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Urban Air Mobility (UAM) presents an innovative solution for intra-urban and inter-urban

transportation, promising enhanced ŕexibility, efficiency, and sustainability. However, the

integration of UAM into densely populated city environments brings signiőcant challenges,

particularly in the precision landing of multi-rotor vehicles amid complex and dynamic urban

landscapes. To address this challenge, our paper introduces a novel convex optimization

approach to solve the high-ődelity landing problem of electric vertical take-off and landing

(eVTOL) vehicles. In our method, we őrst conceptualize the eVTOL vehicle landing trajectory

optimization as a high-dimensional, highly nonconvex optimal control problem. We then

implement a series of convenient convexiőcation techniques to transform this problem into a

convex form. The core of our approach lies in the application of sequential convex programming

(SCP), an advanced method known for its efficacy and real-time performance in handling

complex optimization challenges. We conduct a comparative analysis of our SCP-based solution

with results obtained from the GPOPS-II solver, a widely recognized general-purpose tool in

optimal control. This comparison not only benchmarks the performance of our method but

also highlights its potential advantages in solving complicated, dynamic trajectory optimization

problems in the context of UAM.

Nomenclature

𝐴 = blade area, m2

𝑐 = cord length of blade, m

𝐶𝐷 = drag coefficient

𝐶𝑄 = torque coefficient

𝐶𝑇 = thrust coefficient

𝐶𝑟𝑜𝑙𝑙 = roll moment coefficient

𝐶𝑝𝑖𝑡𝑐ℎ = pitch moment coefficient

𝐶𝑝 = power coefficient

𝐷 = drag force, N

𝐹 = aerodynamic force produced by rotor, N

𝐼𝑥𝑥 = moment of inertia about the x-axis, kg·m2

𝐼𝑦𝑦 = moment of inertia about the y-axis, kg·m2

𝐼𝑧𝑧 = moment of inertia about the z-axis, kg·m2

𝑔 = gravitational acceleration, m/s2

𝑙 = arm length, m

𝑚 = vehicle’s mass, kg

𝑀 = aerodynamic moment produced by rotor, kg·m2

𝑁 = number of blades
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𝑅 = radius of blade, m

u = control vector

𝑢 = tangential component of freestream velocity in rotor plane, m/s

𝑣𝑖 = nondimensional uniform steady induced velocity

𝑤 = vertical component of freestream velocity in rotor plane, m/s

𝑡 𝑓 = time of ŕight, s

x = state vector

𝜃 = pitch angle, deg

𝜙 = roll angle, deg

𝜓 = yaw angle, deg

𝜌 = atmospheric density, kg/m3

𝜆𝑖 = nondimensional inŕow distribution

Ω𝑖 = angular velocity of rotor 𝑖, rad/s

𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧 = roll, pitch, and yaw torques with respect to the vehicle body frame

𝛿 = trust-region radius

𝜀 = tolerance

v = virtual control vector

I. Introduction

E
quipped with the latest technologies such as electric vertical take-off and landing (eVTOL) vehicles, urban air

mobility (UAM) is emerging as a revolutionary mode of transportation in congested urban areas. These eVTOL

vehicles, characterized by their ability to ascend and descend vertically, promise a novel solution for alleviating ground

traffic congestion, thereby reshaping the landscape of urban transportation [1ś5]. This innovative approach to urban

transit is not only seen as a potential game-changer for daily commutes but also as a pivotal element in emergency

response and urban logistics. However, despite these promising developments, deployment and operation of eVTOL

vehicles in UAM missions face signiőcant challenges.

Critical factors, such as energy capacity and the need to navigate complex urban environments safely, are

constraining successful operation of eVTOL vehicles for UAM missions. Unlike traditional aircraft, eVTOLs rely on

battery technology, which, despite rapid advancements, still poses limitations in terms of energy density and weight.

Consequently, the optimization of ŕight trajectories becomes a crucial concern in the application and deployment of

eVTOLs for UAM. Trajectory optimization involves a comprehensive consideration of various mission objectives,

which may range from passenger transport to cargo delivery, each with its own set of requirements and constraints.

Depending on the ŕight missions, each eVTOL ŕight may include different ŕying phases, such as take-off, ascending,

cruising, descent, and landing, each demanding speciőc ŕight paths and energy usage strategies. Moreover, the dynamic

and often unpredictable nature of urban environments, combined with varying weather conditions, require a ŕexible

and robust trajectory optimization approach that can calculate safe and efficient ŕying paths in real-time. Therefore,

developing rigorous yet easily implementable trajectory optimization methods is crucial for ensuring the efficient and

safe performance of eVTOL aircraft in diverse UAM mission operations.

Among the ŕight phases of eVTOLs, the landing stage is inherently intricate due to the dynamic, disturbing weather

conditions (e.g., wind gusts) and the complex infrastructure (e.g., high-rise buildings) within urban landscapes. Most

existing research in this őeld utilizes reinforcement learning approaches [6ś9] or various optimization methods [10ś14]

to solve the eVTOL landing problems. These approaches typically employ simpliőed models of vehicle dynamics,

which, while effective in control designs, often fail to accurately capture aerodynamic interactions in real-world urban

environments for precision decision-makings. These interactions include wind gusts and the effects of turbulence caused

by the urban infrastructure, which can signiőcantly inŕuence the behavior of eVTOL vehicles [15, 16].

The existing research largely relies on simpliőed dynamic models ignoring the deviations in aircraft behavior that

can occur under real-world urban conditions, leading to landing paths that are not only suboptimal but also potentially

unsafe. In contrast, high-ődelity models that account for aerodynamic effects could potentially enable more accurate

and realistic landing trajectory solutions. However, solving the resulting complicated problem can be computationally

expensive [17, 18]. Efficiently addressing the high-ődelity landing problems is of paramount importance for safe and

precision UAM operations, marking it an attractive area of research in recent years in this őeld.

In this paper, we propose an innovative approach to this challenge. Speciőcally, we employ a novel convex

optimization framework and a sequential convex programming (SCP) algorithm to solve a sophisticated eVTOL
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landing problem that couples high-ődelity aerodynamics with nominal ŕight dynamics. Our approach addresses a 6

degrees-of-freedom (6-DoF) eVTOL landing trajectory optimization problem incorporating an ordinary differential

equation (ODE)-based aerodynamic model. To develop the convex approach, we begin with the formulation of a general,

highly nonconvex optimal control problem that seamlessly integrates the ODE-based aerodynamic model with the 6-DoF

ŕight dynamics and various ŕight constraints. This integration is crucial for capturing the complex interactions between

the vehicle and its operating environment. We then isolate the nonlinear components of the dynamic equations of motion

from the original formulation. This separation is a critical step in managing the complexity of the problem. Subsequently,

we employ the őrst-order Taylor series expansion to approximate these nonlinear components, thereby transforming the

problem into a convex form. The potential artiőcial infeasibility issues due to the linearization are handled by virtual

controls. The őnal step involves discretization of the problem using the standard trapezoidal discretization technique.

By solving a set of relaxed convex sup-problems using mature convex optimization solvers, we obtain the solution to the

landing trajectory optimization problem and compare the results with those from other existing solvers.

The rest of this paper is structured as follows. We introduce the problem formulation in Section II, which includes

thrust coefficient calculation, rotor inŕow model, ODE-based rotor dynamics, and 6-DoF ŕight dynamics. In Section III,

we provide our convexiőcation procedure that reformulates the original problem into a convex problem and develop a

SCP algorithm to solve for an approximate optimal solution. Numerical simulation results are provided in Section IV to

demonstrate the performance of our proposed method. Lastly, we summarize the work in Section V.

II. Problem Formulation
In this section, we integrate the ODE-based aerodynamic rotor models with the 6-DoF eVTOL vehicle ŕight

dynamics model to formulate an optimal landing control problem. The őrst subsection introduces the calculation of the

thrust coefficient for each rotor. In the second subsection, we present the rotor inŕow model used in this paper. In the

third subsection, we formulate the ODE-based model for rotor dynamics. In the fourth and őfth subsections, we present

the 6-DoF eVTOL ŕight dynamic model and the essential ŕight constraints, respectively. Finally, we introduce the

performance index and formulate the trajectory optimization problem for landing.

A. Thrust Coefficient of a Single Rotor

The thrust coefficient of a rotor blade is a fundamental parameter for aerodynamic performance and control of

eVTOL vehicles. It determines how efficiently a rotor converts rotational power into thrust, which directly impacts the

vehicle’s lifting capability and overall performance. In this section, we employ the blade element momentum theory

(BEMT) to calculate the lift and thrust of a single rotor blade. BEMT is a widely-recognized and established method in

rotor aerodynamics, which allows for a detailed and accurate calculation of the lift and thrust generated by rotor blades.

The BEMT model calculates the total lift and drag forces for the rotor blade by dividing the blade into 𝑛 small elements

and then summing up the lift and drag forces obtained from each element [19].

As illustrated in Figs. 1 and 2, the geometric positioning of each blade element is deőned by its radial (𝑟) and

azimuthal (𝜑) coordinates. Key to our analysis are the free-stream velocity components, i.e., the tangential component,

𝑢, and the perpendicular component, 𝑤. Then, the advance ratio is obtained by 𝜇𝑥 = 𝑢/(Ω𝑅) and the inŕow ratio

𝜇𝑧 = 𝑤/(Ω𝑅). According to the conservation of momentum, the induced ŕow is created when generating thrust,

resulting in an inŕow distribution 𝜆𝑖 (𝑟, 𝜑).

Fig. 1 BEMT for single rotor (side view).
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Fig. 2 BEMT for single rotor (top view).

For a blade element at location (𝑟, 𝜑), the local total free-stream speed is deőned as:

𝑢∞
Ω𝑅

=

√︃
(𝑟/𝑅 + 𝜇𝑥 sin 𝜑)2 + 𝜆𝑖 (𝑟, 𝜑)2 ≡ 𝑢̄∞ (𝑟, 𝜑) (1)

and the local lift and drag are:

𝑑𝐿 =
1

2
𝜌𝑢2

∞𝑐𝑙 (𝜗, 𝑟)𝑐𝑑𝑟, 𝑑𝐷 =
1

2
𝜌𝑢2

∞𝑐𝑑 (𝜗, 𝑟)𝑐𝑑𝑟 (2)

where the effective angle of attack is:

𝜗 = 𝛼 − tan−1 𝜆𝑖

𝜇𝑥

≡ 𝛼 − 𝑘 (3)

The loads in the rotor coordinate system for each blade element can be calculated as:

𝑑𝐹𝑧 = 𝑑𝐿 cos 𝑘 − 𝑑𝐷 sin 𝑘 (4)

𝑑𝐹𝑥 = −𝑑𝐿 sin 𝑘 + 𝑑𝐷 cos 𝑘 (5)

In this paper, we assume that the drag term 𝑑𝐷 sin 𝑘 is small compared to the lift term. We also assume a constant

installation angle, constant chord length, and constant airfoil with 𝑐𝑙 (𝜗, 𝑟) = 2𝜋𝜗. The thrust coefficient can be

calculated as:

𝐶𝑇 (𝜇𝑥 , 𝜇𝑧 , 𝜆𝑖) = 𝜎

∫ 2𝜋

0

∫ 1

0

[𝑢̄2
∞ (𝑘 − 𝛼) cos 𝑘]𝑑𝑟𝑑𝜑 (6)

B. Rotor Inŕow Model

The rotor inŕow model is a crucial component in the aerodynamic analysis and optimization of eVTOL vehicles,

especially when considering the dynamic and complex urban environments in which the vehicles operate. In the context

of eVTOL trajectory optimization, including inŕow modeling in the overall system enables more precise trajectory

calculation, especially during critical maneuvers such as landing and takeoff. In this paper, the rotor inŕow model is

adapted from [20] and was developed by Pitt and Peters in [21] using a system of linear ODEs to describe the dynamic

inŕow of a rotor disk. The model relates the dimensionless aerodynamic loading to the dimensionless induced ŕow

distribution, which is described by the equation below:

𝜆(𝑟, 𝜓, 𝑡) = 𝜆0 (𝑡) + 𝜆𝑠 (𝑡)𝑟 sin𝜓𝑟 + 𝜆𝑐 (𝑡)𝑟 cos𝜓𝑟 (7)

where 𝑟 = 𝑟/𝑅, 𝑅 is the rotor radius, 𝜆0, 𝜆𝑠, and 𝜆𝑐 are the uniform, side-to-side, and fore-to-aft components of the

induced airŕow, respectively, and 𝜆 is the local dimensionless induced airŕow velocity deőned by:

𝜆 = 𝑢𝑥/Ω𝑅 (8)

where 𝑢𝑥 is the induced airŕow velocity, and Ω is the angular velocity of the propeller. We can then write the linear

őrst-order state-space representation of the inŕow dynamics as follows:



¤𝜆0

¤𝜆𝑠
¤𝜆𝑐



= −𝑀−1𝐿−1



𝜆0

𝜆𝑠

𝜆𝑐



+ 𝑀−1



𝐶𝑇

𝐶𝑟𝑜𝑙𝑙

𝐶𝑝𝑖𝑡𝑐ℎ



(9)
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with 𝑀 and 𝐿 coefficient matrices deőned as:

𝐿 =
1

𝑉̄∞



1
2

0 15𝜋
64

√︃
1−sin 𝛼
1+sin 𝛼

0 − 4
1+sin 𝛼

0

15𝜋
64

√︃
1−sin 𝛼
1+sin 𝛼

0 − 4 sin 𝛼
1+sin 𝛼



(10)

𝑀 =



128
75𝜋

0 0

0 −16
45𝜋

0

0 0 −16
45𝜋



(11)

The coefficients 𝐶𝑇 , 𝐶𝑟𝑜𝑙𝑙 , 𝐶𝑝𝑖𝑡𝑐ℎ respectively represent the thrust coefficient, and the torque coefficients in the roll and

pitch directions.

In the above equation, 𝛼 is deőned as the angle of incidence, and 𝑉̄∞ represents the dimensionless free-stream

velocity that can be obtained from:

𝑉̄∞ =

√︁
¤𝑥2 + ¤𝑦2 + ¤𝑧2

2𝜋𝑛𝑅
, 𝛼 = 𝜋/2 − cos−1

(
[ ¤𝑥, ¤𝑦, ¤𝑧] · n𝑟𝑜𝑡𝑜𝑟𝑑𝑖𝑠𝑘√︁

¤𝑥2 + ¤𝑦2 + ¤𝑧2

)

(12)

where 𝑛 in the őrst equation represents the propeller rotational speed, and n in the second equation stands for the normal

vector of the rotor disk.

Equation 9 deőnes the inŕow dynamics for a single rotor. In the next subsection, we will introduce the state-space

model for the four-motor inŕow aerodynamic system considering a quadrotor vehicle conőguration.

C. ODE Model of Rotor Dynamics

Following the inŕow dynamic model for a single rotor disk, we can construct the state-space model for all rotors to

calculate the thrust, torques, and dynamic inŕow states for each motor. The output of this system will feed into the

vehicle dynamic model, which will be discussed in the next subsection. In this paper, we consider the states of the

system to include the inŕow states of each rotor, along with the total vertical thrust 𝐹𝑧 , the sum of the moments with

respect to the x-, y-, and z-axes, denoted as 𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧 , respectively, together forming the state vector x0 ∈ R16𝑥1:

x0 = [𝜆0,𝑟1, 𝜆𝑠,𝑟1, 𝜆𝑐,𝑟1, . . . , 𝜆0,𝑟4, 𝜆𝑠,𝑟4, 𝜆𝑐,𝑟4, 𝐹𝑧 , 𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧]𝑇 (13)

where 𝜆0,𝑟𝑖 , 𝜆𝑠,𝑟𝑖 , 𝜆𝑐,𝑟𝑖 are the inŕow states of 𝑖-the rotor. The terms 𝐹𝑧 , 𝜏𝑥 , 𝜏𝑦 , and 𝜏𝑧 are deőned as follows:

• 𝐹𝑧 is the total vertical thrust generated by the rotors, a key output inŕuenced by the speed of each rotor.

• 𝜏𝑥 , 𝜏𝑦 , and 𝜏𝑧 are the sum of the moments (torques) with respect to the x-, y-, and z-axes respectively, resulting

from the combined action of all rotors.

. The control vector u0 ∈ R4𝑥1 is considered to be the square of each motor’s rotational speed:

u0 = [Ω2
1,Ω

2
2,Ω

2
3,Ω

2
4]𝑇 (14)

where Ω𝑖 , 𝑖 = 1, 2, 3, 4 is the rotational speed of each rotor 𝑖 in revolution per second. Consequently, we can formulate

the state-space form of the aerodynamic system as follows:

¤x0 = 𝐴0x0 + 𝐵0u0 (15)

where 𝐴0 is as follows:

𝐴0 =



−𝑀−1𝐿−1

−𝑀−1𝐿−1

−𝑀−1𝐿−1

−𝑀−1𝐿−1

−𝐼4𝑥4



(16)
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The control matrix 𝐵0 is deőned below:

𝐵0 =



012𝑥1 012𝑥1 012𝑥1 012𝑥1

𝑏1 𝑏2 𝑏3 𝑏4

𝑏1 ·
√

2
2
𝑙𝑎𝑟𝑚 + 𝑘𝑟𝑜𝑙𝑙 −(𝑏2 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘𝑟𝑜𝑙𝑙) −(𝑏3 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘𝑟𝑜𝑙𝑙) 𝑏4 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘𝑟𝑜𝑙𝑙

𝑏1 ·
√

2
2
𝑙𝑎𝑟𝑚 + 𝑘 𝑝𝑖𝑡𝑐ℎ 𝑏2 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘 𝑝𝑖𝑡𝑐ℎ −(𝑏3 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘 𝑝𝑖𝑡𝑐ℎ) −(𝑏4 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘 𝑝𝑖𝑡𝑐ℎ)

𝑘𝑦𝑎𝑤 −𝑘𝑦𝑎𝑤 𝑘𝑦𝑎𝑤 −𝑘𝑦𝑎𝑤



(17)

where 𝑏1 = 𝑏2 = 𝑏3 = 𝑏4 = 𝐶𝑇 𝜌𝐷
4, 𝑘𝑟𝑜𝑙𝑙 = 𝐶𝑟𝑜𝑙𝑙𝜌𝐷

5, 𝑘 𝑝𝑖𝑡𝑐ℎ = 𝐶𝑝𝑖𝑡𝑐ℎ𝜌𝐷
5, and 𝑘𝑦𝑎𝑤 = 𝐶𝑄𝜌𝐷5.

In order for the model to be solved by optimal control algorithms more efficiently, two assumptions are made in this

work. First, the drag coefficient 𝐶𝑇 and thrust coefficients 𝐶𝑟𝑜𝑙𝑙 , 𝐶𝑝𝑖𝑡𝑐ℎ, and 𝐶𝑦𝑎𝑤 are assumed to be constant in the

control matrix at low-speed landing scenarios. Second, the angle of attack, 𝛼, in the equations above is assumed to be

constant as well. The resulting aerodynamic model will be combined with the ŕight dynamics to formulate the landing

trajectory optimization problem in the following subsections.

D. Flight Dynamics

The ŕight dynamics of eVTOL vehicles form a foundational aspect of trajectory optimization. In this paper, our

focus is on a comprehensive 6-DoF ŕight dynamic model. The 6-DoF model captures the complete range of motion

possible for the eVTOL vehicle, including three translational movements (up/down, left/right, forward/backward) and

three rotational movements (pitch, roll, yaw), and the 12 states are deőned as:

x =

[
𝑥 𝑦 𝑧 𝜙 𝜃 𝜓 ¤𝑥 ¤𝑦 ¤𝑧 𝑝 𝑞 𝑟

]𝑇
∈ R12 (18)

where 𝑥, 𝑦, 𝑧 represent the displacement of the mass center of the vehicle in the Earth reference frame (North, East and

Down); the rotational displacement components are deőned as 𝜓, 𝜃, 𝜙; ¤𝑥, ¤𝑦, ¤𝑧 represent the velocity in the inertial frame;

and 𝑝, 𝑞, 𝑟 deőne the relative rotational rates to the body-őxed frame. The control input is deőned as:

u = [𝐹𝑧 𝜏𝑥 𝜏𝑦 𝜏𝑧]𝑇 (19)

for simplicity, the Coriolis term is neglected, and the model in the inertial frame can be represented as:

¥𝑥 = −𝐹𝑧

𝑚
[sin(𝜙) sin(𝜓) + cos(𝜙) cos(𝜓) sin(𝜃)]

¥𝑦 = −𝐹𝑧

𝑚
[cos(𝜙) sin(𝜓) sin(𝜃) − cos(𝜓) sin(𝜙)]

¥𝑧 = 𝑔 − 𝐹𝑧

𝑚
[cos(𝜙) cos(𝜃)]

¥𝜙 =
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
¤𝜃 ¤𝜓 + 𝜏𝑥

𝐼𝑥

¥𝜃 =
𝐼𝑧 − 𝐼𝑥

𝐼𝑦
¤𝜙 ¤𝜓 +

𝜏𝑦

𝐼𝑦

¥𝜓 =
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
¤𝜙 ¤𝜃 + 𝜏𝑧

𝐼𝑧

(20)

We rewrite the system in a state-space form as follows:

¤x = f(x, u, 𝑡) = f(x) + 𝐵(x)u (21)
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where

f(x) =



¤𝑥
¤𝑦
¤𝑧
¤𝜙
¤𝜃
¤𝜓
0

0

𝑔

𝐶𝐼 𝑥𝑞𝑟

𝐶𝐼 𝑦 𝑝𝑟

𝐶𝐼𝑧 𝑝𝑞



(22)

which 𝐶𝐼 𝑥 =
𝐼𝑦−𝐼𝑧
𝐼𝑥

, 𝐶𝐼𝑦 =
𝐼𝑧−𝐼𝑥
𝐼𝑦

, and 𝐶𝐼𝑧 =
𝐼𝑥−𝐼𝑦
𝐼𝑧

.

The control matrix is deőned as:

𝐵(x) =



06×1 06×1 06×1 06×1

𝑔1 0 0 0

𝑔2 0 0 0

𝑔3 0 0 0

0 𝑙/𝐼𝑥 0 0

0 0 𝑙/𝐼𝑦 0

0 0 0 1/𝐼𝑧



(23)

where

𝑔1 = − 1

𝑚
[sin(𝜙) sin(𝜓) + cos(𝜙) cos(𝜓) sin(𝜃)]

𝑔2 =
1

𝑚
[cos(𝜓) sin(𝜙) − cos(𝜙) sin(𝜓) sin(𝜃)]

𝑔3 = − 1

𝑚
[cos(𝜙) cos(𝜃)]

(24)

E. Flight Constraints

In this paper, we consider a landing problem with a őxed time of ŕight. To ensure the safety of the ŕight mission,

the vehicle must satisfy some constraints.

First, we impose the initial and terminal conditions for the aircraft by introducing the following boundary conditions:

x(𝑡0) = x0 (25)

x(𝑡 𝑓 ) = x 𝑓 (26)

Then, we deőne the maximum distance to the landing pad and maximum altitude as:

0 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 (27)

0 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥 (28)

0 ≤ 𝑧 ≤ 𝑧𝑚𝑎𝑥 (29)

Meanwhile, the maximum rotor speed is restricted based on vehicle speciőcations:

Ω𝑚𝑖𝑛 ≤ Ω𝑖 (𝑡) ≤ Ω𝑚𝑎𝑥 (30)

where the subscript 𝑖 denotes the motor number. In the model considered in this paper, we have four motors.

7

D
o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
T

en
n
es

se
e 

o
n
 J

an
u
ar

y
 3

1
, 
2
0
2
5
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
4
-2

4
8
4
 



F. Performance Index and Optimal Control Problem

In this paper, the optimal control problem is formulated to minimize the energy cost:

𝐽 =

∫ 𝑡 𝑓

𝑡0

4∑︁

𝑖=1

Ω
2
𝑖 (𝑡)𝑑𝑡 (31)

where Ω
2
𝑖 denotes the squared rotor speed for each rotor. Combining the objective function, aerodynamics, ŕight

dynamics, and constraints, the optimal control problem is formulated as:

𝑃𝑟𝑜𝑏𝑙𝑒𝑚 1:

Minimize: (31)
Subject to: (15), (21), (25), (26), (27), (28), (29), (30)

Overall, we want to minimize the objective function (31) while satisfying the rotor aerodynamics (15), the ŕight

dynamics (21), the boundary conditions (25) and (26), and the inequality state and control constraints (27)-(30).

Problem 1 is not convex and difficult to solve. In the next section, we will introduce a process to convexify the

problem, and then develop a sequential convex optimization approach to solve the problem iteratively.

III. Convex Approach
In recent years, convex optimization, which studies the problem of minimizing convex functions over convex sets, has

been widely used to solve optimal control problems in aerospace engineering due to the advantages of fast convergence

and guaranteed global minima for a single convex optimization problem, such as linear programming (LP), quadratic

programming (QP), second-order cone programming (SOCP), or semideőnite programming (SDP). In these cases, the

problem can be solved in polynomial time because of its low complexity. As such, convex optimization approaches are an

ideal method for onboard real-time applications in complex engineering őelds, such as eVTOL trajectory optimization.

However, two signiőcant challenges arise when applying convex approaches: identifying a convex problem and

transforming a nonconvex problem into a convex problem. Usually, nonconvex constraints in the optimal control

problem are convexiőed by introducing slack variables and constraint relaxations, and the highly nonlinear dynamic

equations are often replaced by approximated formula, typically derived from the őrst-order Taylor series approximation

[22].

A. Modiőed Model for Convex Approach

In this paper, we introduce a critical assumption to simplify the complex aerodynamics involved in eVTOL ŕight.

We assume that the aerodynamic forces and moments have a linear relationship with the rotor speeds, allowing us to

reduce the overall system to a total of 16 states. This reduction leads to four aerodynamic states that linearly relate rotor

speed to the thrust and torques in the 𝑥, 𝑦, and 𝑧 directions, along with the 12 standard ŕight dynamic states. After the

simpliőcation the overall states are deőned as:

X =

[
𝐹𝑧 𝜏𝑥 𝜏𝑦 𝜏𝑧 𝑥 𝑦 𝑧 𝜙 𝜃 𝜓 ¤𝑥 ¤𝑦 ¤𝑧 𝑝 𝑞 𝑟

]𝑇
∈ R16 (32)

The new system in a state-space form as follows:

¤X = F(X,U, 𝑡) = F(X) + 𝐵̃(X)U (33)
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where:

F(X) =



−𝐹𝑧

−𝜏𝑥
−𝜏𝑦
−𝜏𝑧
¤𝑥
¤𝑦
¤𝑧
¤𝜙
¤𝜃
¤𝜓
0

0

𝑔

𝐶𝐼 𝑥𝑞𝑟

𝐶𝐼 𝑦 𝑝𝑟

𝐶𝐼𝑧 𝑝𝑞



(34)

And the updated control matrix is deőned as:

𝐵̃(X) =



𝑏1 𝑏2 𝑏3 𝑏4

𝑏1 ·
√

2
2
𝑙𝑎𝑟𝑚 + 𝑘𝑟𝑜𝑙𝑙 −(𝑏2 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘𝑟𝑜𝑙𝑙) −(𝑏3 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘𝑟𝑜𝑙𝑙) 𝑏4 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘𝑟𝑜𝑙𝑙

𝑏1 ·
√

2
2
𝑙𝑎𝑟𝑚 + 𝑘 𝑝𝑖𝑡𝑐ℎ 𝑏2 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘 𝑝𝑖𝑡𝑐ℎ −(𝑏3 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘 𝑝𝑖𝑡𝑐ℎ) −(𝑏4 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘 𝑝𝑖𝑡𝑐ℎ)

𝑘𝑦𝑎𝑤 −𝑘𝑦𝑎𝑤 𝑘𝑦𝑎𝑤 −𝑘𝑦𝑎𝑤
012𝑥1 012𝑥1 012𝑥1 012𝑥1



(35)

This assumption signiőcantly simpliőes the mathematical model while retaining sufficient accuracy for practical

application, making it more tractable for convex optimization. By adopting this approach, we ensure that the resulting

trajectory optimization problem remains within a computationally feasible domain. This balance is vital for the

development of real-time, onboard control systems that can reliably and efficiently operate in dynamic and often

unpredictable UAM environments.

B. Convexiőcation

For the eVTOL landing problem, we őrst rewrite the state space system as:

¤X = F(X,U, 𝑡) = 𝐴(X)X + 𝐵̃U + g∗ (36)

where 𝐴(X) is the Jacobian matrix, and g∗ represents the constant gravity vector, which are as follows:
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𝐴(X) =



−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
. . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
. . . 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
. . . 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
. . . 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

𝑔1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝑔2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝑔3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 𝑙/𝐼𝑥 0 0 0 0 0 0 0 0 0 0 𝐶𝐼 𝑥𝑟 𝐶𝐼 𝑥𝑞 0 0

0 0 𝑙/𝐼𝑦 0 0 0 0 0 0 0 0 0 𝐶𝐼𝑦𝑟 0 𝐶𝐼 𝑦 𝑝 0

0 0 0 𝑙/𝐼𝑧 0 0 0 0 0 0 0 0 𝐶𝐼𝑧𝑞 𝐶𝐼𝑧 𝑝 0 0



(37)

g∗ =
[

01𝑥12 𝑔 0 0 0

]𝑇
(38)

Same as in the previous section, the constants in the matrix 𝐴 are deőnes as: 𝐶𝐼 𝑥 =
𝐼𝑦−𝐼𝑧
𝐼𝑥

, 𝐶𝐼𝑦 =
𝐼𝑧−𝐼𝑥
𝐼𝑦

, and

𝐶𝐼𝑧 =
𝐼𝑥−𝐼𝑦
𝐼𝑧

. The control matrix is deőned as:

𝐵̃ =



𝑏1 𝑏2 𝑏3 𝑏4

𝑏1 ·
√

2
2
𝑙𝑎𝑟𝑚 + 𝑘𝑟𝑜𝑙𝑙 −(𝑏2 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘𝑟𝑜𝑙𝑙) −(𝑏3 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘𝑟𝑜𝑙𝑙) 𝑏4 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘𝑟𝑜𝑙𝑙

𝑏1 ·
√

2
2
𝑙𝑎𝑟𝑚 + 𝑘 𝑝𝑖𝑡𝑐ℎ 𝑏2 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘 𝑝𝑖𝑡𝑐ℎ −(𝑏3 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘 𝑝𝑖𝑡𝑐ℎ) −(𝑏4 ·

√
2

2
𝑙𝑎𝑟𝑚 + 𝑘 𝑝𝑖𝑡𝑐ℎ)

𝑘𝑦𝑎𝑤 −𝑘𝑦𝑎𝑤 𝑘𝑦𝑎𝑤 −𝑘𝑦𝑎𝑤
012𝑥1 012𝑥1 012𝑥1 012𝑥1



(39)

To convexify the system, we further write the above equation as follows by separating the linear and nonlinear

components:

¤X = F(X,U, 𝑡) = 𝐴𝐿X + 𝐵̃U + f𝑁𝐿 (X, 𝑡) + g∗ (40)
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where 𝐴𝐿 is the linear part of the 𝐴 matrix that can be written as:

𝐴𝐿 =



−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
. . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
. . . 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
. . . 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
. . . 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 𝑙/𝐼𝑥 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 𝑙/𝐼𝑦 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1/𝑧 0 0 0 0 0 0 0 0 0 0 0 0



(41)

The nonlinear part f𝑁𝐿 is deőned as:

f𝑁𝐿 (X, 𝑡) =



022×1

𝐹𝑧𝑔1

𝐹𝑧𝑔2

𝐹𝑧𝑔3

𝐶𝐼 𝑥𝑞𝑟

𝐶𝐼𝑦 𝑝𝑟

𝐶𝐼𝑧 𝑝𝑞



(42)

To linearize the nonlinear part of the function, we apply the őrst-order linearization method and obtain:

f𝑁𝐿 (X, 𝑡) ≈ f𝑁𝐿 (X∗, 𝑡) + 𝜕f𝑁𝐿

𝜕X
(X∗, 𝑡) (X − X

∗) (43)

After substituting to original equation, the full linearized equation can be written as:

¤X = F(X,U, 𝑡) ≈ 𝐴𝐿X + 𝐵̃U + g∗ + f𝑁𝐿 (X∗, 𝑡) + 𝜕f𝑁𝐿

𝜕X
(X∗, 𝑡) (X − X

∗) (44)

where the partial derivative matrices are shown below:

𝜕f𝑁𝐿

𝜕X
=



010×1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 010×1

𝑔∗
1

0 0 0 0 0 0
𝜕𝑔1

𝜕𝜙

𝜕𝑔1

𝜕𝜃

𝜕𝑔1

𝜕𝜓
0 0 0 0 0 0

𝑔∗
2

0 0 0 0 0 0
𝜕𝑔2

𝜕𝜙

𝜕𝑔2

𝜕𝜃

𝜕𝑔2

𝜕𝜓
0 0 0 0 0 0

𝑔∗
3

0 0 0 0 0 0
𝜕𝑔3

𝜕𝜙

𝜕𝑔3

𝜕𝜃

𝜕𝑔3

𝜕𝜓
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝐶𝐼 𝑥𝑟 𝐶𝐼 𝑥𝑞

0 0 0 0 0 0 0 0 0 0 0 0 0 𝐶𝐼𝑦𝑟 0 𝐶𝐼 𝑦 𝑝

0 0 0 0 0 0 0 0 0 0 0 0 0 𝐶𝐼𝑧𝑞 𝐶𝐼𝑧 𝑝 0



(45)
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with



𝜕𝑔1

𝜕𝜙

𝜕𝑔1

𝜕𝜃

𝜕𝑔1

𝜕𝜓
𝜕𝑔2

𝜕𝜙

𝜕𝑔2

𝜕𝜃

𝜕𝑔2

𝜕𝜓
𝜕𝑔3

𝜕𝜙

𝜕𝑔3

𝜕𝜃

𝜕𝑔3

𝜕𝜓



=
𝐹𝑧

𝑚



− sin𝜓 cos 𝜙 + cos𝜓 sin 𝜃 sin 𝜙 − cos𝜓 cos 𝜃 cos 𝜙 − cos𝜓 sin 𝜙 + sin𝜓 sin 𝜃 cos 𝜙

cos𝜓 cos 𝜙 + sin𝜓 sin 𝜃 sin 𝜙 − sin𝜓 cos 𝜃 cos 𝜙 − sin𝜓 sin 𝜙 − cos𝜓 sin 𝜃 cos 𝜙

cos 𝜃 sin 𝜙 sin 𝜃 cos 𝜙 0


(46)

To develop the SCP method, the last step is to discretize the problem. In this research, we use the trapezoidal

approach for discretization. The trapezoidal method is deőned as:

X𝑖 = X𝑖−1 +
Δ𝑡

2

( ¤X𝑖−1 + ¤X𝑖

)
(47)

where Δ𝑡 is the step size. After rearranging all the terms, we obtain the following discretized state equation:

[(
𝐼 − Δ𝑡

2
(𝐴𝑘−1

𝐿 + 𝐴𝑘−1
𝑁𝐿𝑖

)
)

X𝑖

]
−

[(
𝐼 + Δ𝑡

2
(𝐴𝑘−1

𝐿 + 𝐴𝑘−1
𝑁𝐿𝑖−1

)
)

X𝑖−1

]
− Δ𝑡

2
𝐵̃U𝑖−1 −

Δ𝑡

2
𝐵̃U𝑖

=
Δ𝑡

2

[(
f𝑘−1
𝑁𝐿𝑖−1 − 𝐴𝑘−1

𝑁𝐿𝑖−1
X

𝑘−1
𝑖−1 + g∗

)
+

(
f𝑘−1
𝑁𝐿𝑖

− 𝐴𝑘−1
𝑁𝐿𝑖

X
𝑘−1
𝑖 + g∗

)] (48)

Finally, we formulate the convex form of the landing problem as:

𝑃𝑟𝑜𝑏𝑙𝑒𝑚 2:

Minimize: (31)
Subject to: (25) − (30), (48)

Now, Problem 2 is in a convex form and is ready for the application of the SCP algorithm to compute the optimal

solution successively.

C. Virtual Control

During the process of convexiőcation, one big challenge is the phenomenon of artiőcial infeasibility. This issue

typically arises during the initial stages of the optimization process, often due to an inadequate initial guess. Artiőcial

infeasibility occurs when there is discrepancy between the linearized model and the true nonlinear original system

dynamics, resulting in an optimization problem that, in its current linearized form, has no feasible solution.

To mitigate the problem, we introduce the virtual control vector v to the system dynamics. Virtual control acts as a

corrective mechanism in the optimization process, helping to őx artiőcial infeasibility. The key idea behind virtual

control is to introduce additional degrees of freedom into the system dynamics, allowing the optimization algorithm to

have greater ŕexibility in őnding feasible solutions, especially during the initial iterations where the solution space may

not be well-deőned. Vector v usually has the same length as the state vector. With the virtual control the state equation

will become:

¤X = F(X,U, 𝑡) ≈ 𝐴𝐿X + 𝐵̃U + g∗ + f𝑁𝐿 (X∗, 𝑡) + 𝜕f𝑁𝐿

𝜕X
(X∗, 𝑡) (X − X

∗) + 𝐸v (49)

where 𝐸 is an identity matrix. The primary function of 𝐸 in the problem is to help the states of the system in reaching

a feasible region within a őnite time frame. By multiplying with the virtual control vector, 𝐸 ensures that each state

variable can be individually adjusted.

It is important to note that the virtual control is not a physical control input but a variable to improve the convergence

of the optimization algorithm. As the algorithm progresses and the solution converges, the inŕuence of the virtual

control diminishes, eventually becoming negligible as a feasible and optimal solution is approached. Since the virtual

control term is a auxiliary control variable that only acts to prevent the infeasibility raised during the algorithm’s

convergence steps, it will be heavily penalized in the objective function. The new objective function is thus formed as:

𝐽 =

∫ 𝑡 𝑓

𝑡0

4∑︁

𝑖=1

Ω
2
𝑖 (𝑡)𝑑𝑡 + wv · ess sup∥𝐸 (𝑡)v(𝑡)∥1 (50)
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D. Sequential Convex Programming

Sequential convex programming (SCP) stands out for its ability to handle complex, nonlinear problems through a

series of iterative steps that gradually converge to a solution. In this paper, for the őrst time, an SCP method is used to

address the high-ődelity, nonconvex landing problem of eVTOL vehicles. SCP operates by transforming the nonconvex

problem into a series of local convex optimization problems. Each iteration solves the convex subproblem based on the

current solution estimate, leading to a progressively more accurate solution. The methodology of SCP implemented in

our research is summarized in the following key steps:

1) Initialize the iteration index 𝑘 = 0 and deőne the initial states X(𝑡0). Then, insert the initial conditions to the

equations of motion to obtain an initial trajectory X
(0) . Set 𝑘 = 𝑘 + 1.

2) For 𝑘 > 0, parameterize a convex subproblem (Problem 2) using the solution from the previous iteration and

solve this subproblem to őnd a solution pair [X(𝑘 ) ,U(𝑘 ) ]at the current step.

3) Check the convergence condition

sup |X(𝑘 )
𝑖

− X
(𝑘−1)
𝑖

| ≤ 𝜀 (51)

where 𝜀 is a preset tolerance. If the condition is satisőed, the algorithm moves to step 4; otherwise, set 𝑘 = 𝑘 + 1

and go back to step 2.

4) The algorithm is converged and a solution for the problem is found to be {X(𝑘 ) ,U(𝑘 ) }.
By employing SCP, we aim not only to navigate the complexities of the eVTOL landing problem efficiently but also to

explore its potential for real-time applications. This capability is vital in UAM, where ŕight conditions can change

rapidly, and the ability to quickly adjust landing trajectories in response to these changes is crucial for safety and

efficiency.

IV. Numerical Simulations
In this paper, a small quadrotor serves as an example model for the simulations to emulate the UAM landing scenario.

The vehicle parameters are listed in Table 1. These parameters deőne the basic aspects of the vehicle such as mass,

rotor conőguration, and aerodynamic coefficients. Using this model, several cases have been solved to demonstrate the

performance of the proposed method as follows.

For the őrst landing scenario, the initial and terminal conditions are outlined in Table 2. These conditions shows the

starting and the desired end states of the quadrotor during a landing maneuver. To initialize the SCP algorithm, we

generated an initial trajectory using linear interpolation between these initial and őnal states. This method provides a

starting point that is sufficiently close to the desired trajectory to begin the iterative process of reőnement.

To benchmark our results and demonstrate the efficacy of our approach, we őrst solved the most fundamental landing

problem with only 12 states that excludes aerodynamic factors, serving as a baseline for our comparative analysis. Then,

the 16 states optimization problem (Problem 1) is solved. Both the 12-state and 16-state models have been solved

using the GPOPS-II solver, a well-established tool in optimal control [23]. The results obtained from our SCP-based

method and the GPOPS-II solutions are presented and compared. The following subsections detail the results of these

simulations, demonstrating the performance of our proposed method in achieving efficient, safe, and practical eVTOL

landing trajectories. All simulations are carried out on a laptop with an macOS 64-bit operating system and M1 Pro

Processor.
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Table 1 Vehicle parameters for simulations

Parameter Value

Vehicle’s mass, 𝑚 0.69 kg

Propeller diameter, 𝐷 0.1524 m

Atmospheric density, 𝜌 1.225 kg/m3

Gravitational acceleration, 𝑔 9.81 m/s2

Moment of inertia about body frame’s x-axis, 𝐼𝑥 4.69 × 10−2 kg·m2

Moment of inertia about body frame’s y-axis, 𝐼𝑦 3.58 × 10−2 kg·m2

Moment of inertia about body frame’s z-axis, 𝐼𝑧 6.73 × 10−2 kg·m2

Roll moment coefficient, 𝐶𝑟𝑜𝑙𝑙 0.0414

Pitch moment coefficient, 𝐶𝑝𝑖𝑡𝑐ℎ 0.0207

Yaw moment coefficient, 𝐶𝑦𝑎𝑤 0

Maximum descent airspeed, 𝑉𝑚𝑎𝑥 4 m/s

Maximum net thrust, 𝑇𝑚𝑎𝑥 11 N

Time of ŕight, 𝑡 𝑓 4 s

Table 2 Initial and terminal conditions for the landing scenario

Parameter Value

Initial position, [𝑥0, 𝑦0, 𝑧0] [3,4,5] m

Initial velocity, [𝑉𝑥0, 𝑉𝑦0, 𝑉𝑧0] [0,0,0] m/s

Initial orientation, [𝜙0, 𝜃0, 𝜓0] [0,0,0] deg

Initial angular velocity, [𝑝, 𝑞, 𝑟] [0,0,0] deg/s

Terminal position, [𝑥0, 𝑦0, 𝑧0] [0,0,0] m

Terminal velocity, [𝑉𝑥0, 𝑉𝑦0, 𝑉𝑧0] [0,0,0] m/s

Terminal orientation, [𝜙0, 𝜃0, 𝜓0] [0,0,0] deg

Terminal angular velocity, [𝑝, 𝑞, 𝑟] [0,0,0] deg/s

The simulated landing task begins with the vehicle positioned őve meters above the vertiport, at a distance of three

meters in the 𝑥-direction and two meters in the 𝑦-direction from the designated landing point. Figure 3 below depicts

the optimal landing trajectory achieved using the SCP method. Notably, the trajectory shows a smooth landing pattern,

guiding the vehicle from its initial state to the őnal landing condition efficiently and safely.

Figure 4 illustrates the efficiency of the SCP method in terms of computational time. Remarkably, the SCP algorithm

achieved convergence in just six iterations, with the entire process taking less than three seconds in total. Each iteration

was notably fast, averaging around 0.5 seconds. This rapid convergence demonstrates the potential of the SCP method

for real-time solution capability for complex dynamic systems. Figure 5 presents the convergence process for the

objective function, where we can see that the SCP method converges to a stable objective value. Figures 6 to 8 display

the convergence proőles for the 𝑥, 𝑦, and 𝑧 components of the vehicle position, respectively. These plots reveal that the

solver met the convergence criteria in six iterations.
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Fig. 3 Three-dimensional 12-state optimal landing trajectory by SCP.
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Fig. 4 Computational time of each subproblem for SCP algorithm.
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Fig. 5 SCP convergence proőle for objective function.
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Fig. 6 SCP convergence proőle for 𝑥 direction.
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Fig. 7 SCP convergence proőle for 𝑦 direction.
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Fig. 8 SCP convergence proőle for 𝑧 direction.

Figure 9 shows the trajectories from GPOPS and the SCP algorithm. It is clear to see that all the three trajectories

are similar to each other, and the SCP method indeed őnds a solution near the optimal result. Figure 10 compares the

corresponding control proőles for the 16-state model. The rotor speed curves from the two solvers show very similar

trend as expected. In Fig. 11, we present a side-by-side comparison of the thrust curves derived from the solvers. It

is evident from the comparison that the SCP algorithm has converged to a signiőcantly smoother thrust proőle. This

smoother proőle is likely a result of the reduced nonlinearity inherent in the convexiőcation process. The smoother thrust

curve achieved by the SCP algorithm may contribute to a more comfortable and safer ŕight experience, especially in the

UAM context where precision and smoothness in trajectory control are the priority. Figure 12 presents a comparison

of torques in the x, y, and z directions. This plot reveals that the torque proőle for the 12-state model exhibits some

deviations when compared to the 16-state model, as solved by both GPOPS and SCP. This underscoring the impact

of aerodynamics on the system’s dynamics, while the latter two models demonstrate a closely aligned trend. Figures

13 and 14 provide insightful comparisons of velocity and angular position curves, respectively, across the different

solutions. Similar to the observations made in the thrust curve comparison, all the three solutions demonstrate closely

aligned trends in both velocity and angular position while the solution derived from the SCP method exhibits slightly

higher smoothness.

Fig. 9 Trajectory comparison between GPOPS and SCP.
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Fig. 10 Rotor speed comparison between GPOPS and SCP.
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Fig. 11 Thrust comparison between GPOPS and SCP.
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Fig. 12 Torques comparison between GPOPS and SCP.
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Fig. 13 Velocity proőle comparison between GPOPS and SCP.
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Fig. 14 Angular position comparison between GPOPS and SCP.

Table 3 Comparison of computational time of different solvers

12 states (GPOPS) 16 states (GPOPS) 16 states (SCP)

8 s 155 s 3 s

Lastly, Table 3 presents a comparison of computation times between the two solvers under different models, further

highlighting the efficiency of the SCP method relative to the traditional GPOPS solver. Speciőcally, for the 12-state

problem, the GPOPS solver took eight seconds to converge. However, when the model complexity was elevated to 16

states, the GPOPS solver required signiőcantly more time, approximately 155 seconds, to reach convergence. In contrast,

the SCP method demonstrated remarkable efficiency, solving the same 16-state problem in merely three seconds, which

is over 50 times faster than GPOPS. This advantage in computational times underscores the superior efficiency of the

SCP method, particularly as the problem complexity escalates. These őndings show that the SCP method is a suitable

option for real-time trajectory optimization.

V. Conclusions
In this paper, we investigate the possibility of integrating high-ődelity, ODE-based aerodynamic models with the

conventional ŕight dynamics to achieve a more accurate and realistic representation of the eVTOL vehicle’s behavior

during landing maneuvers. This integration is crucial in urban environments where precision and reliability in landing

can be heavily affected by the complex and dynamic nature of these settings. In this research, We have shown that the

SCP method can outperforms traditional nonlinear programming approaches in terms of computational efficiency. This

improvement is a critical step toward real-time solution capabilities, a key requirement for the practical deployment of

autonomous eVTOL vehicles in urban airspace.
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