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Abstract

We develop a framework for sampling from discrete distributions p on the hypercube {+1}"
by sampling from continuous distributions supported on R” obtained by convolution with
spherical Gaussians. We show that for well-studied families of discrete distributions u, con-
volving u with Gaussians yields well-conditioned log-concave distributions, as long as the
variance of the Gaussian is above an O(1) threshold. We then reduce the task of sampling from
u to sampling from Gaussian-convolved distributions. Our reduction is based on a stochastic
process widely studied under different names: backward diffusion in diffusion models, and
stochastic localization. We discretize this process in a novel way that allows for high accuracy
and parallelism.

As our main application, we resolve open questions Anari, Hu, Saberi, and Schild raised on the
parallel sampling of distributions that admit parallel counting. We show that determinantal point
processes can be sampled via RNC algorithms, that is in time log(n)°™) using n°) processors.
For a wider class of distributions, we show our framework yields Quasi-RNC sampling, i.e.,
log(n)°™M time using n©1°8™ processors. This wider class includes non-symmetric determinantal
point processes and random Eulerian tours in digraphs, the latter nearly resolving another open
question raised by prior work. Of potentially independent interest, we introduce and study a
notion of smoothness for discrete distributions that we call transport stability, which we use to
control the propagation of error in our framework. Additionally, we connect transport stability
to constructions of optimally mixing local random walks and concentration inequalities.
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1 Introduction

The conventional wisdom in the field of sampling and counting is that the tasks of approximate
sampling and approximate counting are algorithmically equivalent, i.e., an efficient algorithm for
one can be translated to an efficient algorithm for the other. This was formalized in a celebrated
result of Jerrum, Valiant, and Vazirani [ ] for self-reducible problems, but the equivalence holds
in many other cases beyond the boundary of self-reducibility [see, e.g., ]. This equivalence
is frequently used to convert sampling algorithms such as those based on Markov chains, into
approximate counting algorithms. For example, the breakthrough results of Jerrum, Sinclair,
and Vigoda [ ] for approximating the permanent and Dyer, Frieze, and Kannan [ ] for
approximating the volume of convex sets both rely on reductions from counting to sampling.

A somewhat overlooked caveat about the equivalence of sampling and counting is that the standard
reductions in both directions only preserve polynomial runtimes. For efficiency criteria stricter than
polynomial runtime, say parallel efficiency, the reductions break down. This is most palpable for a
range of problems that admit determinant-based counting algorithms. For example, Kirchhoff’s
matrix-tree theorem [see, e.g., ] allows us to compute the number of spanning trees in a graph
as the determinant of a submatrix of its Laplacian. The classic BEST theorem [ ; ] relates the
count of Eulerian tours in directed graphs to arborescences, which can be written as a determinant
by a generalization of the matrix-tree theorem. In another example, Temperley and Fisher [ ]
and Kasteleyn [ ] showed how to compute the number of perfect matchings in planar graphs
as determinants of carefully signed adjacency matrices. Computing determinants is in the class
NC [ ], which means that the number of spanning trees, directed Eulerian tours, and planar
perfect matchings on graphs of size 1 can all be computed in log(1)°") time using 7°)) processors
on a PRAM. But this does not automatically translate to parallel algorithms for sampling uniformly
random spanning trees, directed Eulerian tours, or random planar perfect matchings. The main
question we address in our work is:

Can parallel counting algorithms yield parallel sampling algorithms?

Noting that the standard reduction from sampling to counting is sequential, Teng [ ] and
Anari, Hu, Saberi, and Schild [ ] raised questions about designing efficient parallel sampling
algorithms. In particular, Anari, Hu, Saberi, and Schild [ ] enumerated a list of problems
known to admit parallel determinant-based counting and raised as an open question designing RNC-
type sampling algorithms for them, i.e., sampling from these distributions using 7°!) processors
in log(n)°® time. The list of problems includes arborescences in directed graphs (generalizing
spanning trees), Eulerian tours in digraphs, determinantal point processes (DPP) and variants of
them, and planar perfect matchings. So far, only one problem from this list, arborescences, has
found an efficient parallel sampler [ ]. In this work, we resolve or nearly resolve all but the
last problem in the list.

We consider sampling from a distribution u on the hypercube {+1}", which we identify with subsets
of {1,...,n}. All aforementioned applications, with the exception of Eulerian tours in digraphs,
have natural descriptions as set families; for reductions from Eulerian tours to the hypercube, see
Section 6.2. Our main result reduces sampling from p to computing partition functions, a.k.a.
counting, for exponential tilts of u, a.k.a. external fields applied to y. An exponential tilt is defined
by a vector w € R”, and we denote it by 7, u:

To(x) o exp({w, x)) - p(x).

The normalizing factor in this definition, i.e., the partition function, is ), exp({w, x))u(x). Viewed as
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a function of w, the partition function is also known as the Laplace transform of u. Exponential tilts
are widely studied in sampling [see, e.g., ; ; ], but they have a special relationship
with determinant-based counting because roughly speaking, the tilt 7, corresponds to scaling the
rows and/or columns of the matrix whose determinant provides the count, hence, these distribution
families are closed under tilts. As an example, tilts of the uniform spanning tree distribution are
simply weighted spanning tree distributions for which the matrix-tree theorem still provides the
partition function.

For our main results, we prove that if tilts of y vary in a stable manner with respect to the tilt
parameter w, for notions of “stability” that will be made precise, then there is an efficient parallel
reduction from approximately sampling u to computing the Laplacian of p. We then obtain our
main applications, parallel samplers for a range of distributions, by proving the required notions of
stability for the distributions of interest.

Our strongest main result is obtained when the transportation distance between tilts 7, u can be
bounded in terms of the distance of their tilt parameters w. We call this new concept transport-
stability. As side results, in Appendix A, we connect notions of transport-stability to concentration
inequalities and the existence of fast mixing local Markov chains. For our main result, we use a
specific instantiation of transport-stability defined using the Wasserstein metric w.r.t. the Hamming
distance for tilts 7,11, and the ¢; distance between tilt parameters w. Denote by ‘W (7,1, To 1) the
average Hamming distance traveled, when probability mass is transported optimally from 7, u to
Ty ti. Then W1-O(1)¢; transport-stability is the notion that for all w, w” we have

Wi(twpt, Twi) < OQ1) - flw —w’||;.

With transport-stability in mind, we now state our main result:

Theorem 1. Suppose that a distribution u on {+1}" is W1-O(1)¢; transport-stable and we have an oracle
for approximately computing the Laplace transform of . Then we can sample from a distribution e-close in
total variation distance to i, in log(n/ €)°W time using (n/ )0 processors.

We show that (symmetric) determinantal point processes and partition-constrained versions of them
satisfy ‘W1-O(1)¢; transport stability. A symmetric determinantal point process (DPP) is defined
by an n X n matrix L > 0 and samples a subset S of {1, ...,n} with P,[S] « det(Ls,s). DPPs and
variants of them, such as partition-constrained DPPs, are widely used in numerical linear algebra
and machine learning [ ; ; ]. As a remark, uniformly random spanning trees are
DPPs too [see, e.g., ]. For more detailed definitions, see Section 2.

Corollary 2. Suppose that u is a DPP or a partition-constrained DPP with O(1) parts on a ground set of
size n. Then there is an algorithm to sample e-closely from w in total variation distance, in log(n /€)M time
using (n/€)°M processors.

We next show that a weaker notion of stability is enough for efficient parallel sampling if we allow
quasi-polynomially many processors. We use the notion coined semi-log-concavity by Eldan and
Shamir [ ], which can be stated equivalently as

|lmean(7y i) — mean(ty )|l < O(1) - |lw — w2,

where mean(u) = Ex~y[x] € [-1, +1]" is the mean vector.'

'The use of ||-||2 instead of [|-||1, which is closer to transport-stability, only makes this condition weaker.



Theorem 3. Suppose that a distribution p on {+1}" is semi-log-concave and we have an oracle for computing
the Laplace transform of u. Then we can sample from a distribution e-close in total variation distance to u, in
log(n/€)°W time using (n/e)Cllogm) processors.

Semi-log-concavity is a relatively weak assumption. It is satisfied by many widely-studied classes of
distributions, such as Rayleigh distributions [ ], distributions spectrally independent under tilts,
a.k.a. fractionally log-concave distributions [ ; ], and sector-stable distributions [ ].
We use these implications to obtain the following corollary about non-symmetric DPPs and Eulerian
tours. A non-symmetric DPP is defined the same way as a (symmetric) DPP, except the matrix L
is not required to be symmetric, and is only required to satisfy L + LT > 0 [ ]. For a more
detailed definition see Section 2.

Corollary 4. Suppose that u is a non-symmetric DPP on a ground set of size n or the distribution of
uniformly random Eulerian tours in a digraph of size n. Then we can sample from a distribution e-close in
total variation distance to p in time log(n/ €)W using (n/ ¢)Ologn) processors.

For all of the applications mentioned in Corollaries 2 and 4, our work is the first to obtain the
ultimate goal of polylogarithmic parallel runtime.

1.1 Discrete sampling via continuous sampling

We obtain our results through a framework that reduces discrete sampling to continuous sampling,
by running the stochastic localization process of Eldan [ ]in discrete time steps. The equivalence
to stochastic localization will be shown in Section 3 by appealing to an alternative characterization
of stochastic localization due to El Alaoui and Montanari [ ].

We reduce sampling from p to the task of sampling from tilts of u convolved with spherical Gaussians
N(0, cI) of variance ¢ € R(. We denote convolutions by *. The convolution u * v is the distribution
of x + yif x ~ yand y ~ v are independent samples. Our framework is described in Algorithm 1.

Algorithm 1: Framework for discrete sampling via continuous sampling

wo «— 0

fori=0,...,T—1do
x « (approximate) sample from ,,u * N'(0, cI)
Wiy — Wi +x/c

return sign(wr) € {+1}"

This framework is parameterized by the number of steps T € N, the variance ¢ € R, and quite
importantly, the choice of how to implement sampling from ., 1 * N(0, cI).

One might wonder at first glance if sampling from the convolved distribution is any easier than
sampling from y itself. Our key observation is that 7,1t * N(0, cI) is a continuous well-conditioned
log-concave distribution, i.e., the “easiest kind” of continuous distribution for sampling; we show
that well-conditioned log-concavity for a constant c is precisely equivalent to semi-log-concavity of
u. Surprisingly, this does not seem to have been observed in prior works [ ; ].

Lemma 5. For any semi-log-concave distribution y and any w € R", the distribution v = t,u * N(0, cI) is
well-conditioned log-concave for c larger than a O(1) threshold. Well-conditioned log-concavity means that
—al < V2logv < —BI for some a, B > 0 such that a/B = O(1).



We next make the crucial observation that the density of 7,1 * N(0, cI) and its derivatives can
be computed via the Laplace transform of p. This enables us to utilize a plethora of off-the-shelf
continuous sampling methods, which only need access to the density and low-order derivatives of
it. For our applications, we choose the randomized midpoint algorithm of Shen and Lee [ I
which is importantly parallelizable.

Lemma 6. The density, up to normalization, and the gradient of the log-density for T, u + N(0, cI) can be
computed efficiently in parallel, in log(n)°M time using n®1) processors, given access to an oracle for the
Laplace transform of pu.

We formally show by directly appealing to the characterization of El Alaoui and Montanari [ ]
that Algorithm 1, assuming no approximation error in continuous sampling, is a faithful simulation
of stochastic localization at discrete time steps. As a consequence we show that with perfect
continuous sampling, ¢ /T - wr is distributed as u* N(0, ¢/T - I). For roughly T = c log n the variance
c/T is low enough that sign(wr) will be distributed approximately as u. This means that under
perfect continuous sampling, the process needs to be run for only =~ c log n steps.

Lemma 7. If continuous samples are exact in Algorithm 1, then for T = ((c log(n/e€)) the output of the
algorithm is e-close in total variation distance to 1.

Finally, we need to deal with the issue of approximation error in the continuous sampling step. This
is the most difficult part in our analysis and we tackle it in Section 4. Errors in one step change the
tilt parameter w; of future steps, and a priori, that can significantly change 7, 1. Here, we introduce
and use the notion of transport stability to control the propagation of error. If our distribution
satisfies W-f; transport stability:

(Wl(Tw[Jz wa[J) <C- ||w - w,“lz

the errors in continuous sampling grow only exponentially at a rate dictated by C. For constant C,
after T =~ O(log n) steps, they would be only polynomially larger, and therefore it is enough to start
with an inverse-polynomially small continuous sampling error. We show how to conclude Theorem 1
from this analysis. We then note that transport stability is satisfied with a super-constant parameter
C =~ n for any distribution u, which results in a quasi-polynomial blowup of error. Therefore, by
having a continuous sampling procedure that is accurate within an inverse quasi-polynomially
small error, we obtain Theorem 3.

1.2 Related work

Our general sampling framework is based on stochastic localization [ ], which has been a very
successful analysis tool [see, e.g., ]. Stochastic localization has also been recently used as an
algorithm by El Alaoui, Montanari, and Sellke [ ] for the task of sampling from the Sherrington-
Kirkpatrick (SK) model. Our framework, Algorithm 1, is a new way of using stochastic localization
algorithmically. We briefly describe the differences with the prior algorithmic use. El Alaoui,
Montanari, and Sellke [ ] use an algorithm obtained by the standard Euler discretization of
the stochastic differential equation (SDE) defining stochastic localization. This roughly corresponds
to replacing the sample x ~ 74,1 * N(0, cI) in Algorithm 1 by N(mean(ty,u), cI). Viewed as an
approximate sample from 7, u * N(0, cI), this has a large approximation error — the entirety of 7,
is replaced by its mean. This error can blow up after a constant number of steps. For the SK model,
computing the mean itself can be done only approximately, so this large approximation error is
somewhat unavoidable; indeed, approximate mean computation occupies the main technical bulk
of their result, whereas in our case we have exact access to the Laplace transform of u, from which
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the mean can be computed exactly. The large per-step approximation error is partly the reason that
El Alaoui, Montanari, and Sellke [ ] only run their process for a constant number of steps
and obtain a sample accurate within o(n) Wasserstein distance of the SK model, a guarantee much
weaker than total variation accuracy. The control of the approximation error in the work of El Alaoui,
Montanari, and Sellke [ ] is specific to the SK model, so it is not clear if even the weaker
guarantee of 0(n) Wasserstein accuracy can be obtained by running their Euler-discretized stochastic
localization for O(1) steps on the distributions of interest in this work; nevertheless, we obtain the
much stronger total variation accuracy guarantee by using the high-accuracy discretization obtained
by combining Algorithm 1 with the randomized midpoint method of Shen and Lee [ I

Parallelizing Markov chains, arguably the most widely used sampling tool, has been studied heavily
[see , and references within]. Two recent examples include the work of Feng, Hayes, and Yin
[ ] for parallelizing Metropolis chains and the work of Liu and Yin [ ] for parallelizing the
more general class of single-site Markov chains including Glauber dynamics. The latter work shows
how to obtain RNC-type sampling algorithms for distributions that have a bounded Dobrushin
influence matrix, assuming the underlying Markov chain is single-site, that it changes one coordinate
at a time, and that it mixes in nearly-linear time. These assumptions are unfortunately not satisfied
by the distributions of interest in our work. Putting aside the Dobrushin influence matrix, single-
site updates are not ergodic for our applications, even in the simplest case of a DPP, because the
distribution can be supported on a slice of the hypercube {+1}" [see, e.g., ]. Even worse,
for other applications, we do not currently have Markov chains mixing in nearly-linear time with
local moves, much more general than single-site updates. We remark that as a byproduct of our
techniques, we show the existence of local Markov chains, with O(1)-site updates, mixing in nearly-
linear time for just the case of a partition-constrained DPP. But even then, our construction is not
explicit; we merely show the existence, and we cannot implement the moves of the chain by an
efficient algorithm.

There has been recent interest in designing parallel sampling algorithms for distributions enjoying
determinant-based counting. Anari, Hu, Saberi, and Schild [ ] based on earlier work of
Teng [ ] designed parallel samplers for spanning trees and more generally arborescences in
directed graphs, that is spanning trees with directed edges oriented away from the root. Their work
is based on parallelizing the classic algorithm of Broder [ ] and Aldous [ ] which extracts
an arborescence from the trace of a random walk on the graph. Unfortunately, this algorithm is
highly specific to arborescences, and there is no clear way of generalizing it to other distributions of
interest in our work, all of which were stated as open problems by Anari, Hu, Saberi, and Schild
[ ]. Going beyond arborescences, there has been partial progress by Anari, Burgess, Tian,
and Vuong [ ] for DPPs and their variants. Roughly speaking, they show how to sample
from these distributions in 7'/2*¢ time using n°) processors for any constant € > 0. While an
improvement over the naive reduction from sampling to counting, which takes roughly linear
parallel time, this is still far from the goal of log(n)°™ runtime. While we achieve this goal, for
the specific case of non-symmetric DPPs, we use quasi-polynomially many processors, and so our
result in that particular case is not strictly speaking comparable to their work.

The notion of transport-stability we define is somewhat reminiscent of transport-entropy inequalities
[see, e.g., ], which bound the transportation distance between two distributions as a function of
their relative entropy. However, transport-entropy inequalities on the hypercube have a dependence
on the dimension n, which is crucial for our applications to avoid. For example, consider the
distribution p which is uniform over {+1}" and an exponential tilt of it by some standard basis
vector. The relative entropy of these distributions is ©(1), which using the standard transport-



entropy inequality only implies a Wasserstein distance of O(y/1). We avoid this through transport
stability and obtain an optimal Wasserstein distance of O(1). As a side result, we show in Appendix A
that versions of transport-stability are formally stronger than transport-entropy inequalities, by
proving the existence of local Markov chains with optimal MLSI constants under transport-stability.
For this, we follow almost identically the arguments Hermon and Salez [ ] who argued the
same for the more restricted class of strongly Rayleigh distributions.

1.3 Organization
We present the preliminaries in Section 2.

In Section 3 we prove the key lemmas needed to analyze Algorithm 1, namely Lemmas 5 to 7. The
notion of transport-stability and how it controls the propagation of error in Algorithm 1 is deferred
to Section 4; this is where we formally prove our main results Theorem 1 and Theorem 3. We
then prove the transport-stability of DPPs and partition-constrained variants of them in Section 5,
obtaining Corollary 2. In Section 6 we reduce the task of sampling Eulerian tours in digraphs to
non-symmetric DPPs, proving Corollary 4.

Finally, as bonus results, in Appendix A we expand on the notion of transport-stability, and show by
importing results of Hermon and Salez [ ] that transport stability relates to strong concentration
inequalities as well as the existence of fast mixing local Markov chains. Both of these were not
known previously for partition-constrained DPPs.
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2 Preliminaries

We use [n] to denote {1,...,n}. Foraset S C [n] we use 1g to denote the n-dimensional indicator
vector of S. We identify {+1}" with the family of subsets of [#] by identifying a set S with 215 — 1[,.
We thus view distributions on 20! alternatively as distributions on {+1}". We use I to denote the
identity matrix. We use * to denote the convolution of two distributions, i.e., the distribution of
the sum of independent samples from them. We use tanh(x) to denote the hyperbolic tangent
(e¥ —e™™)/(e* + e™*). We use the fact that tanh is 1-Lipschitz, i.e., [tanh(x) — tanh(y)| < |x — y|.

We use [|-||, to denote the standard £, norm on R". We let ||-||o, a.k.a. {y denote the number of
nonzero coordinates, which defines a metric.

For a distribution u supported on R" we use mean(u) to denote the mean E,.,[x] and cov(u) to
denote the covariance matrix Ex~y[xxT] = Exop[x] Exep[x]T.
2.1 Wasserstein metric

For a metric space equipped with distance d, one can define the transport/Wasserstein distance
induced by d on the space of probability distributions supported on the metric space.



Definition 8 (Wasserstein distance). The Wasserstein p-distance with respect to d between two
distributions u, v supported on a metric space (€, d) is defined as

Wpu,v) = inf{[E(x,y)Nn[d(x, y)p]l/p 7t is a coupling of p, v} .

When not specified ‘W, is taken to mean ‘W;. Note that ‘W, is monotonically increasing in p.

Note that for finite Q, by compactness of the space of couplings, all ‘W, including ‘W, are well-
defined. In particular W (u, v) is the minimum threshold t such that there is a coupling between
u, v only supported on pairs (x, y) with d(x, y) < t.

The metric d used in the definition of ‘W, has to be inferred from context. By default, for distributions
supported on the hypercube {+1}" or more generally R" we take d to be the metric induced by the
{1 norm; in the hypercube case, this is the same as the Hamming distance up to a factor of 2. We
use the notation ‘W ; to denote the Wasserstein p-distance induced by the £; norm, and we specify
g when it is not equal 1 to avoid confusion.

We can translate between W, ; for different q by standard comparisons between ¢, metrics. We use
the following simple fact.

Proposition 9. For any distributions u, v supported on R",

Woi(u,v) < Vn Was(u,v).
Proof. This follows directly from the fact that for any x € R" we have ||x||; < vn|x]|2. O
We note that Wasserstein distance between two distributions also upperbounds the distance between

their means by the triangle inequality:

Proposition 10. We always have

|mean(u) — mean(v)|l; < Wy 4(u,v).

2.2 Tilts, logarithmic Laplace transform, and semi-log-concavity
We define the notion of an exponential tilt, which is also known as an external field.

Definition 11. We define 7, to be the operator that maps a distribution p on {+1}" to the distribution
Tt defined by
Tw(x) o< exp({w, x))p(x).

We call the normalizing factor in this definition ), exp({w, x))u(x) viewed as a function of w the
Laplace transform of u. The logarithm of the Laplace transform is more convenient for calculations
and we follow the lead of Eldan and Shamir [ ] and use £, to denote it.

Definition 12 (Logarithmic Laplace transform). We define the logarithmic Laplace transform of a
distribution u supported on {+1}" as

Lu(w) = 1og(z exp((w, x>>u<x>) .

X



We use the following fact about derivatives of £,.
Proposition 13 ([ 1). We have

V L (w) = mean(Tyu),
V2 L, (w) = cov(tpu).

Finally we state the definition of semi-log-concavity [ I

Definition 14 ([ ). A distribution u is called f-semi-log-concave when
V2 Ly (w) < L.
When g is omitted, semi-log-concave means O(1)-semi-log-concavity.

Note that £, is convex, as its Hessian is a covariance matrix which is > 0. Consequently, f-semi-
log-concavity is equivalent to V £, being f-Lipschitz w.r.t. the {2 norm:

[lmean(ty ) — mean(ty )|z = [V Ly(w) =V Ly (w')ll2 < Bllw — w’||2.

Finally, we note that g-Lipschitzness in any other {; norm is stronger than -semi-log-concavity. This
is because V2 £ u is @ symmetric PSD matrix, and hence its {; to {; matrix norm is lowerbounded by
its maximum eigenvalue, which equals its ¢5 to {2 norm.

Proposition 15. If we have
lmean(to 1) — mean(tl,m)llg < Bllw - w'lly

forany q > 1, then u is B-semi-log-concave.

2.3 Determinantal point processes

A determinantal point process (DPP) is a probability distribution over subsets S C [n]. It is
parameterized by a matrix L € R™" with

P[S] oc det(leg),

with Lg s being the principal submatrix whose columns and rows are indexed by S. We call L
the ensemble matrix. Note that we need det(Ls,s) > 0 for all S for this definition to work. This
is satisfied by symmetric PSD L, which yield the traditional (symmetric) DPPs [ ], and more
generally for any L whose symmetrization is PSD, thatis L+LT > 0, which are called non-symmetric
DPPs | 1.

Given a cardinality k € N, the k-DPP parameterized by L is a distribution over subsets S of size k,
defined by conditioning the samples from the DPP to have size k.

More generally, consider a matrix L € R™", and a partition V; U --- UV, = [n] of the ground set,
and a tuple ¢ € N’ of integers. The partition-constrained DPP, ur.y . : 2I") — Ry, is defined by
conditioning the DPP formed by L to only the sets S which have |S N V;| = ¢; for all i.

For any Y C [n], if we condition the DPP defined by L on the event that items in Y are included
in the sample, we still get a DPP; the new ensemble matrix is given by the Schur complement
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LY = Ly — Ly yL}', Ly  where Y =[n]\ Y. Similarly, excluding items corresponds to deleting the
corresponding rows/columns from L.

Similar statements hold for partition-constrained DPPs. Conditioning .y, on Y being included
in the set results in a partition-constrained DPP p;y .y, - with ensemble matrix LY and partition
Vid---uVy=[n]\YwithV/=V;\Y,and ¢} = ¢; - [Vi N Y].

Proposition 16. DPP (respectively partition-constrained DPPs) u, are closed under exponential tilts.

Proof. Identified with distribution s on {+1}", an exponential tilt 7,1 is the same as the DPP
(respectively partition-constrained DPP) defined by the matrix

DLD,

where D is a diagonal matrix whose i-th entry is exp(w;). This is because for any set S, we have

[Ties exp(wi)
det((DLD)s,s) = det(Ls,s) | | exp(2wy) o det(Ls,5) 55— = exp((215=Tuy, w)) det(Ls,5).
; [Tigs exp(wi)
ieS
Note that mapping L to DLD preserves being PSD, and /or symmetric. O

Proposition 17. There is an NC algorithm for computing the partition function )¢ det(Ls,s) of DPPs and
partition-constrained DPPs with O(1) parts.

Proof. For an unconstrained DPP, note that its partition function can be written as

Z det(Ls,s) = det(L +I),
S

hence by the result of Csanky [ ], this can be computed in NC.

For partition-constrained DPPs, Celis, Keswani, Straszak, Deshpande, Kathuria, and Vishnoi
[ ] show how to compute the partition function by polynomial interpolation. Essentially r
variables corresponding to parts are constructed and we compute the determinant of L+ D, where D
is a diagonal matrix with one of the r variables on each entry. Our goal is to compute the coefficient
of a certain monomial in this r-variate polynomial. This can be done by evaluating det(L + D) at
~ n' places, and using polynomial interpolation to recover the coefficients. All of this can be done
in NC assuming » = O(1). O

By combining the previous propositions, we see that computing the Laplace transform of any
symmetric/non-symmetric DPP or a partition-constrained variant can be done in NC.

24 Determinants and stability

We recall the notions of sector stability and fractional log-concavity [ I
Definition 18 ([ I). For an open subset U C C", we call a polynomial g € Cl[zy,...,z,]
U-stable iff

(z1,...,zn) el = g(z1,...,2zn) #0.

We also call the identically 0 polynomial U-stable. This ensures that limits of U-stable polynomials
are U-stable. For convenience, when 7 is clear from context, we abbreviate stability w.r.t. regions of
the form U x U X --- X U where U C C simply as U-stability.
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A set-valued distribution y is U-stable iff its generating polynomial g, is U-stable:

Su(z1, ..., zn) = Z p(x) l_l Zi.
S

ieS

A distribution is real-stable or strongly Rayleigh if its generating polynomial g, is H-stable where
H = {z € C | Im(z) > 0} is the upper half of the complex plane. Symmetric DPPs and k-DPPs are
strongly Rayleigh [ I

More generally Alimohammadi, Anari, Shiragur, and Vuong [ ] showed that partition-
constrained symmetric DPPs with O(1) parts, non-symmetric DPPs, and non-symmetric k-DPPs
are stable w.r.t. a sector {exp(r +i0) | r € R, 0 € [—am, +an]} for some constant & = (1). This
property is called sector-stability. We remark that real-stability, although defined via the upper
half-plane, also implies stability w.r.t. the right half-plane, i.e., the stability w.r.t. the sector with
a=1/2] 1.

Proposition 19. Any strongly Rayleigh or sector-stable distribution, including all aforementioned determi-
nantal point processes and their variants, are closed under exponential tilts and are spectrally independent
[ 1. It follows by the results of Eldan and Shamir [ I, that these distributions, viewed on the
hypercube, are semi-log-concave.

This shows that we can directly apply Theorem 3 to all of these distributions. However, for sym-
metric DPPs and their partition-constrained variants, we show a stronger result, that we can apply
Theorem 1 to them. We use the following fact in the proof, which appears in Section 5.

Lemma 20. Let p : ([z]) — Ryq be strongly Rayleigh and let Vi Ul - -- UV, = [n] be a partition of [n] and
letcy,...,c, € Nsatisfy 3, c; = k. Let uy . be the distribution defined by conditioning u to the sets that
have exactly c; elements of V;.

Let (luV,C)VJ'* be the projection of uy . on Vj., ie., for Sy C Vj-,
W) 7S = D, peS).

S:SNVje=Sp

Then (uv )V is strongly Rayleigh.

Proof. W.lo.g.,assumej* =randV, = {1,...,c,}. Consider the generating polynomial gy(zl, ee,Zy) =
2 u(s )z°. We obtain a new real-stable homogeneous polynomial h(z1, ..., zc,,Y1,...,Yr-1) by the
following substitution: for j € [r — 1], set z; = y; for all i € V;. Taking partial derivatives and setting
variables to 0 preserves real-stability [ , Proposition 3.1], thus

8C1 862 acr—l
T 3T By T——

r—1

is real stable, and this is exactly the generating polynomial of (uy ¢)"7". O

Lemma 21. Let u : 2[11] — Ry be real stableand 1 < vy < vy < --- < v, < nand (c1,c2,...,¢) €
{0, 1}. Let pyy ¢ be the distribution [n]\{v1,v2,...,v,} — Rso defined by pyy (S) o< u(SU{v; | ¢; = 1}).
Then pyy  is strongly Rayleigh.

Proof. Consider the generating polynomial g,(z1,...,2z,) = X, u(S)z°, which is real-stable. By

substituting z,, = ¢; for all 1 < i < r, we obtain a real-stable polynomial that is exactly the
generating polynomial of )y . O

11



3 Algorithmic framework

In this section, we prove Lemmas 5 to 7, the key facts behind the correctness of Algorithm 1. The
analysis of the approximation error resulting from continuous sampling will be done after we define
the notion of transport-stability in Section 4.

Proof of Lemma 5. First, note that for a distribution y on the hypercube, the density of v = u* N(0, cI)
at a point y is up to a global multiplier given by

p(x) exp(=lly = xII*/2¢) o exp(=llyII* /2¢) Z u(x) exp(y, x)/c) = exp(Lu(y/e) ~ llyl*/2¢) ,

xe{£1}"

where we used the fact that for x € {£1}", ||x||? is constant and disappears as a constant of
proportionality. As a result

1

cov(’cy Jel) I
A _

VLo - s = 2

V2logv =
©8 c2 c

Note that as y ranges over R", y/c also ranges over all of R". Now if u is f-semi-log-concave, see
Definition 14, then
~I/c < VZlogv < (B/c* = 1/c)I

For v to be log-concave we simply need to set ¢ > . For a slightly larger value, say c = 23, we get
—1/2B < V2logv < —I/48,
which means that V2 log v is well-conditioned too, with a condition number of 2.

We proved that p-semi-log-concavity implies that v = u * N(0, cI) is well-conditioned log-concave
for ¢ = Q(B). Next, note that even log-concavity of v means that cov(7, 1) is bounded by c for all
w because y/c ranges over all of R". This proves that semi-log-concavity and well-conditioned
log-concavity of convolutions with Gaussians are equivalent.

Finally, note that from Definition 14 and Proposition 13, a distribution y is semi-log-concave iff
all tilts of it 7,y are semi-log-concave. This is because tilts are an additive group action: 7,7, =
TooTw = Tw+w’- This shows that semi-log-concavity of u implies the convolution of its tilts 7, u with
Gaussians are also well-conditioned log-concave for large enough c. O

Proof of Lemma 6. First, note that the logarithmic Laplace transform for 7, u is the same as the
logarithmic Laplace transform for u shifted by the vector w (up to a global additive constant):

Lrwy(y) = L;l(y + w) - Ly(w)‘

So having access to an oracle for  is equivalent to having access to an oracle for 7, u. Therefore, we
only need to prove the density and its gradient can be computed for y; it automatically translates to
tilts T .

In the proof of Lemma 5, we computed the density of p * N (0, cI) up to a global normalizing
constant:

exp(Lu(y/e) = llylI?/2¢) = exp(Lu(y/c)) - exp(=llylI*/2¢).

This first term is the Laplace transform of u evaluated at y/c. Hence given oracle access to the Laplace
transform of p, we can compute this expression. We remark that if one wishes, the normalized

12



density can also be computed by carrying through the normalizing constant for a Gaussian, as well
as the global factor we dropped in the calculation in the proof of Lemma 5. However, continuous
sampling algorithms only need the density up to a normalizing factor.

Next we compute the gradient V log v, which by the rules of calculus also gives us Vv (continuous
sampling algorithms actually use the former). This gradient is equal to

mean(Ty 1) oy

1 v
Ev-lzy(y/c)_ Z - c C

So we just need to show how to compute the mean of tilts of u. Again by the equivalence of Laplace
transform oracles for y and its tilts, it is enough to show how to compute mean(u). Let 1; denote
the i-th element of the standard basis. Then we have

Lu(1) = Lu(0) = Exoplexp (x, 1)] = pie = (1 —pie ' =pie —e™ ) =7},

where p; = Py, [(x, 1;) = 1]. Therefore p; can be computed as a simple linear function of the above
quantity. Finally note that mean(u) = (2p1 —1,2p2 —1,...,2p, — 1) and that all of these entries can
be computed in parallel. O

It remains to prove Lemma 7. We first prove the following characterization of the distribution of wr
that is an immediate consequence of the characterization of stochastic localization by El Alaoui and
Montanari [ ].

Lemma 22. If convolutions are sampled exactly in Algorithm 1, then
cwr/T ~ u+ N(,cI/T).

Proof. While an elementary proof of this fact is easy to derive by induction on T, we appeal to
known results on stochastic localization, which is how we developed Algorithm 1.

Stochastic localization [see ] is a measure-valued stochastic process {y};2, defined for a
starting measure (1, that satisfies a stochastic differential equation (SDE). Denoting by W; a standard
Brownian motion, and by F; the density of u; w.r.t. u (that is p:(x) = Fi(x) - u(x)), the SDE is
described by

dFi(x) = Fi(x) - (x — mean(u;), dW;).

This process results in a martingale F;(x) for every x [ ], hence the distribution of u; for every
time t can be seen as a decomposition of ug. Note that this SDE is time-homogeneous, that is its
evolution rule does not depend on time f. So running stochastic localization up to time ¢, and
then running an independent stochastic localization for s time, results in a measure identically
distributed as if we had run stochastic localization for s + ¢ time from the start.

El Alaoui and Montanari [ ] proved that u; in stochastic localization is identically distributed
to the following random measure: First sample z ~ pand g ~ N(0,tI) and let y; = tz + g. Then
form the distribution

) < sy ) = 1) o),

by normalizing the above appropriately. Then yi; is identically distributed as u; (over the randomness
of z and g).

13



In our case, since the distribution u is supported on {£1}" and for x on the hypercube ||x||? = 1 is
constant, we can define

Hr(x) o< exp((ye, 1)) u(x),

which means that fi; is the same as 7, .

We claim that for for every i, the distribution of w; is identical to y;/. and thus 7y, i is identically
distributed as y;/.. If proved, plugging in i = T, shows that cwr /T is distributed as y; /t for t =T /c
which is distributed as u * N(0, I/t), proving the statement of the lemma.

Now we prove the claim by induction. Note that w is obtained by scaling a sample from p* N(0, cI)
by 1/c, so its distribution is identical to y;/.. Therefore 7, u is also distributed as ;.. This is what
we replace i by in the next iteration of the loop in Algorithm 1. So the distribution of wy — w;
conditioned on w is identical to the tilt applied by stochastic localization to go from . to pa/,
which means 7, 1 is identically distributed as /., and so on. O

Now that we know the distribution of wr, it is easy to prove Lemma 7.

Proof of Lemma 7. Note that cwr/T is distributed as x + ¢ where x ~ pand g ~ N(0,cI/T). If
|gllec < 1, then because x € {+1}", the signs of coordinates in x and x + g will be the same. So we
can bound the total variation distance between sign(wr) and u by

PLIglle = 1].

Since g is a vector of n centered normals, each of variance ¢/T, by the sub-Gaussian tail inequality
we have
Pligil = 1] < O(1) - exp(=Q(1/(c/T))) = O(1) - exp(=€AT /¢)).

By a union bound we have
PlIglleo = 1] < O(n) - exp(=Q(T/c)).

For sufficiently large T'/c ~ ©(log(n/€)), this is below e. O

4 Transport stability

In this section, we define the notion of transport stability and show how to control the propagation
of the approximation error resulting from continuous sampling in Algorithm 1.

Definition 23 (Transport stability). For a choice of transportation metric d; on probability distribu-
tions supported on {£1}", and another metric d» on R", we say that y has d-d5 transport stability,
when

di(Twp, Tw i) < do(w, w’),
for all w,w’.

Our default choices for d; and d; are the ‘W, Wasserstein distance and O(1) - ¢; respectively, and we
call this simply transport stability. For DPPs and partition-constrained DPPs, we prove W ,-O(1)-{
transport-stability, which we now show is formally stronger. Note that both ¢, and ¢; are summable
over coordinates. In other words, if we start from w, w’ and define w; to be identical in the first i
coordinates with w and in the remaining coordinates with w’, then

dw,w’) = d(wo, w1) + d(wy, wa) + -+ + d(wy—1, wy),
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for d € {{y, {1 }. If follows that to check transport stability with £, or ¢; (or scalar multiples of them)
as the choice of distance on R", it is enough to check the inequality in Definition 23 only for w, w’
that differ in one coordinate: ||w — w’||p = 1. We prove the W;-O(1){; transport stability of DPPs
and partition-constrained DPPs by a much stronger ‘W «-O(1){, inequality.

Lemma 24. If the distribution p is W w-aly transport-stable, then it is also W1-O(a)ty transport-stable.

Proof. Note that because W is always bounded by W, from the assumption we can conclude
Wi-aly transport-stability. We now show how to prove ‘W;-O(a){; stability. By the preceding
arguments it is enough to prove that for w, w’ differing in exactly one coordinate, we have

Wi(tw, T pt) < O(@) - flw —w'[l;.

Let w’ — w = c1;, where i is the differing coordinate and assume w.l.0.g. that ¢ > 0, which means
lw” — wl|1 = c. We construct a coupling to bound the ‘W distance between the two. Write 7, as
pvi + (1 = p)vo where v; is the conditioning on coordinate i being +1 and v, is the conditioning on
coordinate 7 being —1. Notice that we have 7,/ = gv1 + (1 — g)v2. This is because to go from 7, u to
Twr 1, we only have to apply a tilt in the direction of coordinate i, which does not change the two
conditional distributions. By the same token, v; can be obtained as the limit of 7,1, u for  — oo
and vy can be obtained as the limit when f — —co. Because of ‘Wi-a{ transport-stability we can
conclude that W;(vy, v9) < a.

Next, we claim that [p — q| < ¢/2. The equation defining the relationship between p, g is that
q,1—q o< pe, (1 — p)e™° respectively. Let 0,, 0, be such that tanh(6,) = 2p — 1 € (-1,1) and
tanh(0,;) = 29 — 1 € (=1, 1). In other words, p,1 —p « e% e% and q,1—q ¢%  e=Y% . Then we
have 6, = 0, + c. It follows that 2|p — q| = [tanh(p) — tanh(g)| < c.

Now we construct the coupling for 7,4 and 7, u. Let 7@ be the coupling between vy, v, realizing
Wi(v1,v2). We sample a pair (x, y) as follows:

* With probability p, we sample z ~ v; and output (z, z),
e With probability 1 — g, we sample z ~ v2 and output (z, z),
¢ With the remaining probability 4 — p = |p — gq|, we sample (x, y) ~ 7 and output (v, x).

It is easy to see that this is a coupling for 7, ¢t and 7, u. Moreover, in all but the last case we output
identical points which have distance 0. Therefore we have

Elllx = ylli] = |lp — gl - Wi(v1,v2) < O(ac). O
Corollary 25. Every distribution pon {£1}" is W1-O(n)t; transport-stable.

Proof. Since ‘W, is uniformly bounded by O(n) and ¢, is lower bounded by 1 for distinct points,
we automatically have ‘W .-O(n){y transport-stability. The conclusion follows from Lemma 24. [

We remark that showing W .-a{y transport-stability is basically equivalent to constructing couplings
between coordinate-conditioned distributions.

Proposition 26. A distribution u has Weo-acly transport-stability iff for every v := T, u and every coordinate
i € [n], the distributions vy, v obtained by conditioning x ~ v to have x; = 1 and x; = —1 respectively,

satisfy

Weolvi,vo) < a.
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Proof. The proof is almost identical to the proof of Lemma 24. Given a coupling between vy, v, this
can be extended to a coupling between 7,1, and 74411, for any ¢, ¢’ € R; no distance increases,
s0 W, still remains bounded by «a. O

We are now ready to prove our main statement about how errors propagate in Algorithm 1.

Proposition 27. Suppose that p is W-aty transport-stable. Then if we run Algorithm 1 using an ap-
proximate continuous sampling algorithm that guarantees accuracy within 6 in ‘W, resulting in a random
variable wr, then

Wi(cwr/T, u* N©,cI/T) <6-(1+afc)l.

Proof. Suppose we have two executions of Algorithm 1: one using the approximate continuous
sampling algorithm resulting in wy, . .., wr, and one using exact samples resulting in w(), e, w’T.
We bound the W, distance between the random variables w; and w; inductively. For i = 0 this

distance is 0. We claim that
(Wl(wi/w;) <C;:= g (4B +-- +ﬁi_1),

where g :=1+a/c.

Assuming this is true for i, we couple w; and w: in a way that realizes this W, distance. In other
words
Elllw; — w}ll1] < C;.

Now we couple exact samples X ~ Ty, * N(0, cI) and x” ~ ot * N(0, cI) by using the coupling
implied by transport-stability for 7y, 1t and 7, i and adding the same independent Gaussian sample
from N(0, cI) to both. It follows that

WA(E,x') < E[ W (T, Turp)] < a Elllw; = w/ll1] < aCy.

However, note that we do not sample x exactly in the algorithm, but rather we sample x approxi-
mately within ‘W < 6 distance of x. By the triangle inequality for ‘W; we have

‘Wl(x, x’) <6+ aC;.

’

Finally note that w;;; = w; + x/c and wl,, =w+ x’/c, so we get

[llx = x"I]
c

’ ’ [E
Elllwisr —wiy, [l1] < Elllw: —wjll: ]+ <Ci+(6+aCj)/c=(0+a/c)Ci+b/c=Cip.

This finishes the induction.

Now we simply note that our bound for i = T can be further upper-bounded by (5/c) - T(1 + a/c)’.
This implies that
Wicwr /T, cw?/T) < 6(1 + a/c)l.

But we know by Lemma 22 that cw/./T is distributed according to u * N(0, cI/T), finishing the
proof. O

Next, we state the error guarantee of the approximate continuous sampler we utilize, the randomized
midpoint method of Shen and Lee [ ].
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Proposition 28. Suppose that i is a semi-log-concave distribution and c is a large constant so that v :=
Twp * N(0, cI) is well-conditioned log-concave, and assume we have oracle access to the Laplace transform of
1. Then we can output a sample that is 5-accurate in ‘W1 distance from v with runtime log(n/5)°W) using
(1/6)°M processors.

Proof. Since we have oracle access to the Laplace transform of i, we have oracle access to the
log-density and gradients of log-density for v := 7,1 * N(0, cI) by Lemma 6. Note that V2 log v is
sandwiched between —al, —BI for some constants «, f = ©(1) by the proof of Lemma 5. This means
the condition number « = a/f is also O(1).

The result of Shen and Lee [ | thus allows us to sample from v within € - D error in ‘W5 5 where
D = \/n/B is the effective diameter. This algorithm uses (x/€)®") processors and runs in time
O(x log(1/€)). Note that W1 < Vn W1 < \n Wa . So by setting € = \/Bé/n we get our desired 6
accuracy in the ‘W metric. With this setting of parameters it is easy to check that the parallel runtime
is O(log(1/€)) = O(log(1/6)) and that the number of processors is O(1/€)°M) = (1/5)°W. O

Remark 29. Technically, to start the algorithm of Shen and Lee [ ], one needs an approximate
maximizer of the density v. Since logv is a well-conditioned concave function, gradient ascent
converges exponentially fast to the maximizer, so we can start from a point and run gradient ascent
for polylogarithmically many steps, and then run the algorithm of Shen and Lee [ ]. To make
sure the number of steps taken is only log(n)°™ we have to find an initial point x which has at least
exp(exp(=O(log n0M))) fraction of the maximum density. The point 0 in our case has this property.
Since we are convolving a distribution on {+1}" with a Gaussian N(0, cI), the density of the result
at 0 compared to the maximum possible density is at least

exp(—Vn/2¢) exp(0) = exp(-n/2c),
because the distance of 0 from all vertices of the hypercube is /1.

We can now prove Theorem 1.

Proof of Theorem 1. First note that by Propositions 10 and 15, transport-stability implies semi-log-
concavity. Combining this with Lemma 5, we get that for c a large enough constant, the distribution
ol * N(0, cI) is always well-conditioned log-concave. Thus, the assumptions of Proposition 28 are
satisfied and we can run Algorithm 1 by this approximate continuous sampling scheme. It remains
to set the accuracy parameter 6, and the number of steps T.

We first set T = Alog(n/e) for a large enough constant A that depends on c. This is to make sure
that with high probability a sample from N(0, cI/T) has ||-||. bounded by 1/5, which is possible
for large enough A by the same argument as in Lemma 7.

Once T is set, we choose 6 to be small enough so that the final ‘W error of cwr /T resulting from
Proposition 27 is at most €/10. This is possible as we only need to set 1/6 to be (1 + O(1)/c)! =
(n/€)°M). Overall this results in a runtime of log(1/€)°") with (1n/e)°®) many processors.

It remains to conclude that the output is e-close in total variation distance. We know that cwr /T is
€/10-close in ‘W distance to u* N(0,cI/T). Let x ~ pand g ~ N(0, cI/T) be independent samples,
and assume that cwr /T is coupled optimally (w.r.t. W) to x + g:

Elllcwr /T = x = gll1] < €/10.
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It follows from Markov’s inequality that
Plllcwr/T —x = glli > 1/5] < €/2.
Moreover, by a similar argument to the proof of Lemma 7, we have
P[lIgllo > 1/5] < €/2.

Therefore with probability at least 1 — € we have |||l < 1/5 and |[cwr/T —x — gl|1 < 1/5. Under
these two conditions we have ||cwT /T — x|| < 2/5 < 1, which means that sign(wr) is the same as x.
This proves that the output of Algorithm 1 is e-close in total variation distance to p. O

Next, we prove Theorem 3. The proof is almost identical, except we have to choose a smaller
accuracy 0.

Proof of Theorem 3. The only difference from the proof of Theorem 1 is that to guarantee cwr /T is
€/10-close in ‘W, we no longer can set 1/6 to be (n/ €)%, We have to use the trivial transport-
stability guaranteed by Corollary 25. This implies that with a 6-accurate continuous sampler given
by Proposition 28, the final cwr/T will be within W distance 6(1 + O(n)/c)T = 6(n/e)CUos™) of
p* N(0, cI). This means that we need to set 1/6 to be (n/ ¢)Ollogn) large to get €/10 accuracy.

This value of 6 results in a runtime of log(1/6)°") = log(n/€)°") and the number of processors will
be (1/6)°PW) = (n/e)Closm), O

5 Symmetric DPPs and partition-constrained variants

Here we prove that symmetric DPPs and partition-constrained variants of them with O(1) parts
satisfy W -O(1){ transport stability. This proves Corollary 2, since the Laplace transforms of these
distribution are computable in NC. Our main tool is the fact that symmetric DPPs, a subclass of the
so-called strongly Rayleigh distributions, satisfy a condition known as stochastic covering property

[PP14].

Lemma 30 ([ , Proposition 2.1]). Suppose u : {+1}" — Ry is a strongly Rayleigh distribution,
including DPPs and k-DPPS, and let i € [n]. Then there exists a coupling 1 between i and . obtained
from u by conditioning coordinate i to be —1 or +1, such that for any (p, q) € supp(n), |lp — qll1/2 < 2,
i.e., p and q differ in at most one coordinate other than i. Moreover, if j is any coordinate other than i, then
pj < q; (the opposite of p; and q;).

Corollary 31. Any strongly Rayleigh distribution, including DPPs and k-DPPS satisfies W «-4{y

Proof. Note that DPPs and k-DPPs are closed under exponential tilts. Thus the proof follows by
arguments in Section 4, where it was shown that to prove W «-a{y transport-stability it is enough
to couple distributions obtained from conditioning only one coordinate. O

Theorem 32. Consider a strongly Rayleigh p and partition V, U - -- UV, = [n] and cardinalities cy, . .., c;.
Let v be the distribution of i conditioned on those sets that contain exactly c; elements of V; for all j. Suppose
that i is a coordinate and v, is v conditioned on +1 for coordinate i and v_ is v conditioned on —1 for
coordinate i. There exists a coupling m between v and v_ where the Hamming distance ||p — ql|1/2 < 2" for

(p,q) € supp(n).
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Proof. We construct a pair of random variables (p, g) which couple v, and v_ and satisfy [|[p — g1 <
2'*1 almost surely. We construct p and g piece by piece, one part of the partition at a time. W.Lo.g.
assume that 7 € V. First, look at the projection of v on V;. By Lemma 20, this is a strongly Rayleigh
distribution. So we can sample the coordinates in Vi, namely py, and qv,, in a coupled way, through
the coupling guaranteed by Lemma 30, so that they follow the projections of v, and v_ on the V;
coordinates. This will create at most 2 different coordinates (one of them is 7).

Now look at V1 U V5, and consider the distributions obtained by v, and v_ projected onto V; U V5,
conditioned on agreement with the filled-out part (coordinates Vi) of p and q. We argue that
these are also strongly Rayleigh distributions, and moreover they are conditionings of the same
strongly Rayleigh distribution. This follows because we can consider the coarsened partition
(ViuVy)u Vs u--- UV, where we want c; + c2 elements from the first part, c3 from the second,
and so on. Then, partition-constraining p with this coarsened partition, and then conditioning the
coordinates in V; to be py, or gy, results in the same distributions as if we started with the fully
partition-constrained v and projected onto V; U V5 and then conditioned on Vj; this is because
the coordinates in V; already satisfy the c; cardinality constraint, so having c; + c3 elements from
V1 UV, conditioned on the Vi part is the same as having c¢; elements from V; and ¢, elements from
Vs. Since the conditionings to py, and qv, differ in at most 2 coordinates, it follows by Corollary 31
that we can sample py,uy, and gv,uv, conditioned on the V; part, in a way that pv,uy, and gqv,uv,
will end up having twice as many, at most 4 different coordinates. We continue this argument
with V; U V5 U V3 and so on. Each piece of p and g that we create can have as many different
coordinates as the total combined so far; in other words, the number of different coordinates at most
doubles every iteration. So in the end p and g will be different in < 2" coordinates. This proves that
lp —qlli/2 < 2. O

We get the following corollary.

Corollary 33. A partition-constrained symmetric DPP with r parts, satisfies ‘W «-O(2"){y transport-
stability.

This finishes the proof of Corollary 2. In Appendix A, we explore, as side results, further implications
of W-O(2"){ transport-stability, by closely following the arguments of Hermon and Salez [ I

6 Non-symmetric DPPs and Eulerian tours

In this section, we show that sampling Eulerian tours on directed graphs can be reduced to sampling
non-symmetric DPPs, via the intermediate problem of sampling weighted Eulerian tours on directed
4-regular graphs, described below.

As a reminder, an Eulerian tour is a circuit in a finite graph that visits every edge exactly once
(revisiting vertices is allowed). A directed graph (or digraph) has an Eulerian tour if and only if
every vertex has equal in-degree and out-degree, and all of its vertices with nonzero degree belong
to a single strongly connected component. Such graphs are called Eulerian digraphs.

We note that the number of Eulerian tours in digraphs can be computed in polynomial time, since
there is a many-to-one direct correspondence between Eulerian tours in an Eulerian digraph and
arborescences of the graph (known as the BEST theorem [ ; ]), and the latter can be
computed by the directed matrix-tree theorem. This is in sharp contrast to the case of undirected
graphs for which the problem is #P-complete [ ], even for 4-regular graphs [ I
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6.1 Eulerian tours on 4-regular Eulerian digraphs

A 4-regular digraph G = (V, E) being Eulerian indicates that every vertex has both in-degree and
out-degree two. Given v € V, a transition S, is defined as one of the two possible ways of pairing
incoming edges and outgoing edges. We say an Eulerian tour C traverses Sy if C enters v from any
incoming edge and immediately exits via the corresponding outgoing edge. Denote by S,(C) the
transition at v that is being traversed by C, and by &(G) the set of Eulerian tours on G. Given an
Eulerian tour R € &E(G) as reference, we set Fr(C) = {v | S,(C) # Sy(R)}. Then we note that £(G)
can be identified by Fr = {Fr(C) | C € &(G)}, as the mapping Fr from Eulerian tours to subsets of
vertices is one-to-one and onto. Bouchet [ ] proved that the uniform distribution of Eulerian
tours on a 4-regular Eulerian digraph is a special case of a non-symmetric DPP. Given a 4-regular
graph, we show how to construct the characterizing matrix L for this non-symmetric DPP in RNC.

Theorem 34. Given a 4-reqular Eulerian digraph G = (V, E), there exists an RNC algorithm that computes
an Eulerian tour R € E(G) and a skew-symmetric matrix L € {—1,0,1}V*V (whose rows and columns are
indexed by V') such that det(Lg,s) = 1 if S € Fr, and det(Lg,s) = 0 otherwise.

Proof. We first use [ ] to find one Eulerian tour R using an NC algorihtm. To construct the
skew-symmetric matrix L, we compute the row L, ,, for vertices v, w € V in parallel.

First, label the two outgoing edges from v by e and e, arbitrarily; this can be done in one parallel by
having each vertex choose its label. Construct the graph R’ with vertices consisting of v* and v~ for
v € V, such that v* (v~ respectively) has exactly one outgoing edge e; (e, respectively) and exactly
one in-edge which is the predecessor of e (e, respectively) in R. Note that R’ is a simple cycle
on 2|V| vertices. Following [ ], we say vertices v and w has positive (negative respectively)

alternance if the vertices in R’ appear in the order v* ... w*...v"...w™ (v*...w™...0" ... w*
respectively) and has no alternance otherwise.
If v, w has positive (negative respectively) alternance we set L, ;, = +1 (Ly,» = —1 respectively) and

if they have no alternance we set L, ;, = 0. To figure out the alternance of any pair of vertices, we
simply need to know the index of the copies of v, w appearing on the cycle. This can be done in NC
by traversing the cycle R’ in parallel using the standard doubling trick. O

In order to reduce the sampling of Eulerian tours on Eulerian digraphs with higher vertex degrees to
that on 4-regular Eulerian digraphs, we introduce weights on the transitions. Let w(-) be a positive
weight function on the transitions. The distribution of weighted Eulerian tours pg, : E(G) = Rso
is defined by
46w (C) & | Jw(So(C)).
veV

Moreover, since every Eulerian tour traverses exactly one transition at every vertex, given any
reference R € &(G), we have

w(Sy(C) _ 17 @(Se(C))
“WQ“HMMMEMMM“HMMM'

veV veV

Then it is not hard to see that g, is identical to the non-symmetric DPP instance given by L in

WS R) here S;(R) denotes the transition at v that R

Theorem 34 under the A-scaling with A, = D R)

does not traverse.
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6.2 Eulerian tours on general Eulerian digraphs

Finally we show how to sample (unweighted) Eulerian tours on general Eulerian digraphs, given
an algorithm for sampling weighted Eulerian tours on 4-regular Eulerian digraphs. Denote the
in-degree (or out-degree) of a vertex v by d(v) in a Eulerian digraph. In 4-regular Eulerian digraphs,
d(v) = 2 for any v. We will use (acyclically connected) gadgets made of weighted vertices with d = 2
to simulate any unweighted vertex with d > 2. Note that unweighted vertices with d = 1 can be
simply replaced by an edge, for sampling purposes.

To sample unweighted Eulerian tours, the local constraint at a vertex is that the incoming d edges
and outgoing d edges should be able to “pair up” freely. Viewing it as a permutation problem,
our goal is to generate uniformly random permutations on d elements using (potentially biased)
probabilistic pairwise swaps. Indeed, if we connect incoming edges x;, x; and outgoing edges
vi, yj (with the same subscripts, respectively) to a weighted degree-4 vertex v with two transitions

S ={{xi,yi}, {xj,y;j}}and S’ = {{x;, y;}, {xi, y;}}, then locally v favors the swap (of subscripts i, /)
w(S’) w(S)

with probability 2E+0) while favors the identity with probability TSITICIE

The following lemma states that for any vertex of in-degree d, the construction of a corresponding
gadget can be done using O(d?) degree-4 vertices.

Lemma 35 (Folklore). A uniformly random permutation on d elements can be generated using @ biased
probabilistic pairwise swaps.

Proof. The construction is in d rounds. We denote the operation of swapping two elements at
position i and j by swap(i, j). In the first round, we do swap(1, 2) with probability 3, then swap(1, 3)
with probability 1, etc., and eventually swap(1, d) with probability . This will put a uniformly
random element in position 1, which takes d probabilistic swaps. Next we can keep the element
in position 1 fixed and recursively work on the remaining d — 1 positions. For example, in the
second round a uniformly random element amongst the remaining d — 1 elements will be put in
positions 2, using d — 1 probabilistic swaps. Continuing this process for d rounds yields a perfectly
random permutation. Since the round with i elements remaining takes i probabilistic swaps, the

total number of swaps is %_1). O

Therefore, given any Eulerian digraph G, the reduction works by replacing every vertex with d > 2
by a gadget’ of O(d?) vertices with in-degree d = 2, and every vertex with d = 1 by a directed edge,
resulting in a 4-regular Eulerian digraph G’ whose size is blown up at most quadratically. Any
sample of an Eulerian tour on G’ can be converted to a sample of an Eulerian tour on G by virtually
viewing each vertex gadget constructed in G’ as a vertex in G, and letting the edges in G follow
their ordering in G’ to form an Eulerian tour. Furthermore, according to Lemma 35, the desired
distribution will be respected at the aggregate level.

We remark that the idea of simulating higher degree vertices by degree-4 vertices was previously
employed in [ ] where they studied Eulerian tours problems on undirected graphs, although
their construction only uses unweighted degree-4 vertices and their equivalence result holds in the
approximate sense.

The gadget construction can easily be done in NC time

21



References

[AB51] T. van Aardenne-Ehrenfest and N. G. de Bruijn. “Circuits and trees in oriented linear
graphs”. In: Simon Stevin 28 (1951), pp. 203-217. 1ssn: 0037-5454.

[AIS84] B. Awerbuch, A. Israeli, and Y. Shiloach. “Finding Euler Circuits in Logarithmic Parallel
Time”. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing.
STOC ’"84. New York, NY, USA: Association for Computing Machinery, 1984, pp. 249-
257. 1sBN: 0897911334. por: 10.1145/800057 . 808688.

[Ald90] David J. Aldous. “The random walk construction of uniform spanning trees and
uniform labelled trees”. In: SIAM |. Discrete Math. 3.4 (1990), pp. 450—465. 1ssn: 0895-
4801. por: 10.1137/0403039.

[Ali+21] Yeganeh Alimohammadi, Nima Anari, Kirankumar Shiragur, and Thuy-Duong Vuong.
“Fractionally log-concave and sector-stable polynomials: counting planar matchings
and more”. In: STOC "21—Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing. ACM, New York, [2021] ©2021, pp. 433-446. por: 10.1145/
3406325.3451123.

[Ana+21]  Nima Anari, Nathan Hu, Amin Saberi, and Aaron Schild. “Sampling arborescences in
parallel”. In: 12th Innovations in Theoretical Computer Science Conference. Vol. 185. LIPIcs.
Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2021, Art.
No. 83, 18. por: 10.4230/LIPIcs.ITCS.2021.83.

[Ana+22a] Nima Anari, Callum Burgess, Kevin Tian, and Thuy-Duong Vuong. Quadratic Speedups
in Parallel Sampling from Determinantal Distributions. 2022. arXiv: 2203.11190 [cs.DS].

[Ana+22b] Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong.
“Entropic independence: optimal mixing of down-up random walks”. In: STOC "22—Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing. ACM, New York,
[2022] ©2022, pp. 1418-1430. por: 10.1145/3519935.3520048.

[BBL09] Julius Borcea, Petter Brandén, and Thomas M. Liggett. “Negative dependence and
the geometry of polynomials”. In: . Amer. Math. Soc. 22.2 (2009), pp. 521-567. 1ssN:
0894-0347. por: 10.1090/50894-0347-08-00618-8.

[Bou95] André Bouchet. “Coverings and delta-coverings”. In: Integer programming and combina-
torial optimization (Copenhagen, 1995). Vol. 920. Lecture Notes in Comput. Sci. Springer,
Berlin, 1995, pp. 228-243. por: 10.1007/3-540-59408-6\_54.

[Bra07] Petter Brandén. “Polynomials with the half-plane property and matroid theory”. In:
Adv. Math. 216.1 (2007), pp. 302-320. 1ssn: 0001-8708. por: 10.1016/j.aim.2007.05.
011.

[Bro89] A. Broder. “Generating Random Spanning Trees”. In: Proceedings of the 30th Annual
Symposium on Foundations of Computer Science. SFCS "89. USA: IEEE Computer Society,
1989, pp. 442-447. 1sBN: 0818619821. por: 10.1109/SFCS.1989.63516.

[BWO05] Graham R. Brightwell and Peter Winkler. “Counting Eulerian Circuits is #P-Complete”.
In: Proceedings of the Seventh Workshop on Algorithm Engineering and Experiments and the
Second Workshop on Analytic Algorithmics and Combinatorics, ALENEX /ANALCO 2005,
Vancouver, BC, Canada, 22 January 2005. Ed. by Camil Demetrescu, Robert Sedgewick,
and Roberto Tamassia. SIAM, 2005, pp. 259-262.

[CE22] Yuansi Chen and Ronen Eldan. “Localization schemes: a framework for proving mixing
bounds for Markov chains”. In: 2022 IEEE 63rd Annual Symposium on Foundations of
Computer Science—FOCS 2022. IEEE Computer Soc., Los Alamitos, CA, [2022] ©2022,
pp- 110-122. por: 10.1109/F0CS54457 .2022.00018.

22


https://doi.org/10.1145/800057.808688
https://doi.org/10.1137/0403039
https://doi.org/10.1145/3406325.3451123
https://doi.org/10.1145/3406325.3451123
https://doi.org/10.4230/LIPIcs.ITCS.2021.83
https://arxiv.org/abs/2203.11190
https://doi.org/10.1145/3519935.3520048
https://doi.org/10.1090/S0894-0347-08-00618-8
https://doi.org/10.1007/3-540-59408-6\_54
https://doi.org/10.1016/j.aim.2007.05.011
https://doi.org/10.1016/j.aim.2007.05.011
https://doi.org/10.1109/SFCS.1989.63516
https://doi.org/10.1109/FOCS54457.2022.00018

[Cel+18]

[CK78]
[Csa76]

[Der21]

[DFK91]

[DGJ04]

[E1d13]

[ELL17]

[EM22]

[EMS22]

[ES22]

[FHY21]

[Gar+19]

[GS12]

[HS23]

Elisa Celis, Vijay Keswani, Damian Straszak, Amit Deshpande, Tarun Kathuria, and
Nisheeth Vishnoi. “Fair and Diverse DPP-Based Data Summarization”. In: Proceedings
of the 35th International Conference on Machine Learning. Ed. by Jennifer Dy and Andreas
Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, Oct. 2018, pp. 716-
725.

S. Chaiken and D. J. Kleitman. “Matrix tree theorems”. In: J. Combinatorial Theory Ser.
A 24.3 (1978), pp. 377-381. 1ssn: 0097-3165. por: 10.1016/0097-3165(78) 90067-5.

L. Csanky. “Fast parallel matrix inversion algorithms”. In: SIAM |. Comput. 5.4 (1976),
pp. 618-623. 1ssn: 0097-5397. por: 10.1137/0205040.

Michael W. Dereziriski Michatand Mahoney. “Determinantal point processes in ran-
domized numerical linear algebra”. In: Notices Amer. Math. Soc. 68.1 (2021), pp. 34-45.
1ssN: 0002-9920. por: 10.1090/n0oti2202.

Martin Dyer, Alan Frieze, and Ravi Kannan. “A random polynomial-time algorithm for
approximating the volume of convex bodies”. In: J. Assoc. Comput. Mach. 38.1 (1991),
pp- 1-17. 1ssn: 0004-5411. por: 10.1145/102782.102783.

Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. “Counting and sampling H-
colourings”. In: Inform. and Comput. 189.1 (2004), pp. 1-16. 1ssn: 0890-5401. por: 10.
1016/3j.1c.2003.09.001.

Ronen Eldan. “Thin shell implies spectral gap up to polylog via a stochastic localization
scheme”. In: Geom. Funct. Anal. 23.2 (2013), pp. 532-569. 1ssN: 1016-443X. por: 10.1007/
s00039-013-0214-y.

Ronen Eldan, James R. Lee, and Joseph Lehec. “Transport-entropy inequalities and
curvature in discrete-space Markov chains”. In: A journey through discrete mathematics.
Springer, Cham, 2017, pp. 391-406. por: 10.1007/978-3-319-44479-6_16.

Ahmed El Alaoui and Andrea Montanari. “An information-theoretic view of stochastic
localization”. In: IEEE Trans. Inform. Theory 68.11 (2022), pp. 7423-7426. 1ssn: 0018-9448.
por: 10.1109/TIT.2022.3180298.

Ahmed El Alaoui, Andrea Montanari, and Mark Sellke. “Sampling from the Sherrington:
Kirkpatrick Gibbs measure via algorithmic stochastic localization”. In: 2022 IEEE 63rd
Annual Symposium on Foundations of Computer Science—FOCS 2022. IEEE Computer Soc.,
Los Alamitos, CA, [2022] ©2022, pp. 323-334. por: 10.1109/F0CS54457.2022.00038.

Ronen Eldan and Omer Shamir. “Log concavity and concentration of Lipschitz func-
tions on the Boolean hypercube”. In: J. Funct. Anal. 282.8 (2022), Paper No. 109392, 22.
1ssN: 0022-1236. por: 10.1016/j.jfa.2022.109392.

Weiming Feng, Thomas P. Hayes, and Yitong Yin. “Distributed metropolis sampler
with optimal parallelism”. In: Proceedings of the 2021 ACM-SIAM Symposium on Dis-
crete Algorithms (SODA). [Society for Industrial and Applied Mathematics (SIAM)],
Philadelphia, PA, 2021, pp. 2121-2140. por: 10.1137/1.9781611976465.127.

Mike Gartrell, Victor-Emmanuel Brunel, Elvis Dohmatob, and Syrine Krichene. “Learn-
ing Nonsymmetric Determinantal Point Processes”. In: Advances in Neural Information
Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc., 2019.

Qi Ge and Daniel Stefankovi¢. “The complexity of counting Eulerian tours in 4-regular
graphs”. In: Algorithmica 63.3 (2012), pp. 588-601. 1ssn: 0178-4617. por: 10.1007/s00453-
010-9463-4.

Jonathan Hermon and Justin Salez. “Modified log-Sobolev inequalities for strong-
Rayleigh measures”. In: Ann. Appl. Probab. 33.2 (2023), pp. 1301-1314. 1ssn: 1050-5164.
por: 10.1214/22-aap1847.

23


https://doi.org/10.1016/0097-3165(78)90067-5
https://doi.org/10.1137/0205040
https://doi.org/10.1090/noti2202
https://doi.org/10.1145/102782.102783
https://doi.org/10.1016/j.ic.2003.09.001
https://doi.org/10.1016/j.ic.2003.09.001
https://doi.org/10.1007/s00039-013-0214-y
https://doi.org/10.1007/s00039-013-0214-y
https://doi.org/10.1007/978-3-319-44479-6_16
https://doi.org/10.1109/TIT.2022.3180298
https://doi.org/10.1109/FOCS54457.2022.00038
https://doi.org/10.1016/j.jfa.2022.109392
https://doi.org/10.1137/1.9781611976465.127
https://doi.org/10.1007/s00453-010-9463-4
https://doi.org/10.1007/s00453-010-9463-4
https://doi.org/10.1214/22-aap1847

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. “A polynomial-time approximation
algorithm for the permanent of a matrix with nonnegative entries”. In: |. ACM 51.4
(2004), pp. 671-697. 1ssN: 0004-5411. por: 10.1145/1008731.1008738.

[JVV8e] Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. “Random generation of
combinatorial structures from a uniform distribution”. In: Theoret. Comput. Sci. 43.2-3
(1986), pp. 169-188. 1ssn: 0304-3975. por: 10.1016/0304-3975(86)90174-X.

[Kas63] P. W. Kasteleyn. “Dimer statistics and phase transitions”. In: ]. Mathematical Phys. 4
(1963), pp- 287-293. 1ssN: 0022-2488. por: 10.1063/1.1703953.

[KT12] Alex Kulesza and Ben Taskar. “Determinantal Point Processes for Machine Learning”.
In: Foundations and Trends® in Machine Learning 5.2-3 (2012), pp. 123-286. 1ssN: 1935-
8237. por: 10.1561/2200000044.

[LY22] Hongyang Liu and Yitong Yin. “Simple parallel algorithms for single-site dynamics”.
In: STOC "22—Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing. ACM, New York, [2022] ©2022, pp. 1431-1444. por: 10.1145/3519935.
3519999.

[PP14] Robin Pemantle and Yuval Peres. “Concentration of Lipschitz functionals of determi-
nantal and other strong Rayleigh measures”. In: Combin. Probab. Comput. 23.1 (2014),
pp- 140-160. 1ssn: 0963-5483. por: 10.1017/50963548313000345.

[SL19] Ruogqi Shen and Yin Tat Lee. “The Randomized Midpoint Method for Log-Concave
Sampling”. In: Advances in Neural Information Processing Systems. Ed. by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran
Associates, Inc., 2019.

[Ten95] Shang-Hua Teng. “Independent sets versus perfect matchings”. In: Theoret. Comput.
Sci. 145.1-2 (1995), pp. 381-390. 1ssn: 0304-3975. por: 10.1016/0304-3975(94) 00289-U.

[TF61] H. N. V. Temperley and Michael E. Fisher. “Dimer problem in statistical mechanics—an
exact result”. In: Philos. Mag. (8) 6 (1961), pp. 1061-1063. 1ssn: 0031-8086. por: 10.1080/
14786436108243366.

[TS41] W. T. Tutte and C. A. B. Smith. “On Unicursal Paths in a Network of Degree 4”. In:
Amer. Math. Monthly 48.4 (1941), pp. 233-237. 1ssn: 0002-9890. por: 10.2307/2302716.

A Concentration and faster mixing walk from coupling

In this section we connect W,-O(1){, transport stability, see Definition 23, to concentration in-
equalities and the existence of fast mixing local Markov chains. We follow almost identically the
arguments of Hermon and Salez [ ] who proved the same for the more restricted class of
strongly Rayleigh distributions. Our proof of ‘W-O(1){, transport stability from Section 5 extends
these results to partition-constrained strongly Rayleigh distributions and DPPs.

We show the existence of a local Markov chain with inverse linear modified log Sobolev constant,
which in turn implies sub-Gaussian concentration of Lipschitz function via a standard Herbst
argument [ ].

Theorem 36. Suppose i1 : {£1}" — Ry satisfies W w-ply transport-stability for some parameter p = O(1).
Then, there exists a reversible Markov chain P that has stationary distribution u and modified log-Sobolev
constant > Q(%), and furthermore P(x,y) # 0 only if ||x — y|l1 < p. If we assume additionally that p is
k-homogeneous, then the modified log-Sobolev constant can be lower-bounded by Q(1/k).

Proof. LetQ = {«1}". Fixacoordinate? € [n]. LetQ_ = {x € Q | xy = —1}and Q; = {x € Q| xy = +1}.
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Following the notation in [ ], it is easier to construct a reversible Markov generator Q with
transition rate bounded by O(n) (or O(k) in the homogeneous case) and MLSI constant ()(1) and
then convert that to a Markov chain, by lazifying Q at a rate of ~ 1/n (or = 1/k for the homogeneous
case). For a Markov generator Q, we let @(Q) be its MLSI constant. Let A(Q) = maxyeq{-Q(x, x)}
be the maximum rate of change of Q.

Consider the projections and restrictions of u defined by the partition (Q_ and €3, denoted by
ft, u—, p+. Suppose u satisfies W-ply, which means there is a coupling « between p_ and p that
has distance W (u-, p+) < p.

The induction hypothesis provides a reversible Markov generator Q_ (Q; respectively) such that
@(Q+) > 1and A(Q.) < n — 1 always. Additionally if y is k-homogeneous then A(Q-) < 2k and
A(Q4+) <2k —2.

Recall that the projection {1 of uon {Q_, Q, } is defined by fi(+) = X cqy, p(x)and fi(—) = ¥ eq p(x).
We define Q for u as follows. For x # y € Q

Q-(x,y) if (x,y) e Q_xQ_,

B Q+(fC,y) if (x,y) € Q, X Qy,
Q(x,y) = 9§ a+)aExx,y) £ (r,y) €O x Q.

JNTEY)
W if (x,y) €Q, xQ_,

where the diagonal is defined so that Zy Q(x,y) = 0. First, we check that Q is reversible. Since Q_
and Q. are reversible, for (x,y) € Q_xQ_,

p)Qx,y) = pEp-0)Q-(xv,y) = pEu-Q-(v,x) = wy)Q-(y,x).
The case (x, y) € Q; X Q is similar. For (x,y) € Q_ xQ,,

Qe ) = e EEEED gt = i EEEED o, 0.

Q induces a projection chain with Markov generator O on state space {+, —} where

(H)p(=)x(x, y)
pu(x)

0= Y awwn = Y uwh

(x,y)eQ_xQ, (x,y)eQ_xQ,

=pRE) > () = fH-),

(x,y)eQ_xQ

and

() i(=)x(y, x)
u(x)

pHQ+ )= > uQxy = > k)

(x,y)eQxQ_ (x,y)eQ xQ_

=pRE) )L (Y, x) = fHAC).

(y,x)eQ_xQ4

For any (x, y) € supp(x) € Q_ x Q,, by construction the following equals 1:

QY A f) _ uwQ.x)
AOQ- k(e y) Q-+ Q(-)  AHQ( )y, )
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By [ , Lemma 3], the projection Markov generator Q satisfies a(Q) > O(—, +) + O(+, —). Thus
following [ ], letting

- { u(x)Q(x, ) }
(xe0-x04 | p(=)Q (-, Hx(x, v) |
then
G
Q-+ Q¢+~

and thus A A
xa(Q) 2 x(Q(=,+) + Q(+,-)) = fi(+) + i(=) = 1.
Applying [ , Lemma 1], we have

&(Q) = min{xa(Q), mina(Q.)} = 1.

For (x,y) € Q- x Q,, wesay x ~ y iff ||x — y[|; < p. Obviously Q(x,y) # 0iff x ~ y.
Next, we check that A(Q) < n. Forx € Q_,

Q0= Y Qe+ FEE 3wy

yeQ \{x} yeQy

f(-)fu(+)

< aQ) + BT (”) ()
= A(Q-) + p(=)a(+)
< AQ) + fi(+).

Similarly, for x € Q,,

—Q(x, x) < A(Q+) + fi(-).
So we conclude that A(Q) < 1 + max{A(Q-), A(Q+)} < n.
Now assume that we have a k-homogeneous distribution. In this case, Q, as defined, will not

necessarily have the desired property that A(Q) < 2k. But we can get a Markov generator with a
similarly large MLSI constant and the desired rate by averaging over the choice of the coordinate ¢.

First, notice that for x € Q_, we have

—Q(x,x) < 2k + Eyul(ye + 1)/2],
and for x € QQ,, we have
—Q(x,x)<2k—-2+1=2k-1.
In either case we have
—Q(x,x) <2k + Ey~ulye/2] — x¢/2.

We rewrite Q as Q') to make explicit the dependence on the element ¢. Take the linear combination
Q" =1%,0Q. This is again a Markov generator that only transitions betweens states that are p
apart in Hamming distance, i.e., Q*(x, y) # 0 only if |[x — y||; < p. The quantity « is preserved by
convex combination, thus @(Q*) > 1. And finally,

-Q*(x,x) = %Z —QU(x, x) < 2k.

*This follow from [ , Eq.(48)], with the additional observation that x(x, y) # 0iff x € Q_ and y € Q.
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We get the concentration of Lipschitz functionals as a corollary, almost identically to [ I

Corollary 37. Suppose i satisfies W oo-ply transport-stability. Let f : ([Z]) — R be a c-Lipschitz functional.
Then

2
Ps-u[£(S) 2 Eulf(S)] +a] < exp(—ﬂ(k(i—p)z)) :
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