
Quadratic Speedups in Parallel Sampling from Determinantal
Distributions

Nima Anari¹, Callum Burgess¹, Kevin Tian², and Thuy-Duong Vuong¹

¹Stanford University, {anari,callumb,tdvuong}@stanford.edu
²Microsoft Research, tiankevin@microsoft.com

Abstract

We study the problem of parallelizing sampling from distributions related to determinants:
symmetric, nonsymmetric, and partition-constrained determinantal point processes, as well as
planar perfect matchings. For these distributions, the partition function, a.k.a. the count, can be
obtained via matrix determinants, a highly parallelizable computation; Csanky proved it is in
NC. However, parallel counting does not automatically translate to parallel sampling, as classic
reductions between the two are inherently sequential. We show that a nearly quadratic parallel
speedup over sequential sampling can be achieved for all the aforementioned distributions. If
the distribution is supported on subsets of size 𝑘 of a ground set, we show how to approximately
produce a sample in ˜︁𝑂(𝑘 1

2+𝑐) time with polynomially many processors for any constant 𝑐 > 0. In
the two special cases of symmetric determinantal point processes and planar perfect matchings,
our bound improves to ˜︁𝑂(√𝑘) and we show how to sample exactly in these cases.

As our main technical contribution, we fully characterize the limits of batching for the
steps of sampling-to-counting reductions. We observe that only 𝑂(1) steps can be batched
together if we strive for exact sampling, even in the case of nonsymmetric determinantal point
processes. However, we show that for approximate sampling, ˜︁Ω(𝑘 1

2−𝑐) steps can be batched
together, for any entropically independent distribution, which includes all mentioned classes of
determinantal point processes. Entropic independence and related notions have been the source
of breakthroughs in Markov chain analysis in recent years, so we expect our framework to prove
useful for distributions beyond those studied in this work.

1

{anari,callumb,tdvuong}@stanford.edu
tiankevin@microsoft.com

1 Introduction

Sampling and counting are intimately connected problems. For many classes of measures 𝜇 defined
on a, most often exponentially large, space 𝑋, approximately sampling 𝑥 ∈ 𝑋 with ℙ[𝑥] ∝ 𝜇(𝑥)
and approximately computing the partition function

∑︁
𝑥∈𝑋 𝜇(𝑥) are polynomial-time reducible to

each other [JVV86]. However, this equivalence breaks down for complexity classes below P. For
example, there is no known polylogarithmic-time parallel reduction between approximate counting
and approximate sampling.

Motivated by the underexplored relationship between sampling and counting in theworld of parallel
algorithms, Anari, Hu, Saberi, and Schild [Ana+20], based on the earlier work of Teng [Ten95],
raised the question of designing fast parallel samplers for several distributions where counting,
even exactly, was possible in polylogarithmic time and polynomial work, i.e., via NC algorithms.
The distributions in this challenge set all enjoy fast parallel counting algorithms because their
partition functions,

∑︁
𝑥 𝜇(𝑥), can be written as determinants, and determinants are computable in

NC [Csa75]. Anari, Hu, Saberi, and Schild [Ana+20] solved one of these challenges and showed how
to sample random arborescences in RNC, completing the earlier work of Teng [Ten95] on random
spanning trees. However, these works are tailored to the random spanning tree and arborescence
distributions, as they parallelize the sequential sampling algorithm of Aldous [Ald90] and Broder
[Bro89], and there is no known generalization of this algorithm to other distributions.

In this work, we study a general framework to improve the parallel efficiency of sampling-to-
counting reductions. We build on the success of recently introduced techniques in the analysis of
random walks and sampling algorithms, where combinatorial distributions are analyzed through
the lens of high-dimensional expanders [Ana+19; AL20; ALO20]. We show that under one notion
of high-dimensional expansion named entropic independence [Ana+21b], see Definition 22 for
definition, sampling-to-counting reductions can be made sped up nearly quadratically on a PRAM.

To set up notation, we consider combinatorial distributions defined on size 𝑘 subsets of a ground
set of elements {1, . . . , 𝑛}, which we denote by an (unnormalized) measure 𝜇 :

(︁[𝑛]
𝑘

)︁
→ ℝ≥0. We

note that the choice of
(︁[𝑛]
𝑘

)︁
is a standard canonical form for the domain, and many other domains

such as product spaces, can be transformed into
(︁[𝑛]
𝑘

)︁
[ALO20]. We access the measure 𝜇 through a

counting oracle. Given any¹ set 𝑇 ⊆ [𝑛], the oracle returns∑︂{︃
𝜇(𝑆)

|︁|︁|︁|︁ 𝑆 ∈ (︃
[𝑛]
𝑘

)︃
, 𝑇 ⊆ 𝑆

}︃
.

Our goal is to use the oracle and output a random set 𝑆 that approximately follows ℙ[𝑆] ∝ 𝜇(𝑆).

The classic reduction from sampling to counting [JVV86] proceeds by picking the 𝑘 elements of 𝑆,
one at a time. In each step, conditioned on all previously chosen elements, marginals ℙ𝑆∼𝜇[𝑖 ∈ 𝑆 |
previous choices] of all remaining elements 𝑖 are computed and a new element is picked randomly
with probability proportional to the conditional marginals. In each step, marginals can be computed
via parallel calls to the counting oracle. However, this procedure is inherently sequential as the choice
of each element affects the conditional marginals in future iterations. A parallel implementation of
this reduction takes time Ω(𝑘). The main question we study is:

For which 𝜇 is there a faster parallel reduction from sampling to counting?

¹By querying a 𝑇 of size exactly 𝑘, a counting query can also return 𝜇(𝑇).

2

Our main result shows that for distributions 𝜇 which are entropically independent [Ana+21b],
sampling-to-counting reductions can be sped up roughly quadratically. Throughout, we use ˜︁𝑂(·) to
hide logarithmic factors in 𝑛 and failure probabilities; these factors primarily come from the parallel
complexity of linear algebra (e.g., evaluating determinants and partition functions).

Theorem 1 (Main, see Theorem 29 for formal version). Let 𝜇 :
(︁[𝑛]
𝑘

)︁
→ ℝ≥0 be entropically independent

and assume that we have access to a counting oracle for 𝜇. For any constant 𝑐 > 0 and any 𝜖 > 0, there exists
an algorithm that can sample from a distribution within total variation distance 𝜖 of 𝜇 in ˜︁𝑂 (︂√

𝑘 ·
(︂
𝑘
𝜖

)︂ 𝑐)︂
parallel time using (𝑛/𝜖)𝑂(1/𝑐) machines in the PRAM model.

As a corollary, we get improved parallel sampling for various classes of determinantal point pro-
cesses: symmetric, non-symmetric, and partition-constrained. All of these distributions are known
to be entropically independent [Ali+21; Ana+21b]. As an additional result, we show that by using
different graph-separator-based techniques, a similar quadratic parallel speedup can be obtained
for sampling planar perfect matchings, the only distribution in the challenge set of [Ana+20] not
covered by Theorem 1; see Section 6 for details.

Remark 2 (Beyond determinantal distributions). Various notions of high-dimensional expansion,
and in particular, entropic independence, have recently resulted in breakthroughs in the analysis
of Markov chains and sequential sampling algorithms [Ana+21b; Ana+21c], but as far as we
know, this is the first work to relate these notions to parallel sampling. Here we explore the
applications of Theorem 1 to distributions related to determinants because the counting oracle
for them can be implemented in RNC. However, we suspect Theorem 1 can have applications
beyond determinantal distributions in the future. As an example, for distributions whose partition
functions do not have roots in certain regions of the complex plane, Barvinok [Bar18] devised
efficient deterministic approximate counting algorithms, which have been refined by subsequent
works [PR17]. These counting algorithms can be parallelized in many settings, as they involve
enumerating a polynomial/quasi-polynomial number of small, logarithmic-sized, combinatorial
substructures. Recent works [Ali+21; CLV21] have shown that the absence of roots in the complex
plane implies certain forms of high-dimensional expansion, including entropic independence
[Ana+21b].

1.1 Determinantal distributions

This work considers applications of Theorem 1 to various distributions 𝜇 defined based on determi-
nants. Prior progress on designing parallel samplers for problems that enjoy determinant-based
counting has been limited. Teng [Ten95] showed how to simulate random walks on a graph in
parallel, which combined with the classic algorithm of Aldous [Ald90] and Broder [Bro89] yielded
RNC samplers for uniformly random spanning trees in a graph. Anari, Hu, Saberi, and Schild
[Ana+20] extended this to sampling arborescences (directed spanning trees) in directed graphs.
In this work, we tackle a much larger class of problems that enjoy determinant-based counting,
namely variants of determinantal point processes.

Determinantal point processes (DPPs) have found many applications, such as data summarization
[Gon+14; LB12], recommender systems [GPK16; Wil+18], neural network compression [MS15],
kernel approximation [LJS16], multi-modal output generation [Elf+19], and randomized numerical
linear algebra [DM21]. Formally, a DPP on a set of items [𝑛] = {1, . . . , 𝑛} is a probability distribution
over subsets 𝑌 ⊆ [𝑛] defined via an 𝑛 × 𝑛 matrix 𝐿where probabilities are given (proportionally) by
principal minors: ℙ[𝑌] ∝ det(𝐿𝑌,𝑌). The partition function of such a distribution is simply det(𝐿+ 𝐼),

3

which can be efficiently computed in parallel.

Note that for the distribution to be well-defined, all principal minors of 𝐿 have to be ≥ 0. For
symmetric 𝐿, that is 𝐿 = 𝐿⊺, this is equivalent to 𝐿 being positive semi-definite (PSD). Symmetric
DPPs, where 𝐿 = 𝐿⊺ ⪰ 0 have received the most attention in the literature.

Definition 3 (Symmetric DPP). Given a symmetric 𝑛 × 𝑛 matrix 𝐿 ⪰ 0, the symmetric DPP defined
by 𝐿 is the probability distribution over subsets 𝑌 ⊆ [𝑛], where ℙ[𝑌] ∝ det(𝐿𝑌,𝑌).

Beyond (symmetric) determinantal point processes, our work provides sampling algorithms for
a variety of other discrete distributions related to determinants: non-symmetric and partition-
constrained DPPs, as well as planar perfect matchings. Next, we will outline each family of such
distributions.

Recently, [Bru18; Gar+19; Gar+20] initiated the study of non-symmetric DPPs in applications and
argued for their use because of increased modeling power. Symmetric DPPs necessarily exhibit
strong forms of negative dependence [BBL09], which are unrealistic in some applications; on
the other hand, non-symmetric DPPs can have positive correlations. Non-symmetric DPPs are
characterized by a non-symmetric positive-definite matrix 𝐿, i.e., a matrix 𝐿 where 𝐿 + 𝐿⊺ ⪰ 0.

Definition 4. A matrix 𝐿 ∈ ℝ𝑛×𝑛 is non-symmetric positive semidefinite (nPSD) if 𝐿 + 𝐿⊺ ⪰ 0.

Definition 5 (Non-symmetric DPP). Given an nPSD 𝑛×𝑛 matrix 𝐿, the non-symmetric DPP defined
by it is the probability distribution over subsets 𝑌 ⊆ [𝑛] given by ℙ[𝑌] ∝ det(𝐿𝑌,𝑌).

A related and more commonly used model related to DPPs is a 𝑘-DPP, where we constrain the
cardinality of the sampled set 𝑌 to be exactly 𝑘. In many applications, restricting to sets of a
predetermined size is more desirable [KT12b].

Definition 6 (𝑘-DPP). Given a PSD or nPSD matrix 𝐿, the 𝑘-DPP defined by it is the distribution of
the corresponding determinantal point process restricted to only 𝑘-sized sets.

A natural generalization of simple cardinality constraints is partition constraints [Cel+16]. Partition
constraints arise naturallywhen there is an inherent labeling or grouping of the ground set items that
is not captured by the DPP kernel itself. Concretely, suppose that the ground set [𝑛] is partitioned
into disjoint sets𝑉1∪𝑉2∪· · ·∪𝑉𝑟 , and wewant to produce a subset 𝑆with 𝑐1 items from𝑉1, 𝑐2 items
from 𝑉2 and so on. We define Partition-DPP as the corresponding conditioning of the DPP under
these constraints on 𝑆. Celis, Deshpande, Kathuria, Straszak, and Vishnoi [Cel+16] established that
efficiently sampling and counting from Partition-DPPs is possible when the number of constraints 𝑟
is 𝑂(1) and that counting is #P-hard without such restrictions on 𝑟 – it includes, as a special case,
the problem of computing mixed discriminants. Here, we will only study Partition-DPPs where the
ensemble matrix 𝐿 is symmetric PSD and the number of constraints is 𝑂(1). Alimohammadi, Anari,
Shiragur, and Vuong [Ali+21] showed that these distributions are entropically independent and
that local Markov chains can be used to sample (sequentially) from these Partition-DPPs.

Definition 7 (Partition-DPP). Given a symmetric 𝑛 × 𝑛 matrix 𝐿 ⪰ 0 and a partitioning of [𝑛] =
𝑉1 ∪𝑉2 ∪ · · · ∪𝑉𝑟 into 𝑟 = 𝑂(1) partitions together with 𝑐1 , . . . , 𝑐𝑟 ∈ ℤ≥0, the Partition-DPP is the
distribution of the DPP defined by 𝐿 restricted to sets 𝑆 that have |𝑆 ∩𝑉𝑖 | = 𝑐𝑖 for all 𝑖.

In this work, we establish as corollaries of Theorem 1, a roughly quadratic parallel speedup in
sampling from all aforementioned distributions. A crucial part of our algorithm relies on the
existence of highly parallel counting oracles for these models. For example, for unconstrained DPPs,
the partition function can be written as

∑︁
𝑆 det(𝐿𝑆,𝑆) = det(𝐿 + 𝐼), and this can be computed in NC

4

[Csa75]. For 𝑘-DPPs and Partition-DPPs, the partition function can be computed via polynomial
interpolation [Cel+16], which is again highly parallelizable (by, e.g., solving linear systems of
equations involving Vandermonde matrices). The entropic independence of all the aforementioned
determinantal distributions discussed was established by prior works [Ali+21; Ana+21b].

Theorem 8 (Sampling from non-symmetric DPPs). Let 𝐿 be a 𝑛 × 𝑛 non-symmetric PSD matrix, 𝜖 > 0,
and 𝑘 ∈ [𝑛].

1. Let 𝜇𝑘 :
(︁[𝑛]
𝑘

)︁
→ ℝ≥0 be the 𝑘-DPP defined by 𝐿. For any constant 𝑐 > 0, there exists an algorithm to

approximately sample from within 𝜖 total variation distance of 𝜇𝑘 in ˜︁𝑂 (︂√
𝑘(𝑘𝜖)𝑐

)︂
parallel time using

(𝑛/𝜖)𝑂(1/𝑐) machines.

2. Let 𝜇 : 2[𝑛] → ℝ≥0 be the DPP defined by 𝐿. For any constant 𝑐 > 0, there exists an algorithm to
approximately sample from within 𝜖 total variation distance of 𝜇 in ˜︁𝑂 (︁√

𝑛(𝑛𝜖)𝑐
)︁
parallel time using

(𝑛/𝜖)𝑂(1/𝑐) machines.

Theorem 9 (Sampling from Partition-DPPs). Let 𝐿 be a 𝑛 × 𝑛 symmetric PSD matrix. Let 𝑟 = 𝑂(1),
and let 𝑉1 ∪ · · · ∪ 𝑉𝑟 = [𝑛] be a partition of [𝑛] together with integers 𝑡1 , . . . , 𝑡𝑟 . Let 𝑘 =

∑︁
𝑖∈[𝑟] 𝑡𝑖 . Let

𝜇𝐿;𝑉,𝑡 : 2[𝑛] → ℝ≥0 be the DPP with partition constraints defined by

𝜇𝐿;𝑉,𝑡(𝑆) ∝ det(𝐿𝑆,𝑆) ·
𝑟∏︂
𝑖=1

𝟙[|𝑆 ∩𝑉𝑖 | = 𝑡𝑖].

For any constant 𝑐 > 0, there exists an algorithm to approximately sample from within 𝜖 total variation
distance of 𝜇𝐿;𝑉,𝑡 in ˜︁𝑂 (︂√

𝑘(𝑘𝜖)𝑐
)︂
parallel time using (𝑛/𝜖)𝑂(1/𝑐) machines.

In the case of symmetric DPPs and symmetric 𝑘-DPPs, we improve Theorem 1 to obtain a parallel
runtime of ˜︁𝑂(√𝑘). Our algorithms have a small chance 𝛿 of failure but, conditioned on success,
they sample exactly from the desired distribution; this is desirable, as we can repeat the algorithm
in the case of failure, to eventually obtain an exact sample from the distribution. Theorem 10 is
proven in Section 4.

Theorem 10 (Sampling from symmetric DPPs). Let 𝐿 be a 𝑛 × 𝑛 symmetric PSD matrix, 𝑘 ∈ [𝑛], and
𝛿 ∈ (0, 1).

1. Let 𝜇𝑘 :
(︁[𝑛]
𝑘

)︁
→ ℝ≥0 be the 𝑘-DPP defined by 𝐿. There exists an algorithm that with probability

≥ 1 − 𝛿, exactly samples from 𝜇𝑘 in ˜︁𝑂(√𝑘) parallel time using poly(𝑛) · log 𝑘
𝛿 machines.

2. Let 𝜇 : 2[𝑛] → ℝ≥0 be the DPP defined by 𝐿. There exists an algorithm, that with probability ≥ 1 − 𝛿,
exactly samples from 𝜇 in ˜︁𝑂(√𝑛) parallel time using poly(𝑛) · log 𝑛

𝛿 machines.

We are also able to refine our results about DPPs so that the runtime is expressed in terms of typical
sizes of the sets 𝑆 in the support, as measured by eigenvalues or traces of the matrix 𝐿. We leave the
details to Section 8, where we prove Theorem 41.

Finally, another distribution whose partition function can be computed via determinants is uniform
perfect matchings in planar graphs. These distributions, alongside determinantal point processes,
were raised as challenge distributions for parallel sampling [Ana+20]. Unfortunately, planar perfect
matchings are not entropically independent, and we cannot apply Theorem 1 to them. Nevertheless,
using alternative techniques based on graph separators, we manage to obtain a similar quadratic
speedup in sampling from them.

5

Theorem 11. Let graph 𝐺 = (𝑉, 𝐸) be planar and 𝜇 be the uniform distribution over perfect matchings of
𝐺. There exists an algorithm that samples from 𝜇 in ˜︁𝑂(√𝑛) parallel time using poly(𝑛) machines.

1.2 Techniques and algorithms

Throughout, we heavily use the fact that for all distributions 𝜇 that we study in this paper, the
marginals ℙ𝑆∼𝜇[𝑖 ∈ 𝑆] can be computed in NC, and that the distributions 𝜇 are self-reducible—
by conditioning on element inclusion, we obtain another distribution in the same family of DPP
variants or planar perfect matchings on a smaller graph. These two properties alone form the basis
of the most classic, inherently sequential, algorithm for sampling described below.

for 𝑖 = 1, . . . , 𝑘 do
Compute the marginals of 𝜇 conditioned on elements 𝑥1 , . . . , 𝑥𝑖−1.
Sample an element outside 𝑥1 , . . . , 𝑥𝑖−1 with probability proportional to the computed
marginals. Call the sampled element 𝑥𝑖 .

return {𝑥1 , . . . , 𝑥𝑘}.

Ourmain idea is to use rejection sampling to batch the iterations of this algorithm. Roughly speaking,
we compute marginals of 𝜇 and sample a batch of elements 𝑥1 , . . . , 𝑥ℓ i.i.d. from these marginals.
We then use rejection sampling to accept or reject the batch to make sure any set {𝑥1 , . . . , 𝑥ℓ } is
selected with probability given by the ℓ -order marginals ∝ ℙ𝑆∼𝜇[{𝑥1 , . . . , 𝑥ℓ } ⊆ 𝑆]. Once we have a
batch of elements successfully accepted, we continue sampling the next batch from the distribution
conditioned on including this batch. A high-level description of this algorithm can be seen in
Algorithm 1. Our innovation is to implement the batch sampling step highlighted via (*) by i.i.d.
sampling from marginals and performing a correction based on rejection sampling.

Algorithm 1: Batched sampling

Input: 𝜇 :
(︁[𝑛]
𝑘

)︁
→ ℝ≥0

𝑘0 ← 𝑘

𝜇(0) ← 𝜇

for 𝑖 = 0, 1, . . . , 2
√
𝑘 do

(*): Sample 𝑇𝑖 ∼ 𝜇(𝑖) with |𝑇𝑖 | = ⌈
√
𝑘𝑖⌉

Update 𝜇(𝑖+1) ← 𝜇(𝑖)(· | 𝑇𝑖)
Update 𝑘𝑖+1 = 𝑘𝑖 − |𝑇𝑖 |

return 𝑇 :=
⋃︁
𝑖 𝑇𝑖 .

The sizes of the batches we sample dictate the parallel runtime of this algorithm. Even for symmetric
DPPs, there is a natural barrier at batch size ℓ ≃

√
𝑘. Consider 𝐿 to be the Gram matrix of vectors

{𝑒1 , 𝑒1 , . . . , 𝑒𝑘 , 𝑒𝑘} (where every standard basis vector 𝑒𝑖 ∈ ℝ𝑛 is repeated twice, so 𝑘 = 𝑛
2). The

marginals of this DPP are uniform, but because of the Birthday Paradox, any sample of ≫
√
𝑘

elements contains a pair of identical vectors with high probability, resulting in a joint marginal of 0,
i.e., an overwhelming probability of rejection. Hence, we must set the batch size ℓ ≲

√
𝑘 to have a

non-negligible acceptance probability.

A significant difficulty that arises for DPP variants beyond symmetric DPPs is the lack of negative
dependence. Roughly speaking, due to the lack of negative dependence, the acceptance probabilities
used in symmetric DPPs for rejection sampling have to be scaled down in other cases by a factor

6

of ≃ 2ℓ ; otherwise, we would sometimes have to accept with probability > 1. See Section 7 for a
detailed example of where this phenomenon can be observed. This scaling of 2ℓ means the overall
acceptance probability can be at most 2−ℓ , which forces the number of machines we use to sample,
in parallel, possible batches for one iteration to scale up by a factor of 2ℓ . This limits ℓ to be only
logarithmic, and the parallel runtime would not be improved beyond logarithmic factors.

We overcome this challenge by replacing rejection sampling with approximate rejection sampling,
where we allow the acceptance probabilities to go above 1 on a small subset of the event space,
and if we see any batch of this kind we declare the algorithm has failed. Our main insight is
that such bad batches of elements must consist of large groups of highly correlated elements. On
the other hand, we quantify limits on correlations in our distributions of interest by obtaining
novel consequences of entropic independence [Ana+21b]. Intuitively, we prove that correlations
in any entropically independent distribution must be limited to small groups of elements, and a
batch of ≃ 𝑘 1

2−𝑐 elements will likely contain no more than one element from each correlated group.
Formalizing this intuition, we prove Theorems 8 and 9 in Section 5. We give an example showing
this sub-polynomial overhead in the parallel depth may be necessary for our batched rejection
sampling approach in Section 7.

Finally, for planar perfect matchings, we use a completely different approach. We use planar
separators to break the graph into smaller pieces; the pieces can then be processed in parallel, once
we fix the part of the perfect matching touching the separator.

1.3 Further related work

The works [Ten95; Ana+20] study the problems of parallel sampling spanning trees and arbores-
cences from graphs. While spanning trees are special cases of DPPs, these works parallelize an
algorithm of Aldous [Ald90] and Broder [Bro89], which is very specific to spanning trees, and does
not have a known counterpart for general DPPs or other distributions studied in this work.

There have been several approaches to parallel sampling in the literature. Notably, Feng, Hayes,
and Yin [FHY21], and more recently Liu and Yin [LY21], showed how to efficiently parallelize a
popular class of sampling algorithms based onMarkov chains and obtain nearly optimal parallelism
for several graphical models such as the hardcore, Ising, and proper coloring models in certain
regimes. While these results manage to parallelize certain types of Markov chains, they do not
apply to distributions studied in this work. A prerequisite for these parallelization techniques to
work is the existence of a Markov chain with single-site updates, that is changing one coordinate in
each move assuming the distribution is supported on a product space, that mixes in nearly-linear
time. No such Markov chain is known for our application distributions.

Finally, subsequent to our results, it was recently communicated to us that [Ana+23] have obtained
RNC sampling algorithms for distributions that satisfy a stronger condition than entropic indepen-
dence and using a stronger oracle than the simple counting oracle: an oracle that can compute for
any given 𝜆 ∈ ℝ𝑛

>0, the value
∑︁
𝑆 𝜇(𝑆)

∏︁
𝑖∈𝑆 𝜆𝑖 . While their general result is not comparable to our

main result, Theorem 1, it does as a corollary give an RNC sampling algorithm for Partition-DPPs.
For nonsymmetric DPPs and planar perfect matchings, as far as we know, RNC sampling is still
open.

7

Acknowledgment

This work was supported by an NSF CAREERAward CCF-2045354 and a Sloan Research Fellowship.
Thuy-Duong Vuong was supported by a Microsoft Research Ph.D. Fellowship. Callum Burgess was
supported by the Stanford CURIS program.

2 Overview

In this section, we give a technical outline of our proofs and a roadmap for the rest of the paper.

Symmetric DPPs. In Section 4, we prove our most basic result, Theorem 10 (sampling symmet-
ric DPPs), as an introduction to our techniques and to demonstrate how we apply Algorithm 1.
Conveniently, symmetric DPPs exhibit strong negative dependence properties which the rest of
our distributions do not. To prove Theorem 10, we directly bound the acceptance probability of
Algorithm 1 for batch size ℓ ≃

√
𝑘. We show that directly applying negative dependence bounds

the acceptance probability by exp(− ℓ2

𝑘
). In Section 8 we obtain refined results for DPPs whose size

is not constrained (i.e., not 𝑘-DPPs), but whose kernel matrix satisfies various forms of spectral
boundedness, all related to the typical size of sampled sets.

Entropic independence. In Section 5, we provide a meta-result (Theorem 29, a formal restatement
of Theorem 1) used to derive Theorems 8 and 9 as corollaries. Theorem 29 shows that for any
entropically independent distribution over subsets of size 𝑘, we can reduce sampling to marginal
computations with ˜︁𝑂(𝑘 1

2+𝑐) parallel depth overhead, with a high probability of success. Here, 𝑐 is
any constant, parameterizing the (polynomial) number of machines used.

To prove Theorem 29, we use the entropic independence property to derive concentration bounds
on the acceptance probability in Algorithm 3. As a first step towards this goal, we use entropic
independence to demonstrate that up to parallel depth ℓ ≈ 𝑘 1

2−𝑐 , the Kullback-Leibler (KL) diver-
gence between our target distribution (the order-ℓ -marginals) and our proposal distribution (the
product distribution on 1-marginals) is bounded. This KL divergence bound does not suffice for our
overall scheme; intuitively, it provides an “average case” bound on the log-acceptance probability of
Algorithm 3, whereas we would like to have a high probability bound since we need to union bound
over at least

√
𝑘 stages of rejection sampling. To simplify our concentration argument, we begin by

assuming w.l.o.g. that our distribution has roughly uniform 1-marginals, by using a subdivision
process, similar to the ones used in [AD20; Ana+21a]. We then use comparison inequalities between
KL divergences and (exponentiated) Renyi divergences for nearly-uniform distributions to bound
moments associated with our rejection sampler’s acceptance probabilities. Finally, we use these
moment bounds to show that over a high-probability set of outcomes (in the sense of Algorithm 3),
the log of acceptance probability is a submartingale, yielding concentration via Markov’s inequality.

Hard instance. It is natural to ask: Can we improve the small additional overhead of (𝑘/𝜖)𝑐 in
Theorem 29 (and hence, Theorems 8 and 9) to a smaller overhead, e.g. polylogarithmic? In Section 7,
we give a hard example showing that the subpolynomial overhead may be inherent to rejection
sampling strategies, at least in the full generality of entropically independent distributions.

Planar graph perfect matchings. In Section 6, we consider the problem of parallel sampling of perfect
matchings from a planar graph (whose counts can be written as a determinant [Kas67]). Sampling
planar perfect matchings was raised as a challenge in [Ana+20]; while our approach in Section 6
departs from Theorem 29, it still results in a quadratic speedup over naïve sequential sampling. We
attain this speedup, Theorem 11, by leveraging parallel implementations of the planar separator

8

theorem. By sequentially sampling the portion of the matching adjacent to the vertices in a planar
separator of size 𝑂(

√
𝑛), and recursing on the (geometrically smaller) disconnected components,

we obtain a roughly-quadratic speedup for this sampling problem as well.

3 Preliminaries

In this section, we provide preliminaries for the rest of the paper.

We use [𝑛] to denote the set {1, . . . , 𝑛}. For a set 𝑆,
(︁𝑆
𝑘

)︁
denotes the family of subsets of size 𝑘. For a

distribution 𝜇 : 2[𝑛] → ℝ≥0 and 𝑇 ⊆ [𝑛], define 𝜇(· | 𝑇) to be the distribution on 2[𝑛]\𝑇 defined by
𝜇(𝐹 | 𝑇) ∝ 𝜇(𝐹 ∪ 𝑇).We will sometimes use the shorthand 𝜇|𝑇 .

For a measure or density function 𝜇 :
(︁[𝑛]
𝑘

)︁
→ ℝ≥0, the generating polynomial of 𝜇 is the multivariate

homogeneous polynomial defined as 𝑔𝜇(𝑧1 , . . . , 𝑧𝑛) =
∑︁
𝑆∈([𝑛]

𝑘
) 𝜇(𝑆)

∏︁
𝑖∈𝑆 𝑧𝑖 .

3.1 Divergences

Let 𝑞, 𝑝 be distributions over the same finite ground set [𝑛]. We define the KL divergence and, for
𝜆 ≥ 1, the 𝜆-divergence between 𝑞 and 𝑝 as follows:

𝒟KL(𝑞 ∥ 𝑝) ≔ 𝔼𝑞

[︃
log

𝑞

𝑝

]︃
=

∑︂
𝑖∈[𝑛]

𝑞𝑖 log
(︃
𝑞𝑖

𝑝𝑖

)︃
,

𝒟𝜆(𝑞 ∥ 𝑝) ≔ 𝔼𝑝

[︄(︃
𝑞

𝑝

)︃𝜆]︄
=

∑︂
𝑖∈[𝑛]

𝑞𝜆𝑖 𝑝
1−𝜆
𝑖 .

We remark that our definition of𝒟𝜆 is (up to a constant scalar multiplication) the exponential of the
standard Renyi divergence of order 𝜆. The KL and Renyi divergences exhibit the following useful
bound whose proof we include for completeness in Section 9.

Lemma 12. Let 𝑞, 𝑝 be distributions over [𝑛]. Suppose for some 𝐶 ≥ 1 and 𝑆 ⊆ [𝑛]: 𝑝𝑖 ≤ 𝐶
𝑛 for all 𝑖 ∈ [𝑛]

and 𝑝𝑖 ≥ 1
𝐶𝑛 for all 𝑖 ∈ 𝑆. Then, for any 𝜆 ≥ 1, if 𝑆 = [𝑛]

𝒟𝜆(𝑞 ∥ 𝑝) ≤ 𝐶𝜆−1
(︂
1 + 𝑛𝜆−1𝜆(𝜆 − 1)(𝒟KL(𝑞 ∥ 𝑝) + log𝐶)

)︂
.

More generally, ∑︂
𝑖∈𝑆

𝑞𝑖

(︃
𝑞𝑖

𝑝𝑖

)︃𝜆−1
≤ 𝐶𝜆−1

(︂
1 + 𝑛𝜆−1𝜆(𝜆 − 1)(𝒟KL(𝑞 ∥ 𝑝) + log𝐶)

)︂
.

3.2 Determinantal point processes

A DPP on 𝑛 items defines a probability distribution over subsets 𝑌 ⊆ [𝑛]. It is parameterized by a
matrix 𝐿 ∈ ℝ𝑛×𝑛 : ℙ𝐿[𝑌] ∝ det(𝐿𝑌), where 𝐿𝑌 is the principal submatrix whose columns and rows
are indexed by 𝑌.We call 𝐿 the ensemble matrix. We define the marginal kernel 𝐾 of ℙ𝐿 by

𝐾 = 𝐿(𝐼 + 𝐿)−1 = 𝐼 − (𝐼 + 𝐿)−1 = (𝐿−1 + 𝐼)−1. (1)

9

Then, det(𝐾𝐴) = ℙ𝐿[𝐴 ⊆ 𝑌] (a proof can be found in [KT12a]). This also implies 𝐾 ⪯ 𝐼 for symmetric
𝐾. Conversely,

𝐿 = 𝐾(𝐼 − 𝐾)−1 = (𝐼 − 𝐾)−1 − 𝐼 = (𝐾−1 − 𝐼)−1. (2)

Given a cardinality constraint 𝑘, the 𝑘-DPP parameterized by 𝐿 is a distribution over subsets 𝑌 of
size 𝑘, defined by ℙ𝑘

𝐿
[𝑌] = det(𝐿𝑌)∑︁

|𝑌′ |=𝑘 det(𝐿𝑌′) . To ensure that ℙ𝐿 defines a probability distribution, all
principal minors of 𝐿must be non-negative: det(𝐿𝑆) ≥ 0. Any nonsymmetric (or symmetric) PSD
matrix automatically has nonnegative principal minors [Gar+19, Lemma 1].

Consider a matrix 𝐿 ∈ ℝ𝑛×𝑛 , partition 𝑉1 ∪ · · · ∪𝑉𝑟 = [𝑛] of [𝑛], and tuple {𝑐𝑖}𝑟𝑖=1 of integers. The
DPP with partition constraint (Partition-DPP) 𝜇𝐿;𝑉,𝑐 : 2[𝑛] → ℝ≥0 is defined by

𝜇𝐿;𝑉,𝑐(𝑆) ∝ 𝟙[∀𝑖 : |𝑆 ∩𝑉𝑖 | = 𝑐𝑖] det(𝐿𝑆,𝑆)

For any 𝑌 ⊆ [𝑛], if we condition the distribution ℙ𝐿 (ℙ𝑘
𝐿
resp.) on the event that items in 𝑌 are

included in the sample, we still get a DPP ((𝑘 − |𝑌 |)-DPP resp.); the new ensemble matrix is given
by the Schur complement 𝐿𝑌 = 𝐿𝑌̃ − 𝐿𝑌̃,𝑌𝐿−1

𝑌,𝑌
𝐿𝑌,𝑌̃ where 𝑌̃ = [𝑛] \ 𝑌.

For Partition-DPPs, a similar statement holds. Conditioning 𝜇𝐿;𝑉,𝑐 on 𝑌 being included in the set
results in a Partition-DPP 𝜇𝐿𝑌 ;𝑉′,𝑐′ with ensemble matrix 𝐿𝑌 and partition 𝑉′1 ∪ · · · ∪ 𝑉′𝑟 = [𝑛] \ 𝑌
with 𝑉′

𝑖
= 𝑉𝑖 \ 𝑌, and 𝑐′𝑖 = 𝑐𝑖 − |𝑉𝑖 ∩ 𝑌 |.

We defer the proof of the following computational facts about DPPs to Section 9.

Proposition 13. Suppose 𝜇 is one of the following distributions.

1. k-DPP: 𝜇(𝑆) ∝ 𝟙[|𝑌 | = 𝑘]det(𝐿𝑆).

2. DPP: 𝜇(𝑆) ∝ det(𝐿𝑆).

3. Partition-DPP: 𝜇𝑉,𝑐(𝑆) ∝ 𝟙[∀𝑖 ∈ [𝑟] : |𝑆 ∩𝑉𝑖 | = 𝑐𝑖] det(𝐿𝑆) with 𝑟 = 𝑂(1).

There are algorithms that perform the following tasks in ˜︁𝑂(1)-parallel time using poly(𝑛) machines.

1. Given 𝑆 ⊆ 𝑇 ⊆ [𝑛], exactly compute ℙ𝑋∼𝜇[𝑇 ⊆ 𝑋 | 𝑆 ⊆ 𝑋].

2. Given 𝑆 ⊆ [𝑛] and 𝑡 ∈ [𝑛], exactly compute ℙ𝑇∼𝜇[|𝑇 | = 𝑡].

Well-known concentration inequalities on DPPs imply that the size of a typical set is tightly concen-
trated around its mean. We defer the proof of the following to Section 9.

Lemma 14. Let 𝜇 : 2[𝑛] → ℝ≥0 be a strongly Rayleigh distribution. Suppose 𝔼𝑆∼𝜇[|𝑆 |] ≤
√
𝑛. For

𝜖 ∈ (0, 1
4), there exists an absolute constant 𝑐 > 0 such that

ℙ𝑆∼𝜇

[︄
|𝑆 | ≥ 𝑐

√︃
𝑛 log 1

𝜖

]︄
≤ 𝜖

and
ℙ𝑆∼𝜇

[︂
|𝑆 | ≥ 𝑐 𝔼𝑆∼𝜇[|𝑆 |] log 1

𝜖

]︂
≤ 𝜖

Remark 15. To sample from a DPP 𝜇 : 2[𝑛] → ℝ≥0 , we can first in constant parallel-time compute
the distributionℋ on [𝑛] defined by ℙℋ [𝑘] := ℙ𝑆∼𝜇[|𝑆 | = 𝑘] and sample the cardinality of the set 𝑘
fromℋ , and then sample 𝑆 from 𝜇𝑘 using the results of this paper.

10

Determinantal point processes (the symmetric kind) and their conditionings belong to a class of
probability distributions called strongly Rayleigh [see BBL09, for definition]. Strongly Rayleigh
distributions satisfy a useful property called negative correlation.

Lemma 16 (Negative correlation). Suppose 𝜇 : 2[𝑛] → ℝ≥0 is strongly Rayleigh. For any set 𝑇,
ℙ𝑆∼𝜇[𝑇 ⊆ 𝑆] ≤

∏︁
𝑖∈𝑇 ℙ𝑆∼𝜇[𝑖 ∈ 𝑆].

Lemma 17. Let 𝐿 be a symmetric PSD matrix. The following distributions are strongly Rayleigh.

1. 𝜇𝑘 :
(︁[𝑛]
𝑘

)︁
→ ℝ≥0, the 𝑘-DPP defined by 𝐿.

2. 𝜇 : 2[𝑛] → ℝ≥0, the DPP defined by 𝐿.

Corollary 18. Let 𝐾 ∈ ℝ𝑛×𝑛 satisfy 0 ⪯ 𝐾 ⪯ 𝐼. For any set 𝑇 ⊆ [𝑛], det(𝐾𝑇) ≤
∏︁

𝑖∈𝑇 𝐾𝑖 ,𝑖 .

Proof. Consider theDPP𝜇with kernelmatrix 𝐾.Apply Lemma 16 and note that det(𝐾𝑇) = ℙ𝑆∼𝜇[𝑇 ⊆
𝑆] and 𝐾𝑖 ,𝑖 = ℙ𝑆∼𝜇[𝑖 ∈ 𝑆].

3.3 Entropic independence

We recall the notions of fractional log-concavity [Ali+21] and entropic independence [Ana+21b].

Definition 19 ([Ali+21]). A probability distribution 𝜇 :
(︁[𝑛]
𝑘

)︁
→ ℝ≥0 is 𝛼-fractionally-log-concave if

log 𝑔𝜇(𝑧𝛼1 , . . . , 𝑧𝛼𝑛) is concave over ℝ𝑛
>0. For 𝛼 = 1, we say 𝜇 is log-concave.

To define entropic independence we need the definition of the “down” operator. In brief, 𝐷𝑘→ℓ
transitions from a set 𝑆 of size 𝑘 to a uniformly random subset of size ℓ .

Definition 20 (Down operator). For ℓ ≤ 𝑘 define the row-stochastic matrix 𝐷𝑘→ℓ ∈ ℝ
([𝑛]
𝑘
)×([𝑛]ℓ)

≥0 by

𝐷𝑘→ℓ (𝑆, 𝑇) = 𝟙[𝑇 ⊆ 𝑆] · 1(︁𝑘
ℓ

)︁ .
Note that for a distribution 𝜇 on size-𝑘 sets, 𝜇𝐷𝑘→ℓ will be a distribution on size-ℓ sets. In particular,
𝜇𝐷𝑘→1 will be the vector of normalized marginals of 𝜇: { 1

𝑘
ℙ[𝑖 ∈ 𝑆]}𝑖∈[𝑛]. We will use the following

shorthand:

Definition 21. For 𝜇 :
(︁[𝑛]
𝑘

)︁
→ ℝ≥0, we use 𝜇ℓ to denote 𝜇𝐷𝑘→ℓ .

Definition 22. A probability distribution 𝜇 on
(︁[𝑛]
𝑘

)︁
is said to be 1

𝛼 -entropically independent, for
𝛼 ∈ (0, 1], if for all probability distributions 𝜈 on

(︁[𝑛]
𝑘

)︁
,

𝒟KL(𝜈1 ∥ 𝜇1) = 𝒟KL(𝜈𝐷𝑘→1 ∥ 𝜇𝐷𝑘→1) ≤
1
𝛼𝑘
𝒟KL(𝜈 ∥ 𝜇).

Lemma 23 ([Ana+21b], Theorem 4). If 𝜇 is 𝛼-FLC then 𝜇 and all conditional distributions of 𝜇, i.e. 𝜇(· | 𝑆)
for any 𝑆 ⊆ [𝑛], are 1

𝛼 -entropically independent.

Lemma 24 ([Ali+21]). The following distributions are 𝛼-FLC for 𝛼 = Ω(1) and 𝑘 ∈ [𝑛].

1. 𝑘-DPP and DPP defined by nonsymmetric PSD 𝐿 ∈ ℝ𝑛×𝑛 .

2. Partition-DPP defined by symmetric PSD 𝐿 ∈ ℝ𝑛×𝑛 and a partition {𝑉𝑖}𝑟𝑖=1 with 𝑟 = 𝑂(1).

11

3.4 Rejection sampling

Consider distributions 𝜇, 𝜈 over the same domain, and parameter 𝐶 such that max
{︂
𝜇(𝑥)
𝜈(𝑥)

}︂
≤ 𝐶.

Assuming sample access to 𝜈, we can also sample from 𝜇 via rejection sampling as in Algorithm 2.

Algorithm 2: Rejection sampling

Input: parameter 𝐶 > 0 such that max
{︂
𝜇(𝑥)
𝜈(𝑥)

}︂
≤ 𝐶

Sample 𝑥 ∼ 𝜈.

Accept and output 𝑥 with probability 𝜇(𝑥)
𝐶𝜈(𝑥) .

When Algorithm 2 succeeds, its output distribution is exactly 𝜇. Algorithm 2 succeeds with
probability

ℙ[accept] =
∑︂
𝑥

𝜇(𝑥)
𝐶𝜈(𝑥)𝜈(𝑥) =

1
𝐶
.

For any 𝛿 ∈ (0, 1), by running 𝐶 log 𝛿−1 copies of the algorithm in parallel and taking the first
accepted copy, we can boost the acceptance rate to 1 − 𝛿, stated formally in the following.

Proposition 25. There is an algorithm that with probability 1 − 𝛿, outputs a sample from 𝜇 in the same
asymptotic parallel time as required to sample from 𝜈, using 𝑂(𝐶poly(𝑛) log 1

𝛿) machines.

We consider the following modification of Algorithm 2 when we have a weaker assumption that for
some Ω ⊆ supp(𝜈)we have max

{︂
𝜇(𝑥)
𝜈(𝑥)

|︁|︁|︁ 𝑥 ∈ Ω}︂
≤ 𝐶 and

∑︁
𝑥∈Ω 𝜇(𝑥) ≥ 1 − 𝜖 for some 𝜖 ∈ [0, 1).

Algorithm 3: Modified rejection sampling

Input: Ω ⊆ supp(𝜈), parameter 𝐶 > 0 such that max
{︂
𝜇(𝑥)
𝜈(𝑥)

|︁|︁|︁ 𝑥 ∈ Ω}︂
≤ 𝐶

Sample 𝑥 ∼ 𝜈.

If 𝑥 ∈ Ω, accept and output 𝑥 with probability 𝜇(𝑥)
𝐶𝜇(𝑥) .

The guarantees of Algorithm 3 follow immediately from Proposition 26 and that the restriction of 𝜇
to Ω has total variation distance at most 𝜖 from 𝜇. In particular, we will use Proposition 26 with
𝛿 = 𝜖 and output an arbitrary sample when it fails to accept a sample.

Proposition 26. There is an algorithm that outputs a sample from some 𝜇̃ in the same asymptotic parallel
time as required to sample from 𝜈, using 𝑂(𝐶poly(𝑛) log 1

𝜖) machines, where 𝑑TV(𝜇̃, 𝜇) = 𝑂(𝜖).

4 Symmetric DPP

Here, we prove our basic result, Theorem 10. We provide a strengthening for DPPs satisfying
nontrivial spectral bounds, Theorem 41, in Section 8. We first state helper bounds used in the proof.

Lemma 27. Suppose 𝜇 on
(︁[𝑛]
𝑘

)︁
is negatively correlated. Let 𝜇𝑡 = 𝜇𝐷𝑘→𝑡 and 𝑝𝑖 = ℙ𝜇[𝑖 ∈ 𝑆]. Then

𝜇𝑡(𝑇)/
(︁
𝑡!

∏︁
𝑖∈𝑇

𝑝𝑖
𝑘

)︁
≤ exp

(︂
𝑡2

𝑘

)︂
.

12

Proof. Note that 𝜇𝑡(𝑇) =(︃
𝑘

𝑡

)︃−1
ℙ𝑆∼𝜇[𝑇 ⊆ 𝑆] =

𝑡!
𝑘(𝑘 − 1) · · · (𝑘 − 𝑡 + 1) ℙ𝑆∼𝜇[𝑇 ⊆ 𝑆].

Thus, by negative correlation,

𝜇𝑡(𝑇)
𝑡!

∏︁
𝑖∈𝑇

𝑝𝑖
𝑘

=
𝑘𝑡

𝑘(𝑘 − 1) · · · (𝑘 − 𝑡 + 1)
ℙ𝑆∼𝜇[𝑇 ⊆ 𝑆]∏︁
𝑖∈𝑇 ℙ𝑆∼𝜇[𝑖 ∈ 𝑆]

≤
(︄
𝑡−1∏︂
𝑖=1

(︃
1 − 𝑖

𝑘

)︃)︄−1

≤ exp
(︃
𝑡2

𝑘

)︃
where we used the facts that 1 − 𝑥 ≥ 𝑒−2𝑥 and

∏︁𝑡−1
𝑖=1 exp

(︁ 2𝑖
𝑘

)︁
= exp

(︂
𝑡2−𝑡
𝑘

)︂
.

Proposition 28. If step (*) takes 𝑂(𝜏)-parallel time, Algorithm 1 takes 𝑂(
√
𝑘 · 𝜏)-parallel time.

Proof. Note that

𝑘𝑖+1 = 𝑘𝑖 − ⌈
√︁
𝑘𝑖⌉ ≤ 𝑘𝑖 −

√︁
𝑘𝑖 ≤

(︂√︁
𝑘𝑖 −

1
2

)︂2
.

and thus
√
𝑘𝑖+1 ≤

√
𝑘𝑖− 1

2 .Hence, since 𝑡 ≥ 2
√
𝑘 implies

√
𝑘𝑡 ≤
√
𝑘0− 𝑡

2 ≤ 0, the algorithm terminates
in 𝑂(

√
𝑘) iterations, and takes 𝑂(

√
𝑘) parallel time.

Proof of Theorem 10. We first consider the case of sampling 𝑘-DPPs. By Lemma 17, when 𝜇 is a
𝑘-DPP defined by a symmetric PSD ensemble matrix 𝐿, 𝜇 and the conditionals of 𝜇 are real-stable.
In particular, all 𝜇(𝑖) as defined in Algorithm 1 are real-stable and hence strongly Rayleigh.

Consider some loop 𝑖, and let 𝜇 ≡ 𝜇(𝑖).We use Lemma 27 to implement step (*). In particular, we
first compute the marginals 𝑝𝑖 = ℙ𝜇[𝑖 ∈ 𝑆] in ˜︁𝑂(1) parallel time. Next, let 𝜈 be the distribution over
ordered tuples (𝑖1 , . . . , 𝑖𝑡) ∈ [𝑛]𝑡 with

𝜈({𝑖1 , . . . , 𝑖𝑡}) =
𝑡∏︂
𝑟=1

𝑝𝑖𝑟
𝑘
.

We can identify 𝜇𝑡 with the distribution 𝜇∗𝑡 over [𝑛]𝑡 where we denote 𝜇∗𝑡({𝑖1 , . . . , 𝑖𝑡}) =
𝜇({𝑖1 ,...,𝑖𝑡 })

𝑡! .
Let 𝛿′ = 𝛿

2
√
𝑘
, where Algorithm 1 takes at most 2

√
𝑘 iterations by Proposition 28. We run the rejection

sampling algorithm in Proposition 25, which succeeds with probability 1 − 𝛿′, to sample from 𝜇∗𝑡
given samples from 𝜈, with 𝐶 ≤ exp(𝑡2

𝑘
) = 𝑂(1) since 𝑡 = ⌈

√
𝑘⌉ . Clearly obtaining a sample from 𝜇∗𝑡

yields a sample from 𝜇𝑡 by forgetting the ordering on the elements.

Hence, each iteration 𝑖 of Algorithm 1 takes ˜︁𝑂(1) parallel time. By Proposition 28, the algorithm
takes 𝑂(

√
𝑘)-parallel time. By a union bound, the success probability is ≥ 1 − 2

√
𝑘𝛿′ = 1 − 𝛿. The

number of machines used is as in Proposition 25, 𝑂(poly(𝑛) log 𝑘
𝛿).

The result for DPPs immediately follows by first sampling the size |𝑆 | of 𝑆 ∼ 𝜇 and then sampling
from the appropriate 𝑘-DPP.

13

5 Entropically independent distributions

In this section, we prove the main result. We will use Theorem 29 to derive our samplers for various
entropically independent distributions, namely Theorems 8 and 9, which immediately follow from
combining Lemmas 23 and 24 and Theorem 29.

Theorem29. Let𝜇 :
(︁[𝑛]
𝑘

)︁
→ ℝ≥0 be such that all its conditional distributions are 1

𝛼 -entropically independent
with 𝛼 = Ω(1). Suppose we can compute marginals ℙ𝜇[𝑖 | 𝑆] for 𝑆 ⊆ [𝑛] and 𝑖 ∉ 𝑆 in ˜︁𝑂(1) parallel time.
For any constant 𝑐 > 0 and any 𝜖 ∈ (0, 1), there exists an algorithm to sample from a distribution within
total variation distance 𝜖 of 𝜇 in ˜︁𝑂 (︂√

𝑘 ·
(︂
𝑘
𝜖

)︂ 𝑐)︂
parallel time using (𝑛𝜖)𝑂(𝑐

−1) machines.

5.1 Isotropic transformation

We first reduce to the case of near-isotropic distributions. Similarly to [AD20; Ana+21a], we say a
distribution 𝜇 :

(︁[𝑛]
𝑘

)︁
→ ℝ≥0 is isotropic if for all 𝑖 ∈ [𝑛], the marginal ℙ𝑆∼𝜇[𝑖 ∈ 𝑆] is 𝑘

𝑛 . Prior work
[AD20] introduced the following subdivision process transforming an arbitrary 𝜇 :

(︁[𝑛]
𝑘

)︁
→ ℝ≥0 to

a nearly-isotropic 𝜇′ :
(︁𝑈
𝑘

)︁
→ ℝ≥0, while preserving entropic independence.

Definition 30. Let 𝜇 :
(︁𝑛
𝑘

)︁
→ ℝ≥0 be an arbitrary probability distribution and assume that we have

access to the marginals 𝑝1 , . . . , 𝑝𝑛 of the distribution with 𝑝1 + · · · + 𝑝𝑛 = 𝑘 and 𝑝𝑖 = ℙ𝑆∼𝜇[𝑖 ∈ 𝑆] for
all 𝑖. For a parameter 𝛽 ∈ (0, 1), let 𝑡𝑖 := ⌈ 𝑛𝛽𝑘 𝑝𝑖⌉. We create a new distribution out of 𝜇 as follows: for
each 𝑖 ∈ [𝑛], create 𝑡𝑖 copies of element 𝑖 and let the collection of all copies be the new ground set:
𝑈 ≔

⋃︁𝑛
𝑖=1{𝑖(𝑗)} 𝑗∈[𝑡𝑖]. Define the following distribution 𝜇iso :

(︁𝑈
𝑘

)︁
→ ℝ≥0:

𝜇iso
(︂{︂
𝑖
(𝑗1)
1 , . . . , 𝑖

(𝑗𝑘)
𝑘

}︂)︂
:=

𝜇({𝑖1 , . . . , 𝑖𝑘})
𝑡1 · · · 𝑡𝑘

.

We call 𝜇iso the isotropic transformation of 𝜇.

Another way we can think of 𝜇iso is that to produce a sample from it, we can first generate a sample
{𝑖1 , . . . , 𝑖𝑘} from 𝜇, and then choose a copy 𝑖(𝑗𝑚)𝑚 for each element 𝑖𝑚 in the sample, uniformly at
random. Subdivision preserves entropic independence.

Proposition 31 ([Ana+21a, Proposition 19]). If the distribution 𝜇 is 1
𝛼 -entropically-independent, then so

is 𝜇iso.

The following useful properties of 𝜇iso generalize [Ana+21a, Proposition 24]. We defer the proof to
Section 9.

Proposition 32. Let 𝜇 :
(︁𝑛
𝑘

)︁
→ ℝ≥0, and let 𝜇iso :

(︁𝑈
𝑘

)︁
→ ℝ≥0 be the subdivided distribution from

Definition 30 for some 𝛽. Let 𝐶 = 1 +
√︁
𝛽. The following hold for 𝜇iso.

1. Marginal upper bound: For all 𝑖(𝑗) ∈ 𝑈 , the marginal ℙ𝑆∼𝜇iso[𝑖(𝑗) ∈ 𝑆] ≤ 𝐶 𝑘
|𝑈 | .

2. Marginal lower bound: If 𝑝𝑖 := ℙ𝑆∼𝜇[𝑖 ∈ 𝑆] ≥
√︁
𝛽𝑘
𝑛 , then for all 𝑗 ∈ [𝑡𝑖], ℙ𝑆∼𝜇iso[𝑖(𝑗) ∈ 𝑆] ≥ 𝑘

𝐶 |𝑈 | .

Furthermore, letting 𝑅 :=
{︃
𝑖(𝑗)

|︁|︁|︁|︁ 𝑝𝑖 ≥ √︁
𝛽𝑘
𝑛 , 𝑗 ∈ [𝑡𝑖]

}︃
then for any ℓ ≤ 𝑘∑︂

𝑆∈(𝑅ℓ)
𝜇iso
ℓ (𝑆) ≥ 1 −

√︁
𝛽ℓ .

14

3. Bounded ground set size: 𝑛𝛽−1 ≤ |𝑈 | ≤ 𝑛(1 + 𝛽−1).

Remark 33. For any ℓ ∈ [𝑘], suppose algorithm𝒜 can sample from within total variation distance 𝜖
of 𝜇iso

ℓ
. Then𝒜 can also be used to sample from within total variation distance 𝜖 of 𝜇ℓ using the

same amount of (parallel) time and machines.

5.2 KL divergence bound

Throughout this section and Section 5.3, let ℓ ∈ [𝑘]. We begin by proving a bound on the KL
divergence between conditional marginals from an observed set. We denote by 𝑝 the vector of
marginals, that is 𝑝𝑖 = ℙ𝑆∼𝜇[𝑖 ∈ 𝑆].

Lemma 34. Let 𝑆 ∈
(︁[𝑛]
𝑡

)︁
for 𝑡 ≤ 1

2 𝑘. Let 𝜇𝑡+1|𝑆 : [𝑛] \ 𝑆→ ℝ≥0 be the marginal distribution of elements
in 𝑆′ ∼ 𝜇𝑡+1 conditioned on 𝑆 ⊂ 𝑆′, namely 𝜇𝑡+1|𝑆 ≔ 𝜇(· | 𝑆)𝐷(𝑘−𝑡)→1. Then,

𝒟KL

(︂
𝜇𝑡+1|𝑆

∥︁∥︁∥︁ 1
𝑘
𝑝
)︂
≤ 2

𝛼𝑘
log

(︃
1

ℙ𝑇∼𝜇[𝑆 ⊂ 𝑇]

)︃
+ 2𝑡
𝑘
. (3)

This bound follows from the entropic independence of 𝜇. We defer the proof to Section 9.

By averaging Lemma 34 over 𝜇𝑆 (the conditional distribution of 𝑇 ∼ 𝜇 on 𝑆 ⊂ 𝑇), we immediately
obtain the following corollary.

Corollary 35. Let 𝑡 ≤ 1
2 𝑘. Then following the notation of Lemma 34,∑︂

𝑆∈([𝑛]𝑡)
𝜇𝐷𝑘→𝑡(𝑆)𝒟KL

(︂
𝜇𝑡+1|𝑆

∥︁∥︁∥︁ 1
𝑘
𝑝
)︂
≤ 2𝑡
𝑘

(︂ 1
𝛼

log
(︂2𝑛
𝑘

)︂
+ 1

)︂
.

Proof. It suffices to apply Lemma 34, and the calculation∑︂
𝑆∈([𝑛]𝑡)

𝜇𝐷𝑘→𝑡(𝑆) log
(︃

1
ℙ𝑇∼𝜇[𝑆 ⊂ 𝑇]

)︃
=

∑︂
𝑆∈([𝑛]𝑡)

𝜇𝐷𝑘→𝑡(𝑆) log

(︄
1

𝜇𝐷𝑘→𝑡(𝑆)
(︁𝑘
𝑡

)︁)︄
=

∑︂
𝑆∈([𝑛]𝑡)

𝜇𝐷𝑘→𝑡(𝑆) log
(︃

1
𝜇𝐷𝑘→𝑡(𝑆)

)︃
+ log 1(︁𝑘

𝑡

)︁
≤ log

(︁𝑛
𝑡

)︁(︁𝑘
𝑡

)︁ ≤ 𝑡 log
(︂2𝑛
𝑘

)︂
.

The first equality used ℙ𝑇∼𝜇[𝑆 ⊂ 𝑇] = 𝜇𝐷𝑘→𝑡(𝑆)
(︁𝑘
𝑡

)︁
, and the last line used that the negative entropy

of a distribution supported on 𝑁 elements is bounded by log𝑁 .

Finally, we use Corollary 35 to derive a KL divergence bound between the distributions 𝜇ℓ and 𝜇′
ℓ
,

respectively the target and proposal distributions encountered in our rejection sampling scheme.

15

Lemma 36. Let 𝜇′
𝑗
be the distribution of the set formed by 𝑗 independent draws from 1

𝑘
𝑝. Let ℓ ≤ 1

2 𝑘. Then,

𝒟KL
(︁
𝜇ℓ

∥︁∥︁ 𝜇′ℓ
)︁
≤ ℓ

2

𝑘

(︂ 1
𝛼

log
(︂2𝑛
𝑘

)︂
+ 1

)︂
.

Proof. For any 𝑗 ∈ [ℓ], following the notation of Lemma 34,

𝒟KL(𝜇𝑗 ∥ 𝜇′𝑗) − 𝒟KL(𝜇𝑗−1 ∥ 𝜇′𝑗−1) =∑︂
𝑆∈([𝑛]𝑗−1)

𝜇𝐷𝑘→(𝑗−1)(𝑆)𝒟KL

(︂
𝜇𝑗 |𝑆

∥︁∥︁∥︁ 1
𝑘
𝑝
)︂
≤

2(𝑗 − 1)
𝑘

(︂ 1
𝛼

log
(︂2𝑛
𝑘

)︂
+ 1

)︂
.

In the first line, we used the chain rule of KL divergence, and in the second line used Corollary 35.
Finally, the conclusion follows by telescoping the above display for 1 ≤ 𝑗 ≤ ℓ .

Lemma 36 bounds the KL divergence between 𝜇ℓ and 𝜇′
ℓ
, which can be thought of as an average log

of acceptance probability for our rejection sampling scheme. For constant 1
𝛼 , this bound suggests

that we can take ℓ ≈
√
𝑘 and obtain an efficient sampler for ℓ -marginals; however, it is only an

average bound, whereas we need a high-probability bound; this is because we have multiple steps
of rejection sampling and we cannot afford to fail in one step with constant probability. We make
this rigorous in Section 5.3, where we use the tools from this section to give concentration bounds
on the acceptance probability of rejection sampling.

5.3 Concentration of acceptance probability

In this section, assume that we have already performed the transformation in Proposition 32
parameterized by some 𝛽, and obtained a distribution 𝜈iso :

(︁𝑈
𝑘

)︁
→ ℝ≥0 and a set 𝑅 ⊆ 𝑈 of elements

with lower bounds on marginals as given by Proposition 32. Let 𝜈 := 𝜈iso and let 𝜈′ be defined
analogously to Section 5.2. Our goal is to sample from within 𝜖 total variation of 𝜈ℓ for a suitably
chosen ℓ ,which also implies that we can sample from within 𝜖 of 𝜇ℓ (see Remark 33). Our algorithm
will be the modified rejection sampler (Algorithm 3).

To use Algorithm 3 with 𝑃 = 𝜈𝐷𝑘→ℓ and 𝑄 the ℓ -wise product distribution drawing from 1
𝑘
𝑝, we

first define a relevant high-probability set Ω on our state space 𝒳 ≔
(︁𝑈
𝑘

)︁
. Our set Ω will be a subset

of the following set, for some 𝜀 > 0 we will choose later:

˜︁Ω𝜀 ≔

{︃
𝑆 ∈

(︃
𝑈

ℓ

)︃ |︁|︁|︁|︁ 𝜈|𝑇 |(𝑇) ≥ 𝜀|𝑇 | , ∀𝑇 ⊆ 𝑆
}︃
.

In other words, ˜︁Ω𝜀 contains all sets 𝑆 such that all subsets 𝑇 ⊂ 𝑆 are relatively well-represented
according to 𝜈|𝑇 |(𝑇). We begin with an observation lower bounding the measure of ˜︁Ω𝜀.

Lemma 37. For any 0 ≤ 𝜀 ≤ 1
2|𝑈 |ℓ , we have

∑︁
𝑆∉˜︁Ω𝜀

𝜈ℓ (𝑆) ≤ 2|𝑈 |ℓ𝜀.

Proof. Let 𝒞 ≔ ∪ℓ𝑡=1{𝑇 ∈
(︁𝑈
𝑡

)︁
| 𝜈𝑡(𝑇) ≤ 𝜀𝑡}. For any 𝑆 ∉ ˜︁Ω𝜀, we say 𝑇 ∈ 𝒞 is a “certificate” of 𝑆 if

𝑇 ⊂ 𝑆; every 𝑆 ∈ ˜︁Ω𝑐
𝜀 has at least one certificate, so there is a mapℳ : ˜︁Ω𝑐

𝜀 → 𝒞. Moreover, for some

16

𝑇 ∈ 𝒞, let ˜︁Ω𝑐
𝜀(𝑇) be the set of all 𝑆 ∈ ˜︁Ω𝑐

𝜀 such thatℳ(𝑆) = 𝑇. Then since

𝜈𝑡(𝑇) =
∑︂
𝑆⊇𝑇

1(︁ℓ
𝑡

)︁ 𝜈ℓ (𝑆) =⇒
∑︂

𝑆∈˜︁Ω𝑐
𝜀(𝑇)

𝜈ℓ (𝑆) ≤
(︃
ℓ

𝑡

)︃
𝜈𝑡(𝑇),

summing over all 𝑇 ∈ 𝒞 yields∑︂
𝑆∈˜︁Ω𝑐

𝜀

𝜈ℓ (𝑆) ≤
∑︂
𝑇∈𝒞

(︃
ℓ

𝑡

)︃
𝜈|𝑇 |(𝑇) =

∑︂
1≤𝑡≤ℓ

∑︂
𝑇∈(𝑈𝑡)
𝜈𝑡 (𝑇)≤𝜀𝑡

(︃
ℓ

𝑡

)︃
𝜈𝑡(𝑇)

≤
∑︂

1≤𝑡≤ℓ
(|𝑈 |ℓ𝜀)𝑡 ≤ |𝑈 |ℓ𝜀

1 − |𝑈 |ℓ𝜀 ≤ 2|𝑈 |ℓ𝜀.

The last line used the approximations
(︁ℓ
𝑡

)︁
≤ ℓ 𝑡 ,

(︁ |𝑈 |
𝑡

)︁
≤ |𝑈 |𝑡 .

For the remainder of the section we will specifically use 𝜀 = 𝜖
32|𝑈 |ℓ , such that ˜︁Ω𝜀 captures at least a

1 − 𝜖
16 fraction of the mass of

(︁𝑈
ℓ

)︁
according to 𝜈ℓ . We will also drop 𝜀 from ˜︁Ω𝜀 for simplicity.

Our next goal is to show that almost all of the sets in ˜︁Ω have a polynomially bounded acceptance
probability when the proposal is given by independent draws from 1

𝑘
𝑝. Consider iteratively building

a set 𝑆𝑡 for all 1 ≤ 𝑡 ≤ ℓ , where 𝑆𝑡 is a random variable formed by 𝑆𝑡−1∪{𝑖𝑡} for 𝑖𝑡 ∼ 1
𝑘
𝑝. In particular,

we use 𝑖𝑡 to denote the 𝑡th draw from 1
𝑘
𝑝 in this process. For parameters 𝜏, 𝛾 ≥ 0 to be defined later,

iteratively define the random variables:

𝑌𝑡+1 ≔ 𝑌𝑡 exp(Δ𝑡+1) ,

Δ𝑡+1 ≔

{︄
𝛾 log

(︂
𝜈𝑡+1|𝑆𝑡 (𝑖𝑡+1)

1
𝑘
𝑝𝑖𝑡+1

)︂
− 𝜏 𝜈𝑡(𝑆𝑡) ≥ 𝜀𝑡 and 𝑖𝑡+1 ∈ 𝑅

−∞ otherwise

with 𝐶 = 1 +
√︁
𝛽 and 𝑅 as defined in Proposition 32. Also by Proposition 32, 𝑝𝑖 ≤ 𝐶𝑘

|𝑈 | for all 𝑖 ∈ 𝑈.
We use the convention exp(−∞) = 0.

We next prove that 𝑌𝑡+1 is a submartingale for appropriate parameter choices.

Lemma 38. Let 𝑆𝑡 = 𝑇 have 𝜈𝑡(𝑇) ≥ 𝜀𝑡 . Assume that
√︁
𝛽 ≤ min

{︂
1

3𝛾 ,
𝑡
𝛼𝑘 log 1

𝜀

}︂
. Then,

𝜏 ≥ |𝑈 |𝛾𝛾(1 + 𝛾) ·
(︃
12𝑡
𝛼𝑘

log 1
𝜀

)︃
=⇒ 𝔼𝑖∼𝜈𝑡+1|𝑆𝑡

[𝑌𝑡+1 | 𝑆𝑡 = 𝑇] ≤ 𝑌𝑡 .

Proof. If 𝑌𝑡 = 0 then 𝑌𝑡+1 = 0 by definition. In the following, assume 𝑌𝑡 > 0. By the definition of

17

𝑌𝑡+1 = 𝑌𝑡 exp(Δ𝑡+1), and since 𝜈𝑡(𝑇) ≥ 𝜀𝑡 , we have

𝔼𝑖∼𝜈𝑡+1|𝑇

[︃
𝑌𝑡+1
𝑌𝑡

|︁|︁|︁|︁ 𝑆𝑡 = 𝑇]︃
= exp(−𝜏)𝔼𝑖∼𝜈𝑡+1|𝑇

[︄
𝟙𝑖∈𝑅

(︄
𝜈𝑡+1|𝑇(𝑖)

1
𝑘
𝑝𝑖

)︄𝛾 |︁|︁|︁|︁|︁ 𝑆𝑡 = 𝑇
]︄

= exp(−𝜏)
∑︂
𝑖∈𝑅

𝜈𝑡+1|𝑇(𝑖)
(︄
𝜈𝑡+1|𝑇(𝑖)

1
𝑘
𝑝𝑖

)︄𝛾
≤ exp(−𝜏)𝐶𝛾

(︂
1 + |𝑈 |𝛾𝛾(1 + 𝛾)

(︂
𝒟KL

(︂
𝜈𝑡+1|𝑇

∥︁∥︁∥︁ 1
𝑘
𝑝
)︂
+ log𝐶

)︂)︂
≤ exp(−𝜏) (1 + 2

√︁
𝛽𝛾)

(︃
1 + |𝑈 |𝛾𝛾(1 + 𝛾) ·

(︃
4𝑡
𝛼𝑘

log 1
𝜀
+

√︁
𝛽

)︃)︃
.

The second-to-last inequality uses Lemma 12with 𝐶 = 1+
√︁
𝛽, and the last inequality used Lemma 34,

which shows that since 𝜈𝑡(𝑇) ≥ 𝜀𝑡 ,

𝒟KL

(︂
𝜈𝑡+1|𝑇

∥︁∥︁∥︁ 1
𝑘
𝑝
)︂
≤ 2

𝛼𝑘
log

(︃
1

ℙ𝑆∼𝜈[𝑇 ⊂ 𝑆]

)︃
+ 2𝑡
𝑘

=
2
𝛼𝑘

log

(︄
1

𝜈𝑡(𝑇)
(︁𝑘
𝑡

)︁)︄ + 2𝑡
𝑘
≤ 4𝑡

𝛼𝑘
log 1

𝜀
,

as well as log(1 +
√︁
𝛽) ≤

√︁
𝛽 and

(1 + 𝑥)𝛾 ≤ 𝑒𝑥𝛾 ≤ 1 + 2𝑥𝛾

for 𝑥𝛾 :=
√︁
𝛽𝛾 ≤ 1

3 . The conclusion follows from

(1 + 2
√︁
𝛽𝛾)

(︃
1 + |𝑈 |𝛾𝛾(1 + 𝛾) ·

(︃
4𝑡
𝛼𝑘

log 1
𝜀
+

√︁
𝛽

)︃)︃
≤ 1 + 2

√︁
𝛽𝛾 + |𝑈 |𝛾𝛾(1 + 𝛾) ·

(︃
5𝑡
𝛼𝑘

log 1
𝜀

)︃
(1 + 2

√︁
𝛽𝛾)

≤ 1 + 𝛾

(︃
2𝑡
𝛼𝑘

log 1
𝜀

)︃
+ |𝑈 |𝛾𝛾(1 + 𝛾) ·

(︃
5𝑡
𝛼𝑘

log 1
𝜀

)︃ (︂
1 + 2

3

)︂
≤ 1 + |𝑈 |𝛾𝛾(1 + 𝛾) ·

(︃
12𝑡
𝛼𝑘

log 1
𝜀

)︃
≤ 1 + 𝜏 ≤ exp(𝜏).

Now, applying Lemma 38 with the definition of ˜︁Ω′ ≔ ˜︁Ω ∩ {︁
𝑆 ∈

(︁𝑅
ℓ

)︁}︁
allows us to obtain a high-

probability bound on the acceptance probability of our rejection sampling scheme.

Lemma 39. Let 𝐵 ≥ 1. For sufficiently small 𝜖 ∈ (0, 1), and ℓ ∈ [𝑘] satisfying 12ℓ2(16
𝜖)

3
𝐵 log 1

𝜀 ≤ 𝛼𝑘 and
assuming our choices of parameters satisfy

√︁
𝛽 ≤ min

{︂
1

3𝛾 ,
1
𝛼𝑘 log 1

𝜀

}︂
, we have

ℙ𝑆ℓ∼𝜈ℓ

[︃
𝜈ℓ (𝑆ℓ)
𝜈′
ℓ
(𝑆ℓ)
≥ |𝑈 |𝐵

|︁|︁|︁|︁ 𝑆ℓ ∈ ˜︁Ω′]︃ ≤ 𝜖
8 .

18

Proof. Throughout this proof, we will assume

𝛾 =
2 log 16

𝜖

𝐵 log|𝑈 | , 𝜏 =
log 16

𝜖

ℓ
.

We first observe that our parameter choices indeed satisfy the condition on 𝜏 used in Lemma 38:

𝛾(1 + 𝛾)|𝑈 |𝛾

log
(︁ 16
𝜖

)︁ ≤
(︂16
𝜖

)︂ 3
𝐵

=⇒ 𝛾(1 + 𝛾)|𝑈 |𝛾 ·
(︃
12ℓ
𝛼𝑘

log 1
𝜀

)︃
· ℓ

log 16
𝜖

≤ 1.

In the following we denote 𝜇̂𝑗 to be the joint distribution of {𝑖1 , 𝑖2 , . . . , 𝑖 𝑗} where 𝑖1 ∼ 𝜈1, 𝑖2 ∼
𝜈2|𝑆1={𝑖1}, and so on. In other words, if 𝑆ℓ is the unordered set of {𝑖1 , 𝑖2 , . . . , 𝑖ℓ }, we have 𝜈ℓ (𝑆ℓ) =
ℓ ! · 𝜇̂({𝑖1 , 𝑖2 , . . . , 𝑖ℓ }). We similarly define 𝜇̂′𝑗 so that 𝜈′

ℓ
(𝑆ℓ) = ℓ ! · 𝜇̂′ℓ ({𝑖1 , 𝑖2 , . . . , 𝑖ℓ }). For 𝑆ℓ ∈

(︁𝑈
ℓ

)︁
, and

some realization {𝑖1 , 𝑖2 , . . . , 𝑖ℓ } whose unordered set is 𝑆ℓ , cancelling a factor of ℓ ! yields

𝐿(𝑆ℓ) ≔
𝜈ℓ (𝑆ℓ)
𝜈′
ℓ
(𝑆ℓ)

=
𝜇̂ℓ ({𝑖1 , 𝑖2 , . . . , 𝑖ℓ })
𝜇̂′ℓ ({𝑖1 , 𝑖2 , . . . , 𝑖ℓ })

=
∏︂
𝑗∈ℓ

𝜈𝑗 |𝑆𝑗−1={𝑖1 ,𝑖2 ,...,𝑖 𝑗−1}({𝑖 𝑗})
1
𝑘
𝑝𝑖 𝑗

(4)

where 𝜈′
ℓ
is the distribution of the unordered set corresponding to ℓ draws from 1

𝑘
𝑝. Next, we apply

Lemma 38 which yields a submartingale property on 𝑌ℓ . Letting 𝟙
𝑆ℓ∈˜︁Ω′ be the 0-1 valued indicator

function of the event 𝑆ℓ ∈ ˜︁Ω′, we compute

1 = 𝑌0 ≥ 𝔼{𝑖1 ,𝑖2 ,...,𝑖ℓ }∼𝜇̂ℓ

[︂
𝑌ℓ · 𝟙𝑆ℓ∈˜︁Ω′]︂

= ℙ𝑆ℓ∼𝜈ℓ

[︂
𝑆ℓ ∈ ˜︁Ω′]︂ ×

𝔼{𝑖1 ,𝑖2 ,...,𝑖ℓ }∼𝜇̂ℓ [exp(−ℓ𝜏 + 𝛾 log 𝐿(𝑆ℓ)) | 𝑆ℓ ∈ ˜︁Ω′].
In the last two expressions, 𝑆ℓ denotes the set {𝑖1 , 𝑖2 , . . . , 𝑖ℓ }. The first inequality used the fact that
𝑌ℓ is always nonnegative, and whenever 𝑆ℓ ∈ ˜︁Ω′ we can apply Lemma 38 to all subsets in the stages
of its construction. The second line follows since whenever 𝑆ℓ ∈ ˜︁Ω′, we are always in the first case
in the definition of Δ𝑡+1, and then we can apply (4). Hence, for any 𝐵 ≥ 0,

ℙ𝑆ℓ∼𝜈ℓ

[︂
𝑆ℓ ∈ ˜︁Ω′]︂ · 𝔼{𝑖1 ,𝑖2 ,...,𝑖ℓ }∼𝜇̂ℓ [exp(𝛾 log 𝐿(𝑆ℓ)) | 𝑆ℓ ∈ ˜︁Ω′]

≤ exp(ℓ𝜏)

which implies

ℙ{𝑖1 ,𝑖2 ,...,𝑖ℓ }∼𝜇̂ℓ [log 𝐿(𝑆ℓ) ≥ 𝐵 log|𝑈 | | 𝑆ℓ ∈ ˜︁Ω′]
≤ 2 exp(ℓ𝜏 − 𝛾𝐵 log|𝑈 |) ,

where we used Markov’s inequality, and that ˜︁Ω′ captures at least half the mass of 𝜈ℓ . However,
every permutation giving rise to the unordered set 𝑆ℓ is equally likely under 𝜇̂ℓ , so by aggregating
permutations, this can be rewritten as the desired

ℙ𝑆ℓ∼𝜈ℓ

[︂
𝐿(𝑆ℓ) ≥ |𝑈 |𝐵

|︁|︁|︁ 𝑆ℓ ∈ ˜︁Ω′]︂ ≤ 2 exp(ℓ𝜏 − 𝛾𝐵 log|𝑈 |) = 𝜖
8 .

19

Finally, we combine Lemmas 37 and 39 to prove our main result.

Lemma 40. Let 𝐵 ≥ 1, and for a sufficiently small constant below, suppose ℓ2 = 𝑂
(︂

𝛼𝑘
log 𝑛

𝜖
· 𝜖 3

𝐵

)︂
. There is a

parallel algorithm using 𝑂((𝑛𝑘2𝜖−2)𝐵 log 1
𝜖) machines which runs in 𝑂(1) time and returns a draw from a

distribution within total variation distance 𝜖
2 of 𝜇𝐷𝑘→ℓ .

Proof. Without loss of generality, we can assume 𝑛 is at least a sufficiently large constant, else the
standard sequential sampler has parallel depth ˜︁𝑂(1). We set

√︁
𝛽 := 𝜖

32𝑘 ≤ min
{︃

1
𝛼𝑘

log 1
𝜀
,

1
3𝛾

}︃
= min

{︄
1
𝛼𝑘

log 1
𝜀
,
𝐵 log 𝑛
6 log 16

𝜖

}︄
,

which clearly satisfies the assumption of Lemma 38 for sufficiently large 𝑛. Set 𝜀 = 𝜖
32|𝑈 |ℓ . Combining

Proposition 32 and Lemma 37 and using a union bound, we have

𝜈ℓ (˜︁Ω′) ≥ 1 − (1 − 𝜈ℓ (˜︁Ω)) − (︃
1 − 𝜈ℓ

(︃{︃
𝑆 ∈

(︃
𝑅

ℓ

)︃}︃)︃)︃
≥ 1 − 2

√︁
𝛽𝑘 − 2|𝑈 |ℓ𝜀 ≥ 1 − 𝜖

8 .

By Proposition 32, |𝑈 | ≤ 2𝑛𝛽−1 = 𝑂(𝑛𝑘2𝜖−2) and

log 1
𝜀
= 𝑂

(︃
log |𝑈 |ℓ

𝜖

)︃
= 𝑂

(︂
log 𝑛

𝜖

)︂
Thus, this setting of ℓ and 𝛽 satisfies the assumption of Lemma 39. Hence, the subset Ω ⊂ ˜︁Ω′ which
satisfies the conclusion of Lemma 39 has measure at least 1 − 𝜖

4 according to 𝜈ℓ . Using Algorithm 3
and Remark 33, we can sample from within total variation 𝜖

2 from 𝜈𝐷𝑘→ℓ and 𝜇𝐷𝑘→ℓ in ˜︁𝑂(1)-time
using 𝑂(|𝑈 |𝐵 log 1

𝜀), which equals 𝑂((𝑛𝑘2𝜖−2)𝐵 log 1
𝜖) machines. We note that to implement our

modified rejection sampling, it suffices to check that the likelihood ratio is bounded, which will
certainly be the case for all elements in ˜︁Ω′, and if there are other sets with bounded likelihood ratio
this only improves the total variation distance guarantee.

5.4 Proof of Theorem 29

Now we combine everything to prove Theorem 29.

Proof of Theorem 29. Since we can always sample in ˜︁𝑂(𝑘) parallel time, the statement is nontrivial
only for 𝑐 ≤ 1

2 . Set 𝜖
′ ← 𝜖

𝑘
. As in Proposition 28, it suffices to repeatedly sample from 𝜇𝐷𝑘→ℓ for

some choice of ℓ respecting the bound in Lemma 40, within total variation 𝜖′. We then condition
on this set and then repeat. By the coupling characterization of the total variation distance, the
resulting distribution will be at total variation 𝜖 from 𝜇, since this process will terminate within

𝑘 rounds. It is straightforward to see this will terminate in 𝑂
(︃√︃

𝑘/
(︂

𝛼
log 𝑛

𝜖′
· 𝜖′ 3

𝐵

)︂)︃
iterations by a

variation of the proof of Proposition 28 and the maximum allowable ℓ in Lemma 40. Setting 𝐵 = 3
𝑐

gives the desired bound on the number of iterations.

20

6 Perfect matchings in planar graphs

In this section, we give our parallel algorithm for sampling perfect matchings from a planar graph
𝐺 = (𝑉, 𝐸). Our algorithm departs somewhat from the rejection sampling-based framework used
to prove Theorem 29 and its specializations, but we include it as it highlights a different strategy for
attaining quadratic parallel speedups by using oracles, catered to the structure of planar graphs. At
a high level, our algorithm recursively finds a planar separator, which is a small set of vertices 𝑆 ⊆ 𝑉
whose removal decomposes𝑉 into two disconnected components𝑉1 and𝑉2 containing roughly the
same number of vertices. We then use our counting oracle to match the vertices in 𝑆 sequentially,
and then recursively solve the sampling problem in the subgraphs on 𝑉1 and 𝑉2.

Proof of Theorem 11. We find a planar separator 𝑆 ⊆ 𝑉 of size 𝑂(
√
𝑛) in ˜︁𝑂(1) parallel time using

poly(𝑛)machines, where removing 𝑆 from 𝐺 results in disconnected components 𝑉1 , 𝑉2 containing
at most 2𝑛

3 vertices each [GM87]. To sample a perfect matching recursively, we first sample matching
endpoints of vertices in 𝑆 as follows. Label the vertices in 𝑆 by 𝑣1 , . . . , 𝑣 |𝑆 | . Let 𝑣 = 𝑣1, and compute
in parallel the probability 𝑝𝑢 that a random matching contains the edge (𝑢, 𝑣).² We then sample a
matched edge for 𝑣 from this distribution, set 𝑣 to the next unmatched vertex in 𝑆, and continue
conditioned on priormatched edges. Sequentially proceeding over 𝑆 allows us to sample over partial
matchings containing all of 𝑆 in parallel time ˜︁𝑂(√𝑛). We then remove 𝑆 (and vertices matched to
𝑆 in this process) from 𝑉1, 𝑉2 (which can only decrease their sizes), and return the union of the
matching of 𝑆 with the results of recursive calls to 𝑉1 and 𝑉2.

The recursion depth is ˜︁𝑂(1), and each round of recursion takes parallel time 𝑂(|𝑆 |) = 𝑂(
√
𝑛),

proving the overall parallel depth. For the work bound, let 𝑄(𝑛) be a bound on the number of
machines used in the top level of recursion (excluding the recursive calls to𝑉1,𝑉2 after matching 𝑆),
and let 𝑃(𝑛) be the total bound on the number of machines used; assume without loss𝑄(𝑛) = Ω(𝑛2).
Then,

𝑃(𝑛) = 2𝑃(2𝑛/3) +𝑄(𝑛) =⇒ 𝑃(𝑛) = 𝑂(𝑄(𝑛)).

7 Hard instance for rejection sampling

In this section, we give a simple hard instance of a fractionally log-concave distribution, which
demonstrates that the dependence on 𝑘 in Theorem 29 may be inherent to our rejection sampling
strategy. In particular, it is natural to hope that we can improve Theorem 29 to obtain a parallel
depth of

√
𝑘 ·polylog(𝑘), as opposed to 𝑘 1

2+𝑐 for a constant 𝑐. Here, we give an example that suggests
that new algorithmic techniques may be necessary to obtain this improvement.

Our hard distribution 𝜇 :
(︁[𝑛]
𝑘

)︁
→ ℝ≥0 will be defined as follows. Let 𝑛 and 𝑘 be even, and consider

a partition of the ground set [𝑛] into pairs 𝑆𝑖 ≔ (2𝑖 − 1, 2𝑖) for all 𝑖 ∈ [𝑛2]. Then, the distribution 𝜇 is
uniformly supported on sets of the form

𝑆 ≔
⋃︂
𝑖∈𝑆′

𝑆𝑖 , where 𝑆′ ∈
(︃ [︁ 𝑛

2
]︁

𝑘
2

)︃
. (5)

In other words, 𝜇 randomly chooses 𝑘
2 indices between 1 and 𝑛

2 and takes the 𝑘 elements formed by
including the pairs corresponding to those indices. It is known that 𝜇 is Ω(1)-FLC (see [Ana+21a]).

²To see that we can implement this oracle, [Kas67] shows counting perfect matchings on a planar graph is reducible to
determinant computation, which is parallelizable [Csa75].

21

To simplify notation, we will assume that 𝑘 = 𝑜(𝑛) and ℓ = 𝑜(𝑘). We will also assume there is a
constant 𝐵 such thatwe have access to 𝑛𝐵 parallelmachines. Following the guarantees of Algorithm 3
in Proposition 26, if we are willing to tolerate a total variation distance of 𝛿 from 𝜇ℓ , we need to
show that with probability at least 1 − 𝛿, 𝑆 ∼ 𝜇ℓ satisfies

𝜇ℓ (𝑆)
𝜇′
ℓ
(𝑆) ≤ 𝑛

𝐵 . (6)

Here and throughout the following discussion, 𝜇′
ℓ
(𝑆) = ℓ !

𝑛ℓ
is the probability 𝑆 is formed by ℓ

independent draws from the uniform distribution on [𝑛]. In particular, the 1-marginal distribution
of 𝜇 is uniform, so this is the proposal distribution used by rejection sampling.

Our argument on the tightness of our rejection sampling proceeds as follows. Say that a set 𝑆 ∈
(︁[𝑛]
ℓ

)︁
has 𝑡 “duplicates” if, amongst the elements of 𝑆, there are exactly 𝑡 pairs of elements belonging to
the same 𝑆𝑖 . For example, for ℓ = 4 we say the set {1, 2, 3, 5} contains 1 duplicate, the pair (1, 2). We
first show that for a set 𝑆 to satisfy (6), it cannot contain more than 𝑡 = 𝑂(𝐵) duplicates. We then
show that this limitation, along with attaining a failure probability 𝛿 inverse-polynomial in 𝑘, forces
us to choose ℓ = 𝑘

1
2−𝑐 for a constant 𝑐 > 0 which may depend on 𝐵.

How many duplicates can we afford? Suppose 𝑆 ∈
(︁[𝑛]
ℓ

)︁
contains 𝑡 duplicates. Each permutation

of 𝑆 is equally likely to be observed by either of the following processes starting from 𝑇0 = ∅ (we
use 𝑇𝑖 to denote an ordered set, and 𝑆𝑖 to denote its unordered counterpart, for all 𝑖 ∈ [ℓ]).

1. For 𝑖 ∈ [ℓ], draw 𝑗 ∈ [𝑛] uniformly at random and add it to 𝑇𝑖−1 to form 𝑇𝑖 .

2. For 𝑖 ∈ [ℓ], draw 𝑗 ∈ [𝑛] according to the marginal distribution of 𝜇ℓ conditioned on including
𝑇𝑖−1 and add it to 𝑇𝑖−1 to form 𝑇𝑖 .

Hence, to bound 𝜇ℓ (𝑆)
𝜇′
ℓ
(𝑆) as needed by (6), it suffices to fix a permutation 𝑇ℓ of 𝑆ℓ = 𝑆 and bound the

ratios of the probabilities 𝑇ℓ is observed according to each of the above processes. It is observed
with probability 𝑛−ℓ according to the first process above, so satisfying (6) means the probability 𝑇ℓ
is observed by the second must be at most 𝑛𝐵−ℓ .

It is straightforward to see that the probability we observe each second element in a duplicate pair
in the relevant round 𝑖 ∈ [ℓ] is Θ

(︁ 1
𝑘

)︁
. On the other hand, the probability of observing each singleton

in its round is Θ
(︁ 1
𝑛

)︁
. For 𝑘 = 𝑜(𝑛), this shows that to meet (6) we must have(︂

Θ

(︂ 1
𝑛

)︂)︂ℓ−𝑡 (︂
Θ

(︂ 1
𝑘

)︂)︂ 𝑡
≤ 𝑛𝐵−ℓ .

This shows that we must have 𝑡 at most a constant (depending on 𝐵).

Probability of 𝑡 duplicates. Let 𝑡 be a constant. Recall that the distribution 𝜇 is uniform over all
sets of the form (5), and a sample from 𝜇ℓ = 𝐷𝑘→ℓ𝜇 is formed by sampling a set 𝑆 ∼ 𝜇 and then
randomly selecting one of the

(︁𝑘
ℓ

)︁
subsets of 𝑆. Hence, it suffices to fix some 𝑆 of the form (5) and

bound the probability that this downsampling process results in a subset with 𝑡 duplicates. By
symmetry of 𝜇, we lose no generality by only considering the set 𝑆 = ∪𝑖∈[𝑘2]𝑆𝑖 .

Now, for a constant 𝑡, the number of subsets 𝑆 of size ℓ with exactly 𝑡 duplicates is(︃
𝑘
2
𝑡

)︃
·
(︃ 𝑘

2 − 𝑡
ℓ − 2𝑡

)︃
· 2ℓ−2𝑡 .

22

The first term corresponds to choosing which 𝑡 sets 𝑆𝑖 will be fully included, the second corresponds
to choosing which sets the remaining ℓ − 2𝑡 elements come from, and the third is because for each
of the non-duplicated sets we have two options. Hence, the probability a draw from 𝜇ℓ has exactly
𝑡 duplicates for constant 𝑡 scales as(︁ 𝑘

2
𝑡

)︁
·
(︁ 𝑘

2−𝑡
ℓ−2𝑡

)︁
· 2ℓ−2𝑡(︁𝑘

ℓ

)︁ =

(︃
Θ

(︃
𝑘

ℓ

)︃)︃−ℓ
· (Θ(𝑘))𝑡 ·

(︃
Θ

(︃
𝑘

ℓ

)︃)︃ℓ−2𝑡
· 2ℓ−2𝑡

=

(︃
Θ

(︃
ℓ

𝑘

)︃)︃2𝑡
· (Θ(𝑘))𝑡 =

(︃
Θ

(︃
ℓ2

𝑘

)︃)︃ 𝑡
.

In other words, to guarantee that a draw from 𝜇ℓ contains less than 𝑡 duplicates with probability at
least 1 − 𝛿, we need to ensure that(︃

Θ

(︃
ℓ2

𝑘

)︃)︃ 𝑡
≤ 𝛿 =⇒ ℓ = 𝑂

(︂√
𝑘𝛿

1
2𝑡

)︂
.

For 𝛿 scaling inverse-polynomially in 𝑘 (which is necessary to perform a union bound over the
poly(𝑘) iterations of rejection sampling), this shows we must take ℓ ≤ 𝑘

1
2−𝑐 for some constant 𝑐

which depends on our budget constant 𝐵 from the earlier discussion.

8 Refined guarantees for bounded symmetric DPPs

For symmetric PSD ensemble matrices 𝐿 with non-trivial eigenvalue or trace bounds, we give the
following refined result improving upon Theorem 10 in various interesting parameter regimes.

Theorem 41. Let 𝐿 be a 𝑛 × 𝑛 symmetric PSD matrix and 𝜖 ∈ (0, 1). Let 𝜇 : 2[𝑛] → ℝ≥0 be the DPP
defined by 𝐿. Let 𝐾 = 𝐿(𝐼 + 𝐿)−1 ⪯ 𝐼 be the kernel of 𝐿. There exists an algorithm to approximately sample
from within 𝜖 total variation distance of 𝜇 in

˜︁𝑂 (︂
min

{︂√︁
tr(𝐾),𝜆max(𝐾)

√
𝑛
}︂)︂

parallel time using poly(𝑛)(1𝜖)𝑜(1) machines.

We use Algorithm 4, a “filtered” variant of Algorithm 1.

We prove Theorem 41 in this section. Our first step is to show that for 𝑅 = Θ(𝛼−1 log 𝑛
𝜖), the output

distribution of Algorithm 4 is within 𝜖 of the target distribution 𝜇.

We require the following helper claims. The first shows that randomly independently dropping
elements of a sample from a DPP 𝜇 is equivalent to scaling the kernel matrix.

Proposition 42. Let 𝜇 be a DPP with kernel 𝐾. Let 𝜇′ be the DPP with kernel 𝐾′ := 𝛼𝐾. Let 𝜈 be the
distribution obtained by first sampling𝑈 ∼ 𝜇, then outputting 𝑆 ⊆ 𝑈 with probability 𝛼 |𝑆 |(1 − 𝛼)|𝑆 |, i.e.

𝜈(𝑆) =
∑︂
𝑈⊇𝑆

𝜇(𝑈)𝛼 |𝑆 |(1 − 𝛼)|𝑈 |−|𝑆 | .

Then, 𝜇′ and 𝜈 are identical.

23

Algorithm 4: Filtering
Input: DPP 𝜇 : 2[𝑛] → ℝ≥0 with kernel 𝐾,𝜆max(𝐾) ≤ 𝜆
𝛼← (𝜆

√
𝑛)−1

if 𝛼 > 1 then
(1): Sample 𝑆 ∼ 𝜇 and return 𝑆.

𝑆−1 , 𝐾
(0) , 𝐿(0) ← ∅, 𝐾, 𝐿

for 𝑖 = 0, 1, . . . , 𝑅 do
(2): Sample 𝑇𝑖 ∼ DPP with kernel 𝐾̃(𝑖) := 𝛼𝐾(𝑖)

Update 𝑆𝑖 ← 𝑆𝑖−1 ∪ 𝑇𝑖
Update 𝐿(𝑖+1) ← ((1 − 𝛼)𝐿(𝑖))𝑇𝑖 (where (𝐿)𝑇 is the ensemble matrix corresponding to the DPP
with ensemble matrix 𝐿, conditioned on including 𝑇; see Section 3.2)

Update 𝐾(𝑖+1) ← 𝐼 − (𝐼 + 𝐿(𝑖+1))−1

Output 𝑆𝑅

Proof. Given a set 𝐴, we have ℙ𝑆∼𝜇′[𝐴 ⊆ 𝑆] = det((𝛼𝐾)𝐴) = 𝛼 |𝐴| det(𝐾𝐴) = 𝛼 |𝐴|
∑︁
𝑈⊇𝐴 𝜇(𝑈). On the

other hand, we have

ℙ𝑆∼𝜈[𝐴 ⊆ 𝑆] =
∑︂
𝑆⊇𝐴

𝜈(𝑆) =
∑︂

𝑈⊇𝑆⊇𝐴
𝜇(𝑈)𝛼 |𝑆 |(1 − 𝛼)|𝑈 |−|𝑆 |

= 𝛼 |𝐴|
∑︂

𝑈⊇𝑆⊇𝐴
𝜇(𝑈)𝛼 |𝑆 |−|𝐴|(1 − 𝛼)|𝑈 |−|𝑆 |

= 𝛼 |𝐴|
∑︂
𝑈⊇𝐴

𝜇(𝑈)
∑︂

𝑆′⊆𝑈\𝐴
𝛼 |𝑆

′ |(1 − 𝛼)|𝑈\𝐴|−|𝑆′ |

= 𝛼 |𝐴|
∑︂
𝑈⊇𝐴

𝜇(𝑈).

Proposition 43. Consider the setup of Algorithm 4. Suppose 𝛼 ≤ 1. Let ℙ𝑖 denote the distribution of 𝑆𝑖 .
Fix 𝜖 > 0. For 𝑖 = Ω(𝛼−1 log 𝑛

𝜖) for a sufficiently large constant, 𝑑TV(ℙ𝑖 , 𝜇) ≤ 𝜖.

Proof. Let 𝜇(𝑖) be the DPP with ensemble matrix 𝐿(𝑖) (and kernel matrix 𝐾(𝑖)), and let 𝜈(𝑖) be the DPP
with kernel matrix 𝛼𝐾(𝑖).We will prove by induction that for all 𝑖,

ℙ𝑖[𝑆𝑖] =
∑︂
𝑈⊇𝑆𝑖

𝜇(0)(𝑈)(1 − 𝛼)(𝑖+1)(|𝑈 |−|𝑆𝑖 |)(1 − (1 − 𝛼)𝑖+1)|𝑆𝑖 | .

The base case 𝑖 = 0 follows from Proposition 42. Now, supposing the induction hypothesis holds
for some 𝑖 − 1, we show that it also holds for 𝑖. In the following, let 𝑆0 be the set sampled in the first
iteration of Algorithm 4, and let ℙ𝑖[𝑆𝑖 | 𝑆0] denote the probability we observe 𝑆𝑖 conditioned on the
value of 𝑆0. The induction hypothesis then yields the probability we observe 𝑆𝑖 \ 𝑆0 in the next 𝑖 − 1
iterations, with the starting matrix 𝐿(1) ← ((1 − 𝛼)𝐿)𝑆0 as follows:

ℙ𝑖[𝑆𝑖 | 𝑆0] =
∑︂
𝑈⊇𝑆𝑖

𝜇(1)(𝑈 \ 𝑆0)(1 − 𝛼)𝑖(|𝑈\𝑆0 |−|𝑆𝑖\𝑆0 |)(1 − (1 − 𝛼)𝑖)|𝑆𝑖\𝑆0 | .

24

Hence, we compute

ℙ𝑖[𝑆𝑖] =
∑︂
𝑆0⊆𝑆𝑖

ℙ𝑖[𝑆𝑖 | 𝑆0]ℙ0[𝑆0]

=
∑︂

𝑈⊇𝑆𝑖⊇𝑆0

𝜇(1)(𝑈 \ 𝑆0)ℙ0[𝑆0]

· (1 − 𝛼)𝑖(|𝑈 |−|𝑆𝑖 |)(1 − (1 − 𝛼)𝑖)|𝑆𝑖\𝑆0 |

=
∑︂

𝑈⊇𝑆𝑖⊇𝑆0

𝜇(0)(𝑈)(1 − 𝛼)|𝑈 |−|𝑆0 |𝛼 |𝑆0 |

· (1 − 𝛼)𝑖(|𝑈 |−|𝑆𝑖 |)(1 − (1 − 𝛼)𝑖)|𝑆𝑖\𝑆0 |

=
∑︂
𝑈⊇𝑆𝑖

𝜇(0)(𝑈)(1 − 𝛼)(𝑖+1)(|𝑈 |−|𝑆𝑖 |)

·
∑︂
𝑆0⊆𝑆𝑖
(1 − 𝛼)|𝑆𝑖 |−|𝑆0 |(1 − (1 − 𝛼)𝑖)|𝑆𝑖\𝑆0 |𝛼 |𝑆0 |

=
∑︂
𝑈⊇𝑆𝑖

𝜇(0)(𝑈)(1 − 𝛼)(𝑖+1)(|𝑈 |−|𝑆𝑖 |)

·
(︂
𝛼 + (1 − 𝛼)(1 − (1 − 𝛼)𝑖)

)︂ |𝑆𝑖 |
=

∑︂
𝑈⊇𝑆𝑖

𝜇(0)(𝑈)(1 − 𝛼)(𝑖+1)(|𝑈 |−|𝑆𝑖 |)(1 − (1 − 𝛼)𝑖+1)|𝑆𝑖 |

where the third equality uses Proposition 42 and the definition of 𝐿1 = ((1 − 𝛼)𝐿)𝑆0 to derive

𝜇(1)(𝑈 \ 𝑆0)ℙ0[𝑆0] = 𝜇(1)(𝑈 \ 𝑆0)
∑︂
𝑉⊇𝑆0

(1 − 𝛼)|𝑉\𝑆0 |𝛼 |𝑆0 |𝜇(0)(𝑉)

=
(1 − 𝛼)|𝑈\𝑆0 |𝜇(0)(𝑈)∑︁

𝑉⊇𝑆0(1 − 𝛼)|𝑉\𝑆0 |𝜇(0)(𝑉)
·
∑︂
𝑉⊇𝑆0

(1 − 𝛼)|𝑉\𝑆0 |𝛼 |𝑆0 |𝜇(0)(𝑉)

= (1 − 𝛼)|𝑈\𝑆0 |𝛼 |𝑆0 |𝜇(0)(𝑈).

Thus the induction hypothesis holds for all 𝑖. By taking 𝑖 = Ω(log 𝑛
𝜖

𝛼), and only considering the
summand corresponding to𝑈 = 𝑆𝑖 ,

ℙ𝑖[𝑆𝑖] ≥ 𝜇(𝑆𝑖)(1 − (1 − 𝛼)𝑖+1)|𝑆𝑖 | ≥ 𝜇(𝑆𝑖)
(︂
1 − 𝑂

(︂ 𝜖
𝑛

)︂)︂𝑛
≥ 𝜇(𝑆𝑖)(1 − 𝜖),

and hence,

𝑑TV(ℙ𝑖[·], 𝜇) =
∑︂

𝑆𝑖 :ℙ𝑖[𝑆𝑖]≤𝜇(𝑆𝑖)
(𝜇(𝑆𝑖) − ℙ𝑖[𝑆𝑖])

≤
∑︂

𝑆𝑖 :ℙ𝑖[𝑆𝑖]≤𝜇(𝑆𝑖)
𝜖𝜇(𝑆𝑖) ≤ 𝜖.

Next, we show that each step of the for loop can be implemented in constant parallel time.

25

Lemma 44. Let 𝜇 : 2[𝑛] → ℝ≥0 be a DPP with marginal kernel 𝐾. If 𝜆max(𝐾) ≤ 1√
𝑛
, we can sample from a

distribution 𝜖-away in total variation from 𝜇 in ˜︁𝑂(1) time using 𝑂(poly(𝑛)(1𝜖)𝑜(1)) machines.

Proof. Let 𝑠 = 𝑐

√︂
𝑛 log 1

𝜖′ for 𝑐 as in Lemma 14. LetΩ := {𝑆 ⊆ [𝑛] | |𝑆 | ≤ 𝑠} . Let 𝑝𝑖 := 𝐾𝑖 ,𝑖 = ℙ𝑆∼𝜇[𝑖 ∈
𝑆]. Let 𝜈 be the distribution obtained by independently sampling independent 𝑏𝑖 ∼ Ber(𝑝𝑖) for all
𝑖 ∈ [𝑛], and outputting 𝑇 = {𝑖 | 𝑏𝑖 = 1} . By Lemma 14,

∑︁
𝑆∈Ω 𝜇(𝑆) ≥ 1 − 𝜖′. Moreover, for fixed

𝑇 ∈ Ω, we have

𝜇(𝑇)
𝜈(𝑇) =

det 𝐿𝑇
det(𝐼 + 𝐿)

(︄∏︂
𝑖∈𝑇

𝑝𝑖

∏︂
𝑖∉𝑇

(1 − 𝑝𝑖)
)︄−1

= det(𝐿𝑇)det(𝐼 − 𝐾)
(︄∏︂
𝑖∈𝑇

𝐾𝑖 ,𝑖

∏︂
𝑖∉𝑇

(1 − 𝐾𝑖 ,𝑖)
)︄−1

,

where we use 𝐼 + 𝐿 = (𝐼 − 𝐾)−1. By applying Corollary 18 to 𝐼 − 𝐾, we have

det(𝐼 − 𝐾) ≤
∏︂
𝑖∈[𝑛]
(1 − 𝐾𝑖,𝑖) ≤

∏︂
𝑖∉𝑇

(1 − 𝐾𝑖 ,𝑖),

so it suffices to show
det(𝐿𝑇) ≤

(︂1
𝜖

)︂ 𝑜(1)∏︂
𝑖∈𝑇

𝐾𝑖 ,𝑖 =⇒
𝜇(𝑇)
𝜈(𝑇) ≤

(︂1
𝜖

)︂ 𝑜(1)
,

at which point we can apply Proposition 26. Let 𝐾 = 𝑈𝐷𝑈⊺ where 𝑈 ∈ ℝ𝑛×𝑛 is an orthonormal
basis of eigenvectors of 𝐾, and 𝐷 = diag({𝜆𝑖}𝑖∈[𝑛]), where 𝜆1 ≥ · · · ≥ 𝜆𝑛 are the eigenvalues of 𝐾.
By (2), we can write

𝐿 = 𝑈diag

(︄{︃
𝜆𝑖

1 − 𝜆𝑖

}︃
𝑖∈[𝑛]

)︄
𝑈⊺ .

Thus, by applying the Cauchy-Binet formula twice,

det(𝐿𝑇) = det

(︄
𝑈𝑇,[𝑛]diag

(︄{︃
𝜆𝑖

1 − 𝜆𝑖

}︃
𝑖∈[𝑛]

)︄
𝑈
⊺
[𝑛],𝑇)

)︄
=

∑︂
𝑆⊆[𝑛],|𝑆 |=|𝑇 |

det(Λ𝑇,𝑆)
(︄∏︂
𝑖∈𝑆

𝜆𝑖
1 − 𝜆𝑖

)︄
det(Λ⊺

𝑆,𝑇
)

≤ exp

(︄
𝑐

√︃
log 1

𝜖

)︄ ∑︂
𝑆⊆[𝑛],|𝑆 |=|𝑇 |

det(Λ𝑇,𝑆)
(︄∏︂
𝑖∈𝑆

𝜆𝑖

)︄
det(Λ⊺

𝑆,𝑇
)

= exp

(︄
𝑐

√︃
log 1

𝜖

)︄
det(𝐾𝑇)

≤ exp

(︄
𝑐

√︃
log 1

𝜖

)︄ ∏︂
𝑖∈𝑇

𝐾𝑖 ,𝑖

26

where in the first inequality, we used∏︂
𝑖∈𝑆
(1 − 𝜆𝑖) ≥

(︃
1 − 1√

𝑛

)︃ |𝑆 |
≥

(︃
1 − 1√

𝑛

)︃ 𝑠
≥ exp

(︄
−𝑐

√︃
log 1

𝜖

)︄
and in the last inequality, we used Corollary 18. Thus by Proposition 26, we can sample from 𝜇̃
that is 𝜖-away from 𝜇 in 𝑂(1) parallel time using 𝑂((1𝜖)𝑜(1)poly(𝑛))machines, by setting 𝛿← 𝜖

2 and
adjusting the definition of 𝜖 in this proof by a constant.

Proposition 45. Consider the setup of Algorithm 4. Suppose 𝛼 ≤ 1. We have 𝜆max(𝐾(𝑖)) ≤ 𝜆 for all 𝑖, so
that 𝜆max(𝐾̃

(𝑖)) ≤ 1√
𝑛
. Consequently, each iteration of the for loop can be implemented in ˜︁𝑂(1) parallel time

using 𝑂(poly(𝑛)(1𝜖)𝑜(1)) machines, up to total variation distance 𝜖.

Proof. We inductively show that 𝜆max(𝐾(𝑖)) ≤ 𝜆 for all 𝑖. The base case 𝑖 = 0 directly follows from
the input assumption. Now let us assume that 𝜆max(𝐾(𝑖)) ≤ 𝜆 for some 𝑖 ≥ 0. We will show that
𝜆max(𝐾(𝑖+1)) ≤ 𝜆 follows. Let 𝑆 be the index set of 𝐿𝑖 and 𝑆̃ = 𝑆 \ 𝑇𝑖 where 𝑇𝑖 was sampled. Then,

𝐿(𝑖+1) = ((1 − 𝛼)𝐿(𝑖))𝑇𝑖 = (1 − 𝛼)𝐿𝑆̃ − (1 − 𝛼)𝐿𝑆̃,𝑇𝑖𝐿
−1
𝑇𝑖 ,𝑇𝑖

𝐿𝑇𝑖 ,𝑆̃ .

Since 𝐿(𝑖) is PSD, 𝐿(𝑖)
𝑆̃,𝑇𝑖

(︂
𝐿
(𝑖)
𝑇𝑖 ,𝑇𝑖

)︂−1
𝐿
(𝑖)
𝑇𝑖 ,𝑆̃
⪰ 0. Thus 𝐿(𝑖+1) ⪯ (1 − 𝛼)𝐿(𝑖)

𝑆̃
⪯ 𝐿(𝑖)

𝑆̃
.

LetΛ be the set of the eigenvalues of𝐾(𝑖). Due to (2), the eigenvalues of 𝐿(𝑖) are given by { 𝜆
1−𝜆 | 𝜆 ∈ Λ}.

As 𝜆
1−𝜆 is strictly increasing in the range [0, 1], and the largest eigenvalue of 𝐿(𝑖+1) is dominated by

the largest eigenvalue of 𝐿(𝑖) (since restrictions to index sets can only decrease quadratic forms), we
have the first desired conclusion. The second conclusion follows from Lemma 44 as the eigenvalue
bound is satisfied.

Finally, we are ready to prove Theorem 41.

Proof of Theorem 41. The bound involving tr𝐾 follows from a similar argument as in Remark 15.
Note that tr𝐾 = 𝔼𝑆∼𝜇[|𝑆 |], and that by Lemma 14, the set Ω :=

{︁
𝑆 ⊆ [𝑛]

|︁|︁ |𝑆 | ≤ tr𝐾 log 2
𝜖

}︁
has

𝜇(Ω) ≥ 1 − 𝜖
2 .When drawing 𝑘 fromℋ (the distribution on cardinality values), if 𝑘 ≤ tr𝐾 log 2

𝜖 , we
use Theorem 10 to approximately sample from within 𝜖

2 of 𝜇𝑘 , else we output an arbitrary subset.
By the triangle inequality, the output’s distribution is within 𝜖

2 + 𝜖
2 = 𝜖 of 𝜇. The algorithm runs in

the stated parallel time depending on tr𝐾 using the number of machines as Theorem 10.

Nowwe focus on the bound involving 𝜆max(𝐾). If 𝛼 > 1 then the conclusion follows from Lemma 44
applied to step (1). Else, suppose 𝛼 ≤ 1. We run Algorithm 4 with 𝑅 = 𝑂(𝜆

√
𝑛 log 𝑛

𝜖) such that
Proposition 43 guarantees that if we can run the algorithm correctly, the output has total variation
𝜖
2 . Let 𝜖

′ = 𝜖
𝑅 . Let 𝜈

(𝑖) be the target distribution of 𝑇𝑖 in 𝑖th step of the for loop. By Proposition 45,
we can modify step (2) to sample from 𝜈̂(𝑖) that is 𝜖′-away from 𝜈(𝑖) in TV-distance in ˜︁𝑂(1) time
using 𝑂(poly(𝑛)(1𝜖)𝑜(1))machines. Hence, by the triangle inequality, the output of the algorithm
is 𝜖

2 away from the output if we were given exact sample access to each 𝜈(𝑖). Combining with the
approximation error of Proposition 43 yields the conclusion.

27

9 Deferred proofs

Proof of Lemma 12. We first prove the inequality for the case 𝑆 = [𝑛] and 𝐶 = 1. Clearly,

𝑓 ′(𝑟) = 𝑛𝜆−1𝜆
(︂
𝑟𝜆−1 − (𝜆 − 1)(1 + log 𝑟 + log 𝑛)

)︂
and

𝑓 ′′(𝑟) = 𝑛𝜆−1𝜆(𝜆 − 1)
(︂
𝑟𝜆−2 − 1

𝑟

)︂
≤ 0.

Thus 𝑓 is concave and
1
𝑛

𝑛∑︂
𝑖=1

𝑓 (𝑞𝑖) ≤ 𝑓

(︄
1
𝑛

𝑛∑︂
𝑖=1

𝑞𝑖

)︄
= 𝑓

(︂ 1
𝑛

)︂
=

1
𝑛

which is equivalent to

𝑛∑︂
𝑖=1

𝑞𝜆𝑖 𝑛
𝜆−1 ≤ 1 + 𝑛𝜆−1𝜆(𝜆 − 1)

𝑛∑︂
𝑖=1

𝑞𝑖 log(𝑛𝑞𝑖).

The case 𝐶 > 1 then follows from

𝒟𝜆(𝑞 ∥ 𝑝) =
𝑛∑︂
𝑖=1

𝑞𝜆𝑖 𝑝
1−𝜆
𝑖

≤ 𝐶𝜆−1
𝑛∑︂
𝑖=1

𝑞𝜆𝑖 𝑛
𝜆−1

≤ 𝐶𝜆−1

(︄
1 + 𝑛𝜆−1𝜆(𝜆 − 1)

𝑛∑︂
𝑖=1

𝑞𝑖 log(𝑛𝑞𝑖)
)︄

≤ 𝐶𝜆−1

(︄
1 + 𝑛𝜆−1𝜆(𝜆 − 1)

(︄
𝑛∑︂
𝑖=1

𝑞𝑖 log
𝑞𝑖

𝑝𝑖
+ log𝐶

)︄)︄
.

The case 𝑆 ≠ [𝑛] follows by noticing∑︂
𝑖∈𝑆

𝑞𝑖

(︃
𝑞𝑖

𝑝𝑖

)︃𝜆−1
≤

𝑛∑︂
𝑖=1

𝑞𝜆𝑖 𝑝
1−𝜆
𝑖 .

Proof of Proposition 13. First, note that DPPs and 𝑘-DPPs correspond to Partition-DPPs with 0 and 1
partition constraints respectively. We thus show the claim for𝜇 a Partition-DPPwith𝑂(1) constraints.
Computing the marginals is equivalent to computing the partition functions of 𝜇 and 𝜇 conditioned
on subsets. As shown in [Cel+17, Theorem 1.1], computing the partition function is equivalent
to computing the coefficients of a polynomial in 𝑂(1) variables, obtained from the generating
polynomial by plugging the same variable for all elements in a partition. This polynomial can be
evaluated efficiently given access to 𝑔𝜇. Evaluating 𝑔𝜇 at (𝑧1 , . . . , 𝑧𝑛) is equivalent to computing
det(𝐿+diag(𝑧𝑖)𝑛𝑖=1),which can be done in ˜︁𝑂(1)-parallel time [Ber84]. From evaluations we can obtain
the coefficients by polynomial interpolation; this can be solved, e.g., by solving linear equations,
doable in NC [Csa75].

28

Proof of Lemma 14. Let 𝑓 (𝑆) = |𝑆 | correspond to the 1-Lipschitz (with respect to the Hamming
metric) function of the size of a sample 𝑆 from 𝜇, and let 𝑓 indicate the value 𝔼𝑆∼𝜇[𝑓].

By applying known concentration inequalities for strongly Rayleigh distributions [PP13, Theorem
3.2], it follows that

ℙ𝑆∼𝜇[𝑓 − 𝑓 > 𝑎] ≤ 3 exp
(︃
−𝑎2

16(𝑎 + 2 𝑓)

)︃
.

For the first statement, let 𝑎 = 10
√︂
𝑛 log 1

𝜖 , and note exp(− 𝑎2

16(𝑎+2 𝑓̄)) ≤
𝜖
3 and 𝑎 + 𝑓̄ ≤ 11

√︂
𝑛 log 1

𝜖 . For

the second, let 𝑎 = 𝑓̄ log 1
𝜖 and note exp(− 𝑎2

16(𝑎+2 𝑓̄)) ≤
𝜖
3 and 𝑎 + 𝑓̄ ≤ 2 𝑓̄ log 1

𝜖 .

Proof of Proposition 32. First, we check the cardinality of the new ground set𝑈 :

𝑛𝛽−1 =

𝑛∑︂
𝑖=1

𝑛

𝑘𝛽
𝑝𝑖 ≤ |𝑈 |

=

𝑛∑︂
𝑖=1

𝑡𝑖 ≤
𝑛∑︂
𝑖=1

(︃
1 + 𝑛

𝑘𝛽
𝑝𝑖

)︃
= 𝑛 + 𝑛

𝑘𝛽

𝑛∑︂
𝑖=1

𝑝𝑖 = 𝑛(1 + 𝛽−1).

Next, we check that for any 𝑖(𝑗), the marginal probabilities ℙ𝑆∼𝜇iso[𝑖(𝑗) ∈ 𝑆] are at most 𝐶𝑘
|𝑈 | . In the

following calculation, we interpret sampling from 𝜇iso as first sampling from 𝜇 and then choosing a
copy 𝑗 ∈ [𝑡𝑖] for each element. This yields

ℙ𝑆∼𝜇iso[𝑖(𝑗) ∈ 𝑆] =
∑︂
𝑆∋𝑖

ℙ[we chose copy 𝑗 | we sampled 𝑆 from 𝜇]

· ℙ[we sampled 𝑆 from 𝜇]

=
∑︂
𝑆∋𝑖

1
𝑡𝑖
· 𝜇(𝑆) = 1

𝑡𝑖

∑︂
𝑆∋𝑖

𝜇(𝑆) = 1
𝑡𝑖
· ℙ𝑆∼𝜇[𝑖 ∈ 𝑆].

Since 1 + 𝑛
𝛽𝑘 𝑝𝑖 ≥ 𝑡𝑖 ≥

𝑛
𝛽𝑘 𝑝𝑖 , we obtain

𝑘

𝑘𝑝−1
𝑖
+ 𝑛𝛽−1 =

𝑝𝑖

1 + 𝑛
𝛽𝑘 𝑝𝑖

≤ ℙ𝑆∼𝜇iso[𝑖(𝑗) ∈ 𝑆]

≤ 𝛽𝑘

𝑛
=

𝑘(𝛽 + 1)
𝑛(1 + 𝛽−1) ≤

𝑘(𝛽 + 1)
|𝑈 | ≤ 𝐶𝑘

|𝑈 | .

The latter inequality shows the marginal upper bound. Next, to show the marginal lower bound,
suppose ℙ𝜇[𝑖 ∈ 𝑆] = 𝑝𝑖 ≥

√︁
𝛽𝑘
𝑛 . Then for all 𝑗 ∈ [𝑡𝑖],

ℙ𝑆∼𝜇iso[𝑖(𝑗) ∈ 𝑆] ≥ 𝑘

𝑘𝑝−1
𝑖
+ 𝑛𝛽−1 ≥

𝑘

𝑛𝛽−1(1 +
√︁
𝛽)
≥ 𝑘

𝐶 |𝑈 | .

29

Finally, letting 𝑅̄ ≔

{︃
𝑖

|︁|︁|︁|︁ 𝑝𝑖 ≥ √︁
𝛽𝑘
𝑛

}︃
⊆ [𝑛],∑︂

𝑆∈(𝑅ℓ)
𝜇iso
ℓ (𝑆) =

∑︂
𝑆̄∈(𝑅̄ℓ)

𝜇ℓ (𝑆̄)

= 1 −
∑︂

𝑆̄⊆([𝑛]ℓ):𝑆̄⊈(𝑅̄ℓ)
𝜇ℓ (𝑆̄)

≥ 1 −
∑︂
𝑖∉𝑅̄

∑︂
𝑆̄⊆([𝑛]ℓ):𝑖∈𝑆̄

𝜇ℓ (𝑆̄)

= 1 −
∑︂
𝑖∉𝑅̄

ℓ 𝑝𝑖

𝑘
≥ 1 −

√︁
𝛽ℓ .

Proof of Lemma 34. Throughout this proof, fix the set 𝑆 ∈
(︁[𝑛]
𝑡

)︁
, and let 𝐴𝑆 denote the left-hand side

of (3). Let 𝑞𝑖 ≔ ℙ𝑇∼𝜇[𝑖 ∈ 𝑇 | 𝑆 ⊆ 𝑇], and note that 𝑞𝑖 = 1 for all 𝑖 ∈ 𝑆. Moreover, we have

𝐴𝑆 =
∑︂
𝑖∉𝑆

𝑞𝑖

𝑘 − 𝑡 log
(︃
𝑞𝑖

𝑝𝑖
· 𝑘

𝑘 − 𝑡

)︃
=

𝑘

𝑘 − 𝑡
∑︂
𝑖∉𝑆

𝑞𝑖

𝑘
log

(︃
𝑞𝑖

𝑝𝑖

)︃
+ log 𝑘

𝑘 − 𝑡

≤ 𝑘

𝑘 − 𝑡
∑︂
𝑖∉𝑆

𝑞𝑖

𝑘
log

(︃
𝑞𝑖

𝑝𝑖

)︃
+ 2𝑡
𝑘
.

(7)

The first equation used that by definition, 𝜇𝑡+1|𝑆 =
𝑞𝑆𝑐

𝑘−𝑡 where 𝑞𝑆𝑐 restricts 𝑞 to 𝑆𝑐 ≔ [𝑛] \ 𝑆; the only
inequality used log(1 + 𝑐) ≤ 𝑐 for all 𝑐 ≥ 0 and 𝑡 ≤ 1

2 𝑘. We note that for

𝐵𝑆 ≔
∑︂
𝑖∉𝑆

𝑞𝑖

𝑘
log

(︃
𝑞𝑖

𝑝𝑖

)︃
+

∑︂
𝑖∈𝑆

1
𝑘

log 1
𝑝𝑖
,

we have by 𝑡 ≤ 1
2 𝑘 that

𝐴𝑆 ≤ 2
∑︂
𝑖∉𝑆

𝑞𝑖

𝑘
log

(︃
𝑞𝑖

𝑝𝑖

)︃
+ 2𝑡
𝑘
≤ 2𝐵𝑆 +

2𝑡
𝑘
, (8)

since log 1
𝑝𝑖
≥ 0 for all 𝑖 ∈ [𝑛]. We next give an interpretation of the quantity 𝐵𝑆. Let 𝜇𝑆 be the

distribution of 𝑇 ∼ 𝜇 conditioned on 𝑆 ⊂ 𝑇, so that

𝜇𝑆𝐷𝑘→1 =

{︄
1
𝑘

𝑖 ∈ 𝑆
𝑞𝑖
𝑘

𝑖 ∉ 𝑆
.

Notice that 𝐵𝑆 is defined to be𝒟KL(𝜇𝑆𝐷𝑘→1 ∥ 𝜇𝐷𝑘→1) (since 𝜇𝐷𝑘→1 = 1
𝑘
𝑝), which we can control

30

by entropic independence of 𝜇. In particular,

𝐵𝑆 = 𝒟KL(𝜇𝑆𝐷𝑘→1 ∥ 𝜇𝐷𝑘→1) ≤
1
𝛼𝑘
𝒟KL(𝜇𝑆 ∥ 𝜇)

=
1
𝛼𝑘

∑︂
𝑇∈([𝑛]

𝑘
)

𝑆⊂𝑇

𝜇𝑆(𝑇) log
𝜇𝑆(𝑇)
𝜇(𝑇)

=
1
𝛼𝑘

∑︂
𝑇∈([𝑛]

𝑘
)

𝑆⊂𝑇

𝜇𝑆(𝑇)

· log
(︃

𝜇(𝑇)
ℙ𝑇∼𝜇[𝑆 ⊂ 𝑇]

· 1
𝜇(𝑇)

)︃
=

1
𝛼𝑘

log
(︃

1
ℙ𝑇∼𝜇[𝑆 ⊂ 𝑇]

)︃
.

Combining the above display with (8) completes the proof.

References
[AD20] Nima Anari and Michał Dereziński. “Isotropy and Log-Concave Polynomials: Acceler-

ated Sampling and High-Precision Counting of Matroid Bases”. In: Proceedings of the
61st Annual Symposium on Foundations of Computer Science. 2020.

[AL20] Vedat Levi Alev and Lap Chi Lau. “Improved analysis of higher order random walks
and applications”. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing. 2020, pp. 1198–1211.

[Ald90] David JAldous. “The randomwalk construction of uniform spanning trees anduniform
labelled trees”. In: SIAM Journal on Discrete Mathematics 3.4 (1990), pp. 450–465.

[Ali+21] Yeganeh Alimohammadi, Nima Anari, Kirankumar Shiragur, and Thuy-Duong Vuong.
“Fractionally Log-Concave and Sector-Stable Polynomials: Counting Planar Matchings
and More”. In: arXiv preprint arXiv:2102.02708 (2021).

[ALO20] Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. “Spectral Independence in High-
Dimensional Expanders and Applications to the Hardcore Model”. In: Proceedings of
the 61st IEEE Annual Symposium on Foundations of Computer Science. IEEE Computer
Society, 2020.

[Ana+19] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. “Log-concave
polynomials II: high-dimensionalwalks and an FPRAS for counting bases of amatroid”.
In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. 2019,
pp. 1–12.

[Ana+20] Nima Anari, Nathan Hu, Amin Saberi, and Aaron Schild. “Sampling Arborescences in
Parallel”. In: arXiv preprint arXiv:2012.09502 (2020).

[Ana+21a] Nima Anari, Michal Derezinski, Thuy-Duong Vuong, and Elizabeth Yang. “Domain
Sparsification ofDiscreteDistributions using Entropic Independence”. In:CoRR abs/2109.06442
(2021).

[Ana+21b] Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong.
“Entropic Independence I: Modified Log-Sobolev Inequalities for Fractionally Log-
Concave Distributions and High-Temperature Ising Models”. In: CoRR abs/2106.04105
(2021). arXiv: 2106.04105.

31

https://arxiv.org/abs/2106.04105

[Ana+21c] Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong.
“Entropic Independence II: Optimal Sampling and Concentration via Restricted Modi-
fied Log-Sobolev Inequalities”. In: arXiv preprint arXiv:2111.03247 (2021).

[Ana+23] Nima Anari, Yizhi Huang, Thuy-Duong Vuong, Brian Xu, and Katherine Yu. “Parallel
Discrete Sampling via Continuous Walks”. 2023.

[Bar18] Alexander Barvinok. “Approximating real-rooted and stable polynomials, with combi-
natorial applications”. In: arXiv preprint arXiv:1806.07404 (2018).

[BBL09] Julius Borcea, Petter Brändén, and Thomas Liggett. “Negative dependence and the
geometry of polynomials”. In: Journal of the American Mathematical Society 22.2 (2009),
pp. 521–567.

[Ber84] Stuart J. Berkowitz. “On computing the determinant in small parallel time using a
small number of processors”. In: Information Processing Letters 18.3 (1984), pp. 147–150.

[Bro89] Andrei Z Broder. “Generating random spanning trees”. In: FOCS. Vol. 89. Citeseer.
1989, pp. 442–447.

[Bru18] Victor-Emmanuel Brunel. “Learning Signed Determinantal Point Processes through
the Principal Minor Assignment Problem”. In: Advances in Neural Information Processing
Systems. Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett. Vol. 31. Curran Associates, Inc., 2018, pp. 7365–7374.

[Cel+16] L Elisa Celis, Amit Deshpande, Tarun Kathuria, Damian Straszak, and Nisheeth K
Vishnoi. “On the complexity of constrained determinantal point processes”. In: arXiv
preprint arXiv:1608.00554 (2016).

[Cel+17] L. Elisa Celis, Amit Deshpande, Tarun Kathuria, Damian Straszak, and Nisheeth
K. Vishnoi. “On the Complexity of Constrained Determinantal Point Processes”. In:
APPROX-RANDOM. 2017.

[CLV21] Zongchen Chen, Kuikui Liu, and Eric Vigoda. “Spectral independence via stability
and applications to holant-type problems”. In: arXiv preprint arXiv:2106.03366 (2021).

[Csa75] Laszlo Csanky. “Fast parallel matrix inversion algorithms”. In: 16th Annual Symposium
on Foundations of Computer Science (sfcs 1975). IEEE. 1975, pp. 11–12.

[DM21] Michał Derezinski and Michael W Mahoney. “Determinantal point processes in ran-
domized numerical linear algebra”. In: Notices of the American Mathematical Society 68.1
(2021), pp. 34–45.

[Elf+19] Mohamed Elfeki, Camille Couprie, Morgane Riviere, andMohamed Elhoseiny. “GDPP:
Learning diverse generations using determinantal point processes”. In: International
Conference on Machine Learning. PMLR. 2019, pp. 1774–1783.

[FHY21] Weiming Feng, Thomas P Hayes, and Yitong Yin. “Distributed metropolis sampler
with optimal parallelism”. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM. 2021, pp. 2121–2140.

[Gar+19] Mike Gartrell, Victor-Emmanuel Brunel, Elvis Dohmatob, and Syrine Krichene. “Learn-
ing Nonsymmetric Determinantal Point Processes”. In: ArXiv abs/1905.12962 (2019).

[Gar+20] Mike Gartrell, Insu Han, Elvis Dohmatob, Jennifer Gillenwater, and Victor-Emmanuel
Brunel. Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point Pro-
cesses. 2020. arXiv: 2006.09862 [cs.LG].

[GM87] Hillel Gazit and Gary L. Miller. “A parallel algorithm for finding a separator in planar
graphs”. In: 28th Annual Symposium on Foundations of Computer Science (sfcs 1987). 1987,
pp. 238–248. doi: 10.1109/SFCS.1987.3.

[Gon+14] Boqing Gong,Wei-lun Chao, Kristen Grauman, and Fei Sha. Large-Margin Determinantal
Point Processes. 2014. arXiv: 1411.1537 [stat.ML].

32

https://arxiv.org/abs/2006.09862
https://doi.org/10.1109/SFCS.1987.3
https://arxiv.org/abs/1411.1537

[GPK16] MikeGartrell, Ulrich Paquet, andNoamKoenigstein. “Bayesian Low-RankDeterminan-
tal Point Processes”. In: Proceedings of the 10th ACM Conference on Recommender Systems.
RecSys ’16. Boston, Massachusetts, USA: Association for Computing Machinery, 2016,
pp. 349–356. isbn: 9781450340359. doi: 10.1145/2959100.2959178.

[JVV86] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. “Random generation of com-
binatorial structures from a uniform distribution”. In: Theoretical computer science 43
(1986), pp. 169–188.

[Kas67] Pieter Kasteleyn. “Graph theory and crystal physics”. In: Graph theory and theoretical
physics (1967), pp. 43–110.

[KT12a] Alex Kulesza and Ben Taskar. “Determinantal Point Processes for Machine Learning”.
In: Found. Trends Mach. Learn. 5.2-3 (2012), pp. 123–286.

[KT12b] Alex Kulesza and Ben Taskar. k-DPPs: Fixed-Size Determinantal Point Processes. 2012.
[LB12] Hui Lin and Jeff Bilmes. “Learning Mixtures of Submodular Shells with Application

to Document Summarization”. In: Uncertainty in Artificial Intelligence - Proceedings of
the 28th Conference, UAI 2012 (Oct. 2012).

[LJS16] Chengtao Li, Stefanie Jegelka, and Suvrit Sra. “Fast DPP Sampling for Nyström with
Application to Kernel Methods”. In: CoRR abs/1603.06052 (2016). arXiv: 1603.06052.

[LY21] Hongyang Liu and Yitong Yin. “Simple Parallel Algorithms for Single-Site Dynamics”.
In: arXiv preprint arXiv:2111.04044 (2021).

[MS15] Zelda Mariet and Suvrit Sra. “Fixed-point algorithms for determinantal point pro-
cesses”. In: CoRR, abs/1508.00792 (2015).

[PP13] Robin Pemantle and Yuval Peres. Concentration of Lipschitz functionals of determinantal
and other strong Rayleigh measures. 2013. arXiv: 1108.0687 [math.PR].

[PR17] Viresh Patel and Guus Regts. “Deterministic polynomial-time approximation algo-
rithms for partition functions and graph polynomials”. In: SIAM Journal on Computing
46.6 (2017), pp. 1893–1919.

[Ten95] Shang-Hua Teng. “Independent sets versus perfect matchings”. In: Theoretical Computer
Science 145.1-2 (1995), pp. 381–390.

[Wil+18] Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H. Chi, and Jen-
nifer Gillenwater. “Practical Diversified Recommendations on YouTube with Determi-
nantal Point Processes”. In: Proceedings of the 27th ACM International Conference on Infor-
mation and Knowledge Management. CIKM ’18. Torino, Italy: Association for Computing
Machinery, 2018, pp. 2165–2173. isbn: 9781450360142. doi: 10.1145/3269206.3272018.

33

https://doi.org/10.1145/2959100.2959178
https://arxiv.org/abs/1603.06052
https://arxiv.org/abs/1108.0687
https://doi.org/10.1145/3269206.3272018

	Introduction
	Determinantal distributions
	Techniques and algorithms
	Further related work

	Overview
	Preliminaries
	Divergences
	Determinantal point processes
	Entropic independence
	Rejection sampling

	Symmetric DPP
	Entropically independent distributions
	Isotropic transformation
	KL divergence bound
	Concentration of acceptance probability
	Proof of thm:mainei

	Perfect matchings in planar graphs
	Hard instance for rejection sampling
	Refined guarantees for bounded symmetric DPPs
	Deferred proofs

