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Urban Air Mobility (UAM) presents an innovative solution for intra-urban and inter-urban
transportation, promising enhanced flexibility, efficiency, and sustainability. However, the
integration of UAM into densely populated city environments brings significant challenges,
particularly in the precision landing of multi-rotor vehicles amid complex and dynamic urban
landscapes. To address this challenge, our paper introduces a novel convex optimization
approach to solve the high-fidelity landing problem of electric vertical take-off and landing
(eVTOL) vehicles. In our method, we first conceptualize the eVTOL vehicle landing trajectory
optimization as a high-dimensional, highly nonconvex optimal control problem. We then
implement a series of convenient convexification techniques to transform this problem into a
convex form. The core of our approach lies in the application of sequential convex programming
(SCP), an advanced method known for its efficacy and real-time performance in handling
complex optimization challenges. We conduct a comparative analysis of our SCP-based solution
with results obtained from the GPOPS-II solver, a widely recognized general-purpose tool in
optimal control. This comparison not only benchmarks the performance of our method but
also highlights its potential advantages in solving complicated, dynamic trajectory optimization
problems in the context of UAM.

Nomenclature
= blade area, m?
= cord length of blade, m
= drag coefficient
= torque coeflicient
= thrust coefficient
= roll moment coefficient
pitch moment coefficient
= power coefficient
= drag force, N
= aerodynamic force produced by rotor, N
= moment of inertia about the x-axis, kg-m2
= moment of inertia about the y-axis, kg-m?
= moment of inertia about the z-axis, kg-m2
= gravitational acceleration, m/s?
= arm length, m
= vehicle’s mass, kg
= aerodynamic moment produced by rotor, kg-m?
= number of blades
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= radius of blade, m
= control vector
= tangential component of freestream velocity in rotor plane, m/s
= nondimensional uniform steady induced velocity
= vertical component of freestream velocity in rotor plane, m/s
= time of flight, s
= state vector
pitch angle, deg
= roll angle, deg
= yaw angle, deg
= atmospheric density, kg/m?
= nondimensional inflow distribution
i = angular velocity of rotor i, rad/s
Ty, Ty, T, = roll, pitch, and yaw torques with respect to the vehicle body frame
0 = trust-region radius
& = tolerance
v = virtual control vector
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I. Introduction

QurppED with the latest technologies such as electric vertical take-off and landing (eVTOL) vehicles, urban air

mobility (UAM) is emerging as a revolutionary mode of transportation in congested urban areas. These eVTOL
vehicles, characterized by their ability to ascend and descend vertically, promise a novel solution for alleviating ground
traffic congestion, thereby reshaping the landscape of urban transportation [1-5]. This innovative approach to urban
transit is not only seen as a potential game-changer for daily commutes but also as a pivotal element in emergency
response and urban logistics. However, despite these promising developments, deployment and operation of eVTOL
vehicles in UAM missions face significant challenges.

Critical factors, such as energy capacity and the need to navigate complex urban environments safely, are
constraining successful operation of eVTOL vehicles for UAM missions. Unlike traditional aircraft, eVTOLSs rely on
battery technology, which, despite rapid advancements, still poses limitations in terms of energy density and weight.
Consequently, the optimization of flight trajectories becomes a crucial concern in the application and deployment of
eVTOLs for UAM. Trajectory optimization involves a comprehensive consideration of various mission objectives,
which may range from passenger transport to cargo delivery, each with its own set of requirements and constraints.
Depending on the flight missions, each eVTOL flight may include different flying phases, such as take-off, ascending,
cruising, descent, and landing, each demanding specific flight paths and energy usage strategies. Moreover, the dynamic
and often unpredictable nature of urban environments, combined with varying weather conditions, require a flexible
and robust trajectory optimization approach that can calculate safe and efficient flying paths in real-time. Therefore,
developing rigorous yet easily implementable trajectory optimization methods is crucial for ensuring the efficient and
safe performance of eVTOL aircraft in diverse UAM mission operations.

Among the flight phases of eVTOLSs, the landing stage is inherently intricate due to the dynamic, disturbing weather
conditions (e.g., wind gusts) and the complex infrastructure (e.g., high-rise buildings) within urban landscapes. Most
existing research in this field utilizes reinforcement learning approaches [6—9] or various optimization methods [10-14]
to solve the eVTOL landing problems. These approaches typically employ simplified models of vehicle dynamics,
which, while effective in control designs, often fail to accurately capture aerodynamic interactions in real-world urban
environments for precision decision-makings. These interactions include wind gusts and the effects of turbulence caused
by the urban infrastructure, which can significantly influence the behavior of eVTOL vehicles [15, 16].

The existing research largely relies on simplified dynamic models ignoring the deviations in aircraft behavior that
can occur under real-world urban conditions, leading to landing paths that are not only suboptimal but also potentially
unsafe. In contrast, high-fidelity models that account for aerodynamic effects could potentially enable more accurate
and realistic landing trajectory solutions. However, solving the resulting complicated problem can be computationally
expensive [17, 18]. Efficiently addressing the high-fidelity landing problems is of paramount importance for safe and
precision UAM operations, marking it an attractive area of research in recent years in this field.

In this paper, we propose an innovative approach to this challenge. Specifically, we employ a novel convex
optimization framework and a sequential convex programming (SCP) algorithm to solve a sophisticated eVTOL
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landing problem that couples high-fidelity aerodynamics with nominal flight dynamics. Our approach addresses a 6
degrees-of-freedom (6-DoF) eVTOL landing trajectory optimization problem incorporating an ordinary differential
equation (ODE)-based aerodynamic model. To develop the convex approach, we begin with the formulation of a general,
highly nonconvex optimal control problem that seamlessly integrates the ODE-based aerodynamic model with the 6-DoF
flight dynamics and various flight constraints. This integration is crucial for capturing the complex interactions between
the vehicle and its operating environment. We then isolate the nonlinear components of the dynamic equations of motion
from the original formulation. This separation is a critical step in managing the complexity of the problem. Subsequently,
we employ the first-order Taylor series expansion to approximate these nonlinear components, thereby transforming the
problem into a convex form. The potential artificial infeasibility issues due to the linearization are handled by virtual
controls. The final step involves discretization of the problem using the standard trapezoidal discretization technique.
By solving a set of relaxed convex sup-problems using mature convex optimization solvers, we obtain the solution to the
landing trajectory optimization problem and compare the results with those from other existing solvers.

The rest of this paper is structured as follows. We introduce the problem formulation in Section II, which includes
thrust coefficient calculation, rotor inflow model, ODE-based rotor dynamics, and 6-DoF flight dynamics. In Section III,
we provide our convexification procedure that reformulates the original problem into a convex problem and develop a
SCP algorithm to solve for an approximate optimal solution. Numerical simulation results are provided in Section IV to
demonstrate the performance of our proposed method. Lastly, we summarize the work in Section V.

I1. Problem Formulation
In this section, we integrate the ODE-based aerodynamic rotor models with the 6-DoF eVTOL vehicle flight
dynamics model to formulate an optimal landing control problem. The first subsection introduces the calculation of the
thrust coefficient for each rotor. In the second subsection, we present the rotor inflow model used in this paper. In the
third subsection, we formulate the ODE-based model for rotor dynamics. In the fourth and fifth subsections, we present
the 6-DoF eVTOL flight dynamic model and the essential flight constraints, respectively. Finally, we introduce the
performance index and formulate the trajectory optimization problem for landing.

A. Thrust Coefficient of a Single Rotor

The thrust coefficient of a rotor blade is a fundamental parameter for aerodynamic performance and control of
eVTOL vehicles. It determines how efficiently a rotor converts rotational power into thrust, which directly impacts the
vehicle’s lifting capability and overall performance. In this section, we employ the blade element momentum theory
(BEMT) to calculate the lift and thrust of a single rotor blade. BEMT is a widely-recognized and established method in
rotor aerodynamics, which allows for a detailed and accurate calculation of the lift and thrust generated by rotor blades.
The BEMT model calculates the total lift and drag forces for the rotor blade by dividing the blade into n small elements
and then summing up the lift and drag forces obtained from each element [19].

As illustrated in Figs. 1 and 2, the geometric positioning of each blade element is defined by its radial (r) and
azimuthal (¢) coordinates. Key to our analysis are the free-stream velocity components, i.e., the tangential component,
u, and the perpendicular component, w. Then, the advance ratio is obtained by u, = u/(QR) and the inflow ratio
H; = w/(QR). According to the conservation of momentum, the induced flow is created when generating thrust,
resulting in an inflow distribution 4; (r, ¢).
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Fig. 1 BEMT for single rotor (side view).
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Fig.2 BEMT for single rotor (top view).

For a blade element at location (7, ¢), the local total free-stream speed is defined as:

o2 = JOIR + g sin )2 + Ai(r, 9)? = (7, 0) (1)
and the local lift and drag are:
1 1
dL = s pulei(D.r)edr, dD = 5 pulea(9.r)cdr @
where the effective angle of attack is:
A
Y=a-tan ' L =a—k 3)
o

The loads in the rotor coordinate system for each blade element can be calculated as:

dF, = dLcosk — dD sink 4)
dFy = —dLsink + dD cos k 5

In this paper, we assume that the drag term dD sin k is small compared to the lift term. We also assume a constant
installation angle, constant chord length, and constant airfoil with ¢;(#,7) = 2m. The thrust coefficient can be
calculated as:

2n 1
Crlns fos ) = & / / (22, (k - @) cos K] dFdg ©)
0 0

B. Rotor Inflow Model

The rotor inflow model is a crucial component in the aerodynamic analysis and optimization of eVTOL vehicles,
especially when considering the dynamic and complex urban environments in which the vehicles operate. In the context
of eVTOL trajectory optimization, including inflow modeling in the overall system enables more precise trajectory
calculation, especially during critical maneuvers such as landing and takeoff. In this paper, the rotor inflow model is
adapted from [20] and was developed by Pitt and Peters in [21] using a system of linear ODEs to describe the dynamic
inflow of a rotor disk. The model relates the dimensionless aerodynamic loading to the dimensionless induced flow
distribution, which is described by the equation below:

AF 1) = Ag(t) + Ag ()7 singy, + A ()7 cos @)

where 7 = r /R, R is the rotor radius, Ay, A, and A, are the uniform, side-to-side, and fore-to-aft components of the
induced airflow, respectively, and A is the local dimensionless induced airflow velocity defined by:

A= u/QR 8)

where u, is the induced airflow velocity, and Q is the angular velocity of the propeller. We can then write the linear
first-order state-space representation of the inflow dynamics as follows:

/1'0 Ao Cr
A| =ML A |+ M7 Cron ©
/l.c /1c Cpitch
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with M and L coeflicient matrices defined as:

0 157 [l-sina
64 I+sin @

=

1 4
L= V_ 0 ~Teina 0 10)
“ | 15z [1-sine 0 _4sine
64 1+sin @ I+sin
128
T
—16
0 0 B

The coeflicients Ct, Co11, Cpircn Tespectively represent the thrust coeflicient, and the torque coefficients in the roll and
pitch directions.

In the above equation, « is defined as the angle of incidence, and Voo represents the dimensionless free-stream
velocity that can be obtained from:

o Ny [, ¥, 2] - Dyorordisk
Voo — , — 2_ —1 9 ’ rotordis 12
2nnR ¢ 7T/ cos ,/xZ + y2 + Z’Z ( )

where n in the first equation represents the propeller rotational speed, and n in the second equation stands for the normal
vector of the rotor disk.

Equation 9 defines the inflow dynamics for a single rotor. In the next subsection, we will introduce the state-space
model for the four-motor inflow aerodynamic system considering a quadrotor vehicle configuration.

C. ODE Model of Rotor Dynamics

Following the inflow dynamic model for a single rotor disk, we can construct the state-space model for all rotors to
calculate the thrust, torques, and dynamic inflow states for each motor. The output of this system will feed into the
vehicle dynamic model, which will be discussed in the next subsection. In this paper, we consider the states of the
system to include the inflow states of each rotor, along with the total vertical thrust F, the sum of the moments with
respect to the x-, y-, and z-axes, denoted as 7y, 7y, 7, respectively, together forming the state vector x( € RI6x1:

T
X0 = [/lo,rls /ls,rl, /lc,rl, cees /lO,r4’ /ls,r4’ /lc,r4’ an Tx> Ty, Tz] (13)

where Ag i, As i, Ac,ri are the inflow states of i-the rotor. The terms F7, 7y, 7y, and 7, are defined as follows:
» F is the total vertical thrust generated by the rotors, a key output influenced by the speed of each rotor.
* Ty, Ty, and 7, are the sum of the moments (torques) with respect to the x-, y-, and z-axes respectively, resulting
from the combined action of all rotors.
. The control vector ug € R**! is considered to be the square of each motor’s rotational speed:

w = [Q2,0Q3,03,027 (14)

where Q;, i = 1,2, 3, 4 is the rotational speed of each rotor i in revolution per second. Consequently, we can formulate
the state-space form of the aerodynamic system as follows:

)'(0 = A()XO + B()llo (15)

where Ay is as follows:

MLt
MLt
Ap = MLl (16)
ML
_I4x4
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The control matrix By is defined below:

012x1 012x1 012x1 012x1
by by b3 I
Bo=| b1+ Rlarm+ ko (b3 Rlarm+kyon)  =(b3 - Rlarm+krow)  ba- Rlarm+keou | (17)
b1 Llarm+kpiren b2 Llarm+kpiren =53 Llarm +kpiren)  ~(ba - Rlarm + Kpiren)

kyaw _kyaw kyaw _kyaw

where by = by = b3 = by = CTPD4, kron = Crollsta kpitch = CpitchpDSs and kyaw = CQPDS

In order for the model to be solved by optimal control algorithms more efficiently, two assumptions are made in this
work. First, the drag coefficient Cr and thrust coefficients C,j1, Cpirch, and Cyg,, are assumed to be constant in the
control matrix at low-speed landing scenarios. Second, the angle of attack, «, in the equations above is assumed to be
constant as well. The resulting aerodynamic model will be combined with the flight dynamics to formulate the landing
trajectory optimization problem in the following subsections.

D. Flight Dynamics

The flight dynamics of eVTOL vehicles form a foundational aspect of trajectory optimization. In this paper, our
focus is on a comprehensive 6-DoF flight dynamic model. The 6-DoF model captures the complete range of motion
possible for the eVTOL vehicle, including three translational movements (up/down, left/right, forward/backward) and
three rotational movements (pitch, roll, yaw), and the 12 states are defined as:

T
x=|x y z ¢ 6 y ¥ y z p q r| €R" (18)

where x, y, z represent the displacement of the mass center of the vehicle in the Earth reference frame (North, East and

Down); the rotational displacement components are defined as i, 6, ¢; X, ¥, Z represent the velocity in the inertial frame;
and p, g, r define the relative rotational rates to the body-fixed frame. The control input is defined as:

u=[F, & 7 " (19)
for simplicity, the Coriolis term is neglected, and the model in the inertial frame can be represented as:
N F; . . .
X = ——[sin(¢) sin(¢) + cos(¢) cos(¥) sin(6)]
m
y= —ZZ [cos(@) sin(y) sin(F) — cos(y) sin(¢)]

2= - 2 [cos(4) cos(0)]

P I, -1, G+ (20)
= + —
Iy Iy
. I,=I,.. T
0:11—x¢¢+1—y
y y
lpzlx_lnggurk
I I

We rewrite the system in a state-space form as follows:

x = f(x,u, 1) = f(x) + B(x)u 2n
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where

X
y
Z
¢
6
g
f(x) = 22
(x) 0 (22)
0
8
Clxqr
Clypr
| Cizpq |
which Cr = 275, Cpy = 572 and € = 275
The control matrix is defined as: '
r 06><1 06)(1 06><1 06><1 1
g1 0 0 0
2 0 0 0
B(x)=| g3 0 0 0 (23)
0 11, 0 0
0 0 I 0
0 0 0 1/1,
where |
g1=-— [sin(¢) sin(i)) + cos(¢) cos(y) sin(6)]
1 . . .
&= - [cos(¥) sin(¢) — cos(¢) sin(¥) sin(6)] 24)
1
g3 = ——[cos(¢) cos(6)]
m
E. Flight Constraints

In this paper, we consider a landing problem with a fixed time of flight. To ensure the safety of the flight mission,
the vehicle must satisfy some constraints.
First, we impose the initial and terminal conditions for the aircraft by introducing the following boundary conditions:

X(70) = Xo (25)
X(l‘f) =Xy (26)

Then, we define the maximum distance to the landing pad and maximum altitude as:

0<x< Xmax (27)
0< Y < Ymax (28)
0 <z < Zmax (29)

Meanwhile, the maximum rotor speed is restricted based on vehicle specifications:
Qmin < Qi(t) < Qmax (30)

where the subscript i denotes the motor number. In the model considered in this paper, we have four motors.
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F. Performance Index and Optimal Control Problem
In this paper, the optimal control problem is formulated to minimize the energy cost:

ty 4
J=/ Zﬁf(t)dt 31)
o =1

where 912 denotes the squared rotor speed for each rotor. Combining the objective function, aerodynamics, flight
dynamics, and constraints, the optimal control problem is formulated as:
Problem 1:

Minimize: (31)
Subject to: (15), (21), (25), (26), (27), (28), (29), (30)

Overall, we want to minimize the objective function (31) while satisfying the rotor aerodynamics (15), the flight
dynamics (21), the boundary conditions (25) and (26), and the inequality state and control constraints (27)-(30).

Problem 1 is not convex and difficult to solve. In the next section, we will introduce a process to convexify the
problem, and then develop a sequential convex optimization approach to solve the problem iteratively.

II1. Convex Approach

In recent years, convex optimization, which studies the problem of minimizing convex functions over convex sets, has
been widely used to solve optimal control problems in aerospace engineering due to the advantages of fast convergence
and guaranteed global minima for a single convex optimization problem, such as linear programming (LP), quadratic
programming (QP), second-order cone programming (SOCP), or semidefinite programming (SDP). In these cases, the
problem can be solved in polynomial time because of its low complexity. As such, convex optimization approaches are an
ideal method for onboard real-time applications in complex engineering fields, such as eVTOL trajectory optimization.

However, two significant challenges arise when applying convex approaches: identifying a convex problem and
transforming a nonconvex problem into a convex problem. Usually, nonconvex constraints in the optimal control
problem are convexified by introducing slack variables and constraint relaxations, and the highly nonlinear dynamic

equations are often replaced by approximated formula, typically derived from the first-order Taylor series approximation
[22].

A. Modified Model for Convex Approach

In this paper, we introduce a critical assumption to simplify the complex aerodynamics involved in eVTOL flight.
We assume that the aerodynamic forces and moments have a linear relationship with the rotor speeds, allowing us to
reduce the overall system to a total of 16 states. This reduction leads to four aerodynamic states that linearly relate rotor
speed to the thrust and torques in the x, y, and z directions, along with the 12 standard flight dynamic states. After the
simplification the overall states are defined as:

T
X=|F, 7« 7y 7. x ¥y 2 ¢ 0 ¥ % y Z p q r eR!® (32)
The new system in a state-space form as follows:

X =F(X,U,1) = F(X) + B(X)U (33)
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where:

F(X) = (34)

S O T DB e =

oo

Clxqr
Crypr
| Cizpq |

And the updated control matrix is defined as:

b by b3 ba
by - \/Tilarm + kroll _(b2 : \/TElarm + kroll) _(b3 ' glarm + kroll) by - \/Tilarm + kroll
B(X) = by~ glarm + kpitch by - %larm + kpitch _(b3 : %larm + kpitch) _(b4 ! \/Tilarm + kpitch) (35)

kyaw _kyaw kyaw _kyaw
012x1 012x1 012x1 012x1

This assumption significantly simplifies the mathematical model while retaining sufficient accuracy for practical
application, making it more tractable for convex optimization. By adopting this approach, we ensure that the resulting
trajectory optimization problem remains within a computationally feasible domain. This balance is vital for the
development of real-time, onboard control systems that can reliably and efficiently operate in dynamic and often
unpredictable UAM environments.

B. Convexification
For the eVTOL landing problem, we first rewrite the state space system as:

X=FX,U,1) = AX)X+BU +g" (36)

where A(X) is the Jacobian matrix, and g* represents the constant gravity vector, which are as follows:
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-1 0 0 0O 00 0 O0O0OO0OO0O O 0 0 0 0]

0 0 0O 00 0 O0O0OO0OO0O O 0 0 0 0

0 0 . 0O 0 0 0 0 0 O0O0 O 0 0 0 0

0 0 0 -1 00 00O OO0 O 0 0 0 0

0 0 0 0O 00 0 O0OO0OO0OT1 O 0 0 0 0

0 0 0 0O 00 O0O0OOTO0ODO0O . 0 0 0 0

0 0 0 0O 00 0 O0O0OO0OO0O O 1 0 0 0
AX)='o o 0 0 00O0O0OOO0OOTO O -~ 0 O (37)

0 0 0 0O 00 0 O0O0OO0OO0O O 0 0 1 0

0 0 0 0O 00 0 O0O0O0OO0O O 0 0 0 1

g1 0 0 0O 00 0 0 O0O0O0 O 0 0 0 0

2 0 0 0O 0 0 0 0 0 O0O0 O 0 0 0 0

g3 0 0 0O 00 0 O0O0OO0OTO0O O 0 0 0 0

0 /I, O 0 0 0 0 0 0 0 0 0 Cir Cixg 0 0

0 0O I, 0 0 0 0 0 0 0 0 0 Cpyr 0 Cryp O

| O 0 0O /I, 0 00 00O O O Ciq Cpp 0 0 |
T
g=[0x2 o 0 0 0 (38)
Same as in the previous section, the constants in the matrix A are defines as: Cj, = Iy I_XIZ , Cry = Izl_yl" , and
Ciz = IXI; !> The control matrix is defined as:
by by b3 by

by - %larm + kroll _(bZ . \/Tzlarm + kroll) _(b3 : \/TElarm + kroll) by - \/Tzlarm + kyou
B = by - glarm + kpitch by - glarm + kpitch _(b3 ! glarm + kpitch) _(b4 ' %larm + kpitch) (39

kyaw _kyaw kyaw _kyaw
012x1 012x1 012x1 012x1

To convexify the system, we further write the above equation as follows by separating the linear and nonlinear
components:

X=FX, U, 1) =A;X+BU+fy . (X,0) +g" (40)

10
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where Ay is the linear part of the A matrix that can be written as:

-1 0 0 0 000OO0OO0OOO O O O 0 0]
0 0 0O 00 0O0OO0OOOOTO O O OO0
0 0 - 0O 00 O0OOOOOTO O O OO0
0 0 0 -1 00 0O O OO O O O OO
0 0 0 0O 00 0O0OOOT1 O O O OO0
0 0 0 0O 00 0OOOO .0 0 0O
0 0 0 0O 00 0O0OOOOTOT1T O 0O
AL=| 0 0 0 0O 000OO0OOOO O O . 00
0 0 0 0O 00 0O0O0OOOOTUO O O 1O0
0 0 0 O 00 O0OO0OOOOTUO O O 01
0 0 0 0O 00 O0OOOOOTO O O OO0
0 0 0 O 00 O0OOOOOTO O O OO0
0 0 0 0O 00 0O0O0OOOOTUO O O OO0
0 I/, O 0O 00 O0O0OOOOTO O O OO0
0 o 1, 0 00 O0OO0OO0OO0OO0O O O O OO
| O 0 0O 1/z 6 0 0OOO OO O O O 0 0]
The nonlinear part f . is defined as:
r22xl
F:g
F 8
fne(X,t) = | F.g3
Cixqr
Crypr
| Cizpq |

To linearize the nonlinear part of the function, we apply the first-order linearization method and obtain:

ofnL
0X
After substituting to original equation, the full linearized equation can be written as:

v (X, 1) ~ fyp (X5 0) + X" (X-X

. - of
X=FX,U, 1) ~ A X+BU+g" +fyr (X*,1) + 6’;; (X*, 1) (X - X¥)
where the partial derivative matrices are shown below:
[ oloxt oloxt |
0 0 0 0 0 0 & du dun g g o g 0 0
¢ i
P g 0 0 0 0 00 g—% g—gg g—gz 0O 0 O 0 0 0
X g 0 0 0 0 00 ai;; % a—f’; 0O 0 O 0 0 0
0 O 0 0O O o0 O0 o 0 0O 0 0 O 0 Cixr Cixq
0 O 0 0O O o0 O0 o 0 0 0 0 0 Cyyr 0 Cryp
0 O 0 0 O o0 O0 O 0 0 0 0 0 Cp,q Cpp 0

11

(41)

(42)

(43)

(44)

(45)
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>
)
Q>
)

g1

3_"’ g_,g 3‘” F —siny cos¢ +cosysinfsing —cosycosfcos¢g —cosysing + siny sin 6 cos ¢
82 82 g2 | _ 12 . . . . . . .

g¢ g—e 37 = cosycosg+sinysinfsing  —siny cosfcos¢g —siny sin¢g — cosy sin 6§ cos ¢
g3 0g3 g3 : :

36 00 90 cos 0 sin ¢ sin @ cos ¢ 0

(46)
To develop the SCP method, the last step is to discretize the problem. In this research, we use the trapezoidal
approach for discretization. The trapezoidal method is defined as:

At . .
X[ = Xi—l + 7 (Xi—l +Xi) (47)

where At is the step size. After rearranging all the terms, we obtain the following discretized state equation:
At k-1, gk
[(I—?(AL +Anz) | Xi| -
_ ALk k=1 xck=1 o) 4 (ph=1  gk=1 k=1 4 o
=75 [( NLi-1 ~ANL_ Xio1 T8 ) + ( N ~AnLXi t8 )]

Finally, we formulate the convex form of the landing problem as:
Problem 2:

At At
-2 BU,_, - = BU;
2 )

At
(1 + 7(A§‘1 + AR ) X; 1

i1

(43)

Minimize: (31)
Subject to: (25) — (30), (48)

Now, Problem 2 is in a convex form and is ready for the application of the SCP algorithm to compute the optimal
solution successively.

C. Virtual Control

During the process of convexification, one big challenge is the phenomenon of artificial infeasibility. This issue
typically arises during the initial stages of the optimization process, often due to an inadequate initial guess. Artificial
infeasibility occurs when there is discrepancy between the linearized model and the true nonlinear original system
dynamics, resulting in an optimization problem that, in its current linearized form, has no feasible solution.

To mitigate the problem, we introduce the virtual control vector v to the system dynamics. Virtual control acts as a
corrective mechanism in the optimization process, helping to fix artificial infeasibility. The key idea behind virtual
control is to introduce additional degrees of freedom into the system dynamics, allowing the optimization algorithm to
have greater flexibility in finding feasible solutions, especially during the initial iterations where the solution space may
not be well-defined. Vector v usually has the same length as the state vector. With the virtual control the state equation

will become:

X

where E is an identity matrix. The primary function of E in the problem is to help the states of the system in reaching
a feasible region within a finite time frame. By multiplying with the virtual control vector, E ensures that each state
variable can be individually adjusted.

It is important to note that the virtual control is not a physical control input but a variable to improve the convergence
of the optimization algorithm. As the algorithm progresses and the solution converges, the influence of the virtual
control diminishes, eventually becoming negligible as a feasible and optimal solution is approached. Since the virtual
control term is a auxiliary control variable that only acts to prevent the infeasibility raised during the algorithm’s
convergence steps, it will be heavily penalized in the objective function. The new objective function is thus formed as:

X=F(X,U, 1) * ALX+BU+g" +fn (X, 1) + (X*, ) (X=X")+Ev 49)

4
Q2(1)dt +w, - ess sup||E(t)v(7)|l; (50)

iy
J= /
o =]
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D. Sequential Convex Programming
Sequential convex programming (SCP) stands out for its ability to handle complex, nonlinear problems through a
series of iterative steps that gradually converge to a solution. In this paper, for the first time, an SCP method is used to
address the high-fidelity, nonconvex landing problem of eVTOL vehicles. SCP operates by transforming the nonconvex
problem into a series of local convex optimization problems. Each iteration solves the convex subproblem based on the
current solution estimate, leading to a progressively more accurate solution. The methodology of SCP implemented in
our research is summarized in the following key steps:
1) Initialize the iteration index & = 0 and define the initial states X(#). Then, insert the initial conditions to the
equations of motion to obtain an initial trajectory X(©). Set k = k + 1.
2) For k > 0, parameterize a convex subproblem (Problem 2) using the solution from the previous iteration and
solve this subproblem to find a solution pair [X(¥), U™ ]at the current step.
3) Check the convergence condition

sup X - X"V < g (51)

where ¢ is a preset tolerance. If the condition is satisfied, the algorithm moves to step 4; otherwise, set k = k + 1
and go back to step 2.
4) The algorithm is converged and a solution for the problem is found to be {X¥), U},
By employing SCP, we aim not only to navigate the complexities of the eVTOL landing problem efficiently but also to
explore its potential for real-time applications. This capability is vital in UAM, where flight conditions can change
rapidly, and the ability to quickly adjust landing trajectories in response to these changes is crucial for safety and
efficiency.

IV. Numerical Simulations

In this paper, a small quadrotor serves as an example model for the simulations to emulate the UAM landing scenario.
The vehicle parameters are listed in Table 1. These parameters define the basic aspects of the vehicle such as mass,
rotor configuration, and aerodynamic coefficients. Using this model, several cases have been solved to demonstrate the
performance of the proposed method as follows.

For the first landing scenario, the initial and terminal conditions are outlined in Table 2. These conditions shows the
starting and the desired end states of the quadrotor during a landing maneuver. To initialize the SCP algorithm, we
generated an initial trajectory using linear interpolation between these initial and final states. This method provides a
starting point that is sufficiently close to the desired trajectory to begin the iterative process of refinement.

To benchmark our results and demonstrate the efficacy of our approach, we first solved the most fundamental landing
problem with only 12 states that excludes aerodynamic factors, serving as a baseline for our comparative analysis. Then,
the 16 states optimization problem (Problem 1) is solved. Both the 12-state and 16-state models have been solved
using the GPOPS-II solver, a well-established tool in optimal control [23]. The results obtained from our SCP-based
method and the GPOPS-II solutions are presented and compared. The following subsections detail the results of these
simulations, demonstrating the performance of our proposed method in achieving efficient, safe, and practical eVTOL
landing trajectories. All simulations are carried out on a laptop with an macOS 64-bit operating system and M1 Pro
Processor.
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Table 1 Vehicle parameters for simulations

Parameter Value

Vehicle’s mass, m 0.69 kg

Propeller diameter, D 0.1524 m
Atmospheric density, p 1.225 kg/m?
Gravitational acceleration, g 9.81 m/s?
Moment of inertia about body frame’s x-axis, I 4.69 x 1072 kg-m?
Moment of inertia about body frame’s y-axis, Iy, 3.58 x 1072 kg-m?
Moment of inertia about body frame’s z-axis, I, 6.73 x 1072 kg-m?
Roll moment coefficient, C; .y 0.0414

Pitch moment coefficient, Cpizcn 0.0207

Yaw moment coefficient, Cy 4 0

Maximum descent airspeed, Vi, qx 4 m/s

Maximum net thrust, 7;,,,x 11N

Time of flight, ¢ 4s

Table 2 Initial and terminal conditions for the landing scenario

Parameter Value
Initial position, [xg, Yo, zo] [3,4,5] m
Initial velocity, [Vxo, Vy0, V20l [0,0,0] m/s
Initial orientation, [¢g, 6o, Yol [0,0,0] deg
Initial angular velocity, [p, g, r] [0,0,0] deg/s
Terminal position, [xg, Yo, zo] [0,0,0] m
Terminal velocity, [Vxo, Vyo, V20l [0,0,0] m/s
Terminal orientation, [¢g, 6, Yo] [0,0,0] deg
Terminal angular velocity, [p, g, r] [0,0,0] deg/s

The simulated landing task begins with the vehicle positioned five meters above the vertiport, at a distance of three
meters in the x-direction and two meters in the y-direction from the designated landing point. Figure 3 below depicts
the optimal landing trajectory achieved using the SCP method. Notably, the trajectory shows a smooth landing pattern,
guiding the vehicle from its initial state to the final landing condition efficiently and safely.

Figure 4 illustrates the efficiency of the SCP method in terms of computational time. Remarkably, the SCP algorithm
achieved convergence in just six iterations, with the entire process taking less than three seconds in total. Each iteration
was notably fast, averaging around 0.5 seconds. This rapid convergence demonstrates the potential of the SCP method
for real-time solution capability for complex dynamic systems. Figure 5 presents the convergence process for the
objective function, where we can see that the SCP method converges to a stable objective value. Figures 6 to 8 display
the convergence profiles for the x, y, and z components of the vehicle position, respectively. These plots reveal that the
solver met the convergence criteria in six iterations.
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Fig.3 Three-dimensional 12-state optimal landing trajectory by SCP.
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Fig. 4 Computational time of each subproblem for SCP algorithm.
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Fig. 5 SCP convergence profile for objective function.
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Fig. 6 SCP convergence profile for x direction.
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Fig.7 SCP convergence profile for y direction.
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Fig. 8 SCP convergence profile for z direction.

Figure 9 shows the trajectories from GPOPS and the SCP algorithm. It is clear to see that all the three trajectories
are similar to each other, and the SCP method indeed finds a solution near the optimal result. Figure 10 compares the
corresponding control profiles for the 16-state model. The rotor speed curves from the two solvers show very similar
trend as expected. In Fig. 11, we present a side-by-side comparison of the thrust curves derived from the solvers. It
is evident from the comparison that the SCP algorithm has converged to a significantly smoother thrust profile. This
smoother profile is likely a result of the reduced nonlinearity inherent in the convexification process. The smoother thrust
curve achieved by the SCP algorithm may contribute to a more comfortable and safer flight experience, especially in the
UAM context where precision and smoothness in trajectory control are the priority. Figure 12 presents a comparison
of torques in the x, y, and z directions. This plot reveals that the torque profile for the 12-state model exhibits some
deviations when compared to the 16-state model, as solved by both GPOPS and SCP. This underscoring the impact
of aerodynamics on the system’s dynamics, while the latter two models demonstrate a closely aligned trend. Figures
13 and 14 provide insightful comparisons of velocity and angular position curves, respectively, across the different
solutions. Similar to the observations made in the thrust curve comparison, all the three solutions demonstrate closely

aligned trends in both velocity and angular position while the solution derived from the SCP method exhibits slightly
higher smoothness.
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Fig. 9 Trajectory comparison between GPOPS and SCP.
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Fig. 11 Thrust comparison between GPOPS and SCP.
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Fig. 14 Angular position comparison between GPOPS and SCP.
Table 3 Comparison of computational time of different solvers
12 states (GPOPS) 16 states (GPOPS) 16 states (SCP)
8s 155s 3s

Lastly, Table 3 presents a comparison of computation times between the two solvers under different models, further
highlighting the efficiency of the SCP method relative to the traditional GPOPS solver. Specifically, for the 12-state
problem, the GPOPS solver took eight seconds to converge. However, when the model complexity was elevated to 16
states, the GPOPS solver required significantly more time, approximately 155 seconds, to reach convergence. In contrast,
the SCP method demonstrated remarkable efficiency, solving the same 16-state problem in merely three seconds, which
is over 50 times faster than GPOPS. This advantage in computational times underscores the superior efficiency of the
SCP method, particularly as the problem complexity escalates. These findings show that the SCP method is a suitable
option for real-time trajectory optimization.

V. Conclusions

In this paper, we investigate the possibility of integrating high-fidelity, ODE-based aerodynamic models with the
conventional flight dynamics to achieve a more accurate and realistic representation of the eVTOL vehicle’s behavior
during landing maneuvers. This integration is crucial in urban environments where precision and reliability in landing
can be heavily affected by the complex and dynamic nature of these settings. In this research, We have shown that the
SCP method can outperforms traditional nonlinear programming approaches in terms of computational efficiency. This
improvement is a critical step toward real-time solution capabilities, a key requirement for the practical deployment of
autonomous eVTOL vehicles in urban airspace.
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