
OCSVM 56.2 70.8 56.3 61.1
DAGMM 57.3 74.6 68.5 66.8
VAR 74.1 77.9 64.8 72.3
MMPCACD 75.0 70.0 81.7 75.6
ITAD 79.5 76.1 73.9 76.5
Deep-SVDD 79.1 83.6 69.0 77.2
SBT?=0.9 82.5 78.5 70.6 77.2
CL-MPPCA 79.1 80.4 72.9 77.5
BeatGAN 78.1 87.5 69.6 78.4
SBT?=0.5 87 78.4 69.8 78.4
SBT?=0.75 88.0 79.3 70.6 79.3
LSTM-VAE 82.3 82.6 78.1 81.0
OmniAnomaly 85.2 87.7 86.9 86.6
Anomaly Transformer 92.3 93.6 96.7 94.2

Table 3: F1 scores of various time series anomaly detection
models. We compare our SBT framework with several state-
of-the-art algorithms on the anomaly detection task. The ta-
ble is ordered by average F1 accuracy across each dataset. We
evaluate our algorithm using the traditional method (di�er-
ent from Table 2), where each sample can contain anomalous
events in its input window. We use a manual threshold to
report results for the SBT model.

Results In Table 2 we report the unique �ndings of our single-step
anomaly detection method using Precision, Recall, and F1-scores.
Speci�cally, we �nd that when only considering inputs with fully
benign examples in windowF , both the SBT and the Dense Trans-
former achieve high accuracy on all three datasets (F1 between 90.6
and 100). In other words, we �nd that our model performance is
best when we �lter examples that have an anomalous sequence or
data point in [xt�w, xt�w+1, ..., xt�1]. For SMD, F = 200 and for
SMAP and MSL F = 50. This observation implies that the model
needs time to stabilize after an anomalous period. Intuitively, if an
anomaly occurred recently, new benign observations will have a
higher reconstruction loss as a result of their di�erence with the
anomalous examples in their input window. We argue that this val-
idation metric is logical in real-world scenarios, where monitoring
of a system after an anomalous period of time is necessary.

We additionally report F1-scores compared to state-of-the-art
time series anomaly detection models in Table 3. To accurately
compare our model against existing methods, we use the full test
set without �ltering out benign inputs with anomalies in the near
past. SBT results are much more modest, with F1-scores between
70 and 88. Despite this, our method still performs stronger than
non-temporal algorithms such as the Isolation Forest, as well as
other deep-learning based approaches such as Deep-SVDD and
BeatGan.

4.3 Forecasting
We test our method on single-step forecasting using the Step-T at-
tention mask. Speci�cally, using the framework outlined by Zerveas
et al. [67], we train our model by masking the input at the fore-
casting time-step C . For example, input Xt containing< features
and C time-steps [xt�w, xt�w+1, ..., xt] is passed through the net-
work with xt = 0. We then reconstruct this masked input with the
Transformer model, using mean squared error between the masked
inputs reconstruction and the actual value. The masking method
simulates unseen future data points during train time, making it
compatible with the forecasting task during deployment.

We test our model on three datasets used in previous works: ECL
contains electricity consumption of 321 clients in Kwh. The dataset
is converted to hourly consumption values due to missing data.
Weather contains data for twelve hourly climate features for 1,600
location in the U.S. ETTm1 (Electricity Transformer Temperature)
contains 15-minute interval data including oil temperature and
six additional power load features. Additional training details are
available in the Appendix.

We compare our method against the Informer [69] and the
Pyra-former [39] trained with single-step forecasting. Both are
current state-of-the-art models that have shown robust results com-
pared against a variety of forecasting techniques. Importantly, each
method is compatible with multivariate time series forecasting as
opposed to some research. We note that these models are built
primarily for long-term time series forecasting (LSTF), which we
do not cover in this work.
Results We evaluate results in Table 4 using MSE and MAE on
the test set of each dataset. Results indicate that the SBT model
achieves accuracy comparable to the Dense architecture in each
dataset at ? = 0.5. Interestingly, the Weather at ETTm1 SBT models
achieved better accuracy than the dense model at ? = 0.5. Both
models additionally showed robustness to higher prune rates, with
accuracy dropping o� slowly. ECL on the other hand showed some
sensitivity to prune rate, with a slight drop o� when increasing
the prune rate. We �nd that datasets with a higher dimensionality
performed the worst: ECL contains 321 features, while Insect Wing-
beats contains 200. Increasing the dimensionality of the model (3)
mitigated some of these e�ects, however it was at the cost of model

Model
ECL Weather ETTm1

MSE MAE MSE MAE MSE MAE

Informer 0.185 0.301 0.159 0.197 0.051 0.150

Pyraformer 0.149 0.305 - - 0.081 0.214

Dense Trans. 0.182 0.299 0.173 0.225 0.070 0.201

(⌫)?=0.5 0.198 0.316 0.166 0.216 0.059 0.171

(⌫)?=0.75 0.221 0.333 0.168 0.218 0.070 0.191

Table 4: A summary of time series forecasting models on
three datasets. Each SBT model is run three times with dif-
ferent weight seeds and averaged. Standard deviation is less
than 0.01.

549

Sparse Binary Transformers for Multivariate Time Series Modeling KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Figure 3: Time series predictions on the ETTm1 dataset for
the Pyraformer (top) and Sparse Binary Transformer (bot-
tom) . We show 600 predictions across each model for two
features (HULL, LUFL).

size and complexity. Despite this, we �nd that the SBT model is
able to predict the general trend of complex patterns in data, as
depicted in Figure 3.

Compared to state-of-the-art approaches such as the Pyraformer
and Informer architectures, our general purpose forecasting ap-
proach performs comparably, or slightly worse, on the single-step
forecasting task. Metrics were not substantially di�erent for any
of the models except for the ECL dataset, where Pyraformer was
easily the best model. Comparing the architectures, we �nd that the
SBT model achieves substantially lower computational cost than
both the Informer and Pyraformer models. For example, on the
ECL dataset, Pyraformer contains 4.7 million parameters and the
Informer 12.7 million parameters (both FP32, while the SBT model
contains 1.5 million binary parameters.

4.4 Architecture
Each model in our framework consists of 2 encoder layers each
with a multi-head attention module containing two heads. The
feedforward dimensionality for each model is 256 with ReLU used
for nonlinearity. Classi�cation models had the best results using
Batch Normalization layers, similar to [67], while forecasting mod-
els used Layer Normalization typical of other Transformer models.
For anomaly detection we did not use Batch or Layer Normalization.
For the output of our models, anomaly detection and forecasting
rely on a single decoder linear layer which reconstructs the out-
put to size (<,F), while classi�cation outputs size (3 , =D<.2;0BB4B)
and takes the mean of 3 to formulate a �nal classi�cation predic-
tion. Further details are included in the Appendix and the code
repository.

5 COMPUTATIONAL SAVINGS
In this section we estimate the computational savings achieved by
using the SBT model. We will begin by introducing the metrics
used to estimate computational savings, and will then summarize
the results of these metrics for each model and task.

We note that several works (highlighted in Section 2) have pro-
posed modi�cations to the Transformer in order to make attention
more e�cient. In this section, we concentrate on the enhancements
achieved by 1) creating a sparsely connected Transformer with
binary weights, and 2) simplifying the attention module for time
series speci�c tasks such as single-step prediction and classi�ca-
tion. We argue that these enhancements are independent of the
achievements made by previous works.

5.1 Metrics
FLOPs (Non-zero). In the �eld of network pruning, FLOPs, or the
number of multiply-adds, is a commonly used metric to quantify the
e�ciency of a neural network [6]. The metric computes the number
of �oating point operations required for an input to pass through a
neural network. We use the ShrinkBench tool to calculate FLOPs, a
framework proposed by Blalock et al. [6] to perform standardized
evaluation on pruned neural networks.

Our Transformer architecture contains FP32 activations at each
layer along with binary weights scaled to {�U,U}. As a result, no
binary operations are performed, and our total FLOPs count is
a function of prune rate ? . For example, a linear module with a
standard FLOPs count of 3 ⇥< has a new FLOPs count of 3 ⇥<⇥? ,
where ? 2 [0, 1]. Linear layers outside of attention do not need
window size added to the matrix multiply because the inputs are
permuted such that batch size is the second dimension of the layer
input. Each equation counts the number of nonzero multiply-adds
necessary for the neural network.

Attention Type Q,K,V Proj. QV| AV

Canonical 32F 30F2 30F2

Step-T Mask (32F)?0 (F � 1)30 2(F � 1)30

Q,K,V Mask (32F)?0 30 (F?0)2 (30F2
)?0

Table 5: Non-zero FLOPs equations for various attentionmod-
ules. These calculations assume Q,K and V are equal sized
projections in RF⇥3 , and 30 = 3/⌘. QV| and AV are addition-
ally multiplied by ⌘. Q-scaling and softmax FLOPs excluded
from this table.

Furthermore, we modify the FLOPs for the attention module to
account for step-t attention mask and the �xed Q,K,V mask, as
summarized in Table 5. In the standard attention module where
Q,K and V are equal sized projections, matrix multiply operations
(QV| , AV) for each head equate to 30F2, where 30 = 3/⌘. For step-t
attention, we only require computation at the current time step (the
last row in Figure 2), while each each of the identities for past time
steps equates to one. AV requires double the computations because
V contains FP32 activations multiplied by the diagonal in A. For the
�xed mask, since Q and K are sparse projections, we only require
(F?0)2 nonzero computations in the matrix multiply. Since A is a
dense matrix, we requireF2 FLOPs to multiply sparse matrix V.

A simpli�ed equation for network FLOPs becomes 2! + # (2! +

"��), where ! is a linear layer,# is the number of attention layers,
and "�� is the multihead attention FLOPs (details described in
Table 5). Several FLOP counts are omitted from this equation, which

550

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ma� Gorbe�, Hossein Shirazi, and Indrakshi Ray

Dense Transformer Sparse Binary Transformer ⇠Savings

Type Dataset < F 3 Params (FP32)
(K)

Size (Bits)
(Mil.)

FLOPs
(Mil.) ? Params (Binary)

(K)
Size (Bits)
(Mil.)

FLOPs
(Mil.)

Size (Bits)
(DenseSBT)

FLOPs
(DenseSBT)

Cl
as
si
�c
at
io
n

Heartbeat 61 405 64 169.6 5.4 52.7 0.5 102.3 0.1 21.6 ⇥49.1 ⇥2.4

Insect W.B. 200 30 128 555.5 17.8 5.4 0.5 420.1 0.4 2.7 ⇥40.0 ⇥2.0

Arabic Dig. 13 93 64 167.1 5.3 2.8 0.5 100.0 0.1 1.3 ⇥49.5 ⇥2.2

Japan.Vowels 12 29 32 75.5 2.4 0.3 0.5 41.6 0.04 0.2 ⇥52.9 ⇥2.1

FaceDetection 144 62 128 414.9 13.3 8.3 0.5 281.3 0.3 4.0 ⇥44.7 ⇥2.1

A
no

m
al
y

D
et
ec
tio

n MSL 55 50 110 223.7 7.2 4.9 0.75 221.5 0.2 1.0 ⇥32.3 ⇥5.0

SMAP 25 50 50 75.2 2.4 1.3 0.75 73.7 0.1 0.2 ⇥32.6 ⇥6.1

SMD 38 200 76 132.8 4.2 19.5 0.75 129.8 0.1 1.9 ⇥32.7 ⇥10.5

Fo
re
ca
st
. ECL 321 200 350 1569.4 50.2 204.8 0.75 1563.9 1.6 74.5 ⇥32.1 ⇥2.7

Weather 7 200 100 188.0 6.0 28.5 0.5 185.6 0.2 6.2 ⇥32.4 ⇥4.6

ETTm1 12 200 64 102.0 3.3 15.5 0.5 100.0 0.1 2.6 ⇥32.6 ⇥5.9
Table 6: Computational savings for Dense Transformers compared to SBTs. SBT models achieve a substantial reduction in size
and FLOPs count across all models. We denote parameters in thousands and size and FLOPs in millions, with savings calculated
by dividing the Dense values by the SBT values.

we include in our code, including positional encoding, &-scaling,
and layer and batch norm.
Storage Size.We measure the size of each model in total bits. Stan-
dard networks rely on weights optimized with the FP32 data type
(32 bits). We consider each binarized module in our architecture
to contain single bit weights with a single FP32 U parameter for
each layer. Anomaly detection and classi�cation datasets contain 14
binarized modules, and forecasting contains 18 with the additional
binarization of the layer normalization. We note that the binarized
quantities are only theoretical as a result of the PyTorch framework
not supporting the binary data type. Hardware limitations are also
reported in other works [20].

5.2 Model Size Selection
Important to our work is tuning the size of each model. We ana-
lyze whether we can create a Dense Transformer with a smaller
number of parameters and still retain a performance on par with a
larger model. Our motivation for model size selection is two-fold:
1) Previous research has found that neural networks need to be
su�ciently overparameterized to be pruned and retain the same
accuracy of the dense model and 2) The time series datasets studied
in this paper have a smaller number of dimensions than the vision
datasets studied in most pruning and model compression papers.
The e�ect of model overparameterization is that we need a dense
model with enough initial parameters in order to prune it and still
retain high performance. Theoretical estimates on the number of
required parameters are proposed by the Strong Lottery Ticket
Hypothesis [43, 44] and are further explored in other pruning pa-
pers [10, 17]. On the other hand, the limited features of some time

series datasets (such as Weather with 7 features) leads us to wonder
whether we could simply create a smaller model.

To alter the model size, we vary the embedding dimension 3
of the model. To �nd the ideal size of the model, we start from
a small embedding dimension (such as 8 or 16), and increase the
value in the Dense Transformer until the model performance on
the validation set stops increasing. With this value of 3 , we test the
SBT model.

Our results show that in each dataset, Dense Transformers with
a smaller embedding dimension 3 either a) perform worse than the
SBT at the optimized size, b) contain more parameters (as measured
in total bits), c) have more FLOPs, or d) some combination of the
above. In almost every dataset, the smaller Dense Transformer
performs worse than the SBT while also requiring more size and
FLOPs. The exception to this was Spoken Arabic Digits, where
the smaller Dense Transformers (3 = 16 and 3 = 32) performed
slightly better than the SBT with 3 = 64. Additionally, these models
had a lower FLOPs count. The advantage of the SBT model in this
scenario was a substantially lower storage cost than both smaller
Dense models. Even if both Dense Transformer models were able
to be quantized to 8-bit weights, the storage of the SBT would still
be many times lower. The ETTm1 dataset additionally had high
performance Dense Transformers with a smaller size (3 = 16,3 =
32). However, both models were substantially more costly in terms
of storage and additionally had a higher FLOPs count. Detailed
results are provided in the Appendix.

551

Sparse Binary Transformers for Multivariate Time Series Modeling KDD ’23, August 6–10, 2023, Long Beach, CA, USA

5.3 Analysis
Results in Table 6 highlight the large computational savings achieved
by SBT. We �nd that layer pruning reduces FLOPs count (due to
the added nonzero computations), while binarization helps with
the storage size.

Notably, all models have a FLOPs count at least two times less
than the original Dense model. FLOPs are dramatically reduced
in the anomaly detection and forecasting datasets, largely due to
the step-t masking. Classi�cation datasets have a dense attention
matrix, leading to a smaller FLOPs reduction due to the softmax
operation and the �+ calculation (where + is sparse). We note that
using a higher prune rate can reduce the FLOPs more, however
we include results at 50% prune rate for classi�cation since these
models achieved slightly better accuracy.

We highlight the storage savings of SBT models by measuring bit
size and parameter count. Table 6 summarizes the substantial reduc-
tion in bit size for every model, with only two SBT models having
a bit size greater than 1 million (Insect Wingbeats and ECL). The
two models with a larger size also had the highest dimensionality
<, and consequently 3 .

We note that SBT models contain a small number of FP32 values
due to the single U parameter in each module. Additionally, we
forego a learnable encoding layer in SBT classi�cation models,
leading to a smaller overall count. Finally, no bias term is added to
the SBT modules, leading to a smaller number of overall parameters.

Compared to other e�cient models, our model generally has a
lower FLOPs count. For example, MobileV2 [50] has 16.4 million
FLOPs when modeling CIFAR10, while E�cientNetV2 [55] has 18.1
million parameters.

6 DISCUSSION
We show that Sparse Binary Transformers attain similar accuracy
to the Dense Transformer across three multivariate time series
learning tasks: anomaly detection, forecasting, and classi�cation.
We estimate the computational savings of SBT’s by counting FLOPs
as well as total size of the model.

6.1 Applications
SBTs retain high performance compared to dense models, coupled
with a large reduction in computational cost. As a result, SBTs have
the potential to impact a variety of new domains. For example, sen-
sors and small embedded systems such as IoT devices could employ
SBTs for intelligent and data-driven decisions, such as detecting a
malicious actor or forecasting a weather event. Such devices could
be extended into new areas of research such as environmental
monitoring. Other small capacity applications include implantable
devices, healthcare monitoring, and various industrial applications.

Finally, lightweight deep learning models can also bene�t larger
endeavors. For example, space and satellite applications, such as in
the MSL and SMAP telemetry datasets, collect massive amounts of
data that is di�cult to monitor. Employing e�ective and intelligent
algorithms such as the Transformer could help in the processing
and auditing of such systems.

6.2 Limitations and Future Work
Although SBTs theoretically reduce computational costs, themethod
is not optimized for modern libraries and hardware. Python libraries
do not binarize weights to single bits, but 8-bit counts. Special hard-
ware in IoT devices and satellites could additionallymake implemen-
tation a burden. Additionally, while our implementation shows that
sparse binarized Transformers exist, the Biprop algorithm requires
backpropagation over a dense network with randomly initialized
FP32 weights. Hence, �nding accurate binary subnetworks requires
more computational power during training than it does during
deployment. This may be a key limitation in devices seeking au-
tonomy. In addition to addressing these limitations, a logical step
for future work would be to implement SBTs in state-of-the-art
Transformer models such as the Pyramformer for forecasting and
the Anomaly Transformer for time series anomaly detection.

SBTs have the potential to enable widespread use of AI across
new applications. The Transformer stands as one of most powerful
deep learning models in use today, and expanding this architecture
into new domains provides promising directions for the future.

7 ACKNOWLEDGEMENTS
This work was supported in part by funding from NSF under Award
Numbers ATD 2123761, CNS 1822118, NIST, ARL, Statnett, AMI,
NewPush, and Cyber Risk Research.

REFERENCES
[1] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. 2017. The Great Time

Series Classi�cation Bake O�: a Review and Experimental Evaluation of Recent
Algorithmic Advances. Data Mining and Knowledge Discovery 31 (2017), 606–660.
Issue 3.

[2] Sriram Baireddy, Sundip R Desai, James L Mathieson, Richard H Foster, Moses W
Chan, Mary L Comer, and Edward J Delp. 2021. Spacecraft time-series anomaly
detection using transfer learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 1951–1960.

[3] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150 (2020).

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or
Propagating Gradients Through Stochastic Neurons for Conditional Computation.
arXiv:1308.3432 [cs] (Aug. 2013). http://arxiv.org/abs/1308.3432 arXiv: 1308.3432.

[5] Kshitij Bhardwaj and Maya Gokhale. 2021. Semi-supervised on-device neural net-
work adaptation for remote and portable laser-induced breakdown spectroscopy.
arXiv preprint arXiv:2104.03439 (2021).

[6] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag.
2020. What is the state of neural network pruning? Proceedings of machine
learning and systems 2 (2020), 129–146.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Je�rey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-
Shot Learners. In Advances in Neural Information Processing Systems, Vol. 33.
Curran Associates, Inc., 1877–1901. https://papers.nips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[8] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua
Liu, Siwei Ma, Chunjing Xu, Chao Xu, and Wen Gao. 2021. Pre-Trained Image
Processing Transformer. In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, Nashville, TN, USA, 12294–12305. https:
//doi.org/10.1109/CVPR46437.2021.01212

[9] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang
Wang, and Michael Carbin. 2020. The lottery ticket hypothesis for pre-trained
bert networks. Advances in neural information processing systems 33 (2020),
15834–15846.

[10] Daiki Chijiwa, Shin’ ya Yamaguchi, Yasutoshi Ida, Kenji Umakoshi, and Tomohiro
INOUE. 2021. Pruning Randomly Initialized Neural Networks with Iterative
Randomization. In Advances in Neural Information Processing Systems, Vol. 34.

552

http://arxiv.org/abs/1308.3432
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1109/CVPR46437.2021.01212
https://doi.org/10.1109/CVPR46437.2021.01212

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ma� Gorbe�, Hossein Shirazi, and Indrakshi Ray

Curran Associates, Inc., 4503–4513. https://papers.nips.cc/paper/2021/hash/
23e582ad8087f2c03a5a31c125123f9a-Abstract.html

[11] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generating
long sequences with sparse transformers. arXiv preprint arXiv:1904.10509 (2019).

[12] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,
Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. 2020. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794 (2020).

[13] Andrew A Cook, Göksel Mısırlı, and Zhong Fan. 2019. Anomaly detection for IoT
time-series data: A survey. IEEE Internet of Things Journal 7, 7 (2019), 6481–6494.

[14] Angus Dempster, François Petitjean, and Geo�rey I Webb. 2020. ROCKET: excep-
tionally fast and accurate time series classi�cation using random convolutional
kernels. Data Mining and Knowledge Discovery 34, 5 (2020), 1454–1495.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.
2009.5206848

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[17] James Di�enderfer and Bhavya Kailkhura. 2021. Multi-Prize Lottery Ticket
Hypothesis: Finding Accurate Binary Neural Networks by Pruning A Randomly
Weighted Network. In International Conference on Learning Representations. https:
//openreview.net/forum?id=U_mat0b9iv

[18] William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch transformers:
Scaling to trillion parameter models with simple and e�cient sparsity. J. Mach.
Learn. Res 23 (2021), 1–40.

[19] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. 2019. Unsupervised
scalable representation learning for multivariate time series. Advances in neural
information processing systems 32 (2019).

[20] Jonathan Frankle and Michael Carbin. 2019. The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks. (March 2019). http://arxiv.org/abs/
1803.03635 arXiv: 1803.03635.

[21] Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Hassan
Sajjad, Preslav Nakov, Deming Chen, and Marianne Winslett. 2021. Compressing
large-scale transformer-based models: A case study on bert. Transactions of the
Association for Computational Linguistics 9 (2021), 1061–1080.

[22] Matt Gorbett, Hossein Shirazi, and Indrakshi Ray. 2022. Local Intrinsic Dimen-
sionality of IoT Networks for Unsupervised Intrusion Detection. In Data and
Applications Security and Privacy XXXVI: 36th Annual IFIP WG 11.3 Conference,
DBSec 2022, Newark, NJ, USA, July 18–20, 2022, Proceedings. Springer, 143–161.

[23] Matt Gorbett, Hossein Shirazi, and Indrakshi Ray. 2022. WiP: The Intrinsic
Dimensionality of IoT Networks. In Proceedings of the 27th ACM on Symposium
on Access Control Models and Technologies. 245–250.

[24] Matt Gorbett and Darrell Whitley. 2023. Randomly Initialized Subnetworks with
Iterative Weight Recycling. arXiv preprint arXiv:2303.15953 (2023).

[25] Song Han, Je� Pool, John Tran, andWilliam J. Dally. 2015. Learning bothWeights
and Connections for E�cient Neural Networks. (Oct. 2015). http://arxiv.org/
abs/1506.02626 arXiv: 1506.02626.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into recti�ers: Surpassing human-level performance on imagenet classi�cation.
In Proceedings of the IEEE international conference on computer vision. 1026–1034.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, Las Vegas, NV, USA, 770–778. https:
//doi.org/10.1109/CVPR.2016.90

[28] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and
Tom Soderstrom. 2018. Detecting spacecraft anomalies using lstms and nonpara-
metric dynamic thresholding. In Proceedings of the 24th ACM SIGKDD interna-
tional conference on knowledge discovery & data mining. 387–395.

[29] Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mohiuddin, Lukasz Kaiser,
Wojciech Gajewski, Henryk Michalewski, and Jonni Kanerva. 2021. Sparse
is enough in scaling transformers. Advances in Neural Information Processing
Systems 34 (2021), 9895–9907.

[30] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang
Wang, and Qun Liu. 2020. TinyBERT: Distilling BERT for Natural Language
Understanding. In Findings of the Association for Computational Linguistics:
EMNLP 2020. Association for Computational Linguistics, Online, 4163–4174.
https://doi.org/10.18653/v1/2020.�ndings-emnlp.372

[31] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The e�cient
transformer. arXiv preprint arXiv:2001.04451 (2020).

[32] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. ImageNet Clas-
si�cation with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, Vol. 25. Curran Associates, Inc. https://papers.
nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

[33] Woosuk Kwon, Sehoon Kim, Michael W. Mahoney, Joseph Hassoun, Kurt
Keutzer, and Amir Gholami. 2022. A Fast Post-Training Pruning Framework
for Transformers. In Advances in Neural Information Processing Systems, Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (Eds.).
https://openreview.net/forum?id=0GRBKLBjJE

[34] François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. 2021. Block
pruning for faster transformers. arXiv preprint arXiv:2109.04838 (2021).

[35] Yann LeCun, John Denker, and Sara Solla. 1989. Optimal Brain Damage. In
Advances in Neural Information Processing Systems, Vol. 2. Morgan-Kaufmann.
https://papers.nips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-
Abstract.html

[36] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2020. Gshard:
Scaling giant models with conditional computation and automatic sharding. arXiv
preprint arXiv:2006.16668 (2020).

[37] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,
and Xifeng Yan. 2019. Enhancing the locality and breaking the memory bottle-
neck of transformer on time series forecasting. Advances in neural information
processing systems 32 (2019).

[38] Minghao Liu, Shengqi Ren, Siyuan Ma, Jiahui Jiao, Yizhou Chen, Zhiguang Wang,
and Wei Song. 2021. Gated transformer networks for multivariate time series
classi�cation. arXiv preprint arXiv:2103.14438 (2021).

[39] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and
Schahram Dustdar. 2021. Pyraformer: Low-complexity pyramidal attention for
long-range time series modeling and forecasting. In International Conference on
Learning Representations.

[40] Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. 2020. Prov-
ing the Lottery Ticket Hypothesis: Pruning is All You Need. In Proceedings of
the 37th International Conference on Machine Learning. PMLR, 6682–6691. ISSN:
2640-3498.

[41] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet
Agarwal, and Gautam Shro�. 2016. LSTM-based encoder-decoder formulti-sensor
anomaly detection. arXiv preprint arXiv:1607.00148 (2016).

[42] Hengyu Meng, Yuxuan Zhang, Yuanxiang Li, and Honghua Zhao. 2019. Space-
craft anomaly detection via transformer reconstruction error. In International
Conference on Aerospace System Science and Engineering. Springer, 351–362.

[43] Laurent Orseau, Marcus Hutter, and Omar Rivasplata. 2020. Logarithmic Pruning
is All You Need. In Advances in Neural Information Processing Systems, Vol. 33.
Curran Associates, Inc., 2925–2934.

[44] Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dimitris
Papailiopoulos. 2020. Optimal Lottery Tickets via Subset Sum: Logarithmic
Over-Parameterization is Su�cient. In Advances in Neural Information Processing
Systems, Vol. 33. Curran Associates, Inc., 2599–2610.

[45] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu
Sebe. 2020. Binary neural networks: A survey. Pattern Recognition 105 (2020),
107281.

[46] Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang, and Jie
Tang. 2019. Blockwise self-attention for long document understanding. arXiv
preprint arXiv:1911.02972 (2019).

[47] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and
Mohammad Rastegari. 2020. What’s Hidden in a Randomly Weighted Neural
Network?. In Computer Vision and Pattern Recognition (CVPR).

[48] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classi�cation using binary convolutional neural networks. In
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11–14, 2016, Proceedings, Part IV. Springer, 525–542.

[49] Marc Rußwurm and Marco Körner. 2020. Self-attention for raw optical satellite
time series classi�cation. ISPRS journal of photogrammetry and remote sensing
169 (2020), 421–435.

[50] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[51] Lifeng Shen, Zhuocong Li, and James Kwok. 2020. Timeseries anomaly detection
using temporal hierarchical one-class network. Advances in Neural Information
Processing Systems 33 (2020), 13016–13026.

[52] Alban Si�er, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouet.
2017. Anomaly detection in streams with extreme value theory. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1067–1075.

[53] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. (Sept. 2014). https://doi.org/10.48550/
arXiv.1409.1556

[54] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019. Robust
Anomaly Detection for Multivariate Time Series through Stochastic Recurrent
Neural Network. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. ACM, Anchorage AK USA, 2828–2837.
https://doi.org/10.1145/3292500.3330672

553

https://papers.nips.cc/paper/2021/hash/23e582ad8087f2c03a5a31c125123f9a-Abstract.html
https://papers.nips.cc/paper/2021/hash/23e582ad8087f2c03a5a31c125123f9a-Abstract.html
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=U_mat0b9iv
https://openreview.net/forum?id=U_mat0b9iv
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://openreview.net/forum?id=0GRBKLBjJE
https://papers.nips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html
https://papers.nips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1145/3292500.3330672

Sparse Binary Transformers for Multivariate Time Series Modeling KDD ’23, August 6–10, 2023, Long Beach, CA, USA

[55] Mingxing Tan and Quoc Le. 2021. E�cientnetv2: Smaller models and faster
training. In International Conference on Machine Learning. PMLR, 10096–10106.

[56] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. 2022. E�cient
Transformers: A Survey. ACM Comput. Surv. (apr 2022). https://doi.org/10.1145/
3530811 Just Accepted.

[57] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Herve Jegou. 2021. Training data-e�cient image transformers
& distillation through attention. In Proceedings of the 38th International Conference
on Machine Learning. PMLR, 10347–10357. https://proceedings.mlr.press/v139/
touvron21a.html ISSN: 2640-3498.

[58] Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings. 2022. TranAD: deep
transformer networks for anomaly detection in multivariate time series data.
Proceedings of the VLDB Endowment 15, 6 (Feb. 2022), 1201–1214. https://doi.
org/10.14778/3514061.3514067

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All you Need. In Advances in Neural Information Processing Systems, Vol. 30.
Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[60] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Lin-
former: Self-attention with linear complexity. arXiv preprint arXiv:2006.04768
(2020).

[61] Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan,
and Liang Sun. 2022. Transformers in Time Series: A Survey. (March 2022).
http://arxiv.org/abs/2202.07125 Number: arXiv:2202.07125 arXiv:2202.07125 [cs,
eess, stat].

[62] HaixuWu, Jiehui Xu, JianminWang, and Mingsheng Long. 2021. Autoformer: De-
composition transformers with auto-correlation for long-term series forecasting.
Advances in Neural Information Processing Systems 34 (2021), 22419–22430.

[63] Sifan Wu, Xi Xiao, Qianggang Ding, Peilin Zhao, Ying Wei, and Junzhou Huang.
2020. Adversarial sparse transformer for time series forecasting. Advances in
neural information processing systems 33 (2020), 17105–17115.

[64] Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. 2022. Anomaly
Transformer: Time Series Anomaly Detection with Association Discrepancy. In
International Conference on Learning Representations. https://openreview.net/
forum?id=LzQQ89U1qm_

[65] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. 2017. Designing Energy-E�cient
Convolutional Neural Networks using Energy-Aware Pruning. (April 2017).
http://arxiv.org/abs/1611.05128 arXiv: 1611.05128.

[66] O�r Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. 2019. Q8bert:
Quantized 8bit bert. In 2019 Fifth Workshop on Energy E�cient Machine Learning
and Cognitive Computing-NeurIPS Edition (EMC2-NIPS). IEEE, 36–39.

[67] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty,
and Carsten Eickho�. 2021. A Transformer-Based Framework for Multivariate
Time Series Representation Learning. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining (Virtual Event, Singapore)
(KDD ’21). Association for Computing Machinery, New York, NY, USA, 2114–2124.
https://doi.org/10.1145/3447548.3467401

[68] Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li, Jiancheng Lv, Nan Duan,
and Weizhu Chen. 2021. Poolingformer: Long document modeling with pooling
attention. In International Conference on Machine Learning. PMLR, 12437–12446.

[69] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond e�cient transformer for long se-
quence time-series forecasting. In Proceedings of the AAAI Conference on Arti�cial
Intelligence, Vol. 35. 11106–11115.

[70] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin.
2022. FEDformer: Frequency Enhanced Decomposed Transformer for Long-
term Series Forecasting. In Proceedings of the 39th International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 162), Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato (Eds.). PMLR, 27268–27286. https://proceedings.mlr.press/v162/zhou22g.
html

SUPPLEMENTAL MATERIALS
A ABLATION STUDIES
We conduct two ablation studies testing the e�ects of removing the
individual pruning mechanisms from the attention computation.
We note that the attention pruning methods complement Biprop –
Biprop mainly reduces the model size, whereas attention pruning
does a better job at reducing the FLOPs. Each ablation experiment
is averaged over three experimental runs with di�erent seeds.

Table 1 highlights the e�ects of removing random pruning from
the time series classi�cation models. Notably, Biprop plus random

pruning performs comparably to, or better than, Biprop on its own.
Adding random pruning even outperforms using only Biprop with
the Japanese Vowels dataset.

Table 2 highlights the results of attention variations for both
anomaly detection and forecasting tasks. Speci�cally, we look at our
proposed approach (Biprop+Step-T Mask), Biprop plus an identity
matrix mask in the attention layers, and �nally Biprop only. We
report results using mean squared error (MSE) loss averaged over
three runs.

Results show that Biprop plus the Step-T mask performs com-
parably to using Biprop only. For anomaly detection tasks, the
MSE is even lower compared to just using Biprop. Comparing both
methods to the Biprop plus the identity matrix attention mask, we
can see a signi�cant di�erence in the results: the identity matrix
attention mask attains a higher loss in each case.

Dataset Biprop+Random Pruning Biprop
Arabic Digits 98.2 98.2
Heartbeat 77.7 77.1

Insect Wingbeats 64.1 64
Japanese Vowels 95.3 84.4
Face Detection 66.1 65.9

Table 1: We compare Biprop with Biprop plus random prun-
ing on classi�cation tasks. We �nd that random pruning of
the attention activations does not hurt classifcation accuracy,
and in fact helps it in the case of the Japanese Vowels dataset.

Dataset Biprop+
Step-T

Biprop+
Identity Matrix

Biprop
Only

Anomaly Detection
MSL 0.277 0.364 0.357
SMAP 0.117 0.131 0.125
SMD 0.037 0.041 0.052

Forecasting
ETTm1 0.059 0.068 0.070
ECL 0.198 0.204 0.182

Weather 0.166 0.180 0.166
Table 2: We compare Biprop plus the Step-T attention mask
with two other methods. We �nd that Biprop with the Step-T
mask performs similarly to using Biprop with full attention
(Biprop Only). Biprop with an Identity Mask on the attention
computation performs worse than the other two methods.
We report results using MSE loss averaged across three runs.

B TRAINING DETAILS
Each model is trained with Adam optimization with a learning
rate of 1e-3 except for InsectWingbeats, where we use a learning
rate of 1e-4. For Dense Transformer classi�cation models we use a
learnable positional encoding, while in all other models we use a
standard positional encoding.

We found that SBT models sometimes take slightly longer to
converge during, hence we train the models for more epochs in
the forecasting and classi�cation tasks. We outline the number of

554

https://doi.org/10.1145/3530811
https://doi.org/10.1145/3530811
https://proceedings.mlr.press/v139/touvron21a.html
https://proceedings.mlr.press/v139/touvron21a.html
https://doi.org/10.14778/3514061.3514067
https://doi.org/10.14778/3514061.3514067
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/2202.07125
https://openreview.net/forum?id=LzQQ89U1qm_
https://openreview.net/forum?id=LzQQ89U1qm_
http://arxiv.org/abs/1611.05128
https://doi.org/10.1145/3447548.3467401
https://proceedings.mlr.press/v162/zhou22g.html
https://proceedings.mlr.press/v162/zhou22g.html

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ma� Gorbe�, Hossein Shirazi, and Indrakshi Ray

epochs used for each task Table ??. Additionally we denote whether
we use a scheduler. Batch Normalization is used for classi�cation
tasks, layer normalization is used for forecasting tasks, and no
normalization is used for anomaly detection.

C ANALYSIS
C.1 Attention Magnitude Pruning versus

Random Pruning
As apart of our attention pruning analysis, we also applied magni-
tude pruning to the attention layers. However, this method requires
extra computation as a result of the sorting required to take the
top activation’s for each input. Below we compare the results of
magnitude pruning versus random pruning, �nding that random
pruning achieves similar accuracy to magnitude pruning at a lower
computational cost.

Dataset Mag. Prune Rand. Prune
Arabic 98.2 98.2

Heartbeat 77.2 77.7
Insect 64.4 64.1

Japanese 94.9 95.3
Face Det. 66.3 66.1

Table 3: Random pruning versus activation magnitude prun-
ing. We �nd that random pruning achieves similar accuracy
to magnitude pruning with lower computational cost.

C.2 Model size savings of Biprop versus Pruning
In Table 4 we compare the model size savings of Biprop compared
to 32-bit pruning as well as pruning plus quantization (8-bit). We
show that, even compared to pruning plus 8-bit quantization, Biprop
achieves substantially lower model size.

Dataset Bin. Prune Pruning+
Quantization

Classi�cation
Heartbeat ⇥ 49.10 ⇥3.2 ⇥11.7
Insect ⇥ 39.98 ⇥ 2.6 ⇥ 9.4
Arabic ⇥ 49.51 ⇥ 3.2 ⇥ 11.8
Japanese ⇥ 52.85 ⇥ 3.5 ⇥ 12.8
FaceDet. ⇥ 44.67 ⇥ 2.8 ⇥ 10.5

Anomaly Detection
MSL ⇥ 32.31 ⇥ 3.7 ⇥ 11.8
SMAP ⇥ 32.65 ⇥ 3.7 ⇥ 11.9
SMD ⇥ 32.74 ⇥ 3.7 ⇥ 11.9

Forecasting
Electricity ⇥ 32.11 ⇥ 3.7 ⇥ 11.7
Weather ⇥ 32.42 ⇥ 2.0 ⇥ 7.2
ETTm1 ⇥ 32.65 ⇥ 2.0 ⇥ 7.3

Table 4: Comparison of the size between Biprop, 32-bit prun-
ing, and 32-bit pruning + quantization. Biprop achieves the
greatest model size compression by a large degree.

D DATASET DETAILS
We report the details of datasets used for each task below. For
anomaly detection and forecasting tasks, we set the window sizeF
to a �xed value, while in classi�cation,F is prede�ned.

Dataset Train Size Test Size < F Classes
Arabic 6,599 2,199 13 93 10

Heartbeat 204 205 61 405 2
Insect 30k 20k 200 30 10

Japanese 270 370 12 29 9
Face Det. 5,890 3,524 144 62 2

Table 5: A summary of classi�cation datasets.

Dataset Train Size Test Size Features(<) Length (F)
ECL 23,377 2,928 321 200

Weather 28,005 7,060 12 200
ETTm1 45,697 11,904 7 200

Table 6: A summary of forecasting datasets.

Dataset Train Size Test Size Features(<) Length (F)
SMAP 135,183 427,617 25 50
MSL 58,317 73,729 55 50
SMD 708,405 708,420 38 200
Table 7: A summary of anomaly detection datasets.

E MODEL SIZE SELECTION
We measure model performance as well as computational cost at
varying sizes for each model. To vary the size, we increase the
embedding dimension 3 for each model and dataset combination.
Tables 8 and 9 show the results for each model size and dataset
combination. Overall, we �nd that the SBT generally performs
better than the smaller Dense Transformer in terms of performance,
except in a few cases. In all scenarios, the SBT model has at least
one computational advantage in terms of storage size or FLOPs
count.

Additionally we �nd that, common with our intuition, datasets
with a higher dimensionality< need a higher embedding dimension,
while simpler datasets are successful with a smaller embedding di-
mension. For example, Insect Wingbeats (< = 200), Face Detection
(< = 144), and ECL (< = 321) require 3 � 128 to achieve optimal
performance.

555

Sparse Binary Transformers for Multivariate Time Series Modeling KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Dense Transformer Sparse Binary Transformer

Dataset <
(Num. Features) 3 Accuracy Params (FP32)

(K)
FLOPs
(Mil.) Accuracy Params (Binary)

(K)
FLOPs
(Mil.)

Heartbeat 61

64 76.6 169.6 52.73 77.2 102.3 21.57
16 28.8 36.6 11.81 72.2 19.5 4.95
32 71.1 76.9 24.20 74.5 43.1 9.87
128 75.6 404.2 124.73 75.1 270.7 52.45

Insect Wingbeats 200

128 63.4 555.5 5.42 64.1 420.9 2.67
256 65.2 1,503.5 19.77 64.4 1,234.9 9.80
64 57.9 229.0 1.60 51.4 161.3 0.79
400 64.9 3,040.0 46.60 64.6 2,620.8 23.16

Japanese Vowels 12

32 98.0 75.5 0.33 95.3 41.6 0.16
8 92.5 17.7 0.05 78.5 8.9 0.02
16 93.6 36.0 0.12 87.7 18.8 0.06
64 96.2 166.9 1.01 94.1 99.9 0.49

Table 8: Classi�cation Model size selection: Performance of various sized models on each classi�cation dataset. We include the
parameter count as well as FLOPs for both the dense and sparse binary Transformer models. Parameters are �oating-point 32
in the Dense Transformer and Binary in the SBT.

Dense Transformer Sparse Binary Transformer

Dataset <
(Num. Features) 3 MSE Params (FP32)

(K)
FLOPs
(Mil.) MSE Params (Binary)

(K)
FLOPs
(Mil.)

ECL 321

350 0.178 1,569.4 204.76 0.187 1,569.4 74.54

128 0.199 348.2 40.83 0.337 345.1 10.18

256 0.197 956.0 120.88 0.27 951.6 40.06

400 0.216 1,953.2 258.03 0.191 1,947.2 97.21

Weather 7

100 0.173 188.0 28.50 0.166 185.6 6.24

32 0.171 44.2 6.61 0.187 42.5 0.69

64 0.172 102.7 15.53 0.177 100.6 2.61

128 0.169 268.7 40.75 0.166 266.0 10.14
Table 9: Forecasting Model size selection: Performance of various sized models on each forecasting dataset. We include the
parameter count as well as FLOPs for both the dense and sparse binary Transformer models. Parameters are �oating-point 32
in the Dense Transformer and Binary in the SBT.

556

	Abstract
	1 Introduction
	2 Related Work
	2.1 Transformers in Time Series
	2.2 Compressed Neural Networks
	2.3 Compressed and Efficient Transformers

	3 Method
	3.1 Dense Transformer
	3.2 Sparse Binary Transformer
	3.3 Attention Modifications

	4 Experiments
	4.1 Classification
	4.2 Anomaly Detection
	4.3 Forecasting
	4.4 Architecture

	5 Computational Savings
	5.1 Metrics
	5.2 Model Size Selection
	5.3 Analysis

	6 Discussion
	6.1 Applications
	6.2 Limitations and Future Work

	7 Acknowledgements
	References
	A Ablation Studies
	B Training Details
	C Analysis
	C.1 Attention Magnitude Pruning versus Random Pruning
	C.2 Model size savings of Biprop versus Pruning

	D Dataset Details
	E Model Size Selection

