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Hopscotch: A Hardware-Software Co-design for
Efficient Cache Resizing on Multi-core SoCs

Zhe Jiang, Kecheng Yang, Nathan Fisher, Nan Guan, Neil Audsley, Zheng Dong§

Abstract—Following the trend of increasing autonomy in real-time systems, multi-core System-on-Chips (SoCs) have enabled devices
to better handle the large streams of data and intensive computation required by such autonomous systems. In modern multi-core
SoCs, each L1 cache is designed to be tied to an individual processor, and a processor can only access its own L1 cache. This design
method ensures the system’s average throughput, but also limits the possibility of parallelism, significantly reducing the system’s
real-time schedulability. To overcome this problem, we present a new system framework for highly-parallel multi-core systems,
Hopscotch. Hopscotch introduces re-sizable L1 cache which is shared between processors in the same computing cluster. At
execution, Hopscotch dynamically allocates L1 cache capacity to the tasks executed by the processors, unblocking the available
parallelism in the system. Based on the new hardware architecture, we also present a new theoretical model and schedulability
analysis providing cache size selection methods and corresponding timing guarantees for the system. As demonstrated in the
evaluations, Hopscotch effectively improves system-level schedulability with negligible extra overhead.

Index Terms—Real-Time Systems, Hardware/Software Co-design, L1 Cache, Schedulability Analysis.
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1 INTRODUCTION

A major factor in the recent trend towards increasingly
autonomous systems is the proliferation of relatively in-
expensive, yet highly-parallel multi-core System-on-Chips
(SoCs). These parallel embedded SoCs have enabled devices
to better handle the large streams of data and intensive
computation required to learn and make decisions au-
tonomously in uncertain, high-dimensional environments,
using techniques like deep learning. However, while the ex-
plosion of highly-parallel platforms has seen a proportion-
ate growth in the number of applications/devices that use
these platforms, understanding in the embedded systems
community of how to build time-predictable, safety-critical
systems with such parallel architectures has not kept pace,
especially in the L1 cache.

L1 cache is a vital resource in multi-core SoCs, buffering
the contents stored in memory and providing a fast path
for processor access. With the L1 cache, the processor can
obtain the desired data/instruction within one or two clock
cycles, rather than wasting dozens of cycles waiting for
data/instructions to return from memory or low-level cache.
Hence, the effectiveness of using L1 cache is a dominant
factor when determining the utilization, throughput, and
real-time schedulability of the entire system [25].
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Fig. 1. Task scheduling with isolated L1-cache (i.e., each processor has
two designated cache ways), and shared and re-sizable L1-cache (t:
time; way: cache way).

Conventionally, L1 cache is designed to be tied to an in-
dividual processor, and a processor is only allowed to access
its designated L1 cache. This design approach provides fixed
cache capacity for each processor, ensuring the processors’
average throughput [38]. However, isolated cache partition-
ing also limits available parallelism in the system, reducing
the system’s real-time schedulability. For example, Fig. 1(a)
shows two tasks τ1 and τ2 deployed in a dual-core system.
At time point 0, τ1 and τ2 are released and executed by
the processors simultaneously. At time point 2, τ1 completes
the execution, and its L1 cache becomes free. However, due
to the restriction, τ2 can still only execute with the limited
cache capacity until time point 4, missing the deadline.

To effectively exploit the available parallelism and en-
sure the system’s real-time schedulability, L1 cache must not
become the bottleneck. Therefore, instead of isolating the L1
cache, we can share the L1 cache between certain processors
and dynamically allocate the cache capacity to each pro-
cessor, adjusting task execution time to guarantee overall
schedulability. Consider the same example discussed above,
with shared and re-sizable L1 cache (Fig. 1(b)). More cache
capacity can be allocated to τ2 by “borrowing” the cache
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ways from τ1, accelerating τ2’s execution. Although this
adjustment slows down τ1’s execution, it ensures system-
level schedulability.
Contributions. With this in mind, we present a new system
framework (Hopscotch) for highly-parallel multi-core sys-
tems. Unlike conventional multi-core systems, Hopscotch in-
troduces novel re-sizable L1 cache (Hopscotch-Cache), shared
between processors in the same computing cluster. We also
introduce a new analysis framework to examine the sys-
tem’s schedulability. With that, we present a configuration
algorithm to dynamically allocate cache capacity to the
tasks executed by the processors, unblocking the available
parallelism and ensuring overall real-time schedulability.
The contributions are summarized as follows:

• At the hardware level, a novel micro-architecture for
L1 cache is developed. This design supports partial
cache sharing and run-time resizing between processors
without causing any extra critical paths.

• At the software level, new analysis frameworks and a
selection algorithm are presented. The analysis frame-
works provide a theoretical evaluation of schedulability
yielded by the new L1 cache, and the selection algo-
rithm allocates the cache capacity for the processors,
thereby enabling the available parallelism.

• As a full-stack solution, a complete system architecture
is introduced, effectively integrating the new hardware
and software to construct the system, guaranteeing real-
time schedulability with improved throughput.

• Comprehensive evaluation is proceeded to examine
the new systems in terms of overhead, performance,
effectiveness, and scalability.

The rest of the paper is organized as follows: Sec. 2
presents the motivation and research challenges, followed
by the design of Hopscotch in 3 and 4. Sec. 5 presents the
theoretical analysis and cache size selection methods for
Hopscotch. Sec. 6 and Sec. 7 evaluate the overhead and real-
time performance of Hopscotch, respectively. Sec. 8 reviews
the related work and Sec. 9 concludes the paper.

2 MOTIVATION AND RESEARCH CHALLANGES

In this section, we first explain the motivation for imple-
menting a new real-time system with shared and re-sizable
L1 cache, and then present the research challenges.

2.1 Execution through a Pipelined Processor
Instructions are a processor’s basic processing objects, and a
software task usually comprises thousands of instructions.
Therefore, we briefly review how instructions are processed
in a modern pipelined processor with L1 cache, and examine
how each stage contributes to the overall execution time.
Fig. 2 illustrates the top-level micro-architecture of a proces-
sor, executing each instruction in 5 pipeline stages [25]:

• Instruction Fetch (IF): the processor fetches an instruc-
tion from its instruction cache (I-cache, if cache hits)
or external memory (DDR, if cache misses) using an
Instruction Fetch Unit (IFU).

• Instruction Decode (ID): the processor decodes the
fetched instruction and then stores the decoded results
in its General-Purpose Registers (GPRs).
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Fig. 2. Top-level micro-architecture of a 5-stage RISC-V processor (OP:
Operand; OPR: Operator; RSL: Result; CSR: Control Status Register;
MUL: Multiplier; Div: Divider). Grey shading indicates cache and exter-
nal memory.

• Execution (EX): the processor executes the decoded in-
structions by operating corresponding execution units.
For example, an Arithmetic Logical Unit (ALU) calcu-
lates the addition or subtraction of integers.

• Memory Access (MA): the processor reads/writes data
from/to its data cache (D-cache, if cache hits) or mem-
ory (if cache misses) using a Load Store Unit (LSU).

• Write-Back (WB): the processor stores the results back
to GPRs, and starts the next-round of execution.

Execution time of each processing stage. To understand the
relationship between the processing stages and instruction
execution time, we run PARSEC benchmarks (v3.0) [9], ex-
cept raytrace, vips, dedup, and canneal,1 with the simsmall
input, using a RISC-V processor with L1 cache on our ex-
perimental platform (Xilinx VC707 using the configuration
given in Sec. 6). In the experiments, we connected a cycle-
accurate counter to the processor, driven by the same clock
source as the processor, measuring the clock cycles taken by
instruction executions at each stage. 2

As shown in Fig. 3, the IF and MA with cache-hit (CH),
and the ID and WB usually completed in one or two clock
cycles. The EX had a variable execution time due to the cal-
culations. The most significant time overhead was observed
at IF and MA with cache-miss (CM): the processor required
more than 15 clock cycles to read/write the corresponding
content to/from the external memory, which dominated the
execution time of the entire instruction. Note that, since
Xilinx VC707 (an FPGA) executes at a lower clock frequency
than the mature ASICs, the time penalty caused by the
cache-miss is further magnified in the modern SoCs.

2.2 L1 Cache Size and Task Execution Time

To further understand how L1 cache affects a task’s (τi)
execution time, we then developed a measurement-based
method to determine the relationships between L1 cache
size (denoted by Aj , where 1 ≤ j ≤ A and A denotes the
total number of cache ways) and the task’s corresponding
WCET (denoted by Ci[Aj ]).3 The Aj and Ci[Aj ] are defined:

1. The workloads can not be cross-compiled using RISC-V toolchain.
2. The counter does not interfere with the processor under test.
3. This method can be used for both I-cache and D-cache. In this

paper, we use D-cache for demonstration purposes.
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Fig. 3. Consumed clock cycles (averaged) at each stage (y-axis: cycles;
CH: cache-hit; CM: cache-miss; CT: control operation; INT: integer
computation).

• L1 cache size (Aj). When task τi executes, it individu-
ally accesses Aj cache ways, i.e., Aj × a capacity of the
L1 cache, a denotes the size of a cache way (unit: KB).

• Task WCET with Aj (Ci[Aj ]). With Aj cache ways, task
τi’s corresponding WCET becomes Ci[Aj ].

The experiment-based method (illustrated in Fig. 4(a))
contains three steps:
Step 1: Initialization and input generation. We configured
the size of D-cache to be Aj . We then initialized the proces-
sor using only the examined task τi and randomly generated
N (e.g., 1,000) input data for the task.
Step 2: Experimental measures. We executed τi with the
generated input data and recorded the task execution time
for each run. We then compared all recorded results deter-
mining the maximum value to be Ci[Aj ].
Step 3: Iteration and plotting. We repeated the above steps
with tuned Aj . Lastly, we plotted a diagram to show Ci[Aj ]
under different Aj .
Example of a CNN task. We used a CNN task to demon-
strate the measurement-based method; the task was built
on LeNet-5 architecture and trained using MNIST train-
ing dataset [33]. The task was quantized with full integer
computations and measured on our experimental platform
(Xilinx VC707, using the configurations given in Sec. 6).
Also, we configure the size of a cache way to 2 KB (i.e.,
a = 2). Fig. 4(b) shows the experimental results, plotting the
relationships between Aj and Ci[Aj ]. As shown, the size of
the L1 cache could significantly vary the task’s WCET. In
the example, the variance reached nearly 70%.

2.3 Research Challenge

Given the previously detailed concepts, it is possible to
build a new real-time system, featuring a shared and re-
sizable L1 cache, which facilitates the dynamic adjustment
of task execution times via allocation of cache capacity.
These new features offer the opportunity to unlock the
potential parallelism and improve the throughput of the
system. However, building such a real-time system is not
straightforward, necessitating a comprehensive hardware-
software full-stack approach. The research challenges can
be summarized as follows:

• At the hardware level, a novel micro-architecture of the
L1 cache is required to enable cache sharing and re-
sizing among different processors. This new micro-
architecture should avoid introducing any critical paths
in the system, e.g., those that could affect the maximum
system frequency or increase cache latency. At the same

time, it must support timely capacity allocation to en-
able software-level allocation.

• At the software level, new schedulability analysis frame-
works are required to theoretically evaluate the schedu-
lability yielded by the new hardware. With that, a
selection algorithm is needed to allocate cache capacity
to the processors to simultaneously guarantee global
schedulability and maximize system-wide throughput.

• As a systematic solution, a complete system architecture
is necessary to build the real system, realizing the above
features. In terms of real-world deployments, such an
architecture must strike a balanced trade-off among
schedulability, performance, overhead, and scalability.

In response to these challenges, we introduce a novel system
framework (Hopscotch) for highly parallel real-time systems,
incorporating a shared and re-sizable L1 cache (Hopscotch-
Cache), along with a cache configuration algorithm. We will
discuss them respectively below.

3 Hopscotch: OVERVIEW

This section gives an overview of Hopscotch, presenting the
top-level design concepts, system architecture and run-time
behaviors of Hopscotch.
Context. In this paper, we make the following assumptions:
(i) the platform is an embedded Network-on-Chip (NoC);
although Hopscotch is agnostic to the type of interconnect,
deployment of a NoC can enhance the predictability of on-
chip transactions [39]; (ii) As an example, the paper presents
the design and analysis for run-time re-sizable D-cache.
Although the presented methods are also suitable for I-
Cache and L2 cache.

3.1 Design Concepts

To take advantage of the observations given in Sec. 2,
we designed a new L1 cache (Hopscotch-Cache), shared be-
tween the processors in the same computing cluster (see
Sec. 4), which enables run-time cache re-sizing across the
processors. Based on Hopscotch-Cache, we established a new
real-time system framework (see Sec. 3.2), i.e., Hopscotch.
Hopscotch dynamically allocates the cache capacity to tasks
during context switches, unblocking the available paral-
lelism. As a systematic solution, we further present a new
theoretical model and schedulability analysis (see Sec. 5),
guaranteeing the system-level real-time schedulability.

3.2 System Architecture

As described in the design concepts, Hopscotch changes the
system’s architecture in both the hardware and software
layers (Fig. 5), compared to a conventional real-time system.
Hardware layer. In the hardware layer, we group processors
as multiple computing clusters (see Fig. 6(a)), where each
cluster contains four processors and one Hopscotch-Cache.
The Hopscotch-Cache provides an independent communica-
tion interface for each processor, avoiding inter-processor
interference while the cache is accessed. At the same time,
we connect the clusters and memory using an open-source
real-time NoC [39], allowing memory accesses when a pro-
cessor encounters a cache-miss.
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Software layer. Corresponding to the cache design, we
present a new Hopscotch-Cache driver (see Algo. 2) at the
Operating System (OS) level, providing configuration inter-
faces to the Hopscotch-Cache (In this work, we use FreeRTOS,
but the specific choice of RTOS is not limited). Additionally,
we slightly modified the implementation of the scheduler
in the OS kernel, letting the scheduler alter the cache size
(Ai) for the next executing task. The method for determining
each task’s Ai is given in Sec. 5.
Compatibility. Although Hopscotch introduces a new system
architecture, the design minimizes modifications to the soft-
ware (see Fig. 5). Moreover, the design maintains the orig-
inal OS-application interfaces presented by a conventional
real-time system, thereby ensuring source compatibility and
allowing tasks designed for a conventional real-time system
to be directly migrated.

3.3 Run-time Behaviors
At system initialization, the cache size required by each
task (i.e., Ai) is pre-loaded (Algo. 1: line 2). During context

Algorithm 1: Context switch in Hopscotch. Text in blue
shows additions in Hopscotch.

1 � Loading tasks’ demanded cache size.
2 u8 A [NUM TASKS];
3 � OS Kernel: context switch.
4 Function Context Switch(task *current):
5 task *next = NULL;
6 Kernel.Intr.disable();
7 � Handling current task.
8 Kernel.Context.save (current);
9 � Handling next task.

10 next = Kernel.Find next task();
11 if (A[next→ID] != A[current→ID]) then
12 � Acquiring the processor’s ID.
13 u8 hart id;
14 asm volatile (“csrr %0, mhartid” : “=r”(hart id));
15 � Configuring cache size.
16 Cache.Cfg size (A[next→ID], hart id);
17 end
18 Kernel.Context.store(next);
19 current = next;
20 Kernel.Intr.enable();
21 Kernel.Context.jump to PC (current);
22 End Function

switches, the current task’s context is stored, and the task
with the highest priority is found from the ready queue as
the next executing task (Algo. 1: lines 7 - 10). The cache
size demanded by the next task is then compared with the
current task. If the next task requires a different cache size,
the value of cache size is sent to Hopscotch-Cache using the
Hopscotch-Cache driver (Algo. 1: lines 11 - 17). Lastly, the
next task’s context is (re-)stored, and the task is executed by
jumping the Program Counter (PC) to the specified address.

In Hopscotch, acquiring the run-time cache re-sizing relies
on the Hopscotch-Cache; we therefore present the Hopscotch-
Cache design details in the next section.

4 Hopscotch-Cache: HARDWARE DESIGN

In this section, we first recall the concepts of the set-
associative cache architecture used by Hopscotch-Cache, then
introduce the novel design of Hopscotch-Cache.
Set-associative architecture. In modern computing archi-
tectures, memory banks are organized as multiple blocks,
with each block usually storing 32 or 64 bytes of data [25].
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At execution, a memory block can be placed in a cache
line using different schemes. The most popular placement
scheme is set-associative [38], where a set is a group of cache
lines, and a memory block can be placed anywhere within
the mapped cache set (see Fig. 7). The cache architecture
realizing this scheme with A cache lines in a set is called
A-way set-associative architecture. Specifically, if the cache
architecture only has one cache way, it is termed a direct-
mapped architecture, as a memory block is always placed
in the same location; if the cache architecture only has one
set, it is termed a fully-associative architecture, as a block
can be placed anywhere [25].

While mapping a memory block to a cache line, the
block’s address is divided into tag, index, and offset fields.
The index field selects the cache set, the tag field finds
the cache line, and the offset field determines the specific
location of the data in the cache line (see Fig. 7).

4.1 Methods of Cache Re-sizing.
With set-associative architecture, it is possible to re-size a
processor/task’s cache capacity by reconfiguring the cache
sets or cache ways it could use. Compared to reconfiguring
ownership of the cache ways, reconfiguring ownership of
the cache sets has two key issues: (i) the width of the index
field varies at run-time, as the index field locates the cache
set; (ii) extra identification and comparison circuits are nec-
essary for each cache set to determine the set’s ownership.
These two issues significantly increase the design complex-
ity, potentially leading the cache to become the system’s
critical path and decreasing the system’s performance [45].

Hence, we designed Hopscotch-Cache with a reconfiguration
of the cache ways. Specifically, we introduce a permission
register for each cache way, recording the way’s ownership.
Processors can only access cache ways which they own.
While configuring a processor/task’s cache size, Hopscotch-
Cache assigns more or fewer cache ways by modifying the
values of the permission registers. We detail the Hopscotch-
Cache design below.

4.2 Hopscotch-Cache Overview
The typical use of Hopscotch-Cache in a NoC-based multi-
core system is illustrated in Fig. 6(a), where Hopscotch-
Cache is physically connected to the processors in the same
computing cluster. From Hopscotch-Cache’s view, the proces-
sors are locally indexed using their relative locations, which
are North-West (NW), North-East (NE), South-West (SW),
and South-East (SE). At execution, Hopscotch-Cache manages
the cache capacity and the cache accesses for these proces-
sors. To this end, we designed Hopscotch-Cache using three
main modules (Fig. 6(b)):

• Cache controller – provides write and read interfaces
between the processors and the cache bank.

• Cache bank – buffers the memory blocks recently ac-
cessed by the processors and handles cache accesses.

• Cache capacity manager – configures the cache size of
each processor by managing the cache ways’ owner-
ship.

Since the cache controller does not require modification,
we instantiate the standard cache controllers in Hopscotch-
Cache and assign the controllers the same local IDs as the
connected processors. Below, we present the design details
of the cache bank and the cache capacity manager.

4.3 Design of Hopscotch-Cache Bank
The design of the Hopscotch-Cache bank (see Fig. 8(a)) mainly
comprises cache RAMs, Cache Line Selectors (CLSs), Cache
Data Selectors (CDSs) and cache replacement units.
Cache RAMs. We implement the Cache RAMs using
Block RAMs provided by the experimental platform (Xilinx
VC707) and organize the BRAMs using the set-associative
architecture , where each cache set has A cache lines (i.e.,
A-way). Each cache line has four portions: valid, tag, data,
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and priority portions (Fig. 8(b)). The valid portion indicates
the cache line’s validness; the tag and data portions hold the
tag and the data of the mapped memory block; the priority
portion reveals the cache line’s priority used in cache re-
placement. In addition, we introduce a permission register
for each cache way, recording the cache way’s ownership.

Cache Line Selector (CLS). We designed the CLS so that
each individual CLS was associated with one cache way,
checking whether the cache request has the corresponding
permission. If the request is permitted, the CLS selects
the cache line and forwards the selected cache line to the
CDS. Otherwise, the CLS masks the request, preventing
the request to access this cache way. To achieve this, we
deploy groups of XNOR gates and AND gates, connecting
the cache controllers and the cache way. Specifically, we
connect the cache controller’s ID bits with the permission
register using the XNOR gate, and connect the XNOR gate’s
output with the cache controller’s request path using the
AND gate. Such connections mask requests issued by a
cache controller without owning the way. In addition, we
connect the cache lines using a multiplexer and connect the
multiplexer’s control port to the AND gate’s output, which
selects the cache lines using the request’s index field. Since
we designed the CLS using pure combinational logic, it
consistently completes the filtering and selection in a single
clock cycle.

Cache Data Selector (CDS). We designed the CDS so
that each individual CDS was associated with one cache
controller (Fig. 8(c)), checking whether the issued request
meets a cache-hit. If there is a cache-hit, the CDS returns the
corresponding data and a cache-hit signal. Otherwise, the
CDS returns a cache-miss signal. To this end, we deploy
A latches to buffer the CLS outputs and connect a hit-
checker to each latch, which comprises an XNOR gate and
an AND gate. Specifically, we connect the latch’s tag portion
and the request’s tag field using the XNOR gate, checking
the status of the cache-hit, and connect the XNOR gate’s
output and the latch’s valid portion using the AND gate,

checking the validness of the cache line (buffered in the
latch). In addition, we connect the latches’ data portions
using multiplexers. The multiplexers select the latches’ data
portion using the request’s offset field when the hit-checker
feeds a hit signal. Like the CLS, we designed the CDS using
pure combinational logic, ensuring the cache-hit checking
and data selecting to complete in a single clock cycle.
Cache replacement units. Hopscotch-Cache bank is compli-
ant with different replacement policies. Since we reserved
a priority portion in each cache line, the cache replacement
units can always replace the cache line with the lowest prior-
ity. The only difference while deploying these replacement
policies is the priority assignment. For example, with the
Least Recently Used (LRU) policy, cache lines are prioritized
using the reverse order of accesses. Following the methods
described in [38], we implement three cache replacement
units for Hopscotch-Cache, using LRU, RSU, FIFO, and Not
Most Recently Used (NMRU) policies, respectively. We also
evaluate Hopscotch-Cache’s real-time performance with these
replacement units in Sec. 6.

4.4 Design of Hopscotch-Cache Manager

The design of Hopscotch-Cache manager is shown in Fig. 9,
mainly comprising groups of register banks, a Way Alloca-
tion Unit (WAU), and an arbiter.
Register banks. We designed the register bank so that each
individual register bank was associated with one processor.
A register bank has two registers, storing the processor’s Ex-
pected Cache Ways (ECW register) and Actual Cache Ways
(ACW register). We connect the ECW register to an AMBA
APB interface and map it to a dedicated memory address [5].
This allows the software to modify the ECW register directly
using memory write operations. Algo. 2 shows the software
driver for configuring the ECW register. Also, we connect a
subtractor to each register bank, calculating the gap between
the ECW and ACW registers. If the result does not equal
zero, the gap value is sent to the WAU.
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Way# PR
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2 NW
3 SW

ACWECW
SE_RB

Sub

Capacity_CtrlReg_
Ctrl

ACWECW
NW_RB

Sub

ACWECW
NE_RB

Sub

ACWECW
SW_RB

Sub

A N/U

3 bits

Capacity Table

Arbiter

add/remove 
x ways

Addr

R/W
Data

AMB_APB

Way#, PR=NW/NE/...N/A
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Cache Bank

Cache Capacity Manager

Way Allocation Unit (WAU)

Fig. 9. Design of cache manager (RB: Register Bank; Ctrl: Controller).

Way Allocation Unit (WAU). The WAU comprises a capac-
ity table and a capacity controller in Fig. 9. The capacity
table is the “shadow” of the permission registers in the
cache bank, and the capacity controller changes the cache
ways’ ownership by writing to the capacity table. When
adding cache ways, the capacity controller only writes to
the free slots in the table, which are labeled “N/U”; when
reducing the cache ways, the capacity controller writes
“N/U” to the corresponding slot(s), which are now free.
The slots are selected in a round-robin manner. Once the
capacity table is updated, the new value is directly mapped
to the corresponding permission register, and the capacity
controller also updates the ACW register simultaneously.
Note that when the ACW register’s value is not equal to
the WAU register’s value, the processor still executes tasks
with an unexpected cache size. In Sec. 7.3, we specifically
evaluate this configuration latency.
Arbiter. Since the register banks (i.e., ECW and ACW reg-
isters) may generate the gap values at the same time, we
designed an arbiter to schedule the pending gap values. The
arbiter’s execution follows two rules: (i) for gap values with
different signs, the negative gap values are always served
first; (ii) for gap values with the same sign, the gap values
are served in a Round-Robin manner. Rule (i) ensures cache
ways can be sufficiently used by the processors requiring
them, and rule (ii) ensures the processors’ capacity requests
can be fairly served.
Software interfaces. Algo. 2 illustrates the software driver
for Hopscotch-Cache, providing a uniform interface acces-
sible by all processor cores. Given that the majority of
control complexity is managed by the hardware, the soft-
ware driver’s implementation is relatively straightforward.
It only requires the processor IDs and their anticipated cache
sizes as the input parameters (Line 1). These processor IDs
are utilized to compute the offsets for their corresponding
ECW registers (Lines 2-6) and to establish their mapped
addresses (Line 7). Once these calculations are complete,
the processor’s requested cache capacity can be conveyed
to Hopscotch-Cache via memory write operations (Line 8).

So far we have described Hopscotch’s system architecture
and design methods, to ensure the real-time schedulability

Algorithm 2: Driver for cache size configurations.

1 Function Cfg_size(u8 size, u32 core id):
2 u32 core id cluster, cluster id;
3 Global2Local(core id,
4 &core id cluster, &cluster id);
5 u32 offset = 0x1000 × &cluster id |
6 0x04 × id in cluster;
7 u32 addr ewc reg = BASEADDR CACHE | offset;
8 Mem.wr(addr ewc reg, size);
9 End Function

of Hopscotch, we now present the theoretical model and
schedulability analysis in the next section.

5 SCHEDULABILITY ANALYSIS AND CACHE SIZE
SELECTION

In the system of interest to be analyzed, we use M to denote
the total number of processors and use A to denote the total
number of cache ways, where M and A are given constant
integers for a given system. On such a platform, we consider
the scheduling of n cache-aware sporadic real-time tasks,
each of which is modelled as follows.
Task model. We model a cache-aware sporadic real-time
task τi by a 4-tuple (Ai, Ci, Di, Ti). Each task τi releases
a (potentially infinite) sequence of jobs with a minimum
separation of Ti time units between any consecutive jobs
and Ti is called the period of τi. Each job of τi requires to
occupy one processor and Ai cache ways to commence its
execution, has a worst-case execution time (WCET) of Ci

time units (while using one processor and Ai cache ways),
and has an (absolute) deadline at Di time units after its
release time. Ci and Di are also called the WCET and the
relative deadline of task τi. We denote an arbitrary job
of task τi by Ji, which is released at time ri and has an
absolute deadline at di = ri + Di. A job is called waiting
if it is released but not executing. In this paper, we focus
on constrained-deadline tasks only, where it is assumed
that ∀i,Di ≤ Ti. In the schedulability analysis presented
in this section, the 4-tuple of every task in the system is
considered as given constants – Ai and Ci are obtained from
experiment-based methods mentioned in Sec. 2.2, and Di

and Ti are given as task specification.
Scheduling rules. We focus on the non-preemptive global
earliest-deadline-first (NP-GEDF) scheduling, where ready
jobs are sorted in the waiting queue by their absolute dead-
lines from earlier ones to later ones and deadline ties are
broken arbitrarily. At every event (job release or job comple-
tion), the scheduler checks the jobs in the waiting queue one
by one in order. At the time when a job Ji is being checked
by the scheduler, if there is at least one processor and at
least Ai cache ways available, the scheduler immediately
dispatches Ji to commence execution, Ji is removed from
the waiting queue, and the number of available processors
and cache ways are reduced accordingly. Once dispatched,
a job will execute non-preemptively until completion.
Non-blocking waiting queue. Note that, according to the
scheduling rules above, for two jobs Ji and Jj such that di <
dj , it is possible that Jj is being dispatched to execute while
Ji remains in the waiting queue. This may happen if Ai >
Aj and at the time of dispatching the number of available
cache ways is less than Ai but at least Aj . Therefore, we say
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that our waiting queue is a non-blocking one. — The front
waiting job does not block other jobs (with lower priorities)
from being dispatched to execute. By contrast, if a blocking
waiting queue is adopted, no waiting job can be dispatched
to execute when the job at the front of the waiting queue is
waiting due to insufficient available cache ways.
Parameter Δi. For each task τi, we define a parameter Δi

to denote the maximum number of available caches ways
when a job of τi is prevented from commencing execution
due to insufficient available cache ways (i.e., assuming a
processor is available to τi already). It is clear that (Ai−1) is
a safe upper-bound on Δi. Nonetheless, for given constant
A and constants {Ai} in a system being analyzed, Δi can
be derived more precisely. [15] has provided a dynamic
programming algorithm4 for calculating such precise Δi

with a time complexity of O(A2 · n) where A is the total
number of cache ways and n is the number of tasks. Note
that, for a given system, {Δi} can be obtained offline in
a prior to the schedulability analysis and therefore in the
rest of this section, {Δi} are also treated as task-attribute
constants.

In the rest of this section, we provide a linear program-
ming (LP) based schedulability test. The analysis framework
is inspired by [21] with the following major differences.

• [21] focused on fixed-priority scheduling while we
investigate EDF scheduling;

• [21] adopted a blocking waiting queue setting while
we consider a non-blocking waiting queue;

• [21] did not introduce and leverage the {Δi} parame-
ters.

Job of interest. To analyze the schedulability, we restrict
our focus to an arbitrary job Jk (of task τk). Our goal is
to derive a sufficient condition that ensures Jk meets its
deadline. Without loss of generality,5 we assume that

(P) All deadlines earlier than Jk’s are met.
Problem Window. To investigate the execution of Jk, we
focus on the time interval [rk, sk], where sk = rk +Dk −Ck

is the latest time instant Jk must start execution in order
to meet its deadline. The time interval [rk, sk] is called our
problem window and its length is clearly (Dk−Ck). Because of
non-preemptive scheduling, if Jk starts its execution at any
point within the problem window, it will execute continu-
ously until completion and meet its deadline. Furthermore,
at any time point in the schedule of the problem window,
if (i) a processor is available and (ii) at least Ak cache ways
are available, Jk would have been scheduled to start execu-
tion at that point because a non-blocking waiting queue is
adopted. Therefore, we further consider sub-intervals in the
problem window in the following two categories.

• α-interval, where all the M processors are occupied;
• β-interval, where less than M processors are occupied

but available cache ways are not sufficient for Jk.
Note that, according to the definitions above, no α-

interval would overlap with a β-interval. Therefore, letting

4. [15] does not consider cache-aware tasks but address gang tasks
that need to simultaneously occupy multiple processors to commence
execution. Nonetheless, the idea and notion of Δi can be seamlessly
adapted to concern cache ways, and the algorithm for calculating Δi

directly applies.
5. By induction on jobs in deadline order, a schedulability test assum-

ing (P) is sufficient to guarantee all deadlines are met.

Algorithm 3: Heuristic for Selecting {Ai}
1 for i = 1 to n do
2 Ai = 1;
3 for a = 2 to A do
4 if (Ci[a− 1]− Ci[a])/Ti ≥ θ then
5 Ai = a;
6 end
7 end
8 end

�α (�β , respectively) denote the accumulative length of all α-
intervals (β-intervals, respectively) in the problem window,
�α + �β = Dk − Ck, which is the length of the problem
window, is necessary for Jk to miss its deadline. Thus,
�α + �β < Dk − Ck is a sufficient schedulability condition
for Jk to meet its deadline. To this end, we use an LP to
find an upper bound on �α + �β , subject to constraints to be
presented next.

For each task τi other than τk, we introduce two vari-
ables αi and βi, where αi (βi, respectively) denotes the
accumulative execution time of task τi in α-intervals (β-
intervals, respectively) in the problem window. For task τi,
we count its jobs possibly being executed in the problem
window in three categories.

• Carry-in job that has release time before but deadline
within the problem window. Because constrained dead-
lines and (P) are assumed, at most one such job may
execute in the problem window.

• Body job that has both release time and deadline within
the problem window. There are at most �(Dk−Ck)/Ti�
jobs executing in the problem window.

• Carry-out job that has release time within but deadline
after the problem window. There is at most one such
job executing in the problem window.

Therefore, the accumulative execution time of task τi in the
problem window is upper bounded by (�(Dk − Ck)/Ti� +
2) ·Ci, and we have the first set of LP constraints as follows.

∀i : i �= k :: αi + βi ≤
(⌊

Dk − Ck

Ti

⌋
+ 2

)
· Ci (1)

To further identify more constraints, we define cumula-
tive processor area (CPA) and cumulative cache area (CCA) for a
time interval in a schedule as follows. Letting np(t) denote
the number of occupied processors at time t, the CPA of the
time interval [t1, t2] is defined by

∫ t2
t1

np(t)dt. Letting nc(t)
denote the number of occupied cache ways at time t, the
CCA of the time interval [t1, t2] is defined by

∫ t2
t1

nc(t)dt.
The summation of CPAs of all α-intervals in the problem

window can be calculated by
∑

i�=k αi by the definition of
αi and the fact that any task occupies exact one processor
when executing. On the other hand, by the definition of α-
interval and �α, The summation of CPAs of all α-intervals
in the problem window can also be calculated by M · �α.
Therefore, we have the following constraint.∑

i�=k

αi = M · �α (2)

The summation of CCAs of all β-intervals in the problem
window can be calculated by

∑
i�=k(Ai ·βi) by the definition

of βi and the fact that task τi occupies Ai cache ways
when executing. On the other hand, in a β-interval, Jk is
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prevented from executing only due to insufficient available
cache way. Therefore, by the definition of Δk, at most Δk

(Δk ≤ Ak − 1) cache ways are available, that is, at least
(A − Δk) cache ways are occupied, at any time instant in
a β-interval. In this direction of calculation, The summation
of CCAs of all β-intervals in the problem window is at least
(A−Δk) · �β . Thus, we have the following constraint.∑

i�=k

(Ai · βi) ≥ (A−Δk) · �β (3)

Lastly, recall the definitions of αi, βi, �α, �β , and notice
the fact that the accumulative execution time of a task in
the α-intervals (β-intervals, respectively) in the problem
window cannot exceed the accumulative length of all α-
intervals (β-intervals, respectively) in the problem window.
The last two constraint sets follow.

∀i : i �= k :: αi ≤ �α (4)

∀i : i �= k :: βi ≤ �β (5)

Summary. For each task τk, we construct the following LP:

maximize �α + �β

subject to (1) − (5)

where Ai, Ci, Di, Ti,Δi for all i as well as M and A are
given constants, and αi, βi for all i �= k plus �α, �β are a
total of 2(n− 1) + 2 = n non-negative variables. Also, there
are a total of (n− 1) + 1+ 1+ (n− 1) + (n− 1) = (3n− 1)
linear constraints in constraints sets (1)−(5). By constructing
and solving this LP for every task in the system, we can
conclude a sufficient schedulability test, which is presented
as the following theorem.

Theorem 1. For each task τk, we solve an LP as constructed
above and let χk denote the value of the optimization solution.
The cache-aware sporadic task system is schedulable if

∀k, χk < Dk − Ck.

Selecting {Ai}. As noted earlier, the above schedulabil-
ity test is applicable for any given set of {Ai}. We now
briefly discuss how {Ai} could be selected. Leveraging the
experiment-based methods (discussed in Sec. 2.2), we have
profiled the WCET of each task τi for any selection of Ai,
we denote the WCET of τi when Ai = a (1 ≤ a ≤ A) as
Ci[a]. One way to obtain the optimal selection of {Ai} is
to iterate all the An combinations of {Ai} and to apply the
schedulability analysis in this section for every combination.
Note that, for offline analysis, exponential time complexity
might not be excessively forbidden. Nonetheless, in case
such exponential time complexity is unacceptable (e.g., the
number of tasks n is large), we instead apply a heuristic to
select {Ai} as described in Algo. 3, where θ is a tunable
threshold parameter of system designer’s choice and the
time complexity is O(n · A). The intuition behind Algo. 3
is that giving more cache ways to a task may reduce its
execution time and therefore reduce its utilization to benefit
the system schedulability; however, this also means that this
task occupying more cache ways may have a higher chance
to block other tasks from execution, which could jeopar-
dize the system schedulability. Therefore, this is a tradeoff
where we need to decide whether it is worth allocating an

TABLE 1
Hardware experimental setup.

Processor core

Core Single-width, Speculative, 5-stage
pipeline, RISC-V Freedom E31 [3]

Pipeline 1Int Alu, 1 FP/Div/Mult Alu,
1 MEM, 1 Jump unit

Branch
Pred.

TAGE algorithm, 28-entry BTB,
512-entry BHT, 6-entry RAS

Memory
L1 I$ 4KB/core, 4-way, 1∼2 cycles
L1 D$ 32KB/cluster, 8/16-way, 1∼2 cycles
LLC 4MB, 16-way, 15∼25 cycles
Memory 4GB, DDR3, max 32 requests, 40∼70 cycles

Interconnects
NoC BlueShell [39], full-duplex, max 32 requests

additional cache way to this task. We use θ to quantify this
tradeoff and each θ value is a heuristic to select a set of {Ai}.
Note that we have conducted extensive experiments in
Sec. 7.1 to evaluate the impact on the system’s schedulability
under different values of θ.

6 EVALUATION: OVERHEAD AND SCALABILITY

In this section, we conduct experiments to examine Hop-
scotch’s overhead and scalability.
Experimental Platform. We built 8/16-core Hopscotch vari-
ants on a Xilinx VC707 evaluation board. Hopscotch|kway-X
denotes Hopscotch with k-way Hopscotch-Cache (data cache)
and X cache replacement policy. We implemented the pro-
cessors based on SiFive Freedom E31 [3], an open-source
32-bit RISC-V processor, and configured the processors to
support 5-stage pipelined and in-order instruction process-
ing. We also allocated an independent instruction cache to
each processor with a fixed 4KB capacity. We implemented
the Hopscotch-Cache and related modules using Chisel [7],
compiled into Verilog [47]. We connected the processors,
Hopscotch-Cache, and external memory (4GB DRAM) using
a 5 × 5 mesh type open-source NoC [39], constructing the
hardware using the topology illustrated in Fig. 6. The hard-
ware was synthesized using Vivado (v.2021.1). We selected
FreeRTOS (v.10.4) as the OS kernel for all processors, with
the modifications introduced in Sec. 3.2. The software (OS
kernels, drivers, and user applications) was compiled using
a RISC-V GNU tool-chain.

As described in Sec. 3, the real-time performance of
existing multi-core systems relies on the task scheduling
presented at the OS level. Therefore, we built two Baseline
Systems (BS)s on similar hardware platforms using conven-
tional cache design, allocating each processor independent
data cache. Each data cache had a fixed cache capacity which
was 1/4 of the Hopscotch-Cache presented in Hopscotch vari-
ants and instantiated with LRU replacement policy. BS|OSK
is a baseline system implementing task scheduling at the
OS kernels, and BS|HYP is a baseline system using vir-
tualization, including real-time patches, implementing task
scheduling in a dedicated hypervisor [53]. All systems ran
at 100 MHz.

6.1 Software Overhead
In this section, we examine the software overhead of
BS|OSK, BS|HYP, and Hopscotch.
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Fig. 10. Software overhead (unit: KB), which is evaluated via memory
footprint, containing segments of BSS, data and text.

Fig. 11. Hardware overhead, normalized by 4× conventional cache
modules.

Experimental Setup. The software overhead was evaluated
using run-time memory footprint [24]. We first compared
the memory footprint of the OS kernel used by the exam-
ined systems, where the kernels were fully-featured. Since
Hopscotch needs an additional driver for Hopscotch-Cache,
we compared the driver memory footprint of Hopscotch-
Cache with other commonly used drivers, including drivers
of Video Memory Direct Access (VDMA) and HDMI
(1.4) controllers, examining the overhead of the Hopscotch-
Cache driver from the system perspective. The tool used in
experiments was a RISC-V GNU tool-chain.
Obs. 1. The kernel in Hopscotch used more software over-
head than BS|OSK’s kernel, and slightly less than BS|HYP’s
kernel. Hopscotch-Cache driver’s overhead was negligible.

This observation is shown in Fig. 10. The OS ker-
nel in Hopscotch consumed an additional 10 KB (12.7%)
memory footprint compared to the BS|OSK’s OS kernel.
This is because Hopscotch’s kernel is built on the BS|OSK’s
kernel, but involves additional cache management in the
scheduler (detailed in Sec. 3.2). Compared to the BS|HYP’s
kernel, Hopscotch’s kernel consumed slightly less overhead,
as BS|HYP requires additional implementation to support
the hypervisor. Although Hopscotch required the extra cache
driver, its software overhead is lower than the other drivers.
As shown in Fig. 10, the Hopscotch-Cache driver only con-
sumed 17.4 KB memory footprint, which is 63.8% and 51.4%
lower than the VDMA driver and HDMI drivers.

6.2 FPGA Overhead
As Hopscotch required extra hardware implementation for
the Hopscotch-Cache. We evaluate its hardware overhead.
Experimental Setup. We configured Hopscotch-Cache vari-
ants with 32 KB capacity and 16 cache ways. As a Hopscotch-

Cache is shared between four processors, we compared
Hopscotch-Cache’s overhead with four conventional cache
modules used in BS|OSK and BS|HYP. The conventional
cache module was instantiated from Freedom E310 SoC,
containing a cache controller and a cache bank (8KB, 4
ways). We also examined the Hopscotch-Cache’s overhead
along with other hardware elements, including a RISC-
V tile (excluding the cache module), and two mainstream
I/O controllers (VDMA and HDMI), examining Hopscotch-
Cache’s overhead from the system perspective. The I/O
controllers were chosen from the standard Xilinx IP library
(with default settings). All components were synthesized
and implemented by Vivado (v2020.2) and compared for
Look-Up-Tables (LUTs), registers, and BRAMs. Since these
metrics were evaluated using different units, we normalized
the experimental results using the summation of four con-
ventional cache modules: 2,131 LUTs, 847 registers, and 12
BRAMs.
Obs. 2. Hopscotch-Cache used more hardware overhead than
the conventional cache modules. The extra overhead is con-
sidered acceptable compared to other hardware elements.

As shown in Fig. 11, the Hopscotch-Cache variants con-
sumed an additional 30% - 70% LUTs and 25% - 35% reg-
isters, compared to the conventional cache modules. Such
overhead is mainly caused by deploying the additional
logic (e.g., cache capacity manager) to support run-time re-
configuration. Among Hopscotch-Cache variants, Hopscotch-
Cache|16way-LRU required the most hardware overhead,
due to the complexity of implementing the LRU policy.
From the system perspective, Hopscotch-Cache design is
resource-efficient. Hopscotch-Cache|16way-LRU ’s overhead
was still less than other hardware elements: RISC-V tile
(35.2% LUTs, 64.7% registers), VDMA (107.3% LUTs, 79.9%
registers), HDMI (93.7% LUTs, 42.1% registers).

6.3 ASIC Overhead
To examine the overhead of Hopscotch-Cache in ASIC de-
ployments, we conducted a physical implementation of a
16-core SoC (400 Mhz) using Hopscotch-Cache (32KB, 16
ways per cluster) and conventional L1 cache (8KB, 4 ways
per processor). The physical implementation was carried
out at the post-layout stage using Synopsys 28nm Generic
PDKs [20]. The RTL was synthesized using the Synopsys
Design Compiler (v2022.12), and the resulting netlist was
placed and routed with Synopsys IC Compiler 2 (v2022.12).
Obs. 3. It is feasible to integrate Hopscotch-Cache into a 16-
core SoC, which results in a slight increase in the SoC area.

The Hopscotch (i.e., the SoC) has a reported area of 2.701
mm2, with each cluster accounting for 0.515 mm2. Within
a cluster, the four processors occupy 0.354 mm2, while the
Hopscotch-Cache occupies 0.078 mm². In comparison, the SoC
designed using the conventional L1 cache has a reduced
total area of 2.591 mm2, attributable to its simpler cache
micro-architecture. In summary, developing a 16-core SoC
with the Hopscotch-Cache results in an additional 0.11 mm2

consumption, representing 4.24% of the SoC’s area.

6.4 Scalability
Because the scalability impacts the feasibility of a proposed
design, we examine the hardware scalability of Hopscotch
using a varying number of processors.
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(a) Area consumption (y-axis: percentage). (b) Power consumption (y-axis: Watts (W)). (c) Maximum frequency (y-axis: MHz).

Fig. 12. Scalability: area, power, and maximum frequency v.s. scaling factor η.

Experimental setup. We used the same method described
in Sec. 6.2 to implement the Hopscotch variants (i.e., the
systems built upon Hopscotch-Cache) and a legacy system
(i.e., a multi-core system using conventional cache modules)
with a scaling number of processors. We chose the LRU
replacement policy for the Hopscotch variants, as implement-
ing the LRU consumed more hardware overhead than other
replacement policies. Additionally, we introduced a scaling
factor: η to control the number of processors (2η). We first
compared the scalability of area consumption between the
legacy system, Hopscotch variants, and the correspondingly
introduced cache design in Hopscotch variants. The area con-
sumption was normalized by the overall area of the experi-
mental platform, including LUTS, registers, and BRAMs. We
then examined the scalability of power consumption, calcu-
lated as the sum of static and dynamic power simulated by
the tool. Lastly, we evaluated the maximum frequency of the
Hopscotch-Cache across the legacy system using varying η.
Obs. 3. The Hopscotch-Cache’s area and power consumption
were linearly scaled by η. Compared to the legacy system,
using Hopscotch-Cache slightly increased the area and power.

As seen in Fig. 12(a), when the experiments were scaled
with η, the area consumption of Hopscotch-Cache was lin-
early scaled. This benefits from the resource-efficient design
illustrated in Sec. 4. Although deploying the Hopscotch-
Cache in Hopscotch used more hardware than the legacy
system, the introduced area consumption was within 17%.
Power consumption is affected by voltage, clock frequency,
toggle rate and design area [25]. Since the unified voltage,
clock frequency and simulated toggle rate were assigned by
the tool, the design area dominated the elements’ power
consumption. As expected, power consumption increased
linearly when η increased (see Fig. 12(b)).
Obs. 5. When scaled with η, deploying the Hopscotch-
Cache did not affect the maximum frequency.

This observation is shown in Fig. 12(c): the maximum
frequency of the Hopscotch-Cache variants decreased with
increasing η, but was always higher than the legacy system.
This indicates that the Hopscotch-Cache did not become a crit-
ical path, and did not reduce maximum system frequency.

7 EVALUATION: REAL-TIME PERFORMANCE

We now use real-world use cases to evaluate the real-time
performance of the examined systems. The experiments
were carried out on the same platform discussed in Sec. 6.
System configurations. We configured the systems with
8/16 processors. For the Hopscotch variants, we configured
each Hopscotch-Cache with 32 KB capacity and 8/16 ways.
For the BS|OSK and BS|HYP, we configured each cache
module with 8 KB capacity and 2/4 ways.

Task sets. We deployed three sets of software tasks:
• 10 automotive safety tasks, selected from the Renesas

automotive use case database [17], including CRC-32,
RSA-32, and core-self test, etc.

• 10 automotive function tasks, selected from the EEMBC
benchmark [16], including, Fast Fourier Transform
(FFT), speed calculation, etc.

• Synthetic workloads built on LeNet-5 architectures, and
trained using MNIST, EMINST, and CIFAR-10 training
datasets [33]. The synthetic workloads can be added to
the system to control overall utilization.6

For baseline systems (BS|OSK and BS|HYP), we em-
ployed a hybrid-measurement approach to obtain the tasks’
WCETs (Cis). Each task had a randomly defined period (Ri),
with overall processor utilization of approximately 45%.
All tasks were assigned using implicit deadlines. For Hop-
scotch variants, we used the method introduced in Sec. 2.2
to find the tasks’ WCETs (Ci[Aj ]s) under different cache
sizes (Ajs), then adopted the heuristic presented in Sec. 5
to determine the most suitable Ai for each task.

Before the experiments, the raw data processed by the
tasks was randomly generated and stored in the external
memory. During the experiments, the processors fetched the
raw data and sent the calculated results back to the external
memory. For a fair comparison, we ensured the data input
to the examined systems was identical in each execution.

7.1 Cache Size Selection
We observed how tunable threshold (θ), introduced by the
heuristic in Sec. 2.2, affected Hopscotch’s schedulability, then
selected the Ais of the tasks for the following experiments.
Experimental setup. We first determined the tasks’ Ais
using Algo. 3 with different θs, where θ ∈ [0, 0.7] (at in-
tervals of 0.05). We then executed the task sets and synthetic
workloads on the Hopscotch variants 100 times, with 70%
target utilization (the mean value used in the following
experiments). We evaluated the examined systems using the
success ratio, recording the percentage of trials that executed
successfully (i.e., without deadline misses of any safety or
function tasks) under a specified target utilization.
Obs. 6. When θ ∈ [0.3, 0.35], the selected Ais ensured
Hopscotch-variants achieved the best real-time performance.

As shown in Fig. 14, the tunable threshold (θ) signifi-
cantly varied the schedulability of Hopscotch. Such variance
reached nearly 80%. When θ was equal to 0.3 or 0.35, the
found Ais ensured Hopscotch-variants achieved the best real-
time performance. Therefore, in the following experiments,

6. Notably, since the task’s practical execution time can be affected
by diverse factors, adding synthetic workloads only gives the system a
target utilization.
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(a) Real-time performance (8-core systems). (b) Real-time performance (16-core systems).
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Fig. 13. Case study. In Fig. 13(a) and 13(b), x-axis: target utilization; y-axis: the success ratio. In Fig. 13(c), y-axis: average ϕ.

Fig. 14. Success ratio under different θs (x-axis: θ; y-axis: success ratio).

we configured θ to be 0.3 or 0.35 to determine the tasks’
Ais and Ci[Ai]s. As shown in Fig. 14, we configured θ to be
different values, observing how θ affected the success ratio.
We then used the θ for each Hopscotch variant which led to
the best result, so that each access variant had its own θ.

7.2 Real-time Performance

Experimental setup. We introduced two groups of exper-
imental setups, activating 8/16 processors to execute the
task sets and synthetic workloads. In each experimental
group, we executed each examined system 100 times under
varying target utilization [45%−95%] at intervals of 5%. We
evaluated the examined systems using success ratio under a
specified target utilization. Each run lasted 300 seconds.
Obs. 7. Hopscotch variants outperformed the baseline sys-
tems using the same experimental settings.

As shown in Figs. 13(a) and 13(b), when the systems
were configured with the same settings (i.e., core num-
ber and target utilization), Hopscotch variants continuously
achieved higher success ratios than the baseline systems
(BS|OSK and BS|HYP). Such improvements benefited from
deploying the Hopscotch-Cache (described in Sec. 4) and
allocating suitable cache sizes to the tasks, unblocking the
available parallelism and improving the system-level real-
time schedulability.
Obs. 8. In Hopscotch variants, adjusting the number of cache
ways has more impact on the systems’ real-time perfor-
mance than adjusting the replacement policies.

As shown in Figs. 13(a) and 13(b), Hopscotch|16way
usually acquired 5%-10% higher success ratios than the Hop-
scotch|8way under the same settings. For the replacement
policies, we observed that Hopscotch variants using the FIFO
policy had the worst real-time performance of all the test

cases, at 3% lower than the Hopscotch variants using LRU
and NMRU on average.

7.3 Analysis of Side Effects.

The development of the Hopscotch-Cache fundamentally
modifies the features of the L1 cache, enabling both cache
sharing and resizing. Although previous experiments have
demonstrated the schedulability improvements brought by
these new features, they may still affect the effectiveness
of L1 cache, especially during busy system periods. Such
impacts are summarized in two main domains: (i) a reduc-
tion in L1 cache utilization due to the need for additional
cache management; and (ii) delays in cache resizing caused
by frequent contentions between processors. Therefore, we
present an effectiveness analysis to examine these impacts.
Experimental setup. We adopted the same experimental
setup and methods introduced in Sec. 7.2, with only Hop-
scotch variants being executed. To replicate a high-demand
scenario, we configured Hopscotch with 16 cores and 100%
utilization. In addition, we deployed a cycle-accurate
monitor to trace the processors and Hopscotch-Cache in each
computing cluster, recording (i) the utilization of Hopscotch-
Cache and (ii) the latency of resizing. We evaluated uti-
lization by calculating the percentage of the cache ways
that have been occupied. Resizing latency, on the other
hand, was assessed by determining the percentage of task
executions that occurred with an unexpected cache capacity,
represented as ϕ. For example, if task τi was executed in
9 ms with Ai and 1 ms with another cache capacity (due
to resizing latency), ϕi is 10%. Note that we classified false
positive cases as the correct configuration, as it accelerated
the associated task’s execution.7

Obs. 9. When systems were in busy period, the Hopscotch-
Cache could be fully utilized.

The observation was given by Figure 13(c), revealing that
when the systems were configured for 100% utilization, the
average cache utilization across all scenarios exceeded 98%.
These findings verify the effectiveness of Hopscotch-Cache
which safeguards the systems’ throughput.
Obs. 10. The average resizing latency affected about 2% of
task executions; adding more cache ways increased such
latency.

As shown in Fig. 13(c), with all experimental settings, the
ϕ was always less than 2.7%. However, when Hopscotch was
configured with more cache ways, the ϕ also increased

7. False positive: a task executes with more cache capacity than Ai.
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slightly, indicating a higher resizing latency. This is mainly
caused by the cache capacity manager (which can only
configure one cache way at one-time point), requiring more
clock cycles to set the cache ways correctly.

7.4 Summary
In the current and previous sections (Sec. 6), we have exam-
ined Hopscotch in terms of real-time performance, overhead,
and scalability. The experimental results reveal that the
introduction of a shared and re-sizable L1 cache, along
with the capacity allocation algorithm, can improve system-
wide schedulability across all test scenarios. Different cache
replacement policies have minor impacts on the real-time
performance of the Hopscotch, with variances remaining less
than 3%. The implementation of Hopscotch-Cache based on
the conventional set-associative cache incurs approximately
50% additional combinational logic and 30% sequential
logic, as well as 20 K software overhead (kernel modifica-
tions and software drivers). The partial sharing of Hopscotch-
Cache effectively ensures its hardware scalability, which does
not impact the system’s critical path.

8 RELATED WORK

8.1 L1 Cache Sharing
L1 cache sharing has been considered in both academia
and industry. In academia, Nakajima et al. [36] introduced
a shared L1 cache for dual-core SoCs. As one of the early
attempts, this work verified the feasibility of implementing
the shared L1 cache. Rahimi et al. et al. [42] presented a
logarithmic interconnect to connect processors and multi-
banked L1 cache, successfully enabling L1 cache sharing
between 32 processors. However, the interconnect brought
multiple critical paths into the system, causing significant
time penalties while accessing the cache. Kakoee et al. [29]
extended the work of Rahimi et al. by integrating control-
lable pipelines between the processors and the cache banks,
effectively breaking the critical paths and reducing the time
penalties. Kakoee et al. [30] then further updated the design
of the cache controller, reducing cache access latency down
to one clock cycle. However, as reported by [30], the method
also brought an additional 40% hardware and energy over-
head. Considering energy-efficiency, Gautschi et al. [18]
and Witting et al. [52] upgraded the cache design and the
scheduling methods for cache accesses, mitigating the extra
energy consumption caused by L1 cache sharing. Overall,
the existing research on shared L1 cache mainly focuses
on scalability, throughput, and energy-efficiency. However,
L1 cache resizing and the system’s real-time schedulability
have not been studied.

In industry, shared L1 cache has also been deployed in
many commercial SoCs, e.g., STM’s STHORM MPSoC [8]
and Plurality’s HyperCore [48]. The most successful exam-
ples are Maxwell [1] and Pascal [2], GPU families designed
by NVIDIA. These architectures feature many Streaming
Multiprocessors (SMs), where an SM contains 128 or 64
CUDA processors. The CUDA processors in the same SM
share the same L1 cache. In commercial SoCs, the shared L1
cache is usually adopted to enhance the system’s through-
put. However, as in the academic work, L1 cache resizing
and system-level schedulability are not considered.

Furthermore, although we have focused on sequential
tasks only in this paper in order to investigate both the
design details and analysis in depth, we would like to point
out that the ideas of sharing and managing L1 cache have
the potential to benefit parallel tasks even more significantly
because the parallel threads of the same task may share even
more data. Due to space and scope limits, we leave further
investigation on parallel tasks to future work.

8.2 L1 Cache Resizing.
There has been work exploring L1 cache resizing, but this is
mainly focused on energy-efficiency and security. In terms
of energy efficiency, Cai et al. [11] demonstrated how L1
cache resizing affects a system’s performance and energy.
Following this work, Wang et al. [49], [50] proposed a
scheduling-aware L1 cache resizing method, gating certain
cache banks based on the workloads. This method reduced
the L1 cache’s energy consumption up to 74%. In terms
of security, Huang et al. [26], [27] partitioned the L1 cache
into protected and unprotected regions for different types
of tasks, and dynamically adjusted the sizes of these regions
to balance the system’s vulnerability and energy-efficiency.
However, none of the above work considered L1 cache
sharing and system-level schedulability.

8.3 L2 Cache and Last Level Cache (LLC) Partitioning.
Different from the L1 cache, L2 cache and Last Level Cache
(LLC) are originally designed to be shared between proces-
sors. Hence, there is more work that studied cache parti-
tioning for the L2 cache and LLC, which could be briefly
classified into two groups: (i) throughput-aware partition-
ing, (ii) energy-aware partitioning, and (iii) schedulability-
aware partitioning.
Throughput-aware partitioning. Throughput-aware cache
partitioning is a vital research direction that aims at improv-
ing system-wide performance by finding the appropriate
allocation of the L2 cache or LLC. For example, Qureshi et
al. [41] presented a utility-based cache-partitioning scheme
to increase LLC’s average throughput. The scheme regu-
lated that each software application enforces the creation
of a new LLC partition, and each partition in the system is
dynamically reshaped according to the utility curves. Based
on [41], Jaleel et al. [28] and Xie et al. [54], [55] presented
different cache replacement policies to further reduce the
contentions between the running applications. To improve
the granularity of the cache partitioning, Manikantan et
al. [34] and Sanchez et al. [44] introduced fine-grained
schemes to partition the cache for each thread. Similar to
this work, many other schemes were presented to allocate
L2 cache or LLC to threads and assign threads’ priority
correspondingly, e.g., [10], [12], [22], [37]. However, none of
the work studied system-level schedulability.
Energy-aware partitioning. In terms of energy-efficiency,
both static and dynamic schemes were presented to par-
tition L2 cache and LLC. Specifically, Reddy et al. [43]
profiled software applications offline and determined their
cache requirements. With that, a method was presented
to determine cache partitioning, optimizing global energy-
efficiency. However, with the ever-increase software com-
plexity, static schemes become unrealistic [46]. For dynamic
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partitioning, Albonesi et al. [4], and Sundararajan et al. [45],
[46] proposed different cache designs that can vary its size
and associativity by enabling or disabling cache ways or
sets. Powell et al. [40] utilized the voltage gating technology
to disable unused cache lines to reduce the dynamic power.
Following this work, Meng et al. et al. [35] further studied
the scheme’s impacts on power leakage. Similarly, Ghosh et
al. [19] and Kedzierski et al. [32] presented different schemes
to partition the LLC to improve both static and dynamic
power consumption globally. However, real-time schedula-
bility was not considered.
Schedulability-aware partitioning. With the consideration
of the system-level schedulability, Kim et al. [31] presented a
method to allocate L2 cache and LLC across the processors,
trying to optimize the cache partitioning and system-level
schedulability simultaneously. Guo et al. [23] presented a
mixed Integer Linear Program (ILP) with approximation
algorithms to partition shared cache and then mapped
applications with strong cache interference onto differ-
ent processors. Unlike this work, researchers also studied
application-level partitioning for L2 cache and LLC. For
example, Guan et al. [21] presented a method using cache
coloring to partition the LLC to each application with non-
preemptive global scheduling. This work was also extended
with preemptive scheduling [56]. Similarly, Chen et al. [14]
allocated L2 cache to specific tasks and presented an ILP
to create a time-triggered scheduling method, minimizing
the cache misses for a pre-allocated taskset. In contrast to
the introduced work that utilized existing technology (e.g.,
cache coloring) to partition L2 cache, this paper presents a
systematic solution for L1 cache, including design, analysis,
and configuration, achieving more fine-grained trade-off be-
tween the cache size, WCET, and system-level schedulability
(e.g., refer to Sec. 2, Fig. 4, and Fig. 14). Additionally, our
Hopscotch-Cache design allows the run-time resizing, provid-
ing flexibility to respond to the run-time system changes,
e.g., tasks join or leave the system.

8.4 RISC-V Processors

RISC-V is an Instruction Set Architecture (ISA) that de-
veloped from the University of California, Berkeley [51],
marking a significant shift in ISA design paradigms. Un-
like mainstream ISAs, e.g., Intel’s x86 or ARM, a salient
feature of RISC-V is its modularity. This allows for a tai-
lored approach, letting designers incorporate only the ISA
components pertinent to their needs. This modular design
caters to a wide range of applications, from compact embed-
ded systems to powerful supercomputers. For example, the
Hopscotch-Cache configurations (discussed in Sec. 4.4) also
leverage such modularity for further acceleration. Consis-
tent with RISC principles, RISC-V also adopts a minimalistic
core instruction set, emphasizing a lean yet versatile set
of instructions, often resulting in more efficient hardware
implementations. Since RISC-V’s inception, numerous mi-
croarchitectures have been presented, including Rocket [6],
BROOM [13], SonicBoom [57], and Freedom E31 [3]. It’s
also noteworthy that the proposed Hopscotch-Cache is not
exclusive to RISC-V processors; it is also flexible to be
implemented across other architectures.

9 CONCLUSION

In this paper, a novel re-sizable L1 cache is presented, en-
abling partial cache sharing and run-time cache re-sizing be-
tween processors. With the L1 cache design, a novel system
framework (Hopscotch) is proposed for highly-parallel multi-
core systems. Hopscotch dynamically allocates L1 cache ca-
pacity to the tasks executed on the processors, unblocking
the available parallelism and ensuring system-level real-
time schedulability. Corresponding to the system frame-
work, a new theoretical model and schedulability analysis
are presented to provide a timing guarantee for Hopscotch.
As shown in the evaluations, Hopscotch effectively improves
system-level schedulability compared to conventional real-
time systems. In addition, Hopscotch is resource-efficient.
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