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Abstract

We develop a framework for sampling from discrete distributions 𝜇 on the hypercube {±1}𝑛
by sampling from continuous distributions supported on ℝ𝑛 obtained by convolution with
spherical Gaussians. We show that for well-studied families of discrete distributions 𝜇, con-
volving 𝜇 with Gaussians yields well-conditioned log-concave distributions, as long as the
variance of the Gaussian is above an 𝑂(1) threshold. We then reduce the task of sampling from
𝜇 to sampling from Gaussian-convolved distributions. Our reduction is based on a stochastic
process widely studied under different names: backward diffusion in diffusion models, and
stochastic localization. We discretize this process in a novel way that allows for high accuracy
and parallelism.

As ourmain application, we resolve open questionsAnari, Hu, Saberi, and Schild raised on the
parallel sampling of distributions that admit parallel counting. We show that determinantal point
processes can be sampled via RNC algorithms, that is in time log(𝑛)𝑂(1) using 𝑛𝑂(1) processors.
For a wider class of distributions, we show our framework yields Quasi-RNC sampling, i.e.,
log(𝑛)𝑂(1) timeusing 𝑛𝑂(log 𝑛) processors. Thiswider class includes non-symmetric determinantal
point processes and random Eulerian tours in digraphs, the latter nearly resolving another open
question raised by prior work. Of potentially independent interest, we introduce and study a
notion of smoothness for discrete distributions that we call transport stability, which we use to
control the propagation of error in our framework. Additionally, we connect transport stability
to constructions of optimally mixing local random walks and concentration inequalities.
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1 Introduction

The conventional wisdom in the field of sampling and counting is that the tasks of approximate
sampling and approximate counting are algorithmically equivalent, i.e., an efficient algorithm for
one can be translated to an efficient algorithm for the other. This was formalized in a celebrated
result of Jerrum, Valiant, and Vazirani [JVV86] for self-reducible problems, but the equivalence holds
in many other cases beyond the boundary of self-reducibility [see, e.g., DGJ04]. This equivalence
is frequently used to convert sampling algorithms such as those based on Markov chains, into
approximate counting algorithms. For example, the breakthrough results of Jerrum, Sinclair,
and Vigoda [JSV04] for approximating the permanent and Dyer, Frieze, and Kannan [DFK91] for
approximating the volume of convex sets both rely on reductions from counting to sampling.

A somewhat overlooked caveat about the equivalence of sampling and counting is that the standard
reductions in both directions only preserve polynomial runtimes. For efficiency criteria stricter than
polynomial runtime, say parallel efficiency, the reductions break down. This is most palpable for a
range of problems that admit determinant-based counting algorithms. For example, Kirchhoff’s
matrix-tree theorem [see, e.g., CK78] allows us to compute the number of spanning trees in a graph
as the determinant of a submatrix of its Laplacian. The classic BEST theorem [AB51; TS41] relates the
count of Eulerian tours in directed graphs to arborescences, which can be written as a determinant
by a generalization of the matrix-tree theorem. In another example, Temperley and Fisher [TF61]
and Kasteleyn [Kas63] showed how to compute the number of perfect matchings in planar graphs
as determinants of carefully signed adjacency matrices. Computing determinants is in the class
NC [Csa76], which means that the number of spanning trees, directed Eulerian tours, and planar
perfect matchings on graphs of size 𝑛 can all be computed in log(𝑛)𝑂(1) time using 𝑛𝑂(1) processors
on a PRAM. But this does not automatically translate to parallel algorithms for sampling uniformly
random spanning trees, directed Eulerian tours, or random planar perfect matchings. The main
question we address in our work is:

Can parallel counting algorithms yield parallel sampling algorithms?

Noting that the standard reduction from sampling to counting is sequential, Teng [Ten95] and
Anari, Hu, Saberi, and Schild [Ana+21] raised questions about designing efficient parallel sampling
algorithms. In particular, Anari, Hu, Saberi, and Schild [Ana+21] enumerated a list of problems
known to admit parallel determinant-based counting and raised as an open question designing RNC-
type sampling algorithms for them, i.e., sampling from these distributions using 𝑛𝑂(1) processors
in log(𝑛)𝑂(1) time. The list of problems includes arborescences in directed graphs (generalizing
spanning trees), Eulerian tours in digraphs, determinantal point processes (DPP) and variants of
them, and planar perfect matchings. So far, only one problem from this list, arborescences, has
found an efficient parallel sampler [Ana+21]. In this work, we resolve or nearly resolve all but the
last problem in the list.

We consider sampling from a distribution 𝜇 on the hypercube {±1}𝑛 , which we identify with subsets
of {1, . . . , 𝑛}. All aforementioned applications, with the exception of Eulerian tours in digraphs,
have natural descriptions as set families; for reductions from Eulerian tours to the hypercube, see
Section 6.2. Our main result reduces sampling from 𝜇 to computing partition functions, a.k.a.
counting, for exponential tilts of 𝜇, a.k.a. external fields applied to 𝜇. An exponential tilt is defined
by a vector 𝑤 ∈ ℝ𝑛 , and we denote it by 𝜏𝑤𝜇:

𝜏𝑤𝜇(𝑥) ∝ exp(⟨𝑤, 𝑥⟩) · 𝜇(𝑥).

The normalizing factor in this definition, i.e., the partition function, is
∑︁

𝑥 exp(⟨𝑤, 𝑥⟩)𝜇(𝑥). Viewed as
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a function of 𝑤, the partition function is also known as the Laplace transform of 𝜇. Exponential tilts
are widely studied in sampling [see, e.g., ES22; Ana+22b; CE22], but they have a special relationship
with determinant-based counting because roughly speaking, the tilt 𝜏𝑤 corresponds to scaling the
rows and/or columns of the matrix whose determinant provides the count, hence, these distribution
families are closed under tilts. As an example, tilts of the uniform spanning tree distribution are
simply weighted spanning tree distributions for which the matrix-tree theorem still provides the
partition function.

For our main results, we prove that if tilts of 𝜇 vary in a stable manner with respect to the tilt
parameter 𝑤, for notions of “stability” that will be made precise, then there is an efficient parallel
reduction from approximately sampling 𝜇 to computing the Laplacian of 𝜇. We then obtain our
main applications, parallel samplers for a range of distributions, by proving the required notions of
stability for the distributions of interest.

Our strongest main result is obtained when the transportation distance between tilts 𝜏𝑤𝜇 can be
bounded in terms of the distance of their tilt parameters 𝑤. We call this new concept transport-
stability. As side results, in Appendix A, we connect notions of transport-stability to concentration
inequalities and the existence of fast mixing local Markov chains. For our main result, we use a
specific instantiation of transport-stability defined using the Wasserstein metric w.r.t. the Hamming
distance for tilts 𝜏𝑤𝜇, and the ℓ1 distance between tilt parameters 𝑤. Denote by𝒲1(𝜏𝑤𝜇, 𝜏𝑤′𝜇) the
average Hamming distance traveled, when probability mass is transported optimally from 𝜏𝑤𝜇 to
𝜏𝑤′𝜇. Then𝒲1-𝑂(1)ℓ1 transport-stability is the notion that for all 𝑤, 𝑤′ we have

𝒲1(𝜏𝑤𝜇, 𝜏𝑤′𝜇) ≤ 𝑂(1) · ∥𝑤 − 𝑤′∥1.

With transport-stability in mind, we now state our main result:

Theorem 1. Suppose that a distribution 𝜇 on {±1}𝑛 is𝒲1-𝑂(1)ℓ1 transport-stable and we have an oracle
for approximately computing the Laplace transform of 𝜇. Then we can sample from a distribution 𝜖-close in
total variation distance to 𝜇, in log(𝑛/𝜖)𝑂(1) time using (𝑛/𝜖)𝑂(1) processors.

We show that (symmetric) determinantal point processes and partition-constrained versions of them
satisfy𝒲1-𝑂(1)ℓ1 transport stability. A symmetric determinantal point process (DPP) is defined
by an 𝑛 × 𝑛 matrix 𝐿 ⪰ 0 and samples a subset 𝑆 of {1, . . . , 𝑛} with ℙ𝜇[𝑆] ∝ det(𝐿𝑆,𝑆). DPPs and
variants of them, such as partition-constrained DPPs, are widely used in numerical linear algebra
and machine learning [KT12; Cel+18; Der21] . As a remark, uniformly random spanning trees are
DPPs too [see, e.g., KT12]. For more detailed definitions, see Section 2.

Corollary 2. Suppose that 𝜇 is a DPP or a partition-constrained DPP with 𝑂(1) parts on a ground set of
size 𝑛. Then there is an algorithm to sample 𝜖-closely from 𝜇 in total variation distance, in log(𝑛/𝜖)𝑂(1) time
using (𝑛/𝜖)𝑂(1) processors.

We next show that a weaker notion of stability is enough for efficient parallel sampling if we allow
quasi-polynomially many processors. We use the notion coined semi-log-concavity by Eldan and
Shamir [ES22], which can be stated equivalently as

∥mean(𝜏𝑤𝜇) −mean(𝜏𝑤′𝜇)∥2 ≤ 𝑂(1) · ∥𝑤 − 𝑤′∥2 ,

where mean(𝜇) = 𝔼𝑥∼𝜇[𝑥] ∈ [−1,+1]𝑛 is the mean vector.¹

¹The use of ∥·∥2 instead of ∥·∥1, which is closer to transport-stability, only makes this condition weaker.
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Theorem 3. Suppose that a distribution 𝜇 on {±1}𝑛 is semi-log-concave and we have an oracle for computing
the Laplace transform of 𝜇. Then we can sample from a distribution 𝜖-close in total variation distance to 𝜇, in
log(𝑛/𝜖)𝑂(1) time using (𝑛/𝜖)𝑂(log 𝑛) processors.

Semi-log-concavity is a relatively weak assumption. It is satisfied by many widely-studied classes of
distributions, such as Rayleigh distributions [ES22], distributions spectrally independent under tilts,
a.k.a. fractionally log-concave distributions [ES22; Ali+21], and sector-stable distributions [Ali+21].
We use these implications to obtain the following corollary about non-symmetric DPPs and Eulerian
tours. A non-symmetric DPP is defined the same way as a (symmetric) DPP, except the matrix 𝐿

is not required to be symmetric, and is only required to satisfy 𝐿 + 𝐿⊺ ⪰ 0 [Gar+19]. For a more
detailed definition see Section 2.

Corollary 4. Suppose that 𝜇 is a non-symmetric DPP on a ground set of size 𝑛 or the distribution of
uniformly random Eulerian tours in a digraph of size 𝑛. Then we can sample from a distribution 𝜖-close in
total variation distance to 𝜇 in time log(𝑛/𝜖)𝑂(1) using (𝑛/𝜖)𝑂(log 𝑛) processors.

For all of the applications mentioned in Corollaries 2 and 4, our work is the first to obtain the
ultimate goal of polylogarithmic parallel runtime.

1.1 Discrete sampling via continuous sampling

We obtain our results through a framework that reduces discrete sampling to continuous sampling,
by running the stochastic localization process of Eldan [Eld13] in discrete time steps. The equivalence
to stochastic localization will be shown in Section 3 by appealing to an alternative characterization
of stochastic localization due to El Alaoui and Montanari [EM22].

We reduce sampling from𝜇 to the task of sampling from tilts of𝜇 convolvedwith spherical Gaussians
𝒩(0, 𝑐𝐼) of variance 𝑐 ∈ ℝ>0. We denote convolutions by ∗. The convolution 𝜇 ∗ 𝜈 is the distribution
of 𝑥 + 𝑦 if 𝑥 ∼ 𝜇 and 𝑦 ∼ 𝜈 are independent samples. Our framework is described in Algorithm 1.

Algorithm 1: Framework for discrete sampling via continuous sampling
𝑤0 ← 0
for 𝑖 = 0, . . . , 𝑇 − 1 do

𝑥 ← (approximate) sample from 𝜏𝑤𝑖
𝜇 ∗ 𝒩(0, 𝑐𝐼)

𝑤𝑖+1 ← 𝑤𝑖 + 𝑥/𝑐
return sign(𝑤𝑇) ∈ {±1}𝑛

This framework is parameterized by the number of steps 𝑇 ∈ ℕ, the variance 𝑐 ∈ ℝ>0, and quite
importantly, the choice of how to implement sampling from 𝜏𝑤𝑖

𝜇 ∗ 𝒩(0, 𝑐𝐼).

One might wonder at first glance if sampling from the convolved distribution is any easier than
sampling from 𝜇 itself. Our key observation is that 𝜏𝑤𝜇 ∗ 𝒩(0, 𝑐𝐼) is a continuous well-conditioned
log-concave distribution, i.e., the “easiest kind” of continuous distribution for sampling; we show
that well-conditioned log-concavity for a constant 𝑐 is precisely equivalent to semi-log-concavity of
𝜇. Surprisingly, this does not seem to have been observed in prior works [ES22; CE22].

Lemma 5. For any semi-log-concave distribution 𝜇 and any 𝑤 ∈ ℝ𝑛 , the distribution 𝜈 = 𝜏𝑤𝜇 ∗ 𝒩(0, 𝑐𝐼) is
well-conditioned log-concave for 𝑐 larger than a 𝑂(1) threshold. Well-conditioned log-concavity means that
−𝛼𝐼 ⪯ ∇2 log 𝜈 ⪯ −𝛽𝐼 for some 𝛼, 𝛽 > 0 such that 𝛼/𝛽 = 𝑂(1).
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We next make the crucial observation that the density of 𝜏𝑤𝜇 ∗ 𝒩(0, 𝑐𝐼) and its derivatives can
be computed via the Laplace transform of 𝜇. This enables us to utilize a plethora of off-the-shelf
continuous sampling methods, which only need access to the density and low-order derivatives of
it. For our applications, we choose the randomized midpoint algorithm of Shen and Lee [SL19],
which is importantly parallelizable.

Lemma 6. The density, up to normalization, and the gradient of the log-density for 𝜏𝑤𝜇 ∗ 𝒩(0, 𝑐𝐼) can be
computed efficiently in parallel, in log(𝑛)𝑂(1) time using 𝑛𝑂(1) processors, given access to an oracle for the
Laplace transform of 𝜇.

We formally show by directly appealing to the characterization of El Alaoui and Montanari [EM22]
that Algorithm 1, assuming no approximation error in continuous sampling, is a faithful simulation
of stochastic localization at discrete time steps. As a consequence we show that with perfect
continuous sampling, 𝑐/𝑇 ·𝑤𝑇 is distributed as 𝜇 ∗𝒩(0, 𝑐/𝑇 · 𝐼). For roughly 𝑇 ≃ 𝑐 log 𝑛 the variance
𝑐/𝑇 is low enough that sign(𝑤𝑇) will be distributed approximately as 𝜇. This means that under
perfect continuous sampling, the process needs to be run for only ≃ 𝑐 log 𝑛 steps.

Lemma 7. If continuous samples are exact in Algorithm 1, then for 𝑇 = Ω(𝑐 log(𝑛/𝜖)) the output of the
algorithm is 𝜖-close in total variation distance to 𝜇.

Finally, we need to deal with the issue of approximation error in the continuous sampling step. This
is the most difficult part in our analysis and we tackle it in Section 4. Errors in one step change the
tilt parameter 𝑤𝑖 of future steps, and a priori, that can significantly change 𝜏𝑤𝑖

𝜇. Here, we introduce
and use the notion of transport stability to control the propagation of error. If our distribution
satisfies𝒲1-ℓ1 transport stability:

𝒲1(𝜏𝑤𝜇, 𝜏𝑤′𝜇) ≤ 𝐶 · ∥𝑤 − 𝑤′∥1 ,

the errors in continuous sampling grow only exponentially at a rate dictated by 𝐶. For constant 𝐶,
after 𝑇 ≃ 𝑂(log 𝑛) steps, they would be only polynomially larger, and therefore it is enough to start
with an inverse-polynomially small continuous sampling error. We showhow to conclude Theorem 1
from this analysis. We then note that transport stability is satisfied with a super-constant parameter
𝐶 ≃ 𝑛 for any distribution 𝜇, which results in a quasi-polynomial blowup of error. Therefore, by
having a continuous sampling procedure that is accurate within an inverse quasi-polynomially
small error, we obtain Theorem 3.

1.2 Related work

Our general sampling framework is based on stochastic localization [Eld13], which has been a very
successful analysis tool [see, e.g., CE22]. Stochastic localization has also been recently used as an
algorithmby ElAlaoui, Montanari, and Sellke [EMS22] for the task of sampling from the Sherrington-
Kirkpatrick (SK) model. Our framework, Algorithm 1, is a new way of using stochastic localization
algorithmically. We briefly describe the differences with the prior algorithmic use. El Alaoui,
Montanari, and Sellke [EMS22] use an algorithm obtained by the standard Euler discretization of
the stochastic differential equation (SDE) defining stochastic localization. This roughly corresponds
to replacing the sample 𝑥 ∼ 𝜏𝑤𝑖

𝜇 ∗ 𝒩(0, 𝑐𝐼) in Algorithm 1 by 𝒩(mean(𝜏𝑤𝑖
𝜇), 𝑐𝐼). Viewed as an

approximate sample from 𝜏𝑤𝑖
𝜇 ∗ 𝒩(0, 𝑐𝐼), this has a large approximation error – the entirety of 𝜏𝑤𝑖

𝜇
is replaced by its mean. This error can blow up after a constant number of steps. For the SK model,
computing the mean itself can be done only approximately, so this large approximation error is
somewhat unavoidable; indeed, approximate mean computation occupies the main technical bulk
of their result, whereas in our case we have exact access to the Laplace transform of 𝜇, from which
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the mean can be computed exactly. The large per-step approximation error is partly the reason that
El Alaoui, Montanari, and Sellke [EMS22] only run their process for a constant number of steps
and obtain a sample accurate within 𝑜(𝑛)Wasserstein distance of the SK model, a guarantee much
weaker than total variation accuracy. The control of the approximation error in the work of El Alaoui,
Montanari, and Sellke [EMS22] is specific to the SK model, so it is not clear if even the weaker
guarantee of 𝑜(𝑛)Wasserstein accuracy can be obtained by running their Euler-discretized stochastic
localization for 𝑂(1) steps on the distributions of interest in this work; nevertheless, we obtain the
much stronger total variation accuracy guarantee by using the high-accuracy discretization obtained
by combining Algorithm 1 with the randomized midpoint method of Shen and Lee [SL19].

Parallelizing Markov chains, arguably the most widely used sampling tool, has been studied heavily
[see LY22, and references within]. Two recent examples include the work of Feng, Hayes, and Yin
[FHY21] for parallelizing Metropolis chains and the work of Liu and Yin [LY22] for parallelizing the
more general class of single-site Markov chains including Glauber dynamics. The latter work shows
how to obtain RNC-type sampling algorithms for distributions that have a bounded Dobrushin
influencematrix, assuming the underlyingMarkov chain is single-site, that it changes one coordinate
at a time, and that it mixes in nearly-linear time. These assumptions are unfortunately not satisfied
by the distributions of interest in our work. Putting aside the Dobrushin influence matrix, single-
site updates are not ergodic for our applications, even in the simplest case of a DPP, because the
distribution can be supported on a slice of the hypercube {±1}𝑛 [see, e.g., KT12]. Even worse,
for other applications, we do not currently have Markov chains mixing in nearly-linear time with
local moves, much more general than single-site updates. We remark that as a byproduct of our
techniques, we show the existence of local Markov chains, with 𝑂(1)-site updates, mixing in nearly-
linear time for just the case of a partition-constrained DPP. But even then, our construction is not
explicit; we merely show the existence, and we cannot implement the moves of the chain by an
efficient algorithm.

There has been recent interest in designing parallel sampling algorithms for distributions enjoying
determinant-based counting. Anari, Hu, Saberi, and Schild [Ana+21] based on earlier work of
Teng [Ten95] designed parallel samplers for spanning trees and more generally arborescences in
directed graphs, that is spanning trees with directed edges oriented away from the root. Their work
is based on parallelizing the classic algorithm of Broder [Bro89] and Aldous [Ald90] which extracts
an arborescence from the trace of a random walk on the graph. Unfortunately, this algorithm is
highly specific to arborescences, and there is no clear way of generalizing it to other distributions of
interest in our work, all of which were stated as open problems by Anari, Hu, Saberi, and Schild
[Ana+21]. Going beyond arborescences, there has been partial progress by Anari, Burgess, Tian,
and Vuong [Ana+22a] for DPPs and their variants. Roughly speaking, they show how to sample
from these distributions in 𝑛1/2+𝜖 time using 𝑛𝑂(1) processors for any constant 𝜖 > 0. While an
improvement over the naive reduction from sampling to counting, which takes roughly linear
parallel time, this is still far from the goal of log(𝑛)𝑂(1) runtime. While we achieve this goal, for
the specific case of non-symmetric DPPs, we use quasi-polynomially many processors, and so our
result in that particular case is not strictly speaking comparable to their work.

The notion of transport-stabilitywe define is somewhat reminiscent of transport-entropy inequalities
[see, e.g., ELL17], which bound the transportation distance between two distributions as a function of
their relative entropy. However, transport-entropy inequalities on the hypercube have a dependence
on the dimension 𝑛, which is crucial for our applications to avoid. For example, consider the
distribution 𝜇 which is uniform over {±1}𝑛 and an exponential tilt of it by some standard basis
vector. The relative entropy of these distributions is Θ(1), which using the standard transport-
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entropy inequality only implies a Wasserstein distance of 𝑂(
√
𝑛). We avoid this through transport

stability and obtain an optimalWasserstein distance of𝑂(1). As a side result, we show inAppendixA
that versions of transport-stability are formally stronger than transport-entropy inequalities, by
proving the existence of local Markov chains with optimal MLSI constants under transport-stability.
For this, we follow almost identically the arguments Hermon and Salez [HS23] who argued the
same for the more restricted class of strongly Rayleigh distributions.

1.3 Organization

We present the preliminaries in Section 2.

In Section 3 we prove the key lemmas needed to analyze Algorithm 1, namely Lemmas 5 to 7. The
notion of transport-stability and how it controls the propagation of error in Algorithm 1 is deferred
to Section 4; this is where we formally prove our main results Theorem 1 and Theorem 3. We
then prove the transport-stability of DPPs and partition-constrained variants of them in Section 5,
obtaining Corollary 2. In Section 6 we reduce the task of sampling Eulerian tours in digraphs to
non-symmetric DPPs, proving Corollary 4.

Finally, as bonus results, in Appendix A we expand on the notion of transport-stability, and show by
importing results of Hermon and Salez [HS23] that transport stability relates to strong concentration
inequalities as well as the existence of fast mixing local Markov chains. Both of these were not
known previously for partition-constrained DPPs.
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2 Preliminaries

We use [𝑛] to denote {1, . . . , 𝑛}. For a set 𝑆 ⊆ [𝑛] we use 𝟙𝑆 to denote the 𝑛-dimensional indicator
vector of 𝑆. We identify {±1}𝑛 with the family of subsets of [𝑛] by identifying a set 𝑆 with 2𝟙𝑆 −𝟙[𝑛].
We thus view distributions on 2[𝑛] alternatively as distributions on {±1}𝑛 . We use 𝐼 to denote the
identity matrix. We use ∗ to denote the convolution of two distributions, i.e., the distribution of
the sum of independent samples from them. We use tanh(𝑥) to denote the hyperbolic tangent
(𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥). We use the fact that tanh is 1-Lipschitz, i.e., |tanh(𝑥) − tanh(𝑦)| ≤ |𝑥 − 𝑦 |.

We use ∥·∥𝑝 to denote the standard ℓ𝑝 norm on ℝ𝑛 . We let ∥·∥0, a.k.a. ℓ0 denote the number of
nonzero coordinates, which defines a metric.

For a distribution 𝜇 supported on ℝ𝑛 we use mean(𝜇) to denote the mean 𝔼𝑥∼𝜇[𝑥] and cov(𝜇) to
denote the covariance matrix 𝔼𝑥∼𝜇[𝑥𝑥⊺] − 𝔼𝑥∼𝜇[𝑥]𝔼𝑥∼𝜇[𝑥]⊺.

2.1 Wasserstein metric

For a metric space equipped with distance 𝑑, one can define the transport/Wasserstein distance
induced by 𝑑 on the space of probability distributions supported on the metric space.
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Definition 8 (Wasserstein distance). The Wasserstein 𝑝-distance with respect to 𝑑 between two
distributions 𝜇, 𝜈 supported on a metric space (Ω, 𝑑) is defined as

𝒲𝑝(𝜇, 𝜈) ≔ inf
{︂
𝔼(𝑥,𝑦)∼𝜋[𝑑(𝑥, 𝑦)𝑝]1/𝑝

|︁|︁|︁ 𝜋 is a coupling of 𝜇, 𝜈
}︂
.

When not specified𝒲, is taken to mean𝒲1. Note that𝒲𝑝 is monotonically increasing in 𝑝.

Note that for finite Ω, by compactness of the space of couplings, all𝒲𝑝 , including𝒲∞ are well-
defined. In particular𝒲∞(𝜇, 𝜈) is the minimum threshold 𝑡 such that there is a coupling between
𝜇, 𝜈 only supported on pairs (𝑥, 𝑦)with 𝑑(𝑥, 𝑦) ≤ 𝑡.

Themetric 𝑑 used in the definition of𝒲𝑝 has to be inferred from context. By default, for distributions
supported on the hypercube {±1}𝑛 or more generally ℝ𝑛 we take 𝑑 to be the metric induced by the
ℓ1 norm; in the hypercube case, this is the same as the Hamming distance up to a factor of 2. We
use the notation𝒲𝑝,𝑞 to denote the Wasserstein 𝑝-distance induced by the ℓ𝑞 norm, and we specify
𝑞 when it is not equal 1 to avoid confusion.

We can translate between𝒲𝑝,𝑞 for different 𝑞 by standard comparisons between ℓ𝑞 metrics. We use
the following simple fact.

Proposition 9. For any distributions 𝜇, 𝜈 supported on ℝ𝑛 ,

𝒲2,1(𝜇, 𝜈) ≤
√
𝑛𝒲2,2(𝜇, 𝜈).

Proof. This follows directly from the fact that for any 𝑥 ∈ ℝ𝑛 we have ∥𝑥∥1 ≤
√
𝑛∥𝑥∥2.

We note thatWasserstein distance between two distributions also upperbounds the distance between
their means by the triangle inequality:

Proposition 10. We always have

∥mean(𝜇) −mean(𝜈)∥𝑞 ≤ 𝒲1,𝑞(𝜇, 𝜈).

2.2 Tilts, logarithmic Laplace transform, and semi-log-concavity

We define the notion of an exponential tilt, which is also known as an external field.

Definition 11. Wedefine 𝜏𝑤 to be the operator thatmaps a distribution 𝜇 on {±1}𝑛 to the distribution
𝜏𝑤𝜇 defined by

𝜏𝑤𝜇(𝑥) ∝ exp(⟨𝑤, 𝑥⟩)𝜇(𝑥).

We call the normalizing factor in this definition
∑︁

𝑥 exp(⟨𝑤, 𝑥⟩)𝜇(𝑥) viewed as a function of 𝑤 the
Laplace transform of 𝜇. The logarithm of the Laplace transform is more convenient for calculations
and we follow the lead of Eldan and Shamir [ES22] and use ℒ𝜇 to denote it.

Definition 12 (Logarithmic Laplace transform). We define the logarithmic Laplace transform of a
distribution 𝜇 supported on {±1}𝑛 as

ℒ𝜇(𝑤) = log

(︄∑︂
𝑥

exp(⟨𝑤, 𝑥⟩)𝜇(𝑥)
)︄
.

8



We use the following fact about derivatives of ℒ𝜇.

Proposition 13 ([ES22]). We have

∇ℒ𝜇(𝑤) = mean(𝜏𝑤𝜇),
∇2ℒ𝜇(𝑤) = cov(𝜏𝑤𝜇).

Finally we state the definition of semi-log-concavity [ES22].

Definition 14 ([ES22]). A distribution 𝜇 is called 𝛽-semi-log-concave when

∇2ℒ𝜇(𝑤) ⪯ 𝛽𝐼.

When 𝛽 is omitted, semi-log-concave means 𝑂(1)-semi-log-concavity.

Note that ℒ𝜇 is convex, as its Hessian is a covariance matrix which is ⪰ 0. Consequently, 𝛽-semi-
log-concavity is equivalent to ∇ℒ𝜇 being 𝛽-Lipschitz w.r.t. the ℓ2 norm:

∥mean(𝜏𝑤𝜇) −mean(𝜏𝑤′𝜇)∥2 = ∥∇ℒ𝜇(𝑤) − ∇ℒ𝜇(𝑤′)∥2 ≤ 𝛽∥𝑤 − 𝑤′∥2.

Finally, we note that 𝛽-Lipschitzness in any other ℓ𝑞 norm is stronger than 𝛽-semi-log-concavity. This
is because ∇2ℒ𝜇 is a symmetric PSD matrix, and hence its ℓ𝑞 to ℓ𝑞 matrix norm is lowerbounded by
its maximum eigenvalue, which equals its ℓ2 to ℓ2 norm.

Proposition 15. If we have

∥mean(𝜏𝑤𝜇) −mean(𝜏′𝑤𝜇)∥𝑞 ≤ 𝛽∥𝑤 − 𝑤′∥𝑞

for any 𝑞 ≥ 1, then 𝜇 is 𝛽-semi-log-concave.

2.3 Determinantal point processes

A determinantal point process (DPP) is a probability distribution over subsets 𝑆 ⊆ [𝑛]. It is
parameterized by a matrix 𝐿 ∈ ℝ𝑛×𝑛 with

ℙ[𝑆] ∝ det(𝐿𝑆,𝑆),

with 𝐿𝑆,𝑆 being the principal submatrix whose columns and rows are indexed by 𝑆. We call 𝐿
the ensemble matrix. Note that we need det(𝐿𝑆,𝑆) ≥ 0 for all 𝑆 for this definition to work. This
is satisfied by symmetric PSD 𝐿, which yield the traditional (symmetric) DPPs [KT12], and more
generally for any 𝐿whose symmetrization is PSD, that is 𝐿+𝐿⊺ ⪰ 0, which are called non-symmetric
DPPs [Gar+19].

Given a cardinality 𝑘 ∈ ℕ, the 𝑘-DPP parameterized by 𝐿 is a distribution over subsets 𝑆 of size 𝑘,
defined by conditioning the samples from the DPP to have size 𝑘.

More generally, consider a matrix 𝐿 ∈ ℝ𝑛×𝑛 , and a partition 𝑉1 ⊔ · · · ⊔𝑉𝑟 = [𝑛] of the ground set,
and a tuple 𝑐 ∈ ℕ𝑟 of integers. The partition-constrained DPP, 𝜇𝐿;𝑉,𝑐 : 2[𝑛] → ℝ≥0, is defined by
conditioning the DPP formed by 𝐿 to only the sets 𝑆 which have |𝑆 ∩𝑉𝑖 | = 𝑐𝑖 for all 𝑖.

For any 𝑌 ⊆ [𝑛], if we condition the DPP defined by 𝐿 on the event that items in 𝑌 are included
in the sample, we still get a DPP; the new ensemble matrix is given by the Schur complement
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𝐿𝑌 = 𝐿𝑌̃ − 𝐿𝑌̃,𝑌𝐿
−1
𝑌,𝑌

𝐿𝑌,𝑌̃ where 𝑌̃ = [𝑛] \ 𝑌. Similarly, excluding items corresponds to deleting the
corresponding rows/columns from 𝐿.

Similar statements hold for partition-constrained DPPs. Conditioning 𝜇𝐿;𝑉,𝑐 on 𝑌 being included
in the set results in a partition-constrained DPP 𝜇𝐿𝑌 ;𝑉′,𝑐′ with ensemble matrix 𝐿𝑌 and partition
𝑉′1 ⊔ · · · ⊔𝑉′𝑟 = [𝑛] \ 𝑌 with 𝑉′

𝑖
= 𝑉𝑖 \ 𝑌, and 𝑐′

𝑖
= 𝑐𝑖 − |𝑉𝑖 ∩ 𝑌 |.

Proposition 16. DPP (respectively partition-constrained DPPs) 𝜇, are closed under exponential tilts.

Proof. Identified with distribution s on {±1}𝑛 , an exponential tilt 𝜏𝑤𝜇 is the same as the DPP
(respectively partition-constrained DPP) defined by the matrix

𝐷𝐿𝐷,

where 𝐷 is a diagonal matrix whose 𝑖-th entry is exp(𝑤𝑖). This is because for any set 𝑆, we have

det((𝐷𝐿𝐷)𝑆,𝑆) = det(𝐿𝑆,𝑆)
∏︂
𝑖∈𝑆

exp(2𝑤𝑖) ∝ det(𝐿𝑆,𝑆)
∏︁

𝑖∈𝑆 exp(𝑤𝑖)∏︁
𝑖∉𝑆 exp(𝑤𝑖)

= exp(⟨2𝟙𝑆−𝟙[𝑛] , 𝑤⟩)det(𝐿𝑆,𝑆).

Note that mapping 𝐿 to 𝐷𝐿𝐷 preserves being PSD, and/or symmetric.

Proposition 17. There is an NC algorithm for computing the partition function
∑︁

𝑆 det(𝐿𝑆,𝑆) of DPPs and
partition-constrained DPPs with 𝑂(1) parts.

Proof. For an unconstrained DPP, note that its partition function can be written as∑︂
𝑆

det(𝐿𝑆,𝑆) = det(𝐿 + 𝐼),

hence by the result of Csanky [Csa76], this can be computed in NC.

For partition-constrained DPPs, Celis, Keswani, Straszak, Deshpande, Kathuria, and Vishnoi
[Cel+18] show how to compute the partition function by polynomial interpolation. Essentially 𝑟

variables corresponding to parts are constructed andwe compute the determinant of 𝐿+𝐷, where𝐷
is a diagonal matrix with one of the 𝑟 variables on each entry. Our goal is to compute the coefficient
of a certain monomial in this 𝑟-variate polynomial. This can be done by evaluating det(𝐿 + 𝐷) at
≃ 𝑛𝑟 places, and using polynomial interpolation to recover the coefficients. All of this can be done
in NC assuming 𝑟 = 𝑂(1).

By combining the previous propositions, we see that computing the Laplace transform of any
symmetric/non-symmetric DPP or a partition-constrained variant can be done in NC.

2.4 Determinants and stability

We recall the notions of sector stability and fractional log-concavity [Ali+21].

Definition 18 ([Ali+21]). For an open subset 𝑈 ⊆ ℂ𝑛 , we call a polynomial 𝑔 ∈ ℂ[𝑧1 , . . . , 𝑧𝑛]
𝑈-stable iff

(𝑧1 , . . . , 𝑧𝑛) ∈ 𝑈 =⇒ 𝑔(𝑧1 , . . . , 𝑧𝑛) ≠ 0.

We also call the identically 0 polynomial𝑈-stable. This ensures that limits of𝑈-stable polynomials
are𝑈-stable. For convenience, when 𝑛 is clear from context, we abbreviate stability w.r.t. regions of
the form𝑈 ×𝑈 × · · · ×𝑈 where𝑈 ⊆ ℂ simply as𝑈-stability.
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A set-valued distribution 𝜇 is𝑈-stable iff its generating polynomial 𝑔𝜇 is𝑈-stable:

𝑔𝜇(𝑧1 , . . . , 𝑧𝑛) =
∑︂
𝑆

𝜇(𝑥)
∏︂
𝑖∈𝑆

𝑧𝑖 .

A distribution is real-stable or strongly Rayleigh if its generating polynomial 𝑔𝜇 is ℍ-stable where
ℍ ≔ {𝑧 ∈ ℂ | Im(𝑧) > 0} is the upper half of the complex plane. Symmetric DPPs and 𝑘-DPPs are
strongly Rayleigh [BBL09].

More generally Alimohammadi, Anari, Shiragur, and Vuong [Ali+21] showed that partition-
constrained symmetric DPPs with 𝑂(1) parts, non-symmetric DPPs, and non-symmetric 𝑘-DPPs
are stable w.r.t. a sector {exp(𝑟 + 𝑖𝜃) | 𝑟 ∈ ℝ, 𝜃 ∈ [−𝛼𝜋,+𝛼𝜋]} for some constant 𝛼 = Ω(1). This
property is called sector-stability. We remark that real-stability, although defined via the upper
half-plane, also implies stability w.r.t. the right half-plane, i.e., the stability w.r.t. the sector with
𝛼 = 1/2 [Ali+21].

Proposition 19. Any strongly Rayleigh or sector-stable distribution, including all aforementioned determi-
nantal point processes and their variants, are closed under exponential tilts and are spectrally independent
[Ali+21]. It follows by the results of Eldan and Shamir [ES22], that these distributions, viewed on the
hypercube, are semi-log-concave.

This shows that we can directly apply Theorem 3 to all of these distributions. However, for sym-
metric DPPs and their partition-constrained variants, we show a stronger result, that we can apply
Theorem 1 to them. We use the following fact in the proof, which appears in Section 5.

Lemma 20. Let 𝜇 :
(︁[𝑛]
𝑘

)︁
→ ℝ≥0 be strongly Rayleigh and let 𝑉1 ⊔ · · · ⊔𝑉𝑟 = [𝑛] be a partition of [𝑛] and

let 𝑐1 , . . . , 𝑐𝑟 ∈ ℕ satisfy
∑︁

𝑖 𝑐𝑖 = 𝑘. Let 𝜇𝑉,𝑐 be the distribution defined by conditioning 𝜇 to the sets that
have exactly 𝑐𝑖 elements of 𝑉𝑖 .

Let (𝜇𝑉,𝑐)𝑉𝑗∗ be the projection of 𝜇𝑉,𝑐 on 𝑉𝑗∗, i.e., for 𝑆 𝑗∗ ⊆ 𝑉𝑗∗ ,

(𝜇𝑉,𝑐)𝑉𝑗∗ (𝑆 𝑗∗) =
∑︂

𝑆:𝑆∩𝑉𝑗∗=𝑆𝑗∗

𝜇𝑉,𝑐(𝑆).

Then (𝜇𝑉,𝑐)𝑉𝑖 is strongly Rayleigh.

Proof. W.l.o.g., assume 𝑗∗ = 𝑟 and𝑉𝑟 = {1, . . . , 𝑐𝑟}.Consider the generating polynomial 𝑔𝜇(𝑧1 , . . . , 𝑧𝑛) =∑︁
𝜇(𝑆)𝑧𝑆 . We obtain a new real-stable homogeneous polynomial ℎ(𝑧1 , . . . , 𝑧𝑐𝑟 , 𝑦1 , . . . , 𝑦𝑟−1) by the

following substitution: for 𝑗 ∈ [𝑟 − 1], set 𝑧𝑖 = 𝑦 𝑗 for all 𝑖 ∈ 𝑉𝑗 . Taking partial derivatives and setting
variables to 0 preserves real-stability [Brä07, Proposition 3.1], thus

𝜕𝑐1

𝜕𝑦𝑐1
1

𝜕𝑐2

𝜕𝑦𝑐2
2

. . .
𝜕𝑐𝑟−1

𝜕𝑦𝑐𝑟−1
𝑟−1

ℎ |𝑦2=···=𝑦𝑟=0

is real stable, and this is exactly the generating polynomial of (𝜇𝑉,𝑐)𝑉𝑗∗ .

Lemma 21. Let 𝜇 : 2[𝑛] → ℝ≥0 be real stable and 1 ≤ 𝑣1 ≤ 𝑣2 ≤ · · · ≤ 𝑣𝑟 ≤ 𝑛 and (𝑐1 , 𝑐2 , . . . , 𝑐𝑟) ∈
{0, 1}. Let 𝜇|𝑉,𝑐 be the distribution [𝑛]\ {𝑣1 , 𝑣2 , . . . , 𝑣𝑟} → ℝ≥0 defined by 𝜇|𝑉,𝑐(𝑆) ∝ 𝜇(𝑆∪{𝑣𝑖 | 𝑐𝑖 = 1}).
Then 𝜇|𝑉,𝑐 is strongly Rayleigh.

Proof. Consider the generating polynomial 𝑔𝜇(𝑧1 , . . . , 𝑧𝑛) =
∑︁

𝜇(𝑆)𝑧𝑆, which is real-stable. By
substituting 𝑧𝑣𝑖 = 𝑐𝑖 for all 1 ≤ 𝑖 ≤ 𝑟, we obtain a real-stable polynomial that is exactly the
generating polynomial of 𝜇|𝑉,𝑐 .
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3 Algorithmic framework

In this section, we prove Lemmas 5 to 7, the key facts behind the correctness of Algorithm 1. The
analysis of the approximation error resulting from continuous sampling will be done after we define
the notion of transport-stability in Section 4.

Proof of Lemma 5. First, note that for a distribution 𝜇 on the hypercube, the density of 𝜈 = 𝜇∗𝒩(0, 𝑐𝐼)
at a point 𝑦 is up to a global multiplier given by∑︂
𝑥∈{±1}𝑛

𝜇(𝑥) exp(−∥𝑦 − 𝑥∥2/2𝑐) ∝ exp(−∥𝑦∥2/2𝑐) ·
∑︂
𝑥

𝜇(𝑥) exp(⟨𝑦, 𝑥⟩/𝑐) = exp
(︁
ℒ𝜇(𝑦/𝑐) − ∥𝑦∥2/2𝑐

)︁
,

where we used the fact that for 𝑥 ∈ {±1}𝑛 , ∥𝑥∥2 is constant and disappears as a constant of
proportionality. As a result

∇2 log 𝜈 =
1
𝑐2 · ∇

2ℒ𝜇(𝑦/𝑐) −
𝐼

𝑐
=

cov(𝜏𝑦/𝑐𝜇)
𝑐2 − 𝐼

𝑐
.

Note that as 𝑦 ranges over ℝ𝑛 , 𝑦/𝑐 also ranges over all of ℝ𝑛 . Now if 𝜇 is 𝛽-semi-log-concave, see
Definition 14, then

−𝐼/𝑐 ⪯ ∇2 log 𝜈 ⪯ (𝛽/𝑐2 − 1/𝑐)𝐼
For 𝜈 to be log-concave we simply need to set 𝑐 ≥ 𝛽. For a slightly larger value, say 𝑐 = 2𝛽, we get

−𝐼/2𝛽 ⪯ ∇2 log 𝜈 ⪯ −𝐼/4𝛽,

which means that ∇2 log 𝜈 is well-conditioned too, with a condition number of 2.

We proved that 𝛽-semi-log-concavity implies that 𝜈 = 𝜇 ∗ 𝒩(0, 𝑐𝐼) is well-conditioned log-concave
for 𝑐 = Ω(𝛽). Next, note that even log-concavity of 𝜈 means that cov(𝜏𝑤𝜇) is bounded by 𝑐 for all
𝑤 because 𝑦/𝑐 ranges over all of ℝ𝑛 . This proves that semi-log-concavity and well-conditioned
log-concavity of convolutions with Gaussians are equivalent.

Finally, note that from Definition 14 and Proposition 13, a distribution 𝜇 is semi-log-concave iff
all tilts of it 𝜏𝑤𝜇 are semi-log-concave. This is because tilts are an additive group action: 𝜏𝑤𝜏′𝑤 =

𝜏′𝑤𝜏𝑤 = 𝜏𝑤+𝑤′ . This shows that semi-log-concavity of 𝜇 implies the convolution of its tilts 𝜏𝑤𝜇 with
Gaussians are also well-conditioned log-concave for large enough 𝑐.

Proof of Lemma 6. First, note that the logarithmic Laplace transform for 𝜏𝑤𝜇 is the same as the
logarithmic Laplace transform for 𝜇 shifted by the vector 𝑤 (up to a global additive constant):

ℒ𝜏𝑤𝜇(𝑦) = ℒ𝜇(𝑦 + 𝑤) − ℒ𝜇(𝑤).

So having access to an oracle for 𝜇 is equivalent to having access to an oracle for 𝜏𝑤𝜇. Therefore, we
only need to prove the density and its gradient can be computed for 𝜇; it automatically translates to
tilts 𝜏𝑤𝜇.

In the proof of Lemma 5, we computed the density of 𝜇 ∗ 𝒩(0, 𝑐𝐼) up to a global normalizing
constant:

exp(ℒ𝜇(𝑦/𝑐) − ∥𝑦∥2/2𝑐) = exp(ℒ𝜇(𝑦/𝑐)) · exp(−∥𝑦∥2/2𝑐).
This first term is the Laplace transformof𝜇 evaluated at 𝑦/𝑐. Hence given oracle access to the Laplace
transform of 𝜇, we can compute this expression. We remark that if one wishes, the normalized
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density can also be computed by carrying through the normalizing constant for a Gaussian, as well
as the global factor we dropped in the calculation in the proof of Lemma 5. However, continuous
sampling algorithms only need the density up to a normalizing factor.

Next we compute the gradient ∇ log 𝜈, which by the rules of calculus also gives us ∇𝜈 (continuous
sampling algorithms actually use the former). This gradient is equal to

1
𝑐
∇ℒ𝜇(𝑦/𝑐) −

𝑦

𝑐
=

mean(𝜏𝑦/𝑐𝜇)
𝑐

− 𝑦

𝑐

So we just need to show how to compute the mean of tilts of 𝜇. Again by the equivalence of Laplace
transform oracles for 𝜇 and its tilts, it is enough to show how to compute mean(𝜇). Let 𝟙𝑖 denote
the 𝑖-th element of the standard basis. Then we have

ℒ𝜇(𝟙𝑖) − ℒ𝜇(0) = 𝔼𝑥∼𝜇[exp ⟨𝑥, 𝟙𝑖⟩] = 𝑝𝑖𝑒 − (1 − 𝑝𝑖)𝑒−1 = 𝑝𝑖(𝑒 − 𝑒−1) − 𝑒−1 ,

where 𝑝𝑖 = ℙ𝑥∼𝜇[⟨𝑥, 𝟙𝑖⟩ = 1]. Therefore 𝑝𝑖 can be computed as a simple linear function of the above
quantity. Finally note that mean(𝜇) = (2𝑝1 − 1, 2𝑝2 − 1, . . . , 2𝑝𝑛 − 1) and that all of these entries can
be computed in parallel.

It remains to prove Lemma 7. We first prove the following characterization of the distribution of 𝑤𝑇

that is an immediate consequence of the characterization of stochastic localization by El Alaoui and
Montanari [EM22].

Lemma 22. If convolutions are sampled exactly in Algorithm 1, then

𝑐𝑤𝑇/𝑇 ∼ 𝜇 ∗ 𝒩(0, 𝑐𝐼/𝑇).

Proof. While an elementary proof of this fact is easy to derive by induction on 𝑇, we appeal to
known results on stochastic localization, which is how we developed Algorithm 1.

Stochastic localization [see ES22] is a measure-valued stochastic process {𝜇𝑡}∞𝑡=0 defined for a
starting measure 𝜇, that satisfies a stochastic differential equation (SDE). Denoting by𝑊𝑡 a standard
Brownian motion, and by 𝐹𝑡 the density of 𝜇𝑡 w.r.t. 𝜇 (that is 𝜇𝑡(𝑥) = 𝐹𝑡(𝑥) · 𝜇(𝑥)), the SDE is
described by

𝑑𝐹𝑡(𝑥) = 𝐹𝑡(𝑥) · ⟨𝑥 −mean(𝜇𝑡), 𝑑𝑊𝑡⟩.
This process results in a martingale 𝐹𝑡(𝑥) for every 𝑥 [ES22], hence the distribution of 𝜇𝑡 for every
time 𝑡 can be seen as a decomposition of 𝜇0. Note that this SDE is time-homogeneous, that is its
evolution rule does not depend on time 𝑡. So running stochastic localization up to time 𝑡, and
then running an independent stochastic localization for 𝑠 time, results in a measure identically
distributed as if we had run stochastic localization for 𝑠 + 𝑡 time from the start.

El Alaoui and Montanari [EM22] proved that 𝜇𝑡 in stochastic localization is identically distributed
to the following random measure: First sample 𝑧 ∼ 𝜇 and 𝑔 ∼ 𝒩(0, 𝑡𝐼) and let 𝑦𝑡 = 𝑡𝑧 + 𝑔. Then
form the distribution ˜︁𝜇𝑡(𝑥) ∝ exp

(︃
⟨𝑦𝑡 , 𝑥⟩ −

𝑡

2 ∥𝑥∥
2
)︃
𝜇(𝑥),

by normalizing the above appropriately. Then˜︁𝜇𝑡 is identically distributed as𝜇𝑡 (over the randomness
of 𝑧 and 𝑔).
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In our case, since the distribution 𝜇 is supported on {±1}𝑛 and for 𝑥 on the hypercube ∥𝑥∥2 = 𝑛 is
constant, we can define ˜︁𝜇𝑡(𝑥) ∝ exp(⟨𝑦𝑡 , 𝑥⟩)𝜇(𝑥),
which means that ˜︁𝜇𝑡 is the same as 𝜏𝑦𝑡𝜇.

We claim that for for every 𝑖, the distribution of 𝑤𝑖 is identical to 𝑦𝑖/𝑐 and thus 𝜏𝑤𝑖
𝜇 is identically

distributed as 𝜇𝑖/𝑐 . If proved, plugging in 𝑖 = 𝑇, shows that 𝑐𝑤𝑇/𝑇 is distributed as 𝑦𝑡/𝑡 for 𝑡 = 𝑇/𝑐
which is distributed as 𝜇 ∗ 𝒩(0, 𝐼/𝑡), proving the statement of the lemma.

Nowwe prove the claim by induction. Note that 𝑤1 is obtained by scaling a sample from 𝜇 ∗𝒩(0, 𝑐𝐼)
by 1/𝑐, so its distribution is identical to 𝑦1/𝑐 . Therefore 𝜏𝑤1𝜇 is also distributed as 𝜇1/𝑐 . This is what
we replace 𝜇 by in the next iteration of the loop in Algorithm 1. So the distribution of 𝑤2 − 𝑤1
conditioned on 𝑤1 is identical to the tilt applied by stochastic localization to go from 𝜇1/𝑐 to 𝜇2/𝑐 ,
which means 𝜏𝑤2𝜇 is identically distributed as 𝜇2/𝑐 , and so on.

Now that we know the distribution of 𝑤𝑇 , it is easy to prove Lemma 7.

Proof of Lemma 7. Note that 𝑐𝑤𝑇/𝑇 is distributed as 𝑥 + 𝑔 where 𝑥 ∼ 𝜇 and 𝑔 ∼ 𝒩(0, 𝑐𝐼/𝑇). If
∥𝑔∥∞ < 1, then because 𝑥 ∈ {±1}𝑛 , the signs of coordinates in 𝑥 and 𝑥 + 𝑔 will be the same. So we
can bound the total variation distance between sign(𝑤𝑇) and 𝜇 by

ℙ[∥𝑔∥∞ ≥ 1].

Since 𝑔 is a vector of 𝑛 centered normals, each of variance 𝑐/𝑇, by the sub-Gaussian tail inequality
we have

ℙ[|𝑔𝑖 | ≥ 1] ≤ 𝑂(1) · exp(−Ω(1/(𝑐/𝑇))) = 𝑂(1) · exp(−Ω(𝑇/𝑐)).
By a union bound we have

ℙ[∥𝑔∥∞ ≥ 1] ≤ 𝑂(𝑛) · exp(−Ω(𝑇/𝑐)).

For sufficiently large 𝑇/𝑐 ≃ Θ(log(𝑛/𝜖)), this is below 𝜖.

4 Transport stability

In this section, we define the notion of transport stability and show how to control the propagation
of the approximation error resulting from continuous sampling in Algorithm 1.

Definition 23 (Transport stability). For a choice of transportation metric 𝑑1 on probability distribu-
tions supported on {±1}𝑛 , and another metric 𝑑2 on ℝ𝑛 , we say that 𝜇 has 𝑑1-𝑑2 transport stability,
when

𝑑1(𝜏𝑤𝜇, 𝜏𝑤′𝜇) ≤ 𝑑2(𝑤, 𝑤′),
for all 𝑤, 𝑤′.

Our default choices for 𝑑1 and 𝑑2 are the𝒲1 Wasserstein distance and 𝑂(1) · ℓ1 respectively, and we
call this simply transport stability. For DPPs and partition-constrained DPPs, we prove𝒲∞-𝑂(1) ·ℓ0
transport-stability, which we now show is formally stronger. Note that both ℓ0 and ℓ1 are summable
over coordinates. In other words, if we start from 𝑤, 𝑤′ and define 𝑤𝑖 to be identical in the first 𝑖
coordinates with 𝑤 and in the remaining coordinates with 𝑤′, then

𝑑(𝑤, 𝑤′) = 𝑑(𝑤0 , 𝑤1) + 𝑑(𝑤1 , 𝑤2) + · · · + 𝑑(𝑤𝑛−1 , 𝑤𝑛),
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for 𝑑 ∈ {ℓ0 , ℓ1}. If follows that to check transport stability with ℓ0 or ℓ1 (or scalar multiples of them)
as the choice of distance on ℝ𝑛 , it is enough to check the inequality in Definition 23 only for 𝑤, 𝑤′

that differ in one coordinate: ∥𝑤 − 𝑤′∥0 = 1. We prove the𝒲1-𝑂(1)ℓ1 transport stability of DPPs
and partition-constrained DPPs by a much stronger𝒲∞-𝑂(1)ℓ0 inequality.

Lemma 24. If the distribution 𝜇 is𝒲∞-𝛼ℓ0 transport-stable, then it is also𝒲1-𝑂(𝛼)ℓ1 transport-stable.

Proof. Note that because𝒲1 is always bounded by𝒲∞, from the assumption we can conclude
𝒲1-𝛼ℓ0 transport-stability. We now show how to prove𝒲1-𝑂(𝛼)ℓ1 stability. By the preceding
arguments it is enough to prove that for 𝑤, 𝑤′ differing in exactly one coordinate, we have

𝒲1(𝜏𝑤𝜇, 𝜏𝑤′𝜇) ≤ 𝑂(𝛼) · ∥𝑤 − 𝑤′∥1.

Let 𝑤′ − 𝑤 = 𝑐𝟙𝑖 , where 𝑖 is the differing coordinate and assume w.l.o.g. that 𝑐 > 0, which means
∥𝑤′ − 𝑤∥1 = 𝑐. We construct a coupling to bound the𝒲1 distance between the two. Write 𝜏𝑤𝜇 as
𝑝𝜈1 + (1 − 𝑝)𝜈2 where 𝜈1 is the conditioning on coordinate 𝑖 being +1 and 𝜈2 is the conditioning on
coordinate 𝑖 being −1. Notice that we have 𝜏𝑤′𝜇 = 𝑞𝜈1 + (1− 𝑞)𝜈2. This is because to go from 𝜏𝑤𝜇 to
𝜏𝑤′𝜇, we only have to apply a tilt in the direction of coordinate 𝑖, which does not change the two
conditional distributions. By the same token, 𝜈1 can be obtained as the limit of 𝜏𝑤+𝛽𝟙𝑖𝜇 for 𝛽→∞
and 𝜈2 can be obtained as the limit when 𝛽→ −∞. Because of𝒲1-𝛼ℓ0 transport-stability we can
conclude that𝒲1(𝜈1 , 𝜈2) ≤ 𝛼.

Next, we claim that |𝑝 − 𝑞 | ≤ 𝑐/2. The equation defining the relationship between 𝑝, 𝑞 is that
𝑞, 1 − 𝑞 ∝ 𝑝𝑒 𝑐 , (1 − 𝑝)𝑒−𝑐 respectively. Let 𝜃𝑝 , 𝜃𝑞 be such that tanh(𝜃𝑝) = 2𝑝 − 1 ∈ (−1, 1) and
tanh(𝜃𝑞) = 2𝑞 − 1 ∈ (−1, 1). In other words, 𝑝, 1 − 𝑝 ∝ 𝑒𝜃𝑝 , 𝑒−𝜃𝑝 and 𝑞, 1 − 𝑞 ∝ 𝑒𝜃𝑞 , 𝑒−𝜃𝑞 . Then we
have 𝜃𝑞 = 𝜃𝑝 + 𝑐. It follows that 2|𝑝 − 𝑞 | = |tanh(𝑝) − tanh(𝑞)| ≤ 𝑐.

Now we construct the coupling for 𝜏𝑤𝜇 and 𝜏𝑤′𝜇. Let 𝜋 be the coupling between 𝜈1 , 𝜈2 realizing
𝒲1(𝜈1 , 𝜈2). We sample a pair (𝑥, 𝑦) as follows:

• With probability 𝑝, we sample 𝑧 ∼ 𝜈1 and output (𝑧, 𝑧),

• With probability 1 − 𝑞, we sample 𝑧 ∼ 𝜈2 and output (𝑧, 𝑧),

• With the remaining probability 𝑞 − 𝑝 = |𝑝 − 𝑞 |, we sample (𝑥, 𝑦) ∼ 𝜋 and output (𝑦, 𝑥).

It is easy to see that this is a coupling for 𝜏𝑤𝜇 and 𝜏𝑤′𝜇. Moreover, in all but the last case we output
identical points which have distance 0. Therefore we have

𝔼[∥𝑥 − 𝑦∥1] = |𝑝 − 𝑞 | · 𝒲1(𝜈1 , 𝜈2) ≤ 𝑂(𝛼𝑐).

Corollary 25. Every distribution 𝜇 on {±1}𝑛 is𝒲1-𝑂(𝑛)ℓ1 transport-stable.

Proof. Since𝒲∞ is uniformly bounded by 𝑂(𝑛) and ℓ0 is lower bounded by 1 for distinct points,
we automatically have𝒲∞-𝑂(𝑛)ℓ0 transport-stability. The conclusion follows from Lemma 24.

We remark that showing𝒲∞-𝛼ℓ0 transport-stability is basically equivalent to constructing couplings
between coordinate-conditioned distributions.

Proposition 26. A distribution 𝜇 has 𝑊∞-𝛼ℓ0 transport-stability iff for every 𝜈 ≔ 𝜏𝑤𝜇 and every coordinate
𝑖 ∈ [𝑛], the distributions 𝜈1 , 𝜈2 obtained by conditioning 𝑥 ∼ 𝜈 to have 𝑥𝑖 = 1 and 𝑥𝑖 = −1 respectively,
satisfy

𝒲∞(𝜈1 , 𝜈2) ≤ 𝛼.
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Proof. The proof is almost identical to the proof of Lemma 24. Given a coupling between 𝜈1 , 𝜈2, this
can be extended to a coupling between 𝜏𝑤+𝑐𝟙𝑖𝜇 and 𝜏𝑤+𝑐′𝟙𝑖𝜇 for any 𝑐, 𝑐′ ∈ ℝ; no distance increases,
so𝒲∞ still remains bounded by 𝛼.

We are now ready to prove our main statement about how errors propagate in Algorithm 1.

Proposition 27. Suppose that 𝜇 is𝒲1-𝛼ℓ1 transport-stable. Then if we run Algorithm 1 using an ap-
proximate continuous sampling algorithm that guarantees accuracy within 𝛿 in𝒲1, resulting in a random
variable 𝑤𝑇 , then

𝒲1(𝑐𝑤𝑇/𝑇, 𝜇 ∗ 𝒩(0, 𝑐𝐼/𝑇)) ≤ 𝛿 · (1 + 𝛼/𝑐)𝑇 .

Proof. Suppose we have two executions of Algorithm 1: one using the approximate continuous
sampling algorithm resulting in 𝑤0 , . . . , 𝑤𝑇 , and one using exact samples resulting in 𝑤′0 , . . . , 𝑤

′
𝑇
.

We bound the𝒲1 distance between the random variables 𝑤𝑖 and 𝑤′
𝑖
inductively. For 𝑖 = 0 this

distance is 0. We claim that

𝒲1(𝑤𝑖 , 𝑤
′
𝑖) ≤ 𝐶𝑖 ≔

𝛿
𝑐
· (1 + 𝛽 + · · · + 𝛽𝑖−1),

where 𝛽 ≔ 1 + 𝛼/𝑐.

Assuming this is true for 𝑖, we couple 𝑤𝑖 and 𝑤′
𝑖
in a way that realizes this𝒲1 distance. In other

words
𝔼[∥𝑤𝑖 − 𝑤′𝑖 ∥1] ≤ 𝐶𝑖 .

Now we couple exact samples ˜︁𝑥 ∼ 𝜏𝑤𝑖
𝜇 ∗ 𝒩(0, 𝑐𝐼) and 𝑥′ ∼ 𝜏𝑤′

𝑖
𝜇 ∗ 𝒩(0, 𝑐𝐼) by using the coupling

implied by transport-stability for 𝜏𝑤𝑖
𝜇 and 𝜏𝑤′

𝑖
𝜇 and adding the same independent Gaussian sample

from𝒩(0, 𝑐𝐼) to both. It follows that

𝒲1(˜︁𝑥, 𝑥′) ≤ 𝔼[𝒲1(𝜏𝑤𝑖
𝜇, 𝜏𝑤′

𝑖
𝜇)] ≤ 𝛼 𝔼[∥𝑤𝑖 − 𝑤′𝑖 ∥1] ≤ 𝛼𝐶𝑖 .

However, note that we do not sample ˜︁𝑥 exactly in the algorithm, but rather we sample 𝑥 approxi-
mately within𝒲1 ≤ 𝛿 distance of ˜︁𝑥. By the triangle inequality for𝒲1 we have

𝒲1(𝑥, 𝑥′) ≤ 𝛿 + 𝛼𝐶𝑖 .

Finally note that 𝑤𝑖+1 = 𝑤𝑖 + 𝑥/𝑐 and 𝑤′
𝑖+1 = 𝑤′

𝑖
+ 𝑥′/𝑐, so we get

𝔼[∥𝑤𝑖+1−𝑤′𝑖+1∥1] ≤ 𝔼[∥𝑤𝑖 −𝑤′𝑖 ∥1]+
𝔼[∥𝑥 − 𝑥′∥]

𝑐
≤ 𝐶𝑖 +(𝛿+𝛼𝐶𝑖)/𝑐 = (1+𝛼/𝑐)𝐶𝑖 + 𝛿/𝑐 = 𝐶𝑖+1.

This finishes the induction.

Now we simply note that our bound for 𝑖 = 𝑇 can be further upper-bounded by (𝛿/𝑐) · 𝑇(1 + 𝛼/𝑐)𝑇 .
This implies that

𝒲1(𝑐𝑤𝑇/𝑇, 𝑐𝑤′𝑇/𝑇) ≤ 𝛿(1 + 𝛼/𝑐)𝑇 .
But we know by Lemma 22 that 𝑐𝑤′

𝑇
/𝑇 is distributed according to 𝜇 ∗ 𝒩(0, 𝑐𝐼/𝑇), finishing the

proof.

Next, we state the error guarantee of the approximate continuous samplerwe utilize, the randomized
midpoint method of Shen and Lee [SL19].
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Proposition 28. Suppose that 𝜇 is a semi-log-concave distribution and 𝑐 is a large constant so that 𝜈 ≔

𝜏𝑤𝜇 ∗ 𝒩(0, 𝑐𝐼) is well-conditioned log-concave, and assume we have oracle access to the Laplace transform of
𝜇. Then we can output a sample that is 𝛿-accurate in𝒲1 distance from 𝜈 with runtime log(𝑛/𝛿)𝑂(1) using
(𝑛/𝛿)𝑂(1) processors.

Proof. Since we have oracle access to the Laplace transform of 𝜇, we have oracle access to the
log-density and gradients of log-density for 𝜈 ≔ 𝜏𝑤𝜇 ∗ 𝒩(0, 𝑐𝐼) by Lemma 6. Note that ∇2 log 𝜈 is
sandwiched between −𝛼𝐼 ,−𝛽𝐼 for some constants 𝛼, 𝛽 = Θ(1) by the proof of Lemma 5. This means
the condition number 𝜅 = 𝛼/𝛽 is also 𝑂(1).

The result of Shen and Lee [SL19] thus allows us to sample from 𝜈 within 𝜖 ·𝐷 error in𝒲2,2 where
𝐷 =

√︁
𝑛/𝛽 is the effective diameter. This algorithm uses (𝜅/𝜖)𝑂(1) processors and runs in time

𝑂(𝜅 log(1/𝜖)). Note that𝒲1 ≤
√
𝑛𝒲1,2 ≤

√
𝑛𝒲2,2. So by setting 𝜖 =

√︁
𝛽𝛿/𝑛 we get our desired 𝛿

accuracy in the𝒲1 metric. With this setting of parameters it is easy to check that the parallel runtime
is 𝑂(log(1/𝜖)) = 𝑂(log(𝑛/𝛿)) and that the number of processors is 𝑂(1/𝜖)𝑂(1) = (𝑛/𝛿)𝑂(1).

Remark 29. Technically, to start the algorithm of Shen and Lee [SL19], one needs an approximate
maximizer of the density 𝜈. Since log 𝜈 is a well-conditioned concave function, gradient ascent
converges exponentially fast to the maximizer, so we can start from a point and run gradient ascent
for polylogarithmically many steps, and then run the algorithm of Shen and Lee [SL19]. To make
sure the number of steps taken is only log(𝑛)𝑂(1) we have to find an initial point 𝑥 which has at least
exp(exp(−𝑂(log 𝑛𝑂(1)))) fraction of the maximum density. The point 0 in our case has this property.
Since we are convolving a distribution on {±1}𝑛 with a Gaussian𝒩(0, 𝑐𝐼), the density of the result
at 0 compared to the maximum possible density is at least

exp(−
√
𝑛

2/2𝑐)/exp(0) = exp(−𝑛/2𝑐),

because the distance of 0 from all vertices of the hypercube is
√
𝑛.

We can now prove Theorem 1.

Proof of Theorem 1. First note that by Propositions 10 and 15, transport-stability implies semi-log-
concavity. Combining this with Lemma 5, we get that for 𝑐 a large enough constant, the distribution
𝜏𝑤𝜇 ∗ 𝒩(0, 𝑐𝐼) is always well-conditioned log-concave. Thus, the assumptions of Proposition 28 are
satisfied and we can run Algorithm 1 by this approximate continuous sampling scheme. It remains
to set the accuracy parameter 𝛿, and the number of steps 𝑇.

We first set 𝑇 = 𝐴 log(𝑛/𝜖) for a large enough constant 𝐴 that depends on 𝑐. This is to make sure
that with high probability a sample from𝒩(0, 𝑐𝐼/𝑇) has ∥·∥∞ bounded by 1/5, which is possible
for large enough 𝐴 by the same argument as in Lemma 7.

Once 𝑇 is set, we choose 𝛿 to be small enough so that the final𝒲1 error of 𝑐𝑤𝑇/𝑇 resulting from
Proposition 27 is at most 𝜖/10. This is possible as we only need to set 1/𝛿 to be (1 + 𝑂(1)/𝑐)𝑇 =

(𝑛/𝜖)𝑂(1). Overall this results in a runtime of log(𝑛/𝜖)𝑂(1) with (𝑛/𝜖)𝑂(1) many processors.

It remains to conclude that the output is 𝜖-close in total variation distance. We know that 𝑐𝑤𝑇/𝑇 is
𝜖/10-close in𝒲1 distance to 𝜇 ∗ 𝒩(0, 𝑐𝐼/𝑇). Let 𝑥 ∼ 𝜇 and 𝑔 ∼ 𝒩(0, 𝑐𝐼/𝑇) be independent samples,
and assume that 𝑐𝑤𝑇/𝑇 is coupled optimally (w.r.t.𝒲1) to 𝑥 + 𝑔:

𝔼[∥𝑐𝑤𝑇/𝑇 − 𝑥 − 𝑔∥1] ≤ 𝜖/10.
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It follows from Markov’s inequality that

ℙ[∥𝑐𝑤𝑇/𝑇 − 𝑥 − 𝑔∥1 ≥ 1/5] ≤ 𝜖/2.

Moreover, by a similar argument to the proof of Lemma 7, we have

ℙ[∥𝑔∥∞ ≥ 1/5] ≤ 𝜖/2.

Therefore with probability at least 1 − 𝜖 we have ∥𝑔∥∞ < 1/5 and ∥𝑐𝑤𝑇/𝑇 − 𝑥 − 𝑔∥1 < 1/5. Under
these two conditions we have ∥𝑐𝑤𝑇/𝑇 − 𝑥∥∞ < 2/5 < 1, which means that sign(𝑤𝑇) is the same as 𝑥.
This proves that the output of Algorithm 1 is 𝜖-close in total variation distance to 𝜇.

Next, we prove Theorem 3. The proof is almost identical, except we have to choose a smaller
accuracy 𝛿.

Proof of Theorem 3. The only difference from the proof of Theorem 1 is that to guarantee 𝑐𝑤𝑇/𝑇 is
𝜖/10-close in𝒲1, we no longer can set 1/𝛿 to be (𝑛/𝜖)𝑂(1). We have to use the trivial transport-
stability guaranteed by Corollary 25. This implies that with a 𝛿-accurate continuous sampler given
by Proposition 28, the final 𝑐𝑤𝑇/𝑇 will be within𝒲1 distance 𝛿(1 + 𝑂(𝑛)/𝑐)𝑇 = 𝛿(𝑛/𝜖)𝑂(log 𝑛) of
𝜇 ∗ 𝒩(0, 𝑐𝐼). This means that we need to set 1/𝛿 to be (𝑛/𝜖)𝑂(log 𝑛) large to get 𝜖/10 accuracy.

This value of 𝛿 results in a runtime of log(𝑛/𝛿)𝑂(1) = log(𝑛/𝜖)𝑂(1) and the number of processors will
be (𝑛/𝛿)𝑂(1) = (𝑛/𝜖)𝑂(log 𝑛).

5 Symmetric DPPs and partition-constrained variants

Here we prove that symmetric DPPs and partition-constrained variants of them with 𝑂(1) parts
satisfy𝒲∞-𝑂(1)ℓ0 transport stability. This proves Corollary 2, since the Laplace transforms of these
distribution are computable in NC. Our main tool is the fact that symmetric DPPs, a subclass of the
so-called strongly Rayleigh distributions, satisfy a condition known as stochastic covering property
[PP14].

Lemma 30 ([PP14, Proposition 2.1]). Suppose 𝜇 : {±1}𝑛 → ℝ≥0 is a strongly Rayleigh distribution,
including DPPs and 𝑘-DPPS, and let 𝑖 ∈ [𝑛]. Then there exists a coupling 𝜋 between 𝜇− and 𝜇+ obtained
from 𝜇 by conditioning coordinate 𝑖 to be −1 or +1, such that for any (𝑝, 𝑞) ∈ supp(𝜋), ∥𝑝 − 𝑞∥1/2 ≤ 2,
i.e., 𝑝 and 𝑞 differ in at most one coordinate other than 𝑖. Moreover, if 𝑗 is any coordinate other than 𝑖, then
𝑝 𝑗 ≤ 𝑞 𝑗 (the opposite of 𝑝𝑖 and 𝑞𝑖).

Corollary 31. Any strongly Rayleigh distribution, including DPPs and 𝑘-DPPS satisfies𝒲∞-4ℓ0

Proof. Note that DPPs and 𝑘-DPPs are closed under exponential tilts. Thus the proof follows by
arguments in Section 4, where it was shown that to prove𝒲∞-𝛼ℓ0 transport-stability it is enough
to couple distributions obtained from conditioning only one coordinate.

Theorem 32. Consider a strongly Rayleigh 𝜇 and partition 𝑉1 ⊔ · · · ⊔𝑉𝑟 = [𝑛] and cardinalities 𝑐1 , . . . , 𝑐𝑟 .
Let 𝜈 be the distribution of 𝜇 conditioned on those sets that contain exactly 𝑐 𝑗 elements of 𝑉𝑗 for all 𝑗. Suppose
that 𝑖 is a coordinate and 𝜈+ is 𝜈 conditioned on +1 for coordinate 𝑖 and 𝜈− is 𝜈 conditioned on −1 for
coordinate 𝑖. There exists a coupling 𝜋 between 𝜈+ and 𝜈− where the Hamming distance ∥𝑝 − 𝑞∥1/2 ≤ 2𝑟 for
(𝑝, 𝑞) ∈ supp(𝜋).
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Proof. We construct a pair of random variables (𝑝, 𝑞)which couple 𝜈+ and 𝜈− and satisfy ∥𝑝 − 𝑞∥1 ≤
2𝑟+1 almost surely. We construct 𝑝 and 𝑞 piece by piece, one part of the partition at a time. W.l.o.g.
assume that 𝑖 ∈ 𝑉1. First, look at the projection of 𝜈 on 𝑉1. By Lemma 20, this is a strongly Rayleigh
distribution. So we can sample the coordinates in𝑉1, namely 𝑝𝑉1 and 𝑞𝑉2 , in a coupled way, through
the coupling guaranteed by Lemma 30, so that they follow the projections of 𝜈+ and 𝜈− on the 𝑉1
coordinates. This will create at most 2 different coordinates (one of them is 𝑖).

Now look at 𝑉1 ∪𝑉2, and consider the distributions obtained by 𝜈+ and 𝜈− projected onto 𝑉1 ∪𝑉2,
conditioned on agreement with the filled-out part (coordinates 𝑉1) of 𝑝 and 𝑞. We argue that
these are also strongly Rayleigh distributions, and moreover they are conditionings of the same
strongly Rayleigh distribution. This follows because we can consider the coarsened partition
(𝑉1 ∪ 𝑉2) ⊔ 𝑉3 ⊔ · · · ⊔ 𝑉𝑟 where we want 𝑐1 + 𝑐2 elements from the first part, 𝑐3 from the second,
and so on. Then, partition-constraining 𝜇 with this coarsened partition, and then conditioning the
coordinates in 𝑉1 to be 𝑝𝑉1 or 𝑞𝑉2 results in the same distributions as if we started with the fully
partition-constrained 𝜈 and projected onto 𝑉1 ∪ 𝑉2 and then conditioned on 𝑉1; this is because
the coordinates in 𝑉1 already satisfy the 𝑐1 cardinality constraint, so having 𝑐1 + 𝑐2 elements from
𝑉1 ∪𝑉2 conditioned on the 𝑉1 part is the same as having 𝑐1 elements from 𝑉1 and 𝑐2 elements from
𝑉2. Since the conditionings to 𝑝𝑉1 and 𝑞𝑉1 differ in at most 2 coordinates, it follows by Corollary 31
that we can sample 𝑝𝑉1∪𝑉2 and 𝑞𝑉1∪𝑉2 conditioned on the 𝑉1 part, in a way that 𝑝𝑉1∪𝑉2 and 𝑞𝑉1∪𝑉2

will end up having twice as many, at most 4 different coordinates. We continue this argument
with 𝑉1 ∪ 𝑉2 ∪ 𝑉3 and so on. Each piece of 𝑝 and 𝑞 that we create can have as many different
coordinates as the total combined so far; in other words, the number of different coordinates at most
doubles every iteration. So in the end 𝑝 and 𝑞 will be different in ≤ 2𝑟 coordinates. This proves that
∥𝑝 − 𝑞∥1/2 ≤ 2𝑟 .

We get the following corollary.

Corollary 33. A partition-constrained symmetric DPP with 𝑟 parts, satisfies𝒲∞-𝑂(2𝑟)ℓ0 transport-
stability.

This finishes the proof of Corollary 2. InAppendixA,we explore, as side results, further implications
of𝒲∞-𝑂(2𝑟)ℓ0 transport-stability, by closely following the arguments of Hermon and Salez [HS23].

6 Non-symmetric DPPs and Eulerian tours

In this section, we show that sampling Eulerian tours on directed graphs can be reduced to sampling
non-symmetric DPPs, via the intermediate problem of samplingweighted Eulerian tours on directed
4-regular graphs, described below.

As a reminder, an Eulerian tour is a circuit in a finite graph that visits every edge exactly once
(revisiting vertices is allowed). A directed graph (or digraph) has an Eulerian tour if and only if
every vertex has equal in-degree and out-degree, and all of its vertices with nonzero degree belong
to a single strongly connected component. Such graphs are called Eulerian digraphs.

We note that the number of Eulerian tours in digraphs can be computed in polynomial time, since
there is a many-to-one direct correspondence between Eulerian tours in an Eulerian digraph and
arborescences of the graph (known as the BEST theorem [AB51; TS41]), and the latter can be
computed by the directed matrix-tree theorem. This is in sharp contrast to the case of undirected
graphs for which the problem is #P-complete [BW05], even for 4-regular graphs [GŠ12].
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6.1 Eulerian tours on 4-regular Eulerian digraphs

A 4-regular digraph 𝐺 = (𝑉, 𝐸) being Eulerian indicates that every vertex has both in-degree and
out-degree two. Given 𝑣 ∈ 𝑉 , a transition 𝑆𝑣 is defined as one of the two possible ways of pairing
incoming edges and outgoing edges. We say an Eulerian tour 𝐶 traverses 𝑆𝑣 if 𝐶 enters 𝑣 from any
incoming edge and immediately exits via the corresponding outgoing edge. Denote by 𝑆𝑣(𝐶) the
transition at 𝑣 that is being traversed by 𝐶, and by ℰ(𝐺) the set of Eulerian tours on 𝐺. Given an
Eulerian tour 𝑅 ∈ ℰ(𝐺) as reference, we set 𝐹𝑅(𝐶) = {𝑣 | 𝑆𝑣(𝐶) ≠ 𝑆𝑣(𝑅)}. Then we note that ℰ(𝐺)
can be identified by ℱ𝑅 = {𝐹𝑅(𝐶) | 𝐶 ∈ ℰ(𝐺)}, as the mapping 𝐹𝑅 from Eulerian tours to subsets of
vertices is one-to-one and onto. Bouchet [Bou95] proved that the uniform distribution of Eulerian
tours on a 4-regular Eulerian digraph is a special case of a non-symmetric DPP. Given a 4-regular
graph, we show how to construct the characterizing matrix 𝐿 for this non-symmetric DPP in RNC.

Theorem 34. Given a 4-regular Eulerian digraph 𝐺 = (𝑉, 𝐸), there exists an RNC algorithm that computes
an Eulerian tour 𝑅 ∈ ℰ(𝐺) and a skew-symmetric matrix 𝐿 ∈ {−1, 0, 1}𝑉×𝑉 (whose rows and columns are
indexed by 𝑉) such that det(𝐿𝑆,𝑆) = 1 if 𝑆 ∈ ℱ𝑅, and det(𝐿𝑆,𝑆) = 0 otherwise.

Proof. We first use [AIS84] to find one Eulerian tour 𝑅 using an NC algorihtm. To construct the
skew-symmetric matrix 𝐿, we compute the row 𝐿𝑣,𝑤 for vertices 𝑣, 𝑤 ∈ 𝑉 in parallel.

First, label the two outgoing edges from 𝑣 by 𝑒+𝑣 and 𝑒−𝑣 arbitrarily; this can be done in one parallel by
having each vertex choose its label. Construct the graph 𝑅′ with vertices consisting of 𝑣+ and 𝑣− for
𝑣 ∈ 𝑉 , such that 𝑣+ (𝑣− respectively) has exactly one outgoing edge 𝑒+𝑣 (𝑒−𝑣 respectively) and exactly
one in-edge which is the predecessor of 𝑒+𝑣 (𝑒−𝑣 respectively) in 𝑅. Note that 𝑅′ is a simple cycle
on 2|𝑉 | vertices. Following [Bou95], we say vertices 𝑣 and 𝑤 has positive (negative respectively)
alternance if the vertices in 𝑅′ appear in the order 𝑣+ . . . 𝑤+ . . . 𝑣− . . . 𝑤− ( 𝑣+ . . . 𝑤− . . . 𝑣− . . . 𝑤+
respectively) and has no alternance otherwise.

If 𝑣, 𝑤 has positive (negative respectively) alternance we set 𝐿𝑣,𝑤 = +1 (𝐿𝑣,𝑤 = −1 respectively) and
if they have no alternance we set 𝐿𝑣,𝑤 = 0. To figure out the alternance of any pair of vertices, we
simply need to know the index of the copies of 𝑣, 𝑤 appearing on the cycle. This can be done in NC
by traversing the cycle 𝑅′ in parallel using the standard doubling trick.

In order to reduce the sampling of Eulerian tours on Eulerian digraphs with higher vertex degrees to
that on 4-regular Eulerian digraphs, we introduce weights on the transitions. Let 𝑤(·) be a positive
weight function on the transitions. The distribution of weighted Eulerian tours 𝜇𝐺,𝑤 : ℰ(𝐺) → ℝ>0
is defined by

𝜇𝐺,𝑤(𝐶) ∝
∏︂
𝑣∈𝑉

𝑤(𝑆𝑣(𝐶)).

Moreover, since every Eulerian tour traverses exactly one transition at every vertex, given any
reference 𝑅 ∈ ℰ(𝐺), we have

𝜇𝐺,𝑤(𝐶) ∝
∏︂
𝑣∈𝑉

𝑤(𝑆𝑣(𝑅))
∏︂
𝑣∈𝑉

𝑤(𝑆𝑣(𝐶))
𝑤(𝑆𝑣(𝑅))

∝
∏︂
𝑣∈𝑉

𝑤(𝑆𝑣(𝐶))
𝑤(𝑆𝑣(𝑅))

.

Then it is not hard to see that 𝜇𝐺,𝑤 is identical to the non-symmetric DPP instance given by 𝐿 in
Theorem 34 under the 𝜆-scaling with 𝜆𝑣 =

𝑤(𝑆∗𝑣(𝑅))
𝑤(𝑆𝑣(𝑅)) , where 𝑆∗𝑣(𝑅) denotes the transition at 𝑣 that 𝑅

does not traverse.
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6.2 Eulerian tours on general Eulerian digraphs

Finally we show how to sample (unweighted) Eulerian tours on general Eulerian digraphs, given
an algorithm for sampling weighted Eulerian tours on 4-regular Eulerian digraphs. Denote the
in-degree (or out-degree) of a vertex 𝑣 by 𝑑(𝑣) in a Eulerian digraph. In 4-regular Eulerian digraphs,
𝑑(𝑣) = 2 for any 𝑣. We will use (acyclically connected) gadgets made of weighted vertices with 𝑑 = 2
to simulate any unweighted vertex with 𝑑 > 2. Note that unweighted vertices with 𝑑 = 1 can be
simply replaced by an edge, for sampling purposes.

To sample unweighted Eulerian tours, the local constraint at a vertex is that the incoming 𝑑 edges
and outgoing 𝑑 edges should be able to “pair up” freely. Viewing it as a permutation problem,
our goal is to generate uniformly random permutations on 𝑑 elements using (potentially biased)
probabilistic pairwise swaps. Indeed, if we connect incoming edges 𝑥𝑖 , 𝑥 𝑗 and outgoing edges
𝑦𝑖 , 𝑦 𝑗 (with the same subscripts, respectively) to a weighted degree-4 vertex 𝑣 with two transitions
𝑆 = {{𝑥𝑖 , 𝑦𝑖}, {𝑥 𝑗 , 𝑦 𝑗}} and 𝑆′ = {{𝑥𝑖 , 𝑦 𝑗}, {𝑥𝑖 , 𝑦 𝑗}}, then locally 𝑣 favors the swap (of subscripts 𝑖 , 𝑗)
with probability 𝑤(𝑆′)

𝑤(𝑆)+𝑤(𝑆′) while favors the identity with probability 𝑤(𝑆)
𝑤(𝑆)+𝑤(𝑆′) .

The following lemma states that for any vertex of in-degree 𝑑, the construction of a corresponding
gadget can be done using 𝑂(𝑑2) degree-4 vertices.

Lemma 35 (Folklore). A uniformly random permutation on 𝑑 elements can be generated using 𝑑(𝑑−1)
2 biased

probabilistic pairwise swaps.

Proof. The construction is in 𝑑 rounds. We denote the operation of swapping two elements at
position 𝑖 and 𝑗 by swap(𝑖 , 𝑗). In the first round, we do swap(1, 2)with probability 1

2 , then swap(1, 3)
with probability 1

3 , etc., and eventually swap(1, 𝑑) with probability 1
𝑑
. This will put a uniformly

random element in position 1, which takes 𝑑 probabilistic swaps. Next we can keep the element
in position 1 fixed and recursively work on the remaining 𝑑 − 1 positions. For example, in the
second round a uniformly random element amongst the remaining 𝑑 − 1 elements will be put in
positions 2, using 𝑑 − 1 probabilistic swaps. Continuing this process for 𝑑 rounds yields a perfectly
random permutation. Since the round with 𝑖 elements remaining takes 𝑖 probabilistic swaps, the
total number of swaps is 𝑑(𝑑−1)

2 .

Therefore, given any Eulerian digraph 𝐺, the reduction works by replacing every vertex with 𝑑 > 2
by a gadget² of 𝑂(𝑑2) vertices with in-degree 𝑑 = 2, and every vertex with 𝑑 = 1 by a directed edge,
resulting in a 4-regular Eulerian digraph 𝐺′ whose size is blown up at most quadratically. Any
sample of an Eulerian tour on 𝐺′ can be converted to a sample of an Eulerian tour on 𝐺 by virtually
viewing each vertex gadget constructed in 𝐺′ as a vertex in 𝐺, and letting the edges in 𝐺 follow
their ordering in 𝐺′ to form an Eulerian tour. Furthermore, according to Lemma 35, the desired
distribution will be respected at the aggregate level.

We remark that the idea of simulating higher degree vertices by degree-4 vertices was previously
employed in [GŠ12] where they studied Eulerian tours problems on undirected graphs, although
their construction only uses unweighted degree-4 vertices and their equivalence result holds in the
approximate sense.

²The gadget construction can easily be done in NC time
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A Concentration and faster mixing walk from coupling

In this section we connect𝒲∞-𝑂(1)ℓ0 transport stability, see Definition 23, to concentration in-
equalities and the existence of fast mixing local Markov chains. We follow almost identically the
arguments of Hermon and Salez [HS23] who proved the same for the more restricted class of
strongly Rayleigh distributions. Our proof of𝒲∞-𝑂(1)ℓ0 transport stability from Section 5 extends
these results to partition-constrained strongly Rayleigh distributions and DPPs.

We show the existence of a local Markov chain with inverse linear modified log Sobolev constant,
which in turn implies sub-Gaussian concentration of Lipschitz function via a standard Herbst
argument [HS23].

Theorem 36. Suppose 𝜇 : {±1}𝑛 → ℝ≥0 satisfies𝒲∞-𝜌ℓ0 transport-stability for some parameter 𝜌 = 𝑂(1).
Then, there exists a reversible Markov chain 𝑃 that has stationary distribution 𝜇 and modified log-Sobolev
constant ≥ Ω( 1𝑛 ), and furthermore 𝑃(𝑥, 𝑦) ≠ 0 only if ∥𝑥 − 𝑦∥1 ≤ 𝜌. If we assume additionally that 𝜇 is
𝑘-homogeneous, then the modified log-Sobolev constant can be lower-bounded by Ω(1/𝑘).

Proof. LetΩ = {±1}𝑛 . Fix a coordinate ℓ ∈ [𝑛]. LetΩ− = {𝑥 ∈ Ω | 𝑥ℓ = −1} andΩ+ = {𝑥 ∈ Ω | 𝑥ℓ = +1}.
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Following the notation in [HS23], it is easier to construct a reversible Markov generator 𝑄 with
transition rate bounded by 𝑂(𝑛) (or 𝑂(𝑘) in the homogeneous case) and MLSI constant Ω(1) and
then convert that to a Markov chain, by lazifying𝑄 at a rate of ≃ 1/𝑛 (or ≃ 1/𝑘 for the homogeneous
case). For a Markov generator 𝑄, we let 𝛼(𝑄) be its MLSI constant. Let Δ(𝑄) = max𝑥∈Ω{−𝑄(𝑥, 𝑥)}
be the maximum rate of change of 𝑄.

Consider the projections and restrictions of 𝜇 defined by the partition Ω− and Ω+ denoted by
𝜇̂, 𝜇− , 𝜇+. Suppose 𝜇 satisfies𝒲∞-𝜌ℓ0, which means there is a coupling 𝜅 between 𝜇− and 𝜇+ that
has distance𝒲∞(𝜇− , 𝜇+) ≤ 𝜌.

The induction hypothesis provides a reversible Markov generator 𝑄− (𝑄+ respectively) such that
𝛼(𝑄±) ≥ 1 and Δ(𝑄±) ≤ 𝑛 − 1 always. Additionally if 𝜇 is 𝑘-homogeneous then Δ(𝑄−) ≤ 2𝑘 and
Δ(𝑄+) ≤ 2𝑘 − 2.

Recall that the projection 𝜇̂ of𝜇 on {Ω− ,Ω+} is defined by 𝜇̂(+) = ∑︁
𝑥∈Ω+ 𝜇(𝑥) and 𝜇̂(−) = ∑︁

𝑥∈Ω− 𝜇(𝑥).
We define 𝑄 for 𝜇 as follows. For 𝑥 ≠ 𝑦 ∈ Ω

𝑄(𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑄−(𝑥, 𝑦) if (𝑥, 𝑦) ∈ Ω− ×Ω− ,
𝑄+(𝑥, 𝑦) if (𝑥, 𝑦) ∈ Ω+ ×Ω+ ,
𝜇̂(+)𝜇̂(−)𝜅(𝑥,𝑦)

𝜇(𝑥) if (𝑥, 𝑦) ∈ Ω− ×Ω+ ,
𝜇̂(+)𝜇̂(−)𝜅(𝑦,𝑥)

𝜇(𝑥) if (𝑥, 𝑦) ∈ Ω+ ×Ω− ,

where the diagonal is defined so that
∑︁

𝑦 𝑄(𝑥, 𝑦) = 0. First, we check that 𝑄 is reversible. Since 𝑄−
and 𝑄+ are reversible, for (𝑥, 𝑦) ∈ Ω− ×Ω−,

𝜇(𝑥)𝑄(𝑥, 𝑦) = 𝜇̂(−)𝜇−(𝑥)𝑄−(𝑥, 𝑦) = 𝜇̂(−)𝜇−(𝑦)𝑄−(𝑦, 𝑥) = 𝜇(𝑦)𝑄−(𝑦, 𝑥).

The case (𝑥, 𝑦) ∈ Ω+ ×Ω+ is similar. For (𝑥, 𝑦) ∈ Ω− ×Ω+,

𝜇(𝑥)𝑄(𝑥, 𝑦) = 𝜇(𝑥) 𝜇̂(+)𝜇̂(−)𝜅(𝑥, 𝑦)
𝜇(𝑥) = 𝜇̂(+)𝜇̂(−)𝜅(𝑥, 𝑦) = 𝜇(𝑦) 𝜇̂(+)𝜇̂(−)𝜅(𝑥, 𝑦)

𝜇(𝑦) = 𝜇(𝑦)𝑄(𝑦, 𝑥).

𝑄 induces a projection chain with Markov generator 𝑄̂ on state space {+,−} where

𝜇̂(−)𝑄̂(−,+) =
∑︂

(𝑥,𝑦)∈Ω−×Ω+

𝜇(𝑥)𝑄(𝑥, 𝑦) =
∑︂

(𝑥,𝑦)∈Ω−×Ω+

𝜇(𝑥) 𝜇̂(+)𝜇̂(−)𝜅(𝑥, 𝑦)
𝜇(𝑥)

= 𝜇̂(+)𝜇̂(−)
∑︂

(𝑥,𝑦)∈Ω−×Ω+

𝜅(𝑥, 𝑦) = 𝜇̂(+)𝜇̂(−),

and

𝜇̂(+)𝑄̂(+,−) =
∑︂

(𝑥,𝑦)∈Ω+×Ω−

𝜇(𝑥)𝑄(𝑥, 𝑦) =
∑︂

(𝑥,𝑦)∈Ω+×Ω−

𝜇(𝑥) 𝜇̂(+)𝜇̂(−)𝜅(𝑦, 𝑥)
𝜇(𝑥)

= 𝜇̂(+)𝜇̂(−)
∑︂

(𝑦,𝑥)∈Ω−×Ω+

𝜅(𝑦, 𝑥) = 𝜇̂(+)𝜇̂(−).

For any (𝑥, 𝑦) ∈ supp(𝜅) ⊆ Ω− ×Ω+ , by construction the following equals 1:

𝜇(𝑥)𝑄(𝑥, 𝑦)
𝜇̂(−)𝑄̂(−,+)𝜅(𝑥, 𝑦)

=
𝜇̂(+)

𝑄̂(−,+)
=

𝜇̂(−)
𝑄̂(+,−)

=
𝜇(𝑦)𝑄(𝑦, 𝑥)

𝜇̂(+)𝑄̂(+,−)𝜅(𝑦, 𝑥)
.
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By [HS23, Lemma 3], the projection Markov generator 𝑄̂ satisfies 𝛼(𝑄̂) ≥ 𝑄̂(−,+) + 𝑄̂(+,−). Thus
following [HS23], letting

𝜒 = min
(𝑥,𝑦)∈Ω−×Ω+

{︄
𝜇(𝑥)𝑄(𝑥, 𝑦)

𝜇̂(−)𝑄̂(−,+)𝜅(𝑥, 𝑦)

}︄
, ³

then
𝜒 =

𝜇̂(+)
𝑄̂(−,+)

=
𝜇̂(−)

𝑄̂(+,−)
,

and thus
𝜒𝛼̂(𝑄) ≥ 𝜒(𝑄̂(−,+) + 𝑄̂(+,−)) = 𝜇̂(+) + 𝜇̂(−) = 1.

Applying [HS23, Lemma 1], we have

𝛼(𝑄) ≥ min
{︁
𝜒𝛼(𝑄̂),min 𝛼(𝑄±)

}︁
≥ 1.

For (𝑥, 𝑦) ∈ Ω− ×Ω+, we say 𝑥 ∼ 𝑦 iff ∥𝑥 − 𝑦∥1 ≤ 𝜌. Obviously 𝑄(𝑥, 𝑦) ≠ 0 iff 𝑥 ∼ 𝑦.

Next, we check that Δ(𝑄) ≤ 𝑛. For 𝑥 ∈ Ω−,

−𝑄(𝑥, 𝑥) =
∑︂

𝑦∈Ω−\{𝑥}
𝑄−(𝑥, 𝑦) +

𝜇̂(−)𝜇̂(+)
𝜇(𝑥)

∑︂
𝑦∈Ω+

𝜅(𝑥, 𝑦)

≤ Δ(𝑄−) +
𝜇̂(−)𝜇̂(+)

𝜇(𝑥) · 𝜇(𝑥)

= Δ(𝑄−) + 𝜇̂(−)𝜇̂(+)
≤ Δ(𝑄−) + 𝜇̂(+).

Similarly, for 𝑥 ∈ Ω+,
−𝑄(𝑥, 𝑥) ≤ Δ(𝑄+) + 𝜇̂(−).

So we conclude that Δ(𝑄) ≤ 1 +max{Δ(𝑄−),Δ(𝑄+)} ≤ 𝑛.

Now assume that we have a 𝑘-homogeneous distribution. In this case, 𝑄, as defined, will not
necessarily have the desired property that Δ(𝑄) ≤ 2𝑘. But we can get a Markov generator with a
similarly large MLSI constant and the desired rate by averaging over the choice of the coordinate ℓ .

First, notice that for 𝑥 ∈ Ω−, we have

−𝑄(𝑥, 𝑥) ≤ 2𝑘 + 𝔼𝑦∼𝜇[(𝑦ℓ + 1)/2],
and for 𝑥 ∈ Ω+, we have

−𝑄(𝑥, 𝑥) ≤ 2𝑘 − 2 + 1 = 2𝑘 − 1.
In either case we have

−𝑄(𝑥, 𝑥) ≤ 2𝑘 + 𝔼𝑦∼𝜇[𝑦ℓ/2] − 𝑥ℓ/2.
We rewrite 𝑄 as 𝑄(ℓ ) to make explicit the dependence on the element ℓ . Take the linear combination
𝑄∗ = 1

𝑛

∑︁
ℓ 𝑄
(ℓ ). This is again a Markov generator that only transitions betweens states that are 𝜌

apart in Hamming distance, i.e., 𝑄∗(𝑥, 𝑦) ≠ 0 only if ∥𝑥 − 𝑦∥1 ≤ 𝜌. The quantity 𝛼 is preserved by
convex combination, thus 𝛼(𝑄∗) ≥ 1. And finally,

−𝑄∗(𝑥, 𝑥) = 1
𝑛

∑︂
−𝑄(ℓ )(𝑥, 𝑥) ≤ 2𝑘.

³This follow from [HS23, Eq.(48)], with the additional observation that 𝜅(𝑥, 𝑦) ≠ 0 iff 𝑥 ∈ Ω− and 𝑦 ∈ Ω+.
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We get the concentration of Lipschitz functionals as a corollary, almost identically to [HS23].

Corollary 37. Suppose 𝜇 satisfies𝒲∞-𝜌ℓ0 transport-stability. Let 𝑓 :
(︁[𝑛]
𝑘

)︁
→ ℝ be a 𝑐-Lipschitz functional.

Then
ℙ𝑆∼𝜇

[︁
𝑓 (𝑆) ≥ 𝔼𝜇[ 𝑓 (𝑆)] + 𝑎

]︁
≤ exp

(︃
−Ω

(︃
𝑎2

𝑘(𝑐𝜌)2

)︃)︃
.
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