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Summary 

External attention is mediated by competition between endogenous (goal-driven) 

and exogenous (stimulus-driven) factors, with the balance of competition determining 

which stimuli are selected. Occasionally, exogenous factors "win" this competition and 

drive the selection of task-irrelevant stimuli. Endogenous and exogenous selection 

mechanisms may also compete to control the selection of internal representations (e.g., 

those stored in working memory), but whether this competition is resolved in the same 

way as external attention is unknown. Here, we leveraged the high temporal resolution 

of human EEG to determine how competition between endogenous and exogenous 

factors influences the selection of internal representations. Unlike external attention, 

competition did not prompt the selection of task-irrelevant working memory content. 

Instead, it delayed the endogenous selection of task-relevant working memory content 

by several hundred milliseconds. Thus, competition between endogenous and 

exogenous factors influences internal selective attention, but in a different way than 

external selective attention.  



 

Introduction 

Efficient behavior requires rapid comparison of sensory inputs with internal 

representations of goal states and motor affordances. Many of these comparisons take 

place in working memory (WM), a capacity- and duration-limited system that forms a 

temporal bridge between fleeting sensory phenomena and possible actions1-2. Capacity 

limits in WM necessitate the existence of external selection mechanisms that gate 

access to this system (i.e., input gating), while rapidly changing environmental 

circumstances necessitate the existence of internal selection mechanisms that prioritize 

behaviorally relevant subsets of information stored in WM for action (i.e., output gating). 

Whether similar mechanisms mediate the selection of internal and external information 

is hotly debated3-5.  

External sensory inputs can be selected based on behavioral goals (i.e., 

endogenous selection) or stimulus properties (i.e., exogenous selection), with selection 

ultimately determined by the balance of competition between these factors. For 

example, stimulus factors can trigger the selection of task-irrelevant information6-8, 

disrupting top-down searches for task-relevant stimuli9. These disruptions are frequently 

accompanied by concurrent shifts in cortical and subcortical spatial priority maps that 

mediate eye movements and endogenous shifts of covert spatial attention10-12. 

Endogenous and exogenous factors may also compete to control the selection of 

internal representations, for example, those stored in WM13. However, little is known 

about how this competition influences memory performance and is resolved. One 

obvious possibility is that competition results in the exogenous selection of task-

irrelevant information like that seen in external attention. For example, an external 



 

stimulus might trigger the exogenous selection of stimulus-matching WM content (i.e., 

the converse of WM-guided selection, where external attention is oriented to task-

irrelevant stimuli that incidentally match attributes of stimuli stored in WM13-14). 

Alternately, competition between endogenous and exogenous factors could produce a 

general slowing or delay in the selection of task-relevant memory content without 

prompting the exogenous selection of task-irrelevant memory content. Although this 

possibility has been tested and rejected in the external attention literature15, it may help 

explain a recent finding documenting delays in oculomotor biases to the locations of 

items stored in WM when experimental factors place endogenous and exogenous 

selection mechanisms in conflict13.  

To test these possibilities, we recorded EEG while participants performed a 

retrospectively cued WM task typically used to study internal attention16-17. In different 

experimental blocks, a cue presented during WM storage indicated which of two 

memorized positions would be probed for recall (pro-cue trials) or which position would 

not be probed for recall (anti-cue trials). We reasoned that the anti-cue manipulation 

would create a state of conflict between endogenous and exogenous selection 

mechanisms, a point supported by studies documenting visual search costs when 

participants are cued to the identity of an upcoming distractor13,18. We then examined 

how informative pro- and anti-cues influenced EEG signals that track covert shifts of 

spatial attention with high temporal precision. Across multiple analyses, we found no 

evidence for shifts of attention toward cue-matching but task-irrelevant memory 

representations during the anti-cue task. Instead, we observed a significant delay in the 

selection of task-relevant WM content during the anti-cue relative to the pro-cue task. 



 

Control analyses demonstrated that this result could not be explained by weaknesses in 

our experimental design or idiosyncrasies in our analytic approach. Thus, we argue that 

unlike external attention – where competition between endogenous and exogenous 

selection mechanisms can produce the selection of task-irrelevant information – 

competition between endogenous and endogenous selection mechanisms during the 

selection of internal content does not produce an exogenous selection of task-irrelevant 

information.  

 

  



 

Results 

We recorded EEG while 40 human volunteers performed a retrospectively cued 

spatial recall task (Figure 1A). Participants remembered the positions of two discs over 

a brief delay, and a retrospective color cue presented 1.25 seconds later instructed 

participants to continue remembering the positions of both discs (i.e., uninformative 

trials) or to prioritize one of the discs for subsequent recall (i.e., informative trials). The 

locations of the two discs were fully randomized across experimental blocks (subject to 

the constraint that two discs could not appear at the same location on a given trial). At 

the end of the trial, participants recalled the position of the task-relevant disc via mouse 

click. Behavioral performance was quantified via average response times and average 

absolute recall error (i.e., the average absolute difference between the correct and 

reported disc position). In separate experimental blocks, participants performed a pro-

cue task or an anti-cue task. During the pro-cue task informative cues were assigned 

100% validity; during the anti-cue task informative cues were assigned 0% validity (i.e., 

the cue color indicated which disc was task-irrelevant). This allowed us to disentangle 

the effects of endogenous and exogenous factors on the selection of WM content: 

during the pro-cue task the color cue indicates which of the two remembered stimuli are 

task relevant, and endogenous and exogenous selection mechanisms are aligned. 

During the anti-cue task, however, the color cue indicates which of the two stimuli are 

task-irrelevant, placing endogenous and exogenous selection mechanisms in 

competition13. Task order (i.e., pro- followed by anti-cue or vice versa) was 

counterbalanced across participants, and participants were explicitly reminded about 

cue validity at the beginning of every block.   



 

 

Endogenous and Exogenous Factors Influence the Selection of Task-Relevant WM 

Content, but in Different Ways  

A two-factor repeated measures analysis of variance (ANOVA) applied to 

participants’ average absolute recall errors (Fig 1B) revealed a main effect of cue type 

(i.e., informative vs. uninformative; [F(1,39) = 15.854, p = 0.0003, η2 = 0.289]), with 

lower errors during informative vs. uninformative cue trials. Likewise, this analysis 

revealed a main effect of task (i.e., pro- vs. anti-cues; [F(1,39) = 8.168, p = 0.0068, η2 = 

0.1732]), with lower errors during the pro- vs. anti-cue task, and a significant interaction 

between these factors [F(1,39) = 5.35, p = 0.0261]. A complementary analysis of 

response times (Fig 1D) revealed a main effect of cue type [F(1,39) = 483.046, p < 

0.0001, η2 = 0.925], with response times faster during informative vs. uninformative cue 

trials, no main effect of task [F(1,39) = 0.022, p = 0.884, η2 = 0.060], and a significant 

interaction between these factors [F(1,39) = 30.362, p < 0.0001].  

Importantly, average absolute recall errors can be influenced by the precision of 

participants’ memory as well as random guessing or accidental reports of a non-probed 

object (“swap errors”). To quantify the frequencies of random guessing and swap errors, 

we pooled participants’ recall data across all cue conditions (e.g., pro vs. anti; 

informative vs. uninformative) and used a hierarchical Bayesian approach to fit 

participants’ data with a parametric model which assumes that on a given trial (a) 

participants report the position of the probed disk with precision k, (b) participants report 

the position of the non-probed disk with precision k, or (c) participants randomly guess 

(Bays et al., 2009). Maximum a posteriori estimates obtained from model fitting 



 

indicated that swap errors and random guesses accounted for 1e-04% and 2.20% of 

responses at the population level, respectively. This outcome suggests that cue effects 

on average absolute recall error reflect changes in the precision of participants’ memory 

rather than changes in the frequency of guessing or incorrect responses. 

In planned comparisons, we sought further clarity on how endogenous and 

exogenous factors influenced participants’ memory performance. Our approach is 

based on two assumptions. The first assumption is that during the pro-cue task 

endogenous and exogenous selection mechanisms are aligned. That is, participants 

can select the task-relevant position via top-down or bottom-up factors. The second 

assumption is that during the anti-cue task endogenous and exogenous selection 

mechanisms conflict: participants can select the task-relevant position only via a top-

down interpretation of the cue, whereas bottom-up interpretation of the cue would result 

in selecting the wrong position. Thus, to isolate the effects of exogenous factors on 

memory performance we compared participants’ recall errors and response times 

across informative cue trials during the pro- and anti-cue tasks (i.e., the simple effect of 

task for informative cues).  

Next, we calculated the effect of endogenous factors in memory performance via 

a two-step process. In the first step, we calculated differences in participants’ recall 

errors and response times across informative and uninformative cue trials in the pro-cue 

task (i.e., the simple effect of cue type for the pro-cue task). In the second step of the 

analysis, we subtracted the effects of exogenous factors (estimated using the procedure 

in the preceding paragraph) from these differences, i.e., while accounting for the fact 



 

that during the pro-cue task endogenous and exogenous factors are aligned while 

during the anti-cue task they are opposed.  

The results of these analyses are summarized in Figures 1C and 1E. 

Endogenous factors had a facilitatory effect on task performance, lowering recall errors 

(M = 1.78°; 95% CI = 0.645°-3.112°; Fig 1C) and speeding response times (M = 0.165 

sec; 95% CI = 0.014-0.305 sec; Fig 1E). In contrast, exogenous factors significantly 

worsened participants’ recall errors (M = 0.961°; 95% CI = 0.191°-1.863°; Fig 1C) but 

had no effect on response times (M = -0.055, 95% CI = -0.073-0.189; Fig 1E). Thus, 

endogenous and exogenous factors had faciliatory and deleterious effects on 

participants’ memory performance, respectively.  

 

Manipulation Check: The Anti-cue Task Requires a Greater Degree of Cognitive Control 

than the Pro-cue Task  

A key assumption of our experimental approach holds that the anti-cue task 

produces conflict between endogenous and exogenous selection mechanisms. We 

reasoned that cognitive control is needed to resolve this competition and drive the 

selection of task-relevant WM content, and that therefore a greater degree of cognitive 

control would be required during the anti-cue task compared to the pro-cue task (i.e., 

when endogenous and exogenous selection mechanisms are aligned). We tested this 

prediction by estimating and comparing theta power (4-7 Hz) over frontal electrode sites 

during the pro- and anti-cue tasks. Frontal theta power has robustly linked with the need 

for cognitive control19, scales with WM load20, and predicts successful working memory 

updating21. Thus, we expected larger frontal theta power estimates during the anti-cue 



 

vs. the pro-cue task. Indeed, we observed significantly greater frontal theta power 

during the anti-cue vs. pro-cue task that was maximal over frontal midline electrode 

sites (Figure 2A-B). Note that this effect emerged only after presentation of the retrocue, 

consistent with a need for “online” cognitive control rather than a general increase in 

difficulty during the anti-cue vs. pro-cue task. We also verified that cue-locked frontal 

power differences were limited to theta-band activity but not neighboring frequency 

bands (e.g., 1-3 Hz delta-band activity or 8-13 Hz alpha-band activity; Figure 2C). 

These data support our contention that the anti-cue task produces significant conflict 

between endogenous and exogenous selection mechanisms.  

 

Competition Between Endogenous and Exogenous Selection Delays the Selection of 

Task-relevant WM Content 

To understand how competition between endogenous and exogenous factors 

influence the selection of WM content, we examined how pro- and anti-cues influenced 

our ability to decode stimulus positions from scalp EEG. Our approach builds on studies 

demonstrating that stimulus- and location-specific information can be decoded from 

alpha-band EEG signals22 and that attending to an item or location stored in WM 

selectively boosts decoding for the attended information23-26. We implemented a 

multivariate distance-based decoding analysis27 that was customized for our 

(parametric, circular) location space. This approach is similar to image reconstruction 

techniques (i.e., “inverted encoding models”) but does not require the experimenter to 

specify a specific coding model or basis set. To facilitate comparisons across cue 

conditions and tasks, participant-level decoding time series were sorted by task 



 

relevance: during the pro-cue task decoding performance for the cue-matching disc was 

designated task-relevant and decoding performance for the cue-nonmatching disc was 

designated task-irrelevant; during the anti-cue task this mapping was reversed. 

 We tested two models describing how competition between endogenous and 

exogenous selection mechanisms influences the prioritization of task-relevant and task-

irrelevant WM content. The first model – which we term “retro-capture” – was motivated 

by studies reporting exogenous shifts of attention to task-irrelevant stimuli in the 

external attention literature6-7. This model predicts a transient increase in position 

decoding performance for the cue-matching but task-irrelevant stimulus during the anti-

cue task, followed by a later increase in position decoding performance for the cue-

nonmatching but task-relevant position (i.e., after the effects of selecting the task-

irrelevant stimulus have been resolved). The second model – which we term “delayed 

selection” - predicts that competition between endogenous and exogenous selection 

mechanisms merely delays the selection of task-relevant WM content until this 

competition is resolved. Thus, this model predicts a significant delay in the onset of 

above-chance position decoding for the cue-nonmatching but task-irrelevant stimulus 

anti- vs. pro-cue task, but no evidence for above-chance decoding of the cue-matching 

but task-irrelevant stimulus during the anti-cue task.  

 Our experimental task (Figure 1A) was deliberately constructed so that the 

effects of endogenous and exogenous factors on the selection of WM contents could be 

measured during informative and uninformative trials. For example, during 

uninformative trials participants received an uninformative retrospective cue instructing 

them to remember the positions of both discs. Upon presentation of the probe display, 



 

this uninformative cue was replaced by a 100% valid (pro-) or 0% valid (anti-) cue 

instructing participants which disc to report. Conversely, during informative trials pro- 

and anti-cues were presented midway through the storage period. Since informative 

and uninformative trials had different response demands (i.e., pro- and anti-cues 

presented at the end of uninformative trials required an immediate response while pro- 

and anti-cues presented during the memory delay during informative trials did not), we 

analyzed data from these conditions separately.  

We first considered data from uninformative cue trials (Figure 3). Task-relevant 

and task-irrelevant location decoding performance in the pro-cue (Figure 3A) and anti-

cue (Figure 3B) tasks increased rapidly during the sample display but returned to 

chance levels by the time the (uninformative) retrocue was presented 1.75 sec later. 

Task-irrelevant decoding performance remained at chance levels through the retrocue 

and probe displays while task-relevant decoding performance increased from chance- 

to above-chance levels during the probe period. Visual comparisons of probe-locked 

task-relevant decoding performance suggested that above-chance decoding 

performance was reached earlier during the pro- relative to the anti-cue task (Figure 

3C). To quantify this effect, we extracted and compared probe-locked task-relevant 

decoding time courses during the pro- and anti-cue tasks via cross-correlation. 

Specifically, we computed correlations between the timeseries of task-relevant decoding 

performance during the pro- and anti-cue tasks while temporally shifting the former by -

1.0 to +1.0 sec in 4 msec intervals relative to the latter, yielding a correlation-by-lag 

function (see Methods). Observed cross-correlation coefficients (Figure 3D) exceeded 

those expected by chance over lags spanning -0.33 to -0.22 sec and fell below those 



 

expected by chance over a period spanning +0.25 to +0.35 sec, confirming that task-

relevant decoding performance reached above chance levels earlier during the pro- vs. 

anti-cue task.  

A complementary analysis of cue-locked decoding performance during 

informative trials yielded a nearly identical pattern of findings (Figure 4). Specifically, we 

once again found no evidence for above-chance decoding of the cue-matching but task-

irrelevant stimulus position during the anti-cue task (Figure 4B). We did, however, 

observe a significant delay in the onset of task-relevant decoding performance during 

the anti- vs. pro-cue tasks (Figure 4C-D). Thus, the results of probe- and cue-display-

locked position decoding performance reveal (a) no evidence for above-chance 

decoding of the cue- or probe-matching but task-irrelevant stimulus position (Figure 3B 

& 4B) and (b) a significant delay in the onset of above-chance decoding of the task-

relevant stimulus position compared to the pro-cue task (Figures 3C-D & 4 C-D). These 

findings are incompatible with a model of internal selective attention where competition 

between exogenous and endogenous selection mechanisms produces shifts of 

attention to cue-matching but task-irrelevant WM content.  

A motivated critic could dismiss our conclusions as based on a null result. For 

example, perhaps our anti-cue task was insufficient to produce selection of cue-

matching yet task-irrelevant stimuli. This argument is difficult to reconcile with 

behavioral findings showing clear memory impairments during the anti- vs. pro-cue task 

(Figure 1C) and higher cue-locked frontal theta power during the anti- vs. pro-cue task 

(Figure 2) uninformative and informative cue trials in the anti- vs. pro-cue tasks (Figure 

2). A second possibility is that the parametric similarity-based decoding approach we 



 

used is somehow insensitive to resolve the selection of cue-matching but task-irrelevant 

WM content during the anti-cue task. We tested this possibility by re-analyzing data 

from informative cue trials using a support vector machine (SVM) based decoding 

approach (Figure S5) and an inverted encoding model (Figure 6). SVM-based decoding 

failed to reveal above-chance decoding of the cue-matching but task-irrelevant position 

during the anti-cue task (Figure 5B). Likewise, the results of the inverted encoding 

model analysis are a perfect qualitative replication of the pattern reported in Figure 4: 

we observed no evidence for robust above-chance representations of the cue-matching 

but task-irrelevant stimulus during the anti-cue task (Figure 6B) and a significant delay 

in above-chance reconstructions for the task-relevant position during the anti- vs. the 

pro-cue task (Figure 6C). Thus, the findings summarized in Figure 4 generalize across 

multiple analytic approaches.  

Next, we considered the possibility that our decoding approach (Figures 3-4) 

lacked the temporal sensitivity to detect the selection of task-irrelevant WM content. For 

example, perhaps the temporal dynamics of changes in alpha power are insufficient to 

measure weak or intermittent (i.e., occurring on only a subset of trials) shifts of attention 

to the cue-matching but task-irrelevant position during the anti-cue task. We 

investigated this possibility by tracking the N2pc, an event-related potential (ERP) 

component known to track covert shifts of attention across visual hemifields. The N2pc 

is a difference wave defined by greater negative voltages over occipitoparietal electrode 

sites contralateral (vs. ipsilateral) to a visual target beginning ~200 ms after stimulus 

onset28 and can be used to track endogenously and exogenously driven shifts of covert 

attention with exceptionally high temporal precision29-30. We reasoned that if competition 



 

between endogenous and exogenous selection mechanisms produces a selection of 

cue-matching but task-irrelevant information, then we should observe a significant N2pc 

over electrode sites contralateral to the visual hemifield containing the cue-matching but 

task-irrelevant disc during the anti-cue task. Conversely, if competition between 

endogenous and exogenous selection mechanisms delays the selection of task-relevant 

WM content, then we should (a) observe a robust N2pc over electrode sites 

contralateral to the visual hemifield containing the task-relevant disc during the pro-cue 

task, and (b) observe a significant delay in the onset of the N2pc over electrode sites 

contralateral to the visual hemifield containing the task-relevant disc during the anti-cue 

vs. pro-cue task.  

To test these predictions, we computed voltage differences over occipitoparietal 

electrode sites contralateral to the visual hemifield containing the task-relevant disc 

during the pro- and anti-cue tasks. To control for possible sensory confounds we 

restricted our analyses to trials where the task-relevant and task-irrelevant discs 

appeared in opposite visual hemifields (approximately 70 trials/task). The N2pc was 

defined as the average voltage difference over contralateral and ipsilateral electrodes 

spanning 200-300 ms after cue onset. Since we defined the N2pc with respect to the 

visual hemifield containing the task-relevant disc, and since we restricted our analysis to 

trials where the task-relevant and task-irrelevant discs appeared in opposite visual 

hemifields, shifts of attention towards the cue-matching but task-irrelevant disc during 

the anti-cue task should manifest as a positive-going waveform 200-300 ms after cue 

onset.  



 

We observed a statistically robust N2pc from 200-300 ms following the 

appearance of an informative pro-cue (Figure 7), indicating that participants executed a 

shift of covert visual attention to the visual hemifield containing the cue-matching and 

task-relevant disc. Conversely, we observed no evidence for a positive-going waveform 

during the same interval following the presentation of an informative anti-cue. That is, 

we found no evidence suggesting that participants executed a shift of covert spatial 

attention towards the visual hemifield containing the cue-matching but task-irrelevant 

disc during anti-cue trials. Instead, we observed a robust negative-going difference 

wave beginning ~350 ms after the appearance of an anti-cue. We speculate that this 

negative-going difference wave is identical to the N2pc elicited during the pro-cue task 

whose onset has been delayed by competition between endogenous and exogenous 

selection mechanisms. Nevertheless, the results of this analysis provide converging 

evidence against the hypothesis that competition between endogenous and exogenous 

selection mechanisms drives the inadvertent selection of cue-matching but task-

irrelevant information.  

 

Other Alternative Explanations. 

Next, we considered the possibility that evidence for the selection of the task-

irrelevant disc during the anti-cue task was obscured by trial averaging. For example, 

perhaps the selection effect is small, short, lived, or intermittent (i.e., occurring on only a 

subset of trials). We tested this possibility by recomputing alpha-band-based decoding 

performance for the task-irrelevant disc after sorting participants’ anti-cue task 

performance by median recall error (i.e., “high” vs. “low”). Here, we reasoned that since 



 

exogenous factors have a deleterious effect on participants’ recall errors during the anti-

cue task (Figure 1C), exogenous selection of the task-irrelevant disc – as indexed by 

higher task-irrelevant decoding performance – should be more evident during high recall 

error trials. However, this was not the case: we observed no evidence for above-chance 

task-irrelevant decoding performance during low- or high-error informative (Figure 8A) 

or uninformative trials (Figure 8B). Thus, it is unlikely that the pattern of exogenous-

then-endogenous selection predicted by the retro-capture model was obscured by trial-

averaging.  

We also considered the hypothesis that selection of the cue-matching but task-

irrelevant disc during the anti-cue task was obscured by successful cognitive control. 

Specifically, we reasoned that shifts of attention towards the location of the task-

irrelevant disc might be more likely during trials contaminated by lapses of attention. To 

test this hypothesis, we re-computed cue-matching but task-irrelevant location decoding 

performance after sorting participants’ alpha-band EEG data by frontal theta power 

(Figure 2), reasoning that inadvertent selection of cue-matching but task-irrelevant 

stimuli would be more likely during trials where frontal theta power (indexing cognitive 

control) was low vs. high. However, we observed no evidence for above-chance 

decoding of the cue-matching but task-irrelevant position during high- or low-theta 

power trials (Figure 9). This analysis provides converging evidence suggesting that 

exogenous factors do not lead to a selection or re-activation of cue-matching but task-

irrelevant WM content, but instead delay the endogenous selection of task-relevant WM 

content.  



 

 Finally, although our analyses reveal no evidence for a selection of cue-matching 

but task-irrelevant information during the anti-cue task, they do reveal a significant delay 

in the selection of task-relevant information during the anti- vs. pro-cue tasks (Figures 

3C-D and 4C-D). This effect could reflect a delay in the selection of task-relevant 

information caused by competition between endogenous and exogenous selection 

mechanisms during the anti-cue task or some other task-specific factor. For example, 

one trivial possibility is that it simply takes participants longer to interpret anti-cues vs. 

pro-cues. However, this explanation is difficult to reconcile with the fact that neither the 

main effect of task (i.e., pro-cue vs. anti-cue; Figure 1D) nor the simple effect of task 

(Figure 1E) on response times during informative cue trials reached significance. A 

second possibility is that delayed above-chance decoding performance during the anti-

cue task was caused by carryover effects. For example, although task order was 

counterbalanced across observers, perhaps participants who completed the pro-cue 

task followed by the anti-cue task had extra difficulty interpreting anti-cues compared to 

participants who performed the anti-cue task followed by the pro-cue task. To test this 

possibility, we compared the time-courses of task-relevant decoding performance during 

informative anti-cue trials in participants who performed the pro-cue task followed by the 

anti-cue task (N = 17) or vice versa (N = 23). For both groups, task-relevant decoding 

performance reached above chance levels shortly before or immediately after the onset 

of the probe display (Figure 10). If anything, the onset of above-chance decoding 

performance occurred earlier for participants who performed the anti-cue task second 

vs. those who performed the anti-cue task first, though this difference was not 

significant (p = 0.146; randomization test, see Methods). Thus, order effects cannot 



 

account for delays in task-relevant decoding performance during the anti-cue vs. pro-

cue blocks.  

  

Eye Movement Control Analysis 
 
 Finally, we investigated the possibility that our key findings (e.g., Figures 3-7) 

were influenced by oculomotor artifacts. Although we used independent components 

analysis to identify and remove large oculomotor artifacts from the EEG data, several 

recent reports have documented the existence of small (≤ 0.5° visual angle) but 

consistent gaze position biases towards the position of a behaviorally relevant item 

stored in WM, especially following the appearance of a retrospective cue13. Moreover, 

there is some evidence suggesting that these gaze position biases can contribute to 

EEG decoding performance31-32. Although we did not collect precise eye position data 

during this experiment, we reasoned that due to volume conduction gaze biases would 

have the largest effects on EEG signals at extreme frontal electrode sites. Therefore, if 

gaze biases contribute to decoding performance, it should be possible to decode 

stimulus positions from alpha-band filtered data at these same electrode sites33. To 

investigate this possibility, we attempted to decode the positions of the cue-matching 

and cue-nonmatching stimuli from 10-20 electrode sites Fp1, Fp2, AF7, AF3, AFz, AF4, 

and AF8 during informative pro- and anti-cue trials (using the same parametric decoding 

analysis used to produce the data shown in Figure 4). Apart from a brief epoch of 

above-chance decoding performance for the cue-matching disc during the pro-cue task 

that was limited to the probe epoch, this analysis failed to reveal robust above-chance 

decoding of stimulus position resembling that seen in our primary analyses (Figure 11; 



 

compare with Figure 4). Thus, it is unlikely that our key findings can be attributed to 

subtle differences in gaze bias across experimental conditions.  

 

  



 

Discussion 

Selective attention can be allocated to sensory inputs and internal 

representations based on voluntary, endogenous factors or involuntary, exogenous 

factors. An enormous literature suggests that external selection is mediated by 

competition between endogenous and exogenous factors, with the focus of selection 

determined by the balance of competition between these factors9. Endogenous and 

exogenous factors may also compete to control the selection of internal representations, 

for example, those stored in WM13. Here, we show that - unlike external attention – this 

competition does not result in a selection of task-irrelevant stimuli. This, in turn, 

supports the hypothesis that internal and external selective attention are mediated by at 

least partially non-overlapping mechanisms.  

A motivated critic could dismiss our conclusion as based on a null result. For 

example, perhaps our experimental approach was insufficient at creating conditions 

conducive to the exogenous selection of cue-matching but task-irrelevant stimuli during 

the anti-cue task. While we cannot fully exclude this possibility, we note the following: 

First, we point critics towards a recent paper by van Ede and colleagues13 who used a 

behavioral task and cue manipulation like the one reported here to document evidence 

for oculomotor capture by cue-matching but task-irrelevant stimuli during an anti-cue 

task. In that study, participants memorized the orientations of two colored bars (one per 

visual hemifield), and a color cue presented during storage indicated which bar should 

be probed for report. Using this approach, van Ede et al.13 reported that during anti-cue 

trials gaze position was subtly biased towards the location of the cue-matching but task-

irrelevant stimulus before “flipping” to the cue-nonmatching but task-relevant stimulus 



 

(see their Figures 2C and 3A). Thus, their experimental setup – which was highly similar 

to ours – was sufficient to produce oculomotor capture by task-irrelevant stimuli (we 

return to this point below). Second, in the current study participants’ memory 

performance was significantly worse during the anti- vs. pro-cue tasks (Figure 1B) and 

that the appearance of an anti-cue led to a significant increase in frontal theta power 

compared to the appearance of a pro-cue (Figure 2), consistent with a need for greater 

cognitive control during the anti- vs. pro-cue task. Third, perhaps our specific decoding 

approach lacked the sensitivity to identify the selection of task-irrelevant information 

during the anti-cue task. Again, it is difficult to fully exclude this possibility, but we note 

that we observed qualitatively different patterns of findings across two different 

decoding methods (similarity-based vs. support vector machine-based; Figures 4 and 5, 

respectively) and the results of an inverted encoding model analysis where we 

reconstructed remembered positions from EEG activity (Figure 6). Fourth, perhaps the 

posterior alpha-band signal (8-13 Hz) lacks the temporal resolution necessary to resolve 

fleeting or intermittent selection of task-irrelevant information during the anti-cue task. 

However, analyses of the N2pc ERP component responses (with a temporal resolution 

of ~4 ms) revealed clear evidence for the selection of the task-relevant disc during the 

pro- and anti-cue tasks but no evidence for the selection of the task-irrelevant disc 

during the anti-cue task (Figure 7). Fifth, a variety of additional control analyses 

demonstrate that the selection of task-irrelevant information during the anti-cue task 

was not obscured by high behavioral performance (Figure 8), successful cognitive 

control (Figure 9), or task order effects (Figure 10). Importantly, in many of these 

analyses we did find evidence for a temporal delay in the selection of task-relevant WM 



 

content during the anti-cue vs. the pro-cue task. Thus, we argue that unlike external 

attention – where competition between endogenous and exogenous selection 

mechanisms produces clear evidence for the selection of irrelevant stimuli – competition 

between endogenous and endogenous internal selection mechanisms does not produce 

a selection of task-irrelevant memory content and is resolved in a fundamentally 

different way. More generally, this result points towards important differences in how 

voluntary and involuntary selection mechanisms compete to control the processing of 

external sensory inputs vs. internal memory representations.  

As noted above, a recent study by van Ede and colleagues13 reported evidence 

for oculomotor capture by cue-matching but task-irrelevant stimuli using a task design 

and cue manipulation nearly identical to that used in the previous study. Conversely, we 

found no evidence for this kind of “retro-capture” effect in our EEG data. How can these 

results be reconciled? We believe that the key lies within recent studies demonstrating 

dissociations between shifts of covert spatial attention indexed by oculomotor biases 

and EEG signals. For example, although attention-related modulations of cortical and 

subcortical processing are larger during trials containing microsaccades towards the 

location of a (covertly) attended stimulus, clear attention-related modulations are also 

observed in the absence of microsaccades33-34. The apparent contradiction between our 

EEG findings and earlier oculomotor findings13 provides additional impetus to further 

explore relationships between oculomotor and EEG signatures of covert spatial 

attention.  

Our study complements earlier efforts that examined the role of active forgetting 

in WM35-36. For example, Williams et al.36 showed participants successive displays of to-



 

be-remembered stimuli that were followed by a cue instructing participants which 

display to remember (i.e., “directed remembering”) or which display to ignore (i.e., 

“directed forgetting”). These authors found that directed forgetting cues improved WM 

performance compared to an uninformative cue condition, but less so than directed 

remembering cues. Importantly, these studies utilized spatial or conceptual cues, 

including pointed arrow symbols36 or written words35. Conversely, in the current study, 

our retrospective cues always matched one feature of an item stored in WM. Like prior 

work13 independently manipulating the feature match and the meaning of the cue (i.e., 

pro- vs. anti-) allowed us to track the consequences of placing endogenous and 

exogenous selection mechanisms in conflict.  

The current findings may inform neurocomputational models of WM. For 

example, conjunctive coding models predict that WM representations are maintained by 

spiking activity in feature- and/or location-specific neural populations37-38. While the 

exact mechanisms vary by implementation, these models generally predict that a 

feature probe in one dimension (e.g., orientation) activates spiking patterns in neural 

populations that code this feature and those that code other features of the same object 

(e.g., color) and/or its location. This, in turn, enables robust read-out of the probed and 

non-probed stimulus dimensions by downstream neural populations. While these 

models were not developed to describe the anti-cue task contemplated here, one could 

reasonably predict an increase in task-irrelevant decoding performance after 

presentation of an anti-cue based on their general architecture. We observed no 

evidence for such an effect, and it remains to be seen whether these models can be 

modified to predict behavioral and neural data during pro- and anti-cue tasks. 



 

Alternately, pattern completion models predict that the contents of WM reside in 

different neural states – an “active” state mediated by sustained spiking activity and a 

“latent” state mediated by short-term synaptic plasticity39-40. Presentation of a feature 

probe that matches a stimulus stored in a latent format reinstates activity patterns 

evoked when that stimulus was encoding, prompting and/or “refreshing” of the neural 

representation of the probe-matching item through pattern completion. This prediction 

enjoys some support: a representation stored in WM item can be “re-activated” (as 

indexed by above-chance EEG decoding performance) by a task-irrelevant sensory 

input27 or a transcranial magnetic stimulation (TMS) pulse applied over sensory cortex41. 

Conversely, in the current study we found no evidence for a reactivation of cue-

matching but task-irrelevant WM content following presentation of an anti-cue. However, 

one salient difference between the current study and prior work is that in the latter, an 

informative retrospective cue instructed presented prior to the “impulse” stimulus 

instructed participants which of two remembered stimuli should be prioritized for report. 

Thus, re-activation of information stored in synaptic traces may be contingent on the 

network responsible for storing information to be selected or otherwise primed for 

decision making and action.  

To summarize, the current findings support recent suggestions that endogenous 

and exogenous selection mechanisms compete to control access to internal WM 

representations. However, this competition is resolved in a fundamentally different way 

than that seen during external attention. Specifically, endogenous and exogenous 

competition does not produce an errant selection or refreshing of salient but task-



 

irrelevant WM content. Instead, this competition delays the selection of task-relevant 

memory content by endogenous mechanisms.  

Limitations of the Study. 

Our findings reveal an apparent contradiction between oculomotor and 

electrophysiological signatures of internal attention during the selection of task-relevant 

WM content. On the one hand, an earlier eye tracking study that used an experimental 

design like the one reported here found evidence for oculomotor capture by cue-matching 

but task-irrelevant stimuli during an anti-cue task13. Conversely, we found no evidence for 

such an effect in EEG. While caution is always required in interpreting a null result, several 

control analyses (summarized in the first paragraph of the discussion) suggest that the 

absence of capture by cue-matching but task-irrelevant stimuli during the anti-cue task 

are not due to limitations in our experimental design or analytic sensitivity. When 

compared to earlier results13, our findings complement recent demonstrations suggesting 

that oculomotor and electrophysiological measurements may index different selection 

mechanisms34 and provide further motivation for studies directly comparing oculomotor 

and electrophysiological indices of attentional selection.   



 

Acknowledgements 
 
Funding: National Science Foundation Grant 2050833 (EFE) 
 
  



 

Author Contributions 
  
Conceptualization: EFE, AN 
Methodology: EFE, AN 
Investigation: AN 
Visualization: EFE, AN 
Supervision: EFE 
Writing – original draft: EFE 
Writing – review & editing: EFE, AN 
 
  



 

Declaration of Interests 
 
The authors declare no competing interests.  

  



 

Main Figure Titles and Legends 

Figure 1. Retrocue Task and Memory Performance. (A) Participants remembered the 
locations of two discs over a blank delay. Each disc could appear at one of eight positions along 
the perimeter of an imaginary circle centered at fixation (upper right panel). (B) Effects of cue 
type (informative, uninformative) and task type (pro-cue, anti-cue) on average absolute recall 
errors. (C) We estimated the effects of exogenous factors on recall performance by computing 
the difference between informative pro-cue trials (i.e., where endogenous and exogenous 
factors are aligned) and informative anti-cue trials (i.e., where endogenous and exogenous 
factors are opposed). We estimated the effects of endogenous factors on recall performance by 
computing the difference between informative pro-cue trials and uninformative pro-cue trials 
minus the estimated effect of exogenous factors (see text for specifics). Identical analyses were 
also applied to participants response times (D, E). Error bars depict the 95% confidence interval 
of the mean.  

Figure 2. Frontal Theta Power is Greater During the Anti- vs. Pro-Cue Task, Reflecting a 
Greater Need for Cognitive Control. (A) Time-resolved differences in pro- and anti-cue theta 
power computed from frontal electrode sites. Theta power estimates were larger during the anti- 
vs. pro-cue task beginning approximately 600 ms after cue onset. Shaded regions depict the 
95% confidence interval of the mean. Vertical solid lines at times 0.00 and 3.00 depict the onset 
of the sample and recall displays, respectively; the vertical dashed line at time 1.75 depicts the 
onset of an informative retrocue. The horizontal black bar at the top of the plot marks periods 
where the difference between anti- and pro-cue theta power was significantly greater than zero 
(cluster-based permutation tests; see Methods). (B) Difference in theta-power (4-7 Hz) scalp 
topography during the pro- and anti-cue tasks. Pro- and anti-cue theta power estimates were 
averaged over a period spanning 2.5-3.0 sec after trial start (i.e., 750-1250 ms after cue onset). 
Electrode-wise power estimates during the pro-cue task were subtracted from corresponding 
estimates during the anti-cue task, i.e., larger values indicate higher theta power during the anti- 
vs. pro-cue task. (C) Task-level differences in power were absent from frequency bands 
adjacent to theta, including delta (1-3 Hz) and alpha (8-13 Hz).  

Figure 3. Location Decoding Performance During Uninformative Trials. (A, B) Decoding 
performance for task-relevant and task-irrelevant locations during pro-cue and anti-cue blocks, 
respectively. (C) Overlay of task-relevant location decoding performance for pro-cue and anti-
cue blocks (i.e., the blue lines in panels A and B). Solid vertical lines at time 0.00 and 3.00 
depict the onset of the sample and probe displays, respectively. The dashed vertical line at time 
1.75 depicts the onset of the (uninformative) retrocue. Gray shaded region spanning 0.00-0.50 
marks the duration of the sample display. Horizontal bars at the top of each plot mark intervals 
where decoding performance was significantly greater than zero (nonparametric cluster-based 
randomization test; see Methods) or intervals where decoding performance for one location was 
significantly greater than decoding performance for the other location. Shaded regions around 
each line depict bootstrapped confidence intervals of the mean. (D) Cross-correlation analysis 
showing a significant delay in the onset of above-chance probe-locked task-relevant decoding 
performance during the anti- vs. pro-cue task. The null distribution was obtained by repeating 
the cross-correlation analysis 10,000 times while randomizing participant-level condition labels 
(i.e., randomly switching the pro- and anti-cue labels). Horizontal bars at the top of the plot 
depict intervals where the observed cross-correlation coefficient was significantly greater than 
that expected by chance.  

Figure 4. Location Decoding Performance During Informative Trials. (A, B) Decoding 
performance for task-relevant and task-irrelevant locations during pro-cue and anti-cue blocks, 



 

respectively. (C) Overlay of task-relevant location decoding performance for pro-cue and anti-
cue blocks (i.e., the blue lines in panels A and B). (D) Cross-correlation analysis showing a 
significant delay in the onset of above-chance probe-locked task-relevant decoding performance 
during the anti- vs. pro-cue task. All conventions are identical to Figure 3.  

Figure 5. Support Vector Machine-based Decoding of Stimulus Position. To ensure the 
generality of our findings (e.g., Figure 4), we decoded the positions of the task-relevant and -
irrelevant discs during the pro-cue task (A) and the anti-cue task (B). Plotting conventions are 
identical to Figure 4. We did not perform a cross-correlation analysis due to the absence of 
above-chance decoding of the cue-matching but task-relevant stimulus during the anti-cue task. 

 
Figure 6. Inverted Encoding Model Analysis. We modeled patterns of alpha-band activity at 
each electrode site as a weighted combination of eight position filters, each with an idealized 
tuning curve. Filter weights from each electrode were used to reconstruct a representation of 
remembered position(s) in an independent test data set. Conventions are identical to Figure 5.  

Figure 7. Event-related Potentials Reveal Delayed Selection of Task-relevant WM Content 
During the Anti-Cue Task. (A) Average contralateral and ipsilateral ERP waveforms during the 
pro-cue task, time-locked to trial start (0.00 sec). The vertical lines at times 1.75 and 3.00 sec 
depict the onset of the retrocue and probe displays, respectively. The shaded region depicts the 
duration of the sample display. (B) Identical to (A), but for the anti-cue task. (C). Difference 
waves (i.e., contralateral-ipsilateral) time locked to retrocue onset (time 0 ms). The shaded 
region spanning 200-300 ms depicts the canonical N2pc window. Horizontal bars at the top of 
the plot mark epochs where difference wave voltage was significantly greater than chance (red 
bar) or when anti-cue difference wave voltage was significantly greater than pro-cue difference 
wave voltage (maroon bar). Shaded regions depict the 95% confidence interval of the mean. (D) 
N2pc amplitudes, defined as the average difference wave voltage over a period spanning 200-
300 ms after cue onset. Error bars depict the 95% confidence interval of the mean; *, p< 0.05, 
bootstrap test.  

Figure 8. Split-half Analysis of Task-irrelevant Decoding Performance During the Anti-cue 
Task. To examine whether exogenous selection of the task-irrelevant disc during anti-cue 
blocks was obscured by trial averaging, we sorted task-irrelevant decoding performance during 
uninformative (top) and informative (bottom) trials by participants’ recall errors. We reasoned 
that since exogenous factors have a deleterious effect on participants’ recall errors (Fig 1C), 
exogenous selection of the task-irrelevant disc – as indexed by higher task-irrelevant decoding 
performance – should be more evident during high recall error trials (black lines) than low recall 
error trials (green lines). However, we observed no evidence for above-chance task-irrelevant 
decoding performance in any of the conditions we examined. Plotting conventions are identical 
to those in Figure 4. 

 
Figure 9. Task-irrelevant Decoding Performance During the Anti-Cue Task Sorted by 
Frontal Theta Power. Conventions are identical to Figure 4B. 

 
Figure 10. Delayed Improvements in Task-Relevant Decoding Performance During the 
Anti-Cue Task Cannot be Explained by Order Effects. We tested whether delayed 
improvements in task-relevant decoding performance during the anti-cue (vs. pro-cue) task 
were caused by order effects by splitting decoding performance across participants who 
performed the anti-cue task followed by the pro-cue task (green) or vice versa (maroon). If 
anything, above-chance decoding performance was reached earlier for participants who 



 

completed the pro-cue followed by the anti-cue tasks, though this effect was not significant (p = 
0.141; randomization test). 
 
Figure 11. Stimulus Position Cannot be Decoded from Frontal Alpha-band Activity. 
Conventions are identical to Figures 4A-B.  

 

 
  



 

STAR Methods 

RESOURCE AVAILABILITY 

Lead Contact 

All questions and matters arising from this paper should be directed to and will be 

addressed by the lead contact, Dr. Edward F. Ester (eester@unr.edu) 

Materials Availability 
 

This study did not generate any new reagents. 
 
Data and Code Availability 
 

• De-identified behavioral and preprocessed EEG Data (BIDS format) have been 

deposited on OpenNeuro and are publicly available as of the date of publication. 

Accession information is available in the key resource table. Raw EEG data can 

be obtained by contacting the lead contact of this study.  

• Original code sufficient to reproduce all figures and reported statistical values are 

publicly available on the Open Sciences Framework. Accession information is 

available in the key resource table. 

• Any additional information required to re-analyze the data reported in this paper 

is available from the Lead Contact upon request.  

 
Experimental Model and Study Participant Details.  

In total, 42 human adult volunteers (ages 18-40) participated in this study, with 

each participant completing a single 2.5-hour testing session. Two participants 

voluntarily withdrew from the study prior to completing both tasks (i.e., pro-cue vs. anti-

cue); data from these participants were excluded from final analyses. Thus, the data 

reported here reflect the remaining 40 participants. Participants were recruited from the 

mailto:eester@unr.edu


 

Florida Atlantic University (FAU) community via campus advertisements and 

remunerated at $15/h in Amazon.com gift cards. All participants gave both written and 

oral informed consent prior to enrolling in the study, and all study procedures were 

approved by the FAU institutional review board (IRB). All participants self-reported 

normal or corrected-to-normal visual acuity. We had no a priori reason to suspect that 

task performance or study outcomes would vary as a function of sex, gender identity, 

race, ethnicity, or any other immutable characteristic; thus, we did not collect this 

information from participants.  

 

METHODS DETAILS 

Testing Environment. Participants were seated in a dimly-lit and acoustically shielded 

recording chamber for the duration of the experiment. Stimuli were generated in 

MATLAB and rendered on a 17’’ Dell CRT monitor cycling at 85 Hz (1024 x 768 pixel 

resolution) via PsychToolbox3 software extensions. Participants were seated 

approximately 65 cm from the display (head position was unconstrained). To combat 

fatigue and/or boredom, participants were offered short breaks at the end of each 

experimental block.  

Spatial Retrocue Task. A task schematic is shown in Figure 1A. Each trial began with 

the presentation of an encoding display lasting 500 ms. The encoding display contained 

two colored circles (blue and red; subtending 1.75° visual angle from a viewing distance 

of 65 cm) rendered at two of eight locations (22.5° to 337.5° in 45° increments) along 

the perimeter of an imaginary circle (radius 7.5° visual angle) centered on a circular 

fixation point (subtending 0.25°) rendered in the middle of the display. The locations of 



 

the two discs were counterbalanced across each task (i.e., pro-cue vs. anti-cue), though 

not necessarily within an experimental block. Participants were instructed to maintain 

fixation and refrain from blinking for the duration of each trial.  

The sample display was followed by a 1.25 sec blank display and a 1.25 sec 

retrocue display. Retrocues were defined by a change in the color of the fixation point. 

During informative cue trials the fixation point changed colors from black to either blue 

or red (i.e., matching the color of a remembered disc) and remained that color for the 

duration of the trial. During uninformative cue trials the fixation point initially changed 

colors from black to purple (the “average” of blue and red), before again changing colors 

from purple to blue or red at the onset of the response display. At the end of the trial, a 

response display containing a fixation cue (i.e., a blue or red fixation point), a mouse 

cursor, a “?” symbol, and a response circle appeared. During the pro-cue task, 

participants were instructed to report the location of the disc matching the color of the 

fixation cue, while during the anti-cue task participants were instructed to report the 

location of the disc that did not match the color of the fixation cue. Participants 

responded by clicking along the perimeter of the response circle. Participants were 

instructed to prioritize accuracy over speed, and no response deadline was imposed. 

The trial terminated as soon as the participant clicked on a location. Sequential trials 

were followed by a 1.5-2.5 sec blank period (randomly and independently selected from 

a uniform distribution after each trial).  

Each experimental block contained 28 informative cue and 28 uninformative cue 

trials, for a total number of 56 trials per block. Informative cue and uninformative cue 

trials were randomly intermixed within blocks. During the first half of the experiment 



 

(e.g., experimental blocks 1-8), each participant was assigned to the pro-cue or anti-cue 

task. Participants completed eight blocks in each of the pro- and anti-cue tasks. Task 

order (i.e., eight blocks of the pro-cue task followed by eight blocks of the anti-cue task 

or vice versa) was counterbalanced across participants. 

Quantifying Memory Performance. We quantified participants’ memory performance as 

average absolute recall error (i.e., the difference in polar angle reported by the 

participant and the polar angle of the probed disk) and average response times. 

Comparisons of memory performance across task conditions were conducted via 

repeated-measures analyses of variance (ANOVA) and repeated-measures t-tests.   

Importantly, average absolute recall errors can be influenced by the precision of 

participants’ memory as well as random guessing or accidental reports of a non-probed 

object (“swap errors”). To quantify the frequencies of random guessing and swap errors, 

we pooled participants’ recall data across all cue conditions (e.g., valid vs. invalid; 100% 

vs. 75%) and used a hierarchical Bayesian approach to fit participants’ data with a 

parametric model which assumes that on a given trial (a) participants report the position 

of the probed disk with precision k, (b) participants report the position of the non-probed 

disk with precision k (i.e., a “swap error”), or (c) participants randomly guess42. We used 

hierarchical Bayesian modeling (implemented via the MemFit MATLAB toolbox43) to 

obtain maximum a posteriori estimates of memory precision, guessing frequency, and 

swap error frequency at the single-participant and population levels. 

EEG Acquisition and Preprocessing. Continuous EEG was recorded from 63 uniformly 

distributed scalp electrodes using a BrainProducts “actiCHamp” system. The horizontal 

and vertical electrooculogram (EOG) were recorded from bipolar electrode montages 



 

placed over the left and right canthi and above and below the right eye, respectively. 

Live EEG and EOG recordings were referenced to a 64th electrode placed over the right 

mastoid and digitized at 1 kHz. All data were later re-referenced to the algebraic mean 

of the left- and right mastoids, with 10-20 site TP9 serving as the left mastoid reference.  

Data preprocessing was carried out via EEGLAB software extensions44 and 

custom software. Data preprocessing steps included the following, in order: (1) 

resampling (from 1 kHz to 250 Hz), (2) bandpass filtering (1 to 50 Hz; zero-phase 

forward- and reverse finite impulse response filters as implemented by EEGLAB), (3) 

epoching from -1.0 to +5.0 sec relative to the start of each trial, (4) identification, 

removal, and interpolation of noisy electrodes via EEGLAB software extensions, and (5) 

identification and removal of oculomotor artifacts via independent components analysis 

as implemented by EEGLAB. After preprocessing, location decoding analyses focused 

exclusively on the following 10-20 occipitoparietal electrodes: P7, P5, P3, Pz, P2, P4, 

P6, P8, PO7, PO3, POz, PO2, PO4, PO8, O1, O2, Oz.  

Data Cleanup. Prior to analyzing participants’ behavioral or EEG data, we excluded all 

trials where the participant responded with a latency of < 0.4 sec (we attributed these 

trials to accidental mouse clicks following the onset of the probe display rather than a 

deliberative recall of a specific stimulus position) and more than 3 standard deviations 

above the average response time across all experimental conditions. This resulted in an 

average (±1 S.E.M.) loss of 14.43 ±0.93 trials (or 1.67% ± 0.11% of trials) across 

participants but had no qualitative effect on any of the findings reported here.   

Decoding Spatial Positions from Posterior Alpha-Band EEG Signals. Location decoding 

was based on the multivariate distance between EEG activity patterns associated with 



 

memory for specific positions. This approach is an extension of earlier parametric 

decoding methods designed for use in circular feature spaces27. We extracted 

spatiotemporal patterns of alpha-band activity (8-13 Hz) from 17 occipitoparietal 

electrode sites (see EEG Acquisition and Preprocessing above). The raw timeseries at 

each electrode was bandpass filtered from 8-13 Hz (zero-phase forward-and-reverse 

filters as implemented by EEGLAB software), yielding a real-valued signal f(t). The 

analytic representation of f(t) was obtained via Hilbert transformation:  

 

𝑧(𝑡) = 𝑓(𝑡) + 𝑖𝑓(𝑡) 

 

where i is the imaginary operator and if(t) = 𝐴(𝑡)𝑒𝑖𝜑(𝑡). Alpha power was computed by 

extracting and squaring the instantaneous amplitude A(t) of the analytic signal z(t).  

 Location decoding performance was computed separately for each disc (i.e., blue 

vs. red), trial type (i.e., informative vs. uninformative) and each task (i.e., pro-cue vs. 

anti-cue) on a timepoint-by-timepoint basis. In the first phase of the analysis, we sorted 

data from each condition into 5 unique training and test data sets using stratified 

sampling while ensuring that each training set was balanced across remembered 

positions (i.e., we ensured that each training data set contained an equal number of 

observations where the location of the remembered stimulus was at 22.5°, 67.5°, etc.). 

We circularly shifted the data in each training and test data set to a common center (0°, 

by convention) and computed trial-averaged patterns of responses associated with 

memory for each disc position in each training data set. Next, we computed the 

Mahalanobis distance between trial-wise activation patterns in each test data set with 



 

position-specific activation patterns in the corresponding test data set, yielding a 

location-wise set of distance estimates. If scalp activation patterns contain information 

about remembered positions then distance estimates should be smallest when 

comparing patterns associated with memory for identical positions in the training and 

test data set and largest when comparing opposite positions (i.e., those ±180° apart), 

yielding an inverted gaussian-shaped function. Trial-wise distance functions were 

averaged and sign-reversed for interpretability. Decoding performance was estimated 

by convolving timepoint-wise distance functions with a cosine function, yielding a metric 

where chance decoding performance is equal to 0. Decoding results from each training- 

and test-data set pair were averaged (thus ensuring the internal reliability of our 

approach), yielding a single decoding estimate per participant, timepoint, and task 

condition. To verify that our findings are not contingent on the specific type of decoding 

analysis used, we repeated the aforementioned analysis via eight-way support-vector-

machine (SVM) based classification using a “one-versus-all” motif (see Results).  

Decoding and Filter Cutoffs. One recent study reported that high-pass filter cutoffs 

exceeding approximately 0.1 Hz can introduce temporal distortions in decoding 

timeseries in broadband EEG data45. As noted above, we applied a 1 Hz high-pass filter 

to the raw EEG data to optimize it for independent components analysis. Importantly, 

the high-pass filter was applied to the continuous EEG timeseries, that is, prior to 

sorting the data according to cue type (i.e., pro- vs. anti) or cue informativeness (i.e., 

informative vs. uninformative). An analogous procedure was used to isolate alpha-band 

activity within the broadband EEG signal prior to decoding. While we cannot exclude the 

possibility that our filtering approach introduced some amount of temporal smearing into 



 

decoding timeseries, our approach ensures that any filtering effects are agnostic to 

specific experimental conditions. Thus, any differences in decoding timeseries across 

experimental conditions cannot be explained by mere filtering artifacts.  

Cross-correlation Analyses. Temporal differences in task-relevant location decoding 

performance were estimated via cross-correlation analyses. For uninformative trials, we 

extracted task-relevant decoding performance during pro- and anti-cue blocks over a 

period spanning 0.0 to 1.0 seconds following the onset of the probe display (i.e., when 

an informative cue instructed participants which disc to recall). We computed correlation 

coefficients between pro- and anti-cue decoding time series while systematically shifting 

the pro-cue time series from -1.0 to +1.0 sec relative to the anti-cue decoding time 

series (e.g., Figure 3D, blue line). We compared these correlation coefficients to a 

distribution of correlation coefficients computed under the null hypothesis (i.e., no 

systematic difference in pro- and anti-cue decoding time series) by repeating the same 

analysis 10,000 times while randomizing the decoding condition labels (i.e., pro- vs. 

anti-cue) for each participant. An identical analysis was performed on task-relevant pro- 

and anti-cue decoding task performance from 0.0 to 1.75 during informative trials. We 

deliberately selected a longer temporal interval for analysis during informative trials as 

we expected increases in pro- and anti-cue decoding performance to begin during the 

retrocue period and persist into the ensuing response period.  

Quantifying Frontal Theta Power. Analyses of frontal theta power focused on 

informative trials from the pro- and anti-cue tasks. The raw timeseries at each scalp 

electrode was bandpass filtered from 4-7 Hz (zero-phase forward-and-reverse filters as 

implemented by EEGLAB software), yielding a real-valued signal f(t). The analytic 



 

representation of this signal was obtained via Hilbert transformation, and theta power 

was computed by extracting and squaring the instantaneous amplitude A(t) of the 

analytic signal z(t). Topographic maps of theta power during the pro- and anti-cue tasks 

were obtained by averaging power estimates over trials and a temporal window 

spanning 2.5 to 3.0 sec following the start of each informative trial (i.e., 750 to 1000 ms 

after cue onset). Based on these maps, we limited further analyses to power estimates 

measured at four frontal electrode sites: AFz, Fz, F1, and F2. Data from these 

electrodes were used to compute time-resolved estimates of theta power during the pro- 

and anti-cue tasks and task differences in theta power. In a final analysis, we extracted 

and computed trial-wise estimates of theta power during the anti-cue task (using the 

same electrodes and temporal window described in the previous paragraph). We sorted 

participants’ anti-cue EEG data into low- and high-theta power groups after applying a 

media split to theta power estimates, then decoded the location of the cue-matching but 

task-irrelevant item within each group. This allowed us to test whether evidence for 

exogenous selection of and/or “refreshing” of cue-matching memory traces was more 

likely to occur on trials with low- vs. high theta power.  

N2pc Analyses. The N2pc is a negative-going waveform defined by a greater negativity 

over occipitoparietal electrode sites contralateral vs. ipsilateral to the hemifield 

containing a visual target28. We used the N2pc to track covert spatial selection of the 

cue-matching and task-relevant position during pro-cue blocks and the cue-matching 

but task-irrelevant stimulus during anti-cue blocks. To control for sensory imbalances 

across visual hemifields, we restricted our analysis to trials where the task-relevant and 

task-irrelevant discs appeared in opposite visual hemifields. We estimated voltages over 



 

occipitoparietal electrode site pairs O1/2, PO3/4, and PO7/8 during trials when the task-

relevant stimulus was in the left vs. right visual field, then sorted trial-wise voltage 

estimates by the hemifield containing the task-relevant target, i.e., contralateral vs. 

ipsilateral. We defined the N2pc as the average difference in voltage across 

contralateral and ipsilateral electrode sites over a period spanning 200-300 ms.  

Inverted Encoding Model. To verify the generality of our findings across analytic 

approaches, we reconstructed position-specific WM representations from 

spatiotemporal patterns of alpha-band activity using an inverted encoding model. Our 

approach was conceptually and quantitatively identical to that used in earlier studies25-

26,46. We modeled alpha power at each scalp electrode as a weighted sum of eight 

location-selective channels, each with an idealized tuning curve (a half-wave rectified 

cosine function raised to the 8th power, with the maximum response of each function 

normalized to 1). The predicted responses of each channel during each trial were 

arranged in a k channels by n trials design matrix C. The relationship between the EEG 

data and the predicted responses in C is given by a general linear model of the form: 

 

𝐵 = 𝑊𝐶 + 𝑁 

 

where B is an m electrode by n trial training data matrix, W is an m electrode by k 

channel weight matrix, and N is a matrix of residuals (i.e., noise).  

 To estimate W, we constructed a training data set containing an equal number of 

trials for each stimulus position (i.e., 22.5-337.5° in 45° increments). We identified the 

location φ with the fewest r repetitions and constructed a training dataset Btrn (m 



 

electrodes by n trials) and weight matrix Ctrn (n trials by k channels) by randomly 

selecting (without replacement) 1 to r trials for each of the eight possible stimulus 

positions. The training dataset was used to compute a weight for each channel Ci using 

ordinary least-squares estimation: 

𝑉𝑖 =
∑ 𝑊𝑖

−1
𝑖

𝑊𝑖
𝑇 ∑ 𝑊𝑖

−1
𝑖

 

where T and -1 are the matrix transpose and inversion operations, respectively. Σi is the 

regularized noise covariance matrix for each channel i, estimated as: 

∑
1

𝑛 − 1
𝜀𝑖𝜀𝑖

𝑇

𝑖

 

where n is the number of training trials and εi is a matrix of residuals: 

𝜀𝑖 = 𝐵𝑡𝑟𝑛 − 𝑊𝑖𝐶𝑡𝑟𝑛,𝑖 

Estimates of εi were obtained by regularization-based shrinkage using an analytically 

determined shrinkage observation. In this way, an optimal spatial filter vi was estimated 

for each channel Ci, yielding an m electrode by k filter matrix V. 

 Next, we constructed a test dataset Btst (m electrodes by n trials) containing data 

from all trials not included in the training data set and estimated trial-by-trial channel 

responses Ctst (k channels by n trials): 

𝐶𝑡𝑠𝑡 = 𝑉𝑇𝐵𝑡𝑠𝑡 

Trial-wise channel response estimates were interpolated to 360°, circularly shifted to a 

common center (0°, by convention), and averaged, yielding a single reconstruction per 

participant, time point, cue condition (i.e., informative vs. uninformative) and task (i.e., 

pro vs. anti-cue). Condition-wise channel response functions were averaged, converted 

to polar form, and projected onto a vector with angle 0°: 



 

𝑟 =  |𝑧| cos(arg(𝑧)), 𝑧 = 𝑐𝑒2𝑖𝜌 

Where c is a vector of estimate channel responses and ρ is a vector of angles at which 

the channels peak. To ensure internal reliability, this entire analysis was repeated 100 

times, and unique (randomly chosen) subsets of trials were used to define the training 

and test data sets during each iteration. The results were then averaged across 

permutations to obtain a single reconstruction strength estimate for each participant, 

task condition, and timepoint.   

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

General. All statistical analyses were performed in MATLAB using custom software. 

Behavioral data were analyzed using repeated-measures parametric statistics (t-tests, 

ANOVA) with an a priori threshold of p = 0.05. EEG data were analyzed using 

nonparametric randomization tests with cluster-based corrections for autocorrelation in 

the EEG signal with an a priori threshold of p = 0.05. Where appropriate, test statistics 

(i.e., a t-score or F-ratio), p-values, and effect sizes are reported in the main text. 

Additional information on statistical quantification for behavioral and EEG data can be 

found in specific subsections below. Unless otherwise stated, n (and degrees of 

freedom) correspond to the number of participants in the analysis, i.e., sample size.  

Statistical Power. Before commencing data collection we determined that a sample of 

40 volunteers would be sufficient to examine effects of interest. This estimate was 

based on sample sizes and effect sizes reported in prior studies that used similar 

experimental and analytic approaches22,26,33. 

Statistical Comparisons – Behavioral Data. Participants’ behavioral data (i.e., absolute 

average recall error and average response time; Figure 1B-E) were analyzed using 



 

standard repeated-measures parametric statistics (e.g., t-test, ANOVA); for these 

comparisons we report test statistics, p-values, and effect size estimates. For each test, 

we verified that critical assumptions (i.e., normality, equal variances) were met through 

visual inspection of the data.  

Statistical Comparisons – N2pc, Decoding Performance, and Inverted Encoding Model. 

The decoding analysis and inverted encoding model we used assume chance-level 

performance of 0. Likewise, direct comparisons of decoding performance or 

reconstruction strength across conditions (e.g., pro-cue vs. anti-cue) assume null 

statistics of 0. Thus, we evaluated task-relevant and task-irrelevant decoding 

performance by generating null distributions of decoding performance (or differences in 

decoding performance across conditions) by randomly inverting the sign of each 

participant’s data with 50% probability and averaging the data across participants. This 

procedure was repeated 10,000 times, yielding a 10,000-element null distribution for 

each time point (note that, under the central limit theorem, this distribution is guaranteed 

to be approximately normally distributed with a mean of 0). Finally, we implemented a 

cluster-based permutation test47 with cluster-forming and cluster-size thresholds of p < 

0.05 to correct for multiple comparisons across time points.  
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