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Summary

External attention is mediated by competition between endogenous (goal-driven)
and exogenous (stimulus-driven) factors, with the balance of competition determining
which stimuli are selected. Occasionally, exogenous factors "win" this competition and
drive the selection of task-irrelevant stimuli. Endogenous and exogenous selection
mechanisms may also compete to control the selection of internal representations (e.g.,
those stored in working memory), but whether this competition is resolved in the same
way as external attention is unknown. Here, we leveraged the high temporal resolution
of human EEG to determine how competition between endogenous and exogenous
factors influences the selection of internal representations. Unlike external attention,
competition did not prompt the selection of task-irrelevant working memory content.
Instead, it delayed the endogenous selection of task-relevant working memory content
by several hundred milliseconds. Thus, competition between endogenous and
exogenous factors influences internal selective attention, but in a different way than

external selective attention.



Introduction

Efficient behavior requires rapid comparison of sensory inputs with internal
representations of goal states and motor affordances. Many of these comparisons take
place in working memory (WM), a capacity- and duration-limited system that forms a
temporal bridge between fleeting sensory phenomena and possible actions'2. Capacity
limits in WM necessitate the existence of external selection mechanisms that gate
access to this system (i.e., input gating), while rapidly changing environmental
circumstances necessitate the existence of internal selection mechanisms that prioritize
behaviorally relevant subsets of information stored in WM for action (i.e., output gating).
Whether similar mechanisms mediate the selection of internal and external information
is hotly debated3-.

External sensory inputs can be selected based on behavioral goals (i.e.,
endogenous selection) or stimulus properties (i.e., exogenous selection), with selection
ultimately determined by the balance of competition between these factors. For
example, stimulus factors can trigger the selection of task-irrelevant information®,
disrupting top-down searches for task-relevant stimuli®. These disruptions are frequently
accompanied by concurrent shifts in cortical and subcortical spatial priority maps that
mediate eye movements and endogenous shifts of covert spatial attention’0-12,
Endogenous and exogenous factors may also compete to control the selection of
internal representations, for example, those stored in WM'3. However, little is known
about how this competition influences memory performance and is resolved. One
obvious possibility is that competition results in the exogenous selection of task-

irrelevant information like that seen in external attention. For example, an external



stimulus might trigger the exogenous selection of stimulus-matching WM content (i.e.,
the converse of WM-guided selection, where external attention is oriented to task-
irrelevant stimuli that incidentally match attributes of stimuli stored in WM13-14),
Alternately, competition between endogenous and exogenous factors could produce a
general slowing or delay in the selection of task-relevant memory content without
prompting the exogenous selection of task-irrelevant memory content. Although this
possibility has been tested and rejected in the external attention literature, it may help
explain a recent finding documenting delays in oculomotor biases to the locations of
items stored in WM when experimental factors place endogenous and exogenous
selection mechanisms in conflict3.

To test these possibilities, we recorded EEG while participants performed a
retrospectively cued WM task typically used to study internal attention'®. In different
experimental blocks, a cue presented during WM storage indicated which of two
memorized positions would be probed for recall (pro-cue trials) or which position would
not be probed for recall (anti-cue trials). We reasoned that the anti-cue manipulation
would create a state of conflict between endogenous and exogenous selection
mechanisms, a point supported by studies documenting visual search costs when
participants are cued to the identity of an upcoming distractor'3'8, We then examined
how informative pro- and anti-cues influenced EEG signals that track covert shifts of
spatial attention with high temporal precision. Across multiple analyses, we found no
evidence for shifts of attention toward cue-matching but task-irrelevant memory
representations during the anti-cue task. Instead, we observed a significant delay in the

selection of task-relevant WM content during the anti-cue relative to the pro-cue task.



Control analyses demonstrated that this result could not be explained by weaknesses in
our experimental design or idiosyncrasies in our analytic approach. Thus, we argue that
unlike external attention — where competition between endogenous and exogenous
selection mechanisms can produce the selection of task-irrelevant information —
competition between endogenous and endogenous selection mechanisms during the
selection of internal content does not produce an exogenous selection of task-irrelevant

information.



Results

We recorded EEG while 40 human volunteers performed a retrospectively cued
spatial recall task (Figure 1A). Participants remembered the positions of two discs over
a brief delay, and a retrospective color cue presented 1.25 seconds later instructed
participants to continue remembering the positions of both discs (i.e., uninformative
trials) or to prioritize one of the discs for subsequent recall (i.e., informative trials). The
locations of the two discs were fully randomized across experimental blocks (subject to
the constraint that two discs could not appear at the same location on a given trial). At
the end of the trial, participants recalled the position of the task-relevant disc via mouse
click. Behavioral performance was quantified via average response times and average
absolute recall error (i.e., the average absolute difference between the correct and
reported disc position). In separate experimental blocks, participants performed a pro-
cue task or an anti-cue task. During the pro-cue task informative cues were assigned
100% validity; during the anti-cue task informative cues were assigned 0% validity (i.e.,
the cue color indicated which disc was task-irrelevant). This allowed us to disentangle
the effects of endogenous and exogenous factors on the selection of WM content:
during the pro-cue task the color cue indicates which of the two remembered stimuli are
task relevant, and endogenous and exogenous selection mechanisms are aligned.
During the anti-cue task, however, the color cue indicates which of the two stimuli are
task-irrelevant, placing endogenous and exogenous selection mechanisms in
competition'3. Task order (i.e., pro- followed by anti-cue or vice versa) was
counterbalanced across participants, and participants were explicitly reminded about

cue validity at the beginning of every block.



Endogenous and Exogenous Factors Influence the Selection of Task-Relevant WM
Content, but in Different Ways

A two-factor repeated measures analysis of variance (ANOVA) applied to
participants’ average absolute recall errors (Fig 1B) revealed a main effect of cue type
(i.e., informative vs. uninformative; [F(1,39) = 15.854, p = 0.0003, n? = 0.289]), with
lower errors during informative vs. uninformative cue trials. Likewise, this analysis
revealed a main effect of task (i.e., pro- vs. anti-cues; [F(1,39) = 8.168, p = 0.0068, n? =
0.1732]), with lower errors during the pro- vs. anti-cue task, and a significant interaction
between these factors [F(1,39) = 5.35, p = 0.0261]. A complementary analysis of
response times (Fig 1D) revealed a main effect of cue type [F(1,39) = 483.046, p <
0.0001, n? = 0.925], with response times faster during informative vs. uninformative cue
trials, no main effect of task [F(1,39) = 0.022, p = 0.884, n? = 0.060], and a significant
interaction between these factors [F(1,39) = 30.362, p < 0.0001].

Importantly, average absolute recall errors can be influenced by the precision of
participants’ memory as well as random guessing or accidental reports of a non-probed
object (“swap errors”). To quantify the frequencies of random guessing and swap errors,
we pooled participants’ recall data across all cue conditions (e.g., pro vs. anti;
informative vs. uninformative) and used a hierarchical Bayesian approach to fit
participants’ data with a parametric model which assumes that on a given trial (a)
participants report the position of the probed disk with precision k, (b) participants report
the position of the non-probed disk with precision k, or (c) participants randomly guess

(Bays et al., 2009). Maximum a posteriori estimates obtained from model fitting



indicated that swap errors and random guesses accounted for 1e-04% and 2.20% of
responses at the population level, respectively. This outcome suggests that cue effects
on average absolute recall error reflect changes in the precision of participants’ memory
rather than changes in the frequency of guessing or incorrect responses.

In planned comparisons, we sought further clarity on how endogenous and
exogenous factors influenced participants’ memory performance. Our approach is
based on two assumptions. The first assumption is that during the pro-cue task
endogenous and exogenous selection mechanisms are aligned. That is, participants
can select the task-relevant position via top-down or bottom-up factors. The second
assumption is that during the anti-cue task endogenous and exogenous selection
mechanisms conflict: participants can select the task-relevant position only via a top-
down interpretation of the cue, whereas bottom-up interpretation of the cue would result
in selecting the wrong position. Thus, to isolate the effects of exogenous factors on
memory performance we compared participants’ recall errors and response times
across informative cue trials during the pro- and anti-cue tasks (i.e., the simple effect of
task for informative cues).

Next, we calculated the effect of endogenous factors in memory performance via
a two-step process. In the first step, we calculated differences in participants’ recall
errors and response times across informative and uninformative cue trials in the pro-cue
task (i.e., the simple effect of cue type for the pro-cue task). In the second step of the
analysis, we subtracted the effects of exogenous factors (estimated using the procedure

in the preceding paragraph) from these differences, i.e., while accounting for the fact



that during the pro-cue task endogenous and exogenous factors are aligned while
during the anti-cue task they are opposed.

The results of these analyses are summarized in Figures 1C and 1E.
Endogenous factors had a facilitatory effect on task performance, lowering recall errors
(M =1.78° 95% CI = 0.645°-3.112°; Fig 1C) and speeding response times (M = 0.165
sec; 95% CIl = 0.014-0.305 sec; Fig 1E). In contrast, exogenous factors significantly
worsened participants’ recall errors (M = 0.961°; 95% CI = 0.191°-1.863°; Fig 1C) but
had no effect on response times (M = -0.055, 95% CI = -0.073-0.189; Fig 1E). Thus,
endogenous and exogenous factors had faciliatory and deleterious effects on

participants’ memory performance, respectively.

Manipulation Check: The Anti-cue Task Requires a Greater Degree of Cognitive Control
than the Pro-cue Task

A key assumption of our experimental approach holds that the anti-cue task
produces conflict between endogenous and exogenous selection mechanisms. We
reasoned that cognitive control is needed to resolve this competition and drive the
selection of task-relevant WM content, and that therefore a greater degree of cognitive
control would be required during the anti-cue task compared to the pro-cue task (i.e.,
when endogenous and exogenous selection mechanisms are aligned). We tested this
prediction by estimating and comparing theta power (4-7 Hz) over frontal electrode sites
during the pro- and anti-cue tasks. Frontal theta power has robustly linked with the need
for cognitive control'®, scales with WM load?°, and predicts successful working memory

updating?'. Thus, we expected larger frontal theta power estimates during the anti-cue



vs. the pro-cue task. Indeed, we observed significantly greater frontal theta power
during the anti-cue vs. pro-cue task that was maximal over frontal midline electrode
sites (Figure 2A-B). Note that this effect emerged only after presentation of the retrocue,
consistent with a need for “online” cognitive control rather than a general increase in
difficulty during the anti-cue vs. pro-cue task. We also verified that cue-locked frontal
power differences were limited to theta-band activity but not neighboring frequency
bands (e.g., 1-3 Hz delta-band activity or 8-13 Hz alpha-band activity; Figure 2C).
These data support our contention that the anti-cue task produces significant conflict

between endogenous and exogenous selection mechanisms.

Competition Between Endogenous and Exogenous Selection Delays the Selection of
Task-relevant WM Content

To understand how competition between endogenous and exogenous factors
influence the selection of WM content, we examined how pro- and anti-cues influenced
our ability to decode stimulus positions from scalp EEG. Our approach builds on studies
demonstrating that stimulus- and location-specific information can be decoded from
alpha-band EEG signals?? and that attending to an item or location stored in WM
selectively boosts decoding for the attended information?3-26. We implemented a
multivariate distance-based decoding analysis?’ that was customized for our
(parametric, circular) location space. This approach is similar to image reconstruction
techniques (i.e., “inverted encoding models”) but does not require the experimenter to
specify a specific coding model or basis set. To facilitate comparisons across cue

conditions and tasks, participant-level decoding time series were sorted by task



relevance: during the pro-cue task decoding performance for the cue-matching disc was
designated task-relevant and decoding performance for the cue-nonmatching disc was
designated task-irrelevant; during the anti-cue task this mapping was reversed.

We tested two models describing how competition between endogenous and
exogenous selection mechanisms influences the prioritization of task-relevant and task-
irrelevant WM content. The first model — which we term “retro-capture” — was motivated
by studies reporting exogenous shifts of attention to task-irrelevant stimuli in the
external attention literature®’. This model predicts a transient increase in position
decoding performance for the cue-matching but task-irrelevant stimulus during the anti-
cue task, followed by a later increase in position decoding performance for the cue-
nonmatching but task-relevant position (i.e., after the effects of selecting the task-
irrelevant stimulus have been resolved). The second model — which we term “delayed
selection” - predicts that competition between endogenous and exogenous selection
mechanisms merely delays the selection of task-relevant WM content until this
competition is resolved. Thus, this model predicts a significant delay in the onset of
above-chance position decoding for the cue-nonmatching but task-irrelevant stimulus
anti- vs. pro-cue task, but no evidence for above-chance decoding of the cue-matching
but task-irrelevant stimulus during the anti-cue task.

Our experimental task (Figure 1A) was deliberately constructed so that the
effects of endogenous and exogenous factors on the selection of WM contents could be
measured during informative and uninformative trials. For example, during
uninformative trials participants received an uninformative retrospective cue instructing

them to remember the positions of both discs. Upon presentation of the probe display,



this uninformative cue was replaced by a 100% valid (pro-) or 0% valid (anti-) cue
instructing participants which disc to report. Conversely, during informative trials pro-
and anti-cues were presented midway through the storage period. Since informative
and uninformative trials had different response demands (i.e., pro- and anti-cues
presented at the end of uninformative trials required an immediate response while pro-
and anti-cues presented during the memory delay during informative trials did not), we
analyzed data from these conditions separately.

We first considered data from uninformative cue trials (Figure 3). Task-relevant
and task-irrelevant location decoding performance in the pro-cue (Figure 3A) and anti-
cue (Figure 3B) tasks increased rapidly during the sample display but returned to
chance levels by the time the (uninformative) retrocue was presented 1.75 sec later.
Task-irrelevant decoding performance remained at chance levels through the retrocue
and probe displays while task-relevant decoding performance increased from chance-
to above-chance levels during the probe period. Visual comparisons of probe-locked
task-relevant decoding performance suggested that above-chance decoding
performance was reached earlier during the pro- relative to the anti-cue task (Figure
3C). To quantify this effect, we extracted and compared probe-locked task-relevant
decoding time courses during the pro- and anti-cue tasks via cross-correlation.
Specifically, we computed correlations between the timeseries of task-relevant decoding
performance during the pro- and anti-cue tasks while temporally shifting the former by -
1.0 to +1.0 sec in 4 msec intervals relative to the latter, yielding a correlation-by-lag
function (see Methods). Observed cross-correlation coefficients (Figure 3D) exceeded

those expected by chance over lags spanning -0.33 to -0.22 sec and fell below those



expected by chance over a period spanning +0.25 to +0.35 sec, confirming that task-
relevant decoding performance reached above chance levels earlier during the pro- vs.
anti-cue task.

A complementary analysis of cue-locked decoding performance during
informative trials yielded a nearly identical pattern of findings (Figure 4). Specifically, we
once again found no evidence for above-chance decoding of the cue-matching but task-
irrelevant stimulus position during the anti-cue task (Figure 4B). We did, however,
observe a significant delay in the onset of task-relevant decoding performance during
the anti- vs. pro-cue tasks (Figure 4C-D). Thus, the results of probe- and cue-display-
locked position decoding performance reveal (a) no evidence for above-chance
decoding of the cue- or probe-matching but task-irrelevant stimulus position (Figure 3B
& 4B) and (b) a significant delay in the onset of above-chance decoding of the task-
relevant stimulus position compared to the pro-cue task (Figures 3C-D & 4 C-D). These
findings are incompatible with a model of internal selective attention where competition
between exogenous and endogenous selection mechanisms produces shifts of
attention to cue-matching but task-irrelevant WM content.

A motivated critic could dismiss our conclusions as based on a null result. For
example, perhaps our anti-cue task was insufficient to produce selection of cue-
matching yet task-irrelevant stimuli. This argument is difficult to reconcile with
behavioral findings showing clear memory impairments during the anti- vs. pro-cue task
(Figure 1C) and higher cue-locked frontal theta power during the anti- vs. pro-cue task
(Figure 2) uninformative and informative cue trials in the anti- vs. pro-cue tasks (Figure

2). A second possibility is that the parametric similarity-based decoding approach we



used is somehow insensitive to resolve the selection of cue-matching but task-irrelevant
WM content during the anti-cue task. We tested this possibility by re-analyzing data
from informative cue trials using a support vector machine (SVM) based decoding
approach (Figure S5) and an inverted encoding model (Figure 6). SVM-based decoding
failed to reveal above-chance decoding of the cue-matching but task-irrelevant position
during the anti-cue task (Figure 5B). Likewise, the results of the inverted encoding
model analysis are a perfect qualitative replication of the pattern reported in Figure 4:
we observed no evidence for robust above-chance representations of the cue-matching
but task-irrelevant stimulus during the anti-cue task (Figure 6B) and a significant delay
in above-chance reconstructions for the task-relevant position during the anti- vs. the
pro-cue task (Figure 6C). Thus, the findings summarized in Figure 4 generalize across
multiple analytic approaches.

Next, we considered the possibility that our decoding approach (Figures 3-4)
lacked the temporal sensitivity to detect the selection of task-irrelevant WM content. For
example, perhaps the temporal dynamics of changes in alpha power are insufficient to
measure weak or intermittent (i.e., occurring on only a subset of trials) shifts of attention
to the cue-matching but task-irrelevant position during the anti-cue task. We
investigated this possibility by tracking the N2pc, an event-related potential (ERP)
component known to track covert shifts of attention across visual hemifields. The N2pc
is a difference wave defined by greater negative voltages over occipitoparietal electrode
sites contralateral (vs. ipsilateral) to a visual target beginning ~200 ms after stimulus
onset?® and can be used to track endogenously and exogenously driven shifts of covert

attention with exceptionally high temporal precision?®-3°. We reasoned that if competition



between endogenous and exogenous selection mechanisms produces a selection of
cue-matching but task-irrelevant information, then we should observe a significant N2pc
over electrode sites contralateral to the visual hemifield containing the cue-matching but
task-irrelevant disc during the anti-cue task. Conversely, if competition between
endogenous and exogenous selection mechanisms delays the selection of task-relevant
WM content, then we should (a) observe a robust N2pc over electrode sites
contralateral to the visual hemifield containing the task-relevant disc during the pro-cue
task, and (b) observe a significant delay in the onset of the N2pc over electrode sites
contralateral to the visual hemifield containing the task-relevant disc during the anti-cue
vS. pro-cue task.

To test these predictions, we computed voltage differences over occipitoparietal
electrode sites contralateral to the visual hemifield containing the task-relevant disc
during the pro- and anti-cue tasks. To control for possible sensory confounds we
restricted our analyses to trials where the task-relevant and task-irrelevant discs
appeared in opposite visual hemifields (approximately 70 trials/task). The N2pc was
defined as the average voltage difference over contralateral and ipsilateral electrodes
spanning 200-300 ms after cue onset. Since we defined the N2pc with respect to the
visual hemifield containing the task-relevant disc, and since we restricted our analysis to
trials where the task-relevant and task-irrelevant discs appeared in opposite visual
hemifields, shifts of attention towards the cue-matching but task-irrelevant disc during
the anti-cue task should manifest as a positive-going waveform 200-300 ms after cue

onset.



We observed a statistically robust N2pc from 200-300 ms following the
appearance of an informative pro-cue (Figure 7), indicating that participants executed a
shift of covert visual attention to the visual hemifield containing the cue-matching and
task-relevant disc. Conversely, we observed no evidence for a positive-going waveform
during the same interval following the presentation of an informative anti-cue. That is,
we found no evidence suggesting that participants executed a shift of covert spatial
attention towards the visual hemifield containing the cue-matching but task-irrelevant
disc during anti-cue trials. Instead, we observed a robust negative-going difference
wave beginning ~350 ms after the appearance of an anti-cue. We speculate that this
negative-going difference wave is identical to the N2pc elicited during the pro-cue task
whose onset has been delayed by competition between endogenous and exogenous
selection mechanisms. Nevertheless, the results of this analysis provide converging
evidence against the hypothesis that competition between endogenous and exogenous
selection mechanisms drives the inadvertent selection of cue-matching but task-

irrelevant information.

Other Alternative Explanations.

Next, we considered the possibility that evidence for the selection of the task-
irrelevant disc during the anti-cue task was obscured by trial averaging. For example,
perhaps the selection effect is small, short, lived, or intermittent (i.e., occurring on only a
subset of trials). We tested this possibility by recomputing alpha-band-based decoding
performance for the task-irrelevant disc after sorting participants’ anti-cue task

performance by median recall error (i.e., “high” vs. “low”). Here, we reasoned that since



exogenous factors have a deleterious effect on participants’ recall errors during the anti-
cue task (Figure 1C), exogenous selection of the task-irrelevant disc — as indexed by
higher task-irrelevant decoding performance — should be more evident during high recall
error trials. However, this was not the case: we observed no evidence for above-chance
task-irrelevant decoding performance during low- or high-error informative (Figure 8A)
or uninformative trials (Figure 8B). Thus, it is unlikely that the pattern of exogenous-
then-endogenous selection predicted by the retro-capture model was obscured by trial-
averaging.

We also considered the hypothesis that selection of the cue-matching but task-
irrelevant disc during the anti-cue task was obscured by successful cognitive control.
Specifically, we reasoned that shifts of attention towards the location of the task-
irrelevant disc might be more likely during trials contaminated by lapses of attention. To
test this hypothesis, we re-computed cue-matching but task-irrelevant location decoding
performance after sorting participants’ alpha-band EEG data by frontal theta power
(Figure 2), reasoning that inadvertent selection of cue-matching but task-irrelevant
stimuli would be more likely during trials where frontal theta power (indexing cognitive
control) was low vs. high. However, we observed no evidence for above-chance
decoding of the cue-matching but task-irrelevant position during high- or low-theta
power trials (Figure 9). This analysis provides converging evidence suggesting that
exogenous factors do not lead to a selection or re-activation of cue-matching but task-
irrelevant WM content, but instead delay the endogenous selection of task-relevant WM

content.



Finally, although our analyses reveal no evidence for a selection of cue-matching
but task-irrelevant information during the anti-cue task, they do reveal a significant delay
in the selection of task-relevant information during the anti- vs. pro-cue tasks (Figures
3C-D and 4C-D). This effect could reflect a delay in the selection of task-relevant
information caused by competition between endogenous and exogenous selection
mechanisms during the anti-cue task or some other task-specific factor. For example,
one trivial possibility is that it simply takes participants longer to interpret anti-cues vs.
pro-cues. However, this explanation is difficult to reconcile with the fact that neither the
main effect of task (i.e., pro-cue vs. anti-cue; Figure 1D) nor the simple effect of task
(Figure 1E) on response times during informative cue trials reached significance. A
second possibility is that delayed above-chance decoding performance during the anti-
cue task was caused by carryover effects. For example, although task order was
counterbalanced across observers, perhaps participants who completed the pro-cue
task followed by the anti-cue task had extra difficulty interpreting anti-cues compared to
participants who performed the anti-cue task followed by the pro-cue task. To test this
possibility, we compared the time-courses of task-relevant decoding performance during
informative anti-cue trials in participants who performed the pro-cue task followed by the
anti-cue task (N = 17) or vice versa (N = 23). For both groups, task-relevant decoding
performance reached above chance levels shortly before or immediately after the onset
of the probe display (Figure 10). If anything, the onset of above-chance decoding
performance occurred earlier for participants who performed the anti-cue task second
vs. those who performed the anti-cue task first, though this difference was not

significant (p = 0.146; randomization test, see Methods). Thus, order effects cannot



account for delays in task-relevant decoding performance during the anti-cue vs. pro-

cue blocks.

Eye Movement Control Analysis

Finally, we investigated the possibility that our key findings (e.g., Figures 3-7)
were influenced by oculomotor artifacts. Although we used independent components
analysis to identify and remove large oculomotor artifacts from the EEG data, several
recent reports have documented the existence of small (< 0.5° visual angle) but
consistent gaze position biases towards the position of a behaviorally relevant item
stored in WM, especially following the appearance of a retrospective cue'3. Moreover,
there is some evidence suggesting that these gaze position biases can contribute to
EEG decoding performance3’-32. Although we did not collect precise eye position data
during this experiment, we reasoned that due to volume conduction gaze biases would
have the largest effects on EEG signals at extreme frontal electrode sites. Therefore, if
gaze biases contribute to decoding performance, it should be possible to decode
stimulus positions from alpha-band filtered data at these same electrode sites?3. To
investigate this possibility, we attempted to decode the positions of the cue-matching
and cue-nonmatching stimuli from 10-20 electrode sites Fp1, Fp2, AF7, AF3, AFz, AF4,
and AF8 during informative pro- and anti-cue trials (using the same parametric decoding
analysis used to produce the data shown in Figure 4). Apart from a brief epoch of
above-chance decoding performance for the cue-matching disc during the pro-cue task
that was limited to the probe epoch, this analysis failed to reveal robust above-chance

decoding of stimulus position resembling that seen in our primary analyses (Figure 11;



compare with Figure 4). Thus, it is unlikely that our key findings can be attributed to

subtle differences in gaze bias across experimental conditions.



Discussion

Selective attention can be allocated to sensory inputs and internal
representations based on voluntary, endogenous factors or involuntary, exogenous
factors. An enormous literature suggests that external selection is mediated by
competition between endogenous and exogenous factors, with the focus of selection
determined by the balance of competition between these factors®. Endogenous and
exogenous factors may also compete to control the selection of internal representations,
for example, those stored in WM'3. Here, we show that - unlike external attention — this
competition does not result in a selection of task-irrelevant stimuli. This, in turn,
supports the hypothesis that internal and external selective attention are mediated by at
least partially non-overlapping mechanisms.

A motivated critic could dismiss our conclusion as based on a null result. For
example, perhaps our experimental approach was insufficient at creating conditions
conducive to the exogenous selection of cue-matching but task-irrelevant stimuli during
the anti-cue task. While we cannot fully exclude this possibility, we note the following:
First, we point critics towards a recent paper by van Ede and colleagues™ who used a
behavioral task and cue manipulation like the one reported here to document evidence
for oculomotor capture by cue-matching but task-irrelevant stimuli during an anti-cue
task. In that study, participants memorized the orientations of two colored bars (one per
visual hemifield), and a color cue presented during storage indicated which bar should
be probed for report. Using this approach, van Ede et al.'® reported that during anti-cue
trials gaze position was subtly biased towards the location of the cue-matching but task-

irrelevant stimulus before “flipping” to the cue-nonmatching but task-relevant stimulus



(see their Figures 2C and 3A). Thus, their experimental setup — which was highly similar
to ours — was sufficient to produce oculomotor capture by task-irrelevant stimuli (we
return to this point below). Second, in the current study participants’ memory
performance was significantly worse during the anti- vs. pro-cue tasks (Figure 1B) and
that the appearance of an anti-cue led to a significant increase in frontal theta power
compared to the appearance of a pro-cue (Figure 2), consistent with a need for greater
cognitive control during the anti- vs. pro-cue task. Third, perhaps our specific decoding
approach lacked the sensitivity to identify the selection of task-irrelevant information
during the anti-cue task. Again, it is difficult to fully exclude this possibility, but we note
that we observed qualitatively different patterns of findings across two different
decoding methods (similarity-based vs. support vector machine-based; Figures 4 and 5,
respectively) and the results of an inverted encoding model analysis where we
reconstructed remembered positions from EEG activity (Figure 6). Fourth, perhaps the
posterior alpha-band signal (8-13 Hz) lacks the temporal resolution necessary to resolve
fleeting or intermittent selection of task-irrelevant information during the anti-cue task.
However, analyses of the N2pc ERP component responses (with a temporal resolution
of ~4 ms) revealed clear evidence for the selection of the task-relevant disc during the
pro- and anti-cue tasks but no evidence for the selection of the task-irrelevant disc
during the anti-cue task (Figure 7). Fifth, a variety of additional control analyses
demonstrate that the selection of task-irrelevant information during the anti-cue task
was not obscured by high behavioral performance (Figure 8), successful cognitive
control (Figure 9), or task order effects (Figure 10). Importantly, in many of these

analyses we did find evidence for a temporal delay in the selection of task-relevant WM



content during the anti-cue vs. the pro-cue task. Thus, we argue that unlike external
attention — where competition between endogenous and exogenous selection
mechanisms produces clear evidence for the selection of irrelevant stimuli — competition
between endogenous and endogenous internal selection mechanisms does not produce
a selection of task-irrelevant memory content and is resolved in a fundamentally
different way. More generally, this result points towards important differences in how
voluntary and involuntary selection mechanisms compete to control the processing of
external sensory inputs vs. internal memory representations.

As noted above, a recent study by van Ede and colleagues™® reported evidence
for oculomotor capture by cue-matching but task-irrelevant stimuli using a task design
and cue manipulation nearly identical to that used in the previous study. Conversely, we
found no evidence for this kind of “retro-capture” effect in our EEG data. How can these
results be reconciled? We believe that the key lies within recent studies demonstrating
dissociations between shifts of covert spatial attention indexed by oculomotor biases
and EEG signals. For example, although attention-related modulations of cortical and
subcortical processing are larger during trials containing microsaccades towards the
location of a (covertly) attended stimulus, clear attention-related modulations are also
observed in the absence of microsaccades33-34. The apparent contradiction between our
EEG findings and earlier oculomotor findings'® provides additional impetus to further
explore relationships between oculomotor and EEG signatures of covert spatial
attention.

Our study complements earlier efforts that examined the role of active forgetting

in WM35-36_ For example, Williams et al.3® showed participants successive displays of to-



be-remembered stimuli that were followed by a cue instructing participants which
display to remember (i.e., “directed remembering”) or which display to ignore (i.e.,
“directed forgetting”). These authors found that directed forgetting cues improved WM
performance compared to an uninformative cue condition, but less so than directed
remembering cues. Importantly, these studies utilized spatial or conceptual cues,
including pointed arrow symbols®® or written words®. Conversely, in the current study,
our retrospective cues always matched one feature of an item stored in WM. Like prior
work'?® independently manipulating the feature match and the meaning of the cue (i.e.,
pro- vs. anti-) allowed us to track the consequences of placing endogenous and
exogenous selection mechanisms in conflict.

The current findings may inform neurocomputational models of WM. For
example, conjunctive coding models predict that WM representations are maintained by
spiking activity in feature- and/or location-specific neural populations3’-38. While the
exact mechanisms vary by implementation, these models generally predict that a
feature probe in one dimension (e.g., orientation) activates spiking patterns in neural
populations that code this feature and those that code other features of the same object
(e.g., color) and/or its location. This, in turn, enables robust read-out of the probed and
non-probed stimulus dimensions by downstream neural populations. While these
models were not developed to describe the anti-cue task contemplated here, one could
reasonably predict an increase in task-irrelevant decoding performance after
presentation of an anti-cue based on their general architecture. We observed no
evidence for such an effect, and it remains to be seen whether these models can be

modified to predict behavioral and neural data during pro- and anti-cue tasks.



Alternately, pattern completion models predict that the contents of WM reside in
different neural states — an “active” state mediated by sustained spiking activity and a
“latent” state mediated by short-term synaptic plasticity3®-°. Presentation of a feature
probe that matches a stimulus stored in a latent format reinstates activity patterns
evoked when that stimulus was encoding, prompting and/or “refreshing” of the neural
representation of the probe-matching item through pattern completion. This prediction
enjoys some support: a representation stored in WM item can be “re-activated” (as
indexed by above-chance EEG decoding performance) by a task-irrelevant sensory
input?” or a transcranial magnetic stimulation (TMS) pulse applied over sensory cortex*'.
Conversely, in the current study we found no evidence for a reactivation of cue-
matching but task-irrelevant WM content following presentation of an anti-cue. However,
one salient difference between the current study and prior work is that in the latter, an
informative retrospective cue instructed presented prior to the “impulse” stimulus
instructed participants which of two remembered stimuli should be prioritized for report.
Thus, re-activation of information stored in synaptic traces may be contingent on the
network responsible for storing information to be selected or otherwise primed for
decision making and action.

To summarize, the current findings support recent suggestions that endogenous
and exogenous selection mechanisms compete to control access to internal WM
representations. However, this competition is resolved in a fundamentally different way
than that seen during external attention. Specifically, endogenous and exogenous

competition does not produce an errant selection or refreshing of salient but task-



irrelevant WM content. Instead, this competition delays the selection of task-relevant
memory content by endogenous mechanisms.

Limitations of the Study.

Our findings reveal an apparent contradiction between oculomotor and
electrophysiological signatures of internal attention during the selection of task-relevant
WM content. On the one hand, an earlier eye tracking study that used an experimental
design like the one reported here found evidence for oculomotor capture by cue-matching
but task-irrelevant stimuli during an anti-cue task'®. Conversely, we found no evidence for
such an effect in EEG. While caution is always required in interpreting a null result, several
control analyses (summarized in the first paragraph of the discussion) suggest that the
absence of capture by cue-matching but task-irrelevant stimuli during the anti-cue task
are not due to limitations in our experimental design or analytic sensitivity. When
compared to earlier results'3, our findings complement recent demonstrations suggesting
that oculomotor and electrophysiological measurements may index different selection
mechanisms34 and provide further motivation for studies directly comparing oculomotor

and electrophysiological indices of attentional selection.
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Main Figure Titles and Legends

Figure 1. Retrocue Task and Memory Performance. (A) Participants remembered the
locations of two discs over a blank delay. Each disc could appear at one of eight positions along
the perimeter of an imaginary circle centered at fixation (upper right panel). (B) Effects of cue
type (informative, uninformative) and task type (pro-cue, anti-cue) on average absolute recall
errors. (C) We estimated the effects of exogenous factors on recall performance by computing
the difference between informative pro-cue trials (i.e., where endogenous and exogenous
factors are aligned) and informative anti-cue trials (i.e., where endogenous and exogenous
factors are opposed). We estimated the effects of endogenous factors on recall performance by
computing the difference between informative pro-cue trials and uninformative pro-cue trials
minus the estimated effect of exogenous factors (see text for specifics). Identical analyses were
also applied to participants response times (D, E). Error bars depict the 95% confidence interval
of the mean.

Figure 2. Frontal Theta Power is Greater During the Anti- vs. Pro-Cue Task, Reflecting a
Greater Need for Cognitive Control. (A) Time-resolved differences in pro- and anti-cue theta
power computed from frontal electrode sites. Theta power estimates were larger during the anti-
vs. pro-cue task beginning approximately 600 ms after cue onset. Shaded regions depict the
95% confidence interval of the mean. Vertical solid lines at times 0.00 and 3.00 depict the onset
of the sample and recall displays, respectively; the vertical dashed line at time 1.75 depicts the
onset of an informative retrocue. The horizontal black bar at the top of the plot marks periods
where the difference between anti- and pro-cue theta power was significantly greater than zero
(cluster-based permutation tests; see Methods). (B) Difference in theta-power (4-7 Hz) scalp
topography during the pro- and anti-cue tasks. Pro- and anti-cue theta power estimates were
averaged over a period spanning 2.5-3.0 sec after trial start (i.e., 750-1250 ms after cue onset).
Electrode-wise power estimates during the pro-cue task were subtracted from corresponding
estimates during the anti-cue task, i.e., larger values indicate higher theta power during the anti-
vs. pro-cue task. (C) Task-level differences in power were absent from frequency bands
adjacent to theta, including delta (1-3 Hz) and alpha (8-13 Hz).

Figure 3. Location Decoding Performance During Uninformative Trials. (A, B) Decoding
performance for task-relevant and task-irrelevant locations during pro-cue and anti-cue blocks,
respectively. (C) Overlay of task-relevant location decoding performance for pro-cue and anti-
cue blocks (i.e., the blue lines in panels A and B). Solid vertical lines at time 0.00 and 3.00
depict the onset of the sample and probe displays, respectively. The dashed vertical line at time
1.75 depicts the onset of the (uninformative) retrocue. Gray shaded region spanning 0.00-0.50
marks the duration of the sample display. Horizontal bars at the top of each plot mark intervals
where decoding performance was significantly greater than zero (nonparametric cluster-based
randomization test; see Methods) or intervals where decoding performance for one location was
significantly greater than decoding performance for the other location. Shaded regions around
each line depict bootstrapped confidence intervals of the mean. (D) Cross-correlation analysis
showing a significant delay in the onset of above-chance probe-locked task-relevant decoding
performance during the anti- vs. pro-cue task. The null distribution was obtained by repeating
the cross-correlation analysis 10,000 times while randomizing participant-level condition labels
(i.e., randomly switching the pro- and anti-cue labels). Horizontal bars at the top of the plot
depict intervals where the observed cross-correlation coefficient was significantly greater than
that expected by chance.

Figure 4. Location Decoding Performance During Informative Trials. (A, B) Decoding
performance for task-relevant and task-irrelevant locations during pro-cue and anti-cue blocks,



respectively. (C) Overlay of task-relevant location decoding performance for pro-cue and anti-
cue blocks (i.e., the blue lines in panels A and B). (D) Cross-correlation analysis showing a
significant delay in the onset of above-chance probe-locked task-relevant decoding performance
during the anti- vs. pro-cue task. All conventions are identical to Figure 3.

Figure 5. Support Vector Machine-based Decoding of Stimulus Position. To ensure the
generality of our findings (e.g., Figure 4), we decoded the positions of the task-relevant and -
irrelevant discs during the pro-cue task (A) and the anti-cue task (B). Plotting conventions are
identical to Figure 4. We did not perform a cross-correlation analysis due to the absence of
above-chance decoding of the cue-matching but task-relevant stimulus during the anti-cue task.

Figure 6. Inverted Encoding Model Analysis. \We modeled patterns of alpha-band activity at
each electrode site as a weighted combination of eight position filters, each with an idealized
tuning curve. Filter weights from each electrode were used to reconstruct a representation of
remembered position(s) in an independent test data set. Conventions are identical to Figure 5.

Figure 7. Event-related Potentials Reveal Delayed Selection of Task-relevant WM Content
During the Anti-Cue Task. (A) Average contralateral and ipsilateral ERP waveforms during the
pro-cue task, time-locked to trial start (0.00 sec). The vertical lines at times 1.75 and 3.00 sec
depict the onset of the retrocue and probe displays, respectively. The shaded region depicts the
duration of the sample display. (B) Identical to (A), but for the anti-cue task. (C). Difference
waves (i.e., contralateral-ipsilateral) time locked to retrocue onset (time 0 ms). The shaded
region spanning 200-300 ms depicts the canonical N2pc window. Horizontal bars at the top of
the plot mark epochs where difference wave voltage was significantly greater than chance (red
bar) or when anti-cue difference wave voltage was significantly greater than pro-cue difference
wave voltage (maroon bar). Shaded regions depict the 95% confidence interval of the mean. (D)
N2pc amplitudes, defined as the average difference wave voltage over a period spanning 200-
300 ms after cue onset. Error bars depict the 95% confidence interval of the mean; *, p< 0.05,
bootstrap test.

Figure 8. Split-half Analysis of Task-irrelevant Decoding Performance During the Anti-cue
Task. To examine whether exogenous selection of the task-irrelevant disc during anti-cue
blocks was obscured by trial averaging, we sorted task-irrelevant decoding performance during
uninformative (top) and informative (bottom) trials by participants’ recall errors. We reasoned
that since exogenous factors have a deleterious effect on participants’ recall errors (Fig 1C),
exogenous selection of the task-irrelevant disc — as indexed by higher task-irrelevant decoding
performance — should be more evident during high recall error trials (black lines) than low recall
error trials (green lines). However, we observed no evidence for above-chance task-irrelevant
decoding performance in any of the conditions we examined. Plotting conventions are identical
to those in Figure 4.

Figure 9. Task-irrelevant Decoding Performance During the Anti-Cue Task Sorted by
Frontal Theta Power. Conventions are identical to Figure 4B.

Figure 10. Delayed Improvements in Task-Relevant Decoding Performance During the
Anti-Cue Task Cannot be Explained by Order Effects. We tested whether delayed
improvements in task-relevant decoding performance during the anti-cue (vs. pro-cue) task
were caused by order effects by splitting decoding performance across participants who
performed the anti-cue task followed by the pro-cue task (green) or vice versa (maroon). If
anything, above-chance decoding performance was reached earlier for participants who



completed the pro-cue followed by the anti-cue tasks, though this effect was not significant (p =
0.141; randomization test).

Figure 11. Stimulus Position Cannot be Decoded from Frontal Alpha-band Activity.
Conventions are identical to Figures 4A-B.



STAR Methods
RESOURCE AVAILABILITY
Lead Contact
All questions and matters arising from this paper should be directed to and will be

addressed by the lead contact, Dr. Edward F. Ester (eester@unr.edu)

Materials Availability
This study did not generate any new reagents.
Data and Code Availability

e De-identified behavioral and preprocessed EEG Data (BIDS format) have been
deposited on OpenNeuro and are publicly available as of the date of publication.
Accession information is available in the key resource table. Raw EEG data can
be obtained by contacting the lead contact of this study.

e Original code sufficient to reproduce all figures and reported statistical values are
publicly available on the Open Sciences Framework. Accession information is
available in the key resource table.

e Any additional information required to re-analyze the data reported in this paper

is available from the Lead Contact upon request.

Experimental Model and Study Participant Details.

In total, 42 human adult volunteers (ages 18-40) participated in this study, with
each participant completing a single 2.5-hour testing session. Two participants
voluntarily withdrew from the study prior to completing both tasks (i.e., pro-cue vs. anti-
cue); data from these participants were excluded from final analyses. Thus, the data

reported here reflect the remaining 40 participants. Participants were recruited from the


mailto:eester@unr.edu

Florida Atlantic University (FAU) community via campus advertisements and
remunerated at $15/h in Amazon.com gift cards. All participants gave both written and
oral informed consent prior to enrolling in the study, and all study procedures were
approved by the FAU institutional review board (IRB). All participants self-reported
normal or corrected-to-normal visual acuity. We had no a priori reason to suspect that
task performance or study outcomes would vary as a function of sex, gender identity,
race, ethnicity, or any other immutable characteristic; thus, we did not collect this

information from participants.

METHODS DETAILS

Testing Environment. Participants were seated in a dimly-lit and acoustically shielded
recording chamber for the duration of the experiment. Stimuli were generated in
MATLAB and rendered on a 17” Dell CRT monitor cycling at 85 Hz (1024 x 768 pixel
resolution) via PsychToolbox3 software extensions. Participants were seated
approximately 65 cm from the display (head position was unconstrained). To combat
fatigue and/or boredom, participants were offered short breaks at the end of each
experimental block.

Spatial Retrocue Task. A task schematic is shown in Figure 1A. Each trial began with
the presentation of an encoding display lasting 500 ms. The encoding display contained
two colored circles (blue and red; subtending 1.75° visual angle from a viewing distance
of 65 cm) rendered at two of eight locations (22.5° to 337.5° in 45° increments) along
the perimeter of an imaginary circle (radius 7.5° visual angle) centered on a circular

fixation point (subtending 0.25°) rendered in the middle of the display. The locations of



the two discs were counterbalanced across each task (i.e., pro-cue vs. anti-cue), though
not necessarily within an experimental block. Participants were instructed to maintain
fixation and refrain from blinking for the duration of each trial.

The sample display was followed by a 1.25 sec blank display and a 1.25 sec
retrocue display. Retrocues were defined by a change in the color of the fixation point.
During informative cue trials the fixation point changed colors from black to either blue
or red (i.e., matching the color of a remembered disc) and remained that color for the
duration of the trial. During uninformative cue trials the fixation point initially changed
colors from black to purple (the “average” of blue and red), before again changing colors
from purple to blue or red at the onset of the response display. At the end of the trial, a
response display containing a fixation cue (i.e., a blue or red fixation point), a mouse
cursor, a “?” symbol, and a response circle appeared. During the pro-cue task,
participants were instructed to report the location of the disc matching the color of the
fixation cue, while during the anti-cue task participants were instructed to report the
location of the disc that did not match the color of the fixation cue. Participants
responded by clicking along the perimeter of the response circle. Participants were
instructed to prioritize accuracy over speed, and no response deadline was imposed.
The trial terminated as soon as the participant clicked on a location. Sequential trials
were followed by a 1.5-2.5 sec blank period (randomly and independently selected from
a uniform distribution after each trial).

Each experimental block contained 28 informative cue and 28 uninformative cue
trials, for a total number of 56 trials per block. Informative cue and uninformative cue

trials were randomly intermixed within blocks. During the first half of the experiment



(e.g., experimental blocks 1-8), each participant was assigned to the pro-cue or anti-cue
task. Participants completed eight blocks in each of the pro- and anti-cue tasks. Task
order (i.e., eight blocks of the pro-cue task followed by eight blocks of the anti-cue task
or vice versa) was counterbalanced across participants.
Quantifying Memory Performance. We quantified participants’ memory performance as
average absolute recall error (i.e., the difference in polar angle reported by the
participant and the polar angle of the probed disk) and average response times.
Comparisons of memory performance across task conditions were conducted via
repeated-measures analyses of variance (ANOVA) and repeated-measures t-tests.
Importantly, average absolute recall errors can be influenced by the precision of
participants’ memory as well as random guessing or accidental reports of a non-probed
object (“swap errors”). To quantify the frequencies of random guessing and swap errors,
we pooled participants’ recall data across all cue conditions (e.g., valid vs. invalid; 100%
vs. 75%) and used a hierarchical Bayesian approach to fit participants’ data with a
parametric model which assumes that on a given trial (a) participants report the position
of the probed disk with precision k, (b) participants report the position of the non-probed
disk with precision k (i.e., a “swap error”), or (c) participants randomly guess*?. We used
hierarchical Bayesian modeling (implemented via the MemFit MATLAB toolbox*?) to
obtain maximum a posteriori estimates of memory precision, guessing frequency, and
swap error frequency at the single-participant and population levels.
EEG Acquisition and Preprocessing. Continuous EEG was recorded from 63 uniformly
distributed scalp electrodes using a BrainProducts “actiCHamp” system. The horizontal

and vertical electrooculogram (EOG) were recorded from bipolar electrode montages



placed over the left and right canthi and above and below the right eye, respectively.
Live EEG and EOG recordings were referenced to a 64" electrode placed over the right
mastoid and digitized at 1 kHz. All data were later re-referenced to the algebraic mean
of the left- and right mastoids, with 10-20 site TP9 serving as the left mastoid reference.
Data preprocessing was carried out via EEGLAB software extensions** and
custom software. Data preprocessing steps included the following, in order: (1)
resampling (from 1 kHz to 250 Hz), (2) bandpass filtering (1 to 50 Hz; zero-phase
forward- and reverse finite impulse response filters as implemented by EEGLAB), (3)
epoching from -1.0 to +5.0 sec relative to the start of each trial, (4) identification,
removal, and interpolation of noisy electrodes via EEGLAB software extensions, and (5)
identification and removal of oculomotor artifacts via independent components analysis
as implemented by EEGLAB. After preprocessing, location decoding analyses focused
exclusively on the following 10-20 occipitoparietal electrodes: P7, P5, P3, Pz, P2, P4,
P6, P8, PO7, PO3, POz, PO2, PO4, PO8, 01, 02, Oz.
Data Cleanup. Prior to analyzing participants’ behavioral or EEG data, we excluded all
trials where the participant responded with a latency of < 0.4 sec (we attributed these
trials to accidental mouse clicks following the onset of the probe display rather than a
deliberative recall of a specific stimulus position) and more than 3 standard deviations
above the average response time across all experimental conditions. This resulted in an
average (1 S.E.M.) loss of 14.43 +0.93 trials (or 1.67% £ 0.11% of trials) across
participants but had no qualitative effect on any of the findings reported here.
Decoding Spatial Positions from Posterior Alpha-Band EEG Signals. Location decoding

was based on the multivariate distance between EEG activity patterns associated with



memory for specific positions. This approach is an extension of earlier parametric
decoding methods designed for use in circular feature spaces?’. We extracted
spatiotemporal patterns of alpha-band activity (8-13 Hz) from 17 occipitoparietal
electrode sites (see EEG Acquisition and Preprocessing above). The raw timeseries at
each electrode was bandpass filtered from 8-13 Hz (zero-phase forward-and-reverse
filters as implemented by EEGLAB software), yielding a real-valued signal f(t). The

analytic representation of f(t) was obtained via Hilbert transformation:

z(t) = f(6) +if ()

where i is the imaginary operator and if(t) = A(t)e!*®). Alpha power was computed by
extracting and squaring the instantaneous amplitude A(t) of the analytic signal z(t).
Location decoding performance was computed separately for each disc (i.e., blue
vs. red), trial type (i.e., informative vs. uninformative) and each task (i.e., pro-cue vs.
anti-cue) on a timepoint-by-timepoint basis. In the first phase of the analysis, we sorted
data from each condition into 5 unique training and test data sets using stratified
sampling while ensuring that each training set was balanced across remembered
positions (i.e., we ensured that each training data set contained an equal number of
observations where the location of the remembered stimulus was at 22.5°, 67.5°, etc.).
We circularly shifted the data in each training and test data set to a common center (0°,
by convention) and computed trial-averaged patterns of responses associated with
memory for each disc position in each training data set. Next, we computed the

Mahalanobis distance between trial-wise activation patterns in each test data set with



position-specific activation patterns in the corresponding test data set, yielding a
location-wise set of distance estimates. If scalp activation patterns contain information
about remembered positions then distance estimates should be smallest when
comparing patterns associated with memory for identical positions in the training and
test data set and largest when comparing opposite positions (i.e., those £180° apart),
yielding an inverted gaussian-shaped function. Trial-wise distance functions were
averaged and sign-reversed for interpretability. Decoding performance was estimated
by convolving timepoint-wise distance functions with a cosine function, yielding a metric
where chance decoding performance is equal to 0. Decoding results from each training-
and test-data set pair were averaged (thus ensuring the internal reliability of our
approach), yielding a single decoding estimate per participant, timepoint, and task
condition. To verify that our findings are not contingent on the specific type of decoding
analysis used, we repeated the aforementioned analysis via eight-way support-vector-
machine (SVM) based classification using a “one-versus-all” motif (see Results).
Decoding and Filter Cutoffs. One recent study reported that high-pass filter cutoffs
exceeding approximately 0.1 Hz can introduce temporal distortions in decoding
timeseries in broadband EEG data*®. As noted above, we applied a 1 Hz high-pass filter
to the raw EEG data to optimize it for independent components analysis. Importantly,
the high-pass filter was applied to the continuous EEG timeseries, that is, prior to
sorting the data according to cue type (i.e., pro- vs. anti) or cue informativeness (i.e.,
informative vs. uninformative). An analogous procedure was used to isolate alpha-band
activity within the broadband EEG signal prior to decoding. While we cannot exclude the

possibility that our filtering approach introduced some amount of temporal smearing into



decoding timeseries, our approach ensures that any filtering effects are agnostic to
specific experimental conditions. Thus, any differences in decoding timeseries across
experimental conditions cannot be explained by mere filtering artifacts.
Cross-correlation Analyses. Temporal differences in task-relevant location decoding
performance were estimated via cross-correlation analyses. For uninformative trials, we
extracted task-relevant decoding performance during pro- and anti-cue blocks over a
period spanning 0.0 to 1.0 seconds following the onset of the probe display (i.e., when
an informative cue instructed participants which disc to recall). We computed correlation
coefficients between pro- and anti-cue decoding time series while systematically shifting
the pro-cue time series from -1.0 to +1.0 sec relative to the anti-cue decoding time
series (e.g., Figure 3D, blue line). We compared these correlation coefficients to a
distribution of correlation coefficients computed under the null hypothesis (i.e., no
systematic difference in pro- and anti-cue decoding time series) by repeating the same
analysis 10,000 times while randomizing the decoding condition labels (i.e., pro- vs.
anti-cue) for each participant. An identical analysis was performed on task-relevant pro-
and anti-cue decoding task performance from 0.0 to 1.75 during informative trials. We
deliberately selected a longer temporal interval for analysis during informative trials as
we expected increases in pro- and anti-cue decoding performance to begin during the
retrocue period and persist into the ensuing response period.

Quantifying Frontal Theta Power. Analyses of frontal theta power focused on
informative trials from the pro- and anti-cue tasks. The raw timeseries at each scalp
electrode was bandpass filtered from 4-7 Hz (zero-phase forward-and-reverse filters as

implemented by EEGLAB software), yielding a real-valued signal f(t). The analytic



representation of this signal was obtained via Hilbert transformation, and theta power
was computed by extracting and squaring the instantaneous amplitude A(t) of the
analytic signal z(t). Topographic maps of theta power during the pro- and anti-cue tasks
were obtained by averaging power estimates over trials and a temporal window
spanning 2.5 to 3.0 sec following the start of each informative trial (i.e., 750 to 1000 ms
after cue onset). Based on these maps, we limited further analyses to power estimates
measured at four frontal electrode sites: AFz, Fz, F1, and F2. Data from these
electrodes were used to compute time-resolved estimates of theta power during the pro-
and anti-cue tasks and task differences in theta power. In a final analysis, we extracted
and computed trial-wise estimates of theta power during the anti-cue task (using the
same electrodes and temporal window described in the previous paragraph). We sorted
participants’ anti-cue EEG data into low- and high-theta power groups after applying a
media split to theta power estimates, then decoded the location of the cue-matching but
task-irrelevant item within each group. This allowed us to test whether evidence for
exogenous selection of and/or “refreshing” of cue-matching memory traces was more
likely to occur on trials with low- vs. high theta power.

N2pc Analyses. The N2pc is a negative-going waveform defined by a greater negativity
over occipitoparietal electrode sites contralateral vs. ipsilateral to the hemifield
containing a visual target?®. We used the N2pc to track covert spatial selection of the
cue-matching and task-relevant position during pro-cue blocks and the cue-matching
but task-irrelevant stimulus during anti-cue blocks. To control for sensory imbalances
across visual hemifields, we restricted our analysis to trials where the task-relevant and

task-irrelevant discs appeared in opposite visual hemifields. We estimated voltages over



occipitoparietal electrode site pairs O1/2, PO3/4, and PO7/8 during trials when the task-
relevant stimulus was in the left vs. right visual field, then sorted trial-wise voltage
estimates by the hemifield containing the task-relevant target, i.e., contralateral vs.
ipsilateral. We defined the N2pc as the average difference in voltage across
contralateral and ipsilateral electrode sites over a period spanning 200-300 ms.
Inverted Encoding Model. To verify the generality of our findings across analytic
approaches, we reconstructed position-specific WM representations from
spatiotemporal patterns of alpha-band activity using an inverted encoding model. Our
approach was conceptually and quantitatively identical to that used in earlier studies?®>
26,46 \We modeled alpha power at each scalp electrode as a weighted sum of eight
location-selective channels, each with an idealized tuning curve (a half-wave rectified
cosine function raised to the 8" power, with the maximum response of each function
normalized to 1). The predicted responses of each channel during each trial were
arranged in a k channels by n trials design matrix C. The relationship between the EEG

data and the predicted responses in C is given by a general linear model of the form:

B=WC+N

where B is an m electrode by n trial training data matrix, W is an m electrode by k
channel weight matrix, and N is a matrix of residuals (i.e., noise).

To estimate W, we constructed a training data set containing an equal number of
trials for each stimulus position (i.e., 22.5-337.5° in 45° increments). We identified the

location ¢ with the fewest r repetitions and constructed a training dataset Bim (m



electrodes by n trials) and weight matrix Cim (n trials by k channels) by randomly
selecting (without replacement) 1 to r trials for each of the eight possible stimulus
positions. The training dataset was used to compute a weight for each channel C; using
ordinary least-squares estimation:

vo— 2 Wi
owryitw,
where T and -1 are the matrix transpose and inversion operations, respectively. 2;is the

regularized noise covariance matrix for each channel /, estimated as:

1
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where n is the number of training trials and ¢; is a matrix of residuals:

& = Bern — WiCtrn,i
Estimates of ¢ were obtained by regularization-based shrinkage using an analytically
determined shrinkage observation. In this way, an optimal spatial filter v; was estimated
for each channel C;, yielding an m electrode by k filter matrix V.

Next, we constructed a test dataset B:st (m electrodes by n trials) containing data
from all trials not included in the training data set and estimated trial-by-trial channel
responses Ctst (k channels by n trials):

Cese = VT Bt
Trial-wise channel response estimates were interpolated to 360°, circularly shifted to a
common center (0°, by convention), and averaged, yielding a single reconstruction per
participant, time point, cue condition (i.e., informative vs. uninformative) and task (i.e.,
pro vs. anti-cue). Condition-wise channel response functions were averaged, converted

to polar form, and projected onto a vector with angle 0°:



r = |z| cos(arg(2)), z = ce?P
Where c is a vector of estimate channel responses and p is a vector of angles at which
the channels peak. To ensure internal reliability, this entire analysis was repeated 100
times, and unique (randomly chosen) subsets of trials were used to define the training
and test data sets during each iteration. The results were then averaged across
permutations to obtain a single reconstruction strength estimate for each participant,

task condition, and timepoint.

QUANTIFICATION AND STATISTICAL ANALYSIS

General. All statistical analyses were performed in MATLAB using custom software.
Behavioral data were analyzed using repeated-measures parametric statistics (t-tests,
ANOVA) with an a priori threshold of p = 0.05. EEG data were analyzed using
nonparametric randomization tests with cluster-based corrections for autocorrelation in
the EEG signal with an a priori threshold of p = 0.05. Where appropriate, test statistics
(i.e., a t-score or F-ratio), p-values, and effect sizes are reported in the main text.
Additional information on statistical quantification for behavioral and EEG data can be
found in specific subsections below. Unless otherwise stated, n (and degrees of
freedom) correspond to the number of participants in the analysis, i.e., sample size.
Statistical Power. Before commencing data collection we determined that a sample of
40 volunteers would be sufficient to examine effects of interest. This estimate was
based on sample sizes and effect sizes reported in prior studies that used similar
experimental and analytic approaches?226:33,

Statistical Comparisons — Behavioral Data. Participants’ behavioral data (i.e., absolute

average recall error and average response time; Figure 1B-E) were analyzed using



standard repeated-measures parametric statistics (e.g., t-test, ANOVA); for these
comparisons we report test statistics, p-values, and effect size estimates. For each test,
we verified that critical assumptions (i.e., normality, equal variances) were met through
visual inspection of the data.

Statistical Comparisons — N2pc, Decoding Performance, and Inverted Encoding Model.
The decoding analysis and inverted encoding model we used assume chance-level
performance of 0. Likewise, direct comparisons of decoding performance or
reconstruction strength across conditions (e.g., pro-cue vs. anti-cue) assume null
statistics of 0. Thus, we evaluated task-relevant and task-irrelevant decoding
performance by generating null distributions of decoding performance (or differences in
decoding performance across conditions) by randomly inverting the sign of each
participant’s data with 50% probability and averaging the data across participants. This
procedure was repeated 10,000 times, yielding a 10,000-element null distribution for
each time point (note that, under the central limit theorem, this distribution is guaranteed
to be approximately normally distributed with a mean of 0). Finally, we implemented a
cluster-based permutation test*” with cluster-forming and cluster-size thresholds of p <

0.05 to correct for multiple comparisons across time points.
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