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Abstract

Evolving behavioral goals require the existence of selection mechanisms that
prioritize task-relevant working memory (WM) content for action. Selecting an item
stored in WM is known to blunt and/or reverse information loss in stimulus-specific
representations of that item reconstructed from human brain activity, but extant studies
have focused on all-or-none circumstances that allow or disallow an agent to select one
of several items stored in WM. Conversely, behavioral studies suggest that humans can
flexibly assign different levels of priority to different items stored in WM, but how doing
so influences neural representations of WM content is unclear. One possibility is that
assigning different levels of priority to items in WM influences the quality of those
representations, resulting in more robust neural representations of high- vs. low-priority
WM content. A second — and non-exclusive — possibility is that asymmetries in
behavioral priority influence how rapidly neural representations of high- vs. low-priority
WM content can be selected and reported. We tested these possibilities in two
experiments by decoding high- and low-priority WM content from EEG recordings
obtained while human volunteers performed a retrospectively cued WM task.
Probabilistic changes in the behavioral relevance of a remembered item had no effect
on our ability to decode it from EEG signals; instead, these changes influenced the
latency at which above-chance decoding performance was reached. Thus, our results
indicate that probabilistic changes in the behavioral relevance of WM content influence

the ease with which memories can be selected independently of their strength.
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Highlights

We decoded high- and low-priority working memory representations from EEG
recordings obtained while human volunteers performed a retrospectively cued WM task.
Probabilistic changes in the behavioral relevance of a remembered item had no effect on
our ability to decode it from EEG signals; instead, these changes influenced the latency
at which above-chance decoding performance was reached.

The results indicate that probabilistic changes in the behavioral relevance of WM content
influence the ease with which memories can be accessed and independently of memory

strength.



1. Introduction

Flexible behaviors require sensory inputs to be compared with internal
representations of goal states. Many of these comparisons take place in working
memory (WM), a capacity- and duration-limited system that forms a temporal bridge
between fleeting sensory phenomena and possible actions (van Ede & Nobre, 2022).
Changing environmental circumstances and evolving behavioral goals necessitate the
existence of internal selection mechanisms that prioritize task-relevant WM contents for
action, especially when an agent must select from among multiple prospective actions
or execute a series of actions in sequence (e.g., Cisek & Kalaska, 2010; Cisek, 2019).
For example, making your favorite cup of coffee involves performing a series of actions
in a specific order, and only when certain external conditions — e.g., the water in the
kettle has begun to boil — are met.

The neural consequences of assigning priority to specific WM content can be
studied by measuring brain activity linked with WM storage while participants perform a
retrospectively cued memory task (Griffin & Nobre, 2003; Lewis-Peacock et al., 2012;
Ester et al., 2018; Panichello & Buschman, 2021). In a typical retrocue experiment, an
agent remembers an array of items over a brief delay and uses this information to
perform a memory-guided behavior. During storage, an informative cue instructs the
observer which remembered item(s) are most likely to be required for action at the end
of the trial. The typical finding is that an informative retrocue improves memory
performance relative to an uninformative cue or no-cue condition (see Souza &
Oberauer, 2016, and Myers et al., 2017, for recent comprehensive reviews). Moreover,

improvements in memory performance are typically accompanied by improvements in



the quality of stimulus-specific WM representations reconstructed from human brain
activity, with informative retrocues arresting or even reversing information loss that
accumulates during WM storage in the absence of a cue (Sprague et al., 2014; Sprague
et al., 2016; Ester et al., 2018; Nouri & Ester, 2020).

With notable exceptions (e.g., Berryhill et al., 2012; Shimi et al., 2014; Gunseli et
al., 2015; Gunseli et al., 2019) most retrocue studies have used perfectly reliable cues.
That is, when an informative retrocue appears, it indicates which of a set of
remembered items will be later probed with perfect accuracy. Living organisms,
however, exist in dynamic natural environments where the future can take on several
possibilities. Thus, the likelihood that that any one piece of information stored in WM will
become behaviorally relevant is best understood as a matter of probability. Behavioral
studies suggest that retrocue benefits on WM performance are probabilistic and scale
with cue reliability; thus, human observers can flexibly assign different levels of
behavioral priority to different items stored in memory. However, less is known about
how graded changes in behavioral relevance influence neural representations of WM
content. One possibility is that probabilistic changes in behavioral relevance could
modulate memory strength, for example by facilitating the allocation of attentional gain
to neural populations encoding high- vs. low-priority WM content (e.g., Bays & Taylor,
2017). Conversely, a second — and non-exclusive — possibility is that probabilistic
changes in behavioral relevance could influence modulate how easily memories can be
selected for behavioral read-out (e.g., e.g., Souza et al., 2016). A critical test of these
alternatives would offer new insights into how internal selective attention is used to

flexibly prioritize task-relevant WM content. Here, we provide this test.



In two experiments, we recorded EEG while human volunteers performed a
retrospectively cued spatial WM task. Across experimental blocks, we varied retrocue
reliability between 100% (i.e., perfectly predictive) or 75% and quantified how this
manipulation influenced our ability to decode remembered information from scalp EEG
measurements. Cue reliability had no influence on maximum decoding performance in
either experiment; instead, it had a large effect on the latency at which above-chance
decoding performance was reached. Thus, we show that probabilistic changes in
behavioral priority affect the accessibility but not the quality of stimulus-specific WM

representations.



2. Methods

2.1. Ethics Statement.

All procedures described in this study were approved by the Florida Atlantic University
institutional review board and comply with standards set by the Declaration of Helsinki.
2.2. Data Availability Statement.

Stimulus presentation software and analytic software needed to generate each figure

are freely available at https://osf.io/gtd5f/. Preprocessed data files for both experiments

have been archived in Brain Imaging Data Structure (BIDS) format (Pernet et al., 2019)
and archived on OpenNeuro. Data from Experiment 1 can be downloaded at

https://openneuro.org/datasets/ds004521, while data from Experiment 2 can be

downloaded at https://openneuro.org/datasets/ds004520. Researchers interested in

obtaining the raw data files may do so by e-mailing the corresponding author.

2.3. Participants.

A total of 71 human volunteers (both sexes) were enrolled in this study. 36 participants
completed Experiment 1 and 35 participants completed Experiment 2. Sample sizes in
each experiment are commensurate — if not slightly larger — than prior work using
similar experimental and analytic approaches (e.g., Wolff et al., 2017; Ester et al., 2018;
Ester & Nouri, 2020). Participants were recruited from the Florida Atlantic University
community and completed a single 2.5-hour testing session in exchange for monetary
remuneration ($15/h in amazon.com gift cards). All participants self-reported normal or
corrected-to-normal visual acuity and color vision. All study procedures were approved
by the local institutional review board, and all participants gave both written and oral

informed consent prior to enrolling in the study. Two participants in Experiment 1 and
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two participants in Experiment 2 voluntarily withdrew from the study prior to completing
both cue conditions (i.e., 100% valid vs. 75% valid); data from these participants were
excluded from final analyses. Thus, the data reported here reflect 34 participants in
Experiment 1 and 33 participants in Experiment 2.

2.4. Testing Environment.

Participants were seated in a dimly-lit and acoustically shielded recording chamber for
the duration of the experiment. Stimuli were generated in MATLAB and rendered on a
17” Dell CRT monitor cycling at 85 Hz (1024 x 768 pixel resolution) via PsychToolbox-3
software extensions (Kleiner et al., 2007). Participants were seated approximately 65
cm from the display (head position was unconstrained). To combat fatigue and/or
boredom, participants were offered short breaks at the end of each experimental block.
2.5. Experiment 1 - Spatial Postcue Task.

A task schematic is shown in Figure 1. Each trial began with an encoding display lasting
500 ms. The encoding display contained two colored circles (blue and red; subtending
1.75 degrees visual angle [DVA] from a viewing distance of 65 cm) rendered at of eight
polar locations (22.5° to 337.5° in 45° increments) along the perimeter of an imaginary
circle (radius 7.5 DVA) centered on a circular fixation point (subtending 0.25 DVA)
rendered in the middle of the display. The locations of the two discs were
counterbalanced across each task (i.e., 100% valid vs. 75% valid), though not
necessarily within an experimental block. Participants were instructed to maintain
fixation and refrain from blinking for the duration of each trial. The encoding display was
followed by a 2.0 sec postcue display. During informative cue trials the fixation point

changed colors from black to either blue or red (i.e., matching the color of a



remembered disc), while during neutral trials the fixation point changed colors from
black to purple (e.g., the “average” of blue and red). The postcue display was followed
by a probe display containing a blue or red fixation point, mouse cursor, and question
mark symbol (the initial position of the mouse cursor was always on top of the fixation
point). Participants were required to click on the location of the disc matching the color
of the fixation point. Participants were instructed to prioritize accuracy over speed, but a
2.5 sec response deadline was imposed. The trial ended when participants clicked on a
location or the response deadline elapsed. Sequential trials were separated by a 1.5-2.5
sec blank period (randomly and independently selected from a uniform distribution after
each trial). An equal number of informative and neutral cue trials was presented during
each experimental block.

Each participant completed 12-18 blocks of 56 trials in this task (i.e., 6-9 blocks
in the 100% cue condition followed by 6-9 blocks in the 75% cue condition; all
participants completed an equal number of blocks in each cue condition, and the modal
number of blocks completed for each participant across both tasks was 16). An equal
number of informative and neutral cue trials were presented within each experimental
block, thus, participants completed 168-252 neutral trials and 168-252 informative cue
trials in the 100% cue condition, and 168-252 neutral trials, 126-189 valid trials, and 42-
63 invalid trials in the 75% cue condition. Since many of our analyses focused on EEG
activity during the delay period of the task, and since participants had no way of
knowing whether an informative cue trial would be valid or invalid in the 75% cue
condition until the presentation of the probe display, we included all informative cue

trials from the 75% cue condition in our analyses. This step also ensures that



differences in EEG decoding performance or decoding latency (see 2.11-2.15 below)
cannot be attributed to differences in trial counts.

We had no a priori reason to expect that task order would influence participants’
performance, thus all participants completed the 6-9 blocks of the 100% cue reliability
condition followed by 6-9 blocks in the 75% cue reliability condition (the exact number of
blocks depended on the time available for testing). During valid cue trials the fixation
point remained the same color during the postcue and probe displays; during invalid cue
trials the fixation point changed from one color during the postcue display (e.g., blue) to
a different color during the probe display (e.g., red). In both cases, participants were
instructed to click on the location of the disc matching the color of the fixation point
during the probe period.

2.6. Experiment 2 — Spatial Retrocue Task.

Experiment 2 was identical to Experiment 1, with the exception that the postcue was
replaced by a retrocue presented midway through the delay period (i.e., 1.0 sec after
termination of the sample display). We use the term postcue in Experiment 1 and
retrocue in Experiment 2 to emphasize that in the former experiment participants can
consult an iconic representation of disc positions while in the latter experiment they
cannot (Souza & Oberauer, 2016). Like Experiment 1, all participants completed the 6-9
blocks of 56 trials in the 100% cue reliability condition followed by 6-9 blocks of 56 trials
in the 75% cue reliability condition (the exact number of blocks depended on the time
available for testing).

2.7. Postcues vs. Retrocues.



Following earlier work (e.g., Souza & Oberauer, 2016) we use the term postcue to
describe circumstances where the timing of an informative cue could allow an observer
to consult an iconic representation of to-be-remembered information and the term
retrocue to describe circumstances where the timing of an informative cue precludes
access to iconic representations. On the assumption that iconic representations tend to
persist for ~300-700 ms (e.g., Sperling, 1960), we refer to informative cues in
Experiment 1 — which appear immediately after termination of the sample display — as
postcues and informative cues in Experiment 2 — which appear 1.0 sec after termination
of the sample display — as retrocues. Some evidence suggests that postcues and
retrocues have complementary effects on the quality of WM content. For example, in an
earlier study we tracked the quality of position-specific WM representations
reconstructed from human EEG activity and found that an informative postcue blunted
gradual declines in the quality of WM content while an informative retrocue partially
reversed earlier declines in the quality of WM content (Ester et al., 2018). Experiments 1
and 2 in the current manuscript were designed to replicate these findings while also
exploring the effects of behavioral priority on the overall quality of position-specific WM
representations.

2.8. EEG Acquisition and Preprocessing.

Continuous EEG was recorded from 63 uniformly distributed scalp electrodes using a
BrainProducts “actiCHamp” system. The horizontal and vertical electrooculogram
(EOG) were recorded from bipolar electrode montages placed over the left and right
canthi and above and below the right eye, respectively. Online EEG and EOG

recordings were referenced to a 64" electrode placed over the right mastoid and



digitized at 1 kHz. All data were later re-referenced to the algebraic mean of the left-
and right mastoids, with 10-20 site TP9 serving as the left mastoid reference. Data
preprocessing was carried out via EEGLAB software extensions (Delorme & Makeig,
2004) and custom software. Data preprocessing steps included the following, in order:
(1) resampling (from 1 kHz to 250 Hz), (2) bandpass filtering (1 to 50 Hz; zero-phase
forward- and reverse finite impulse response filters as implemented by EEGLAB), (3)
epoching from -1.0 to +5.0 relative to the start of each trial, (4) identification, removal,
and interpolation of noisy electrodes via EEGLAB software extensions, and (5)
identification and removal of oculomotor artifacts via independent components analysis
via EEGLAB (using the infomax algorithm developed by Bell & Sejnowski, 1995).
Artifactual components were identified and removed from the data via crowd-based
Drichlet allocation (EEGLAB’s “ICLabel” function; Pion-Tonachini, Makeig, & Kreutz-
Delgado, 2017). Rejected components were visually inspected for accuracy prior to
removal. We removed an average (1 S.E.M.) of 6.97 + 0.72 components per
participant in Experiment 1 and 6.90 + 0.70 components per participant in Experiment 2.

After preprocessing, our analyses focused exclusively on the following 10-20
occipitoparietal electrodes: P7, P5, P3, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO2, PO4,
PO8, 01, O2, Oz. These electrodes were selected based on prior research from our
laboratory (e.g., Ester et al., 2018; Nouri & Ester, 2020) and elsewhere (e.g., Bae &
Luck, 2017). However, we also computed decoding performance using other electrode
clusters (see section 2.12 below).

2.9. Data Cleanup.



Prior to analyzing participants’ behavioral or EEG data, we excluded all trials where the
participant responded with a latency of < 0.3 sec (we attributed these trials to accidental
mouse clicks following the onset of the probe display rather than a deliberate recall of a
specific stimulus position) or failed to respond within the 2.5 sec deadline. This resulted
in an average loss (1 S.E.M.) of 0.429% £ 0.09% trials in Experiment 1 and 0.841% =
0.22% of trials in Experiment 2.

2.10. Quantifying participants’ memory performance.

We quantified participants’ memory performance as average absolute recall error (i.e.,
the difference in polar angle reported by the participant and the polar angle of the
probed disc) and average response times. Comparisons of memory performance across
task conditions were conducted via repeated-measures t-tests and Bayesian pairwise t-
tests with uninformative priors. Bayesian analyses were performed using an open-
source MATLAB toolbox (available for download at
https://github.com/klabhub/bayesFactor). The result of a Bayesian t-test is a Bayes
Factor, typically denoted BF10. For example, a Bayes Factor of 3.0 provides 3-to-1 odds
favoring the alternative over the null hypothesis. For null effects (estimated via
frequentist statistics) we computed an inverse Bayes Factor denoted BFo1 that

describes the strength of evidence favoring the null over the alternative hypothesis, i.e.,

1
BF;o’

BFy, =
Importantly, average absolute recall errors can be influenced by the precision of
participants’ memory as well as random guessing or accidental reports of a non-probed

object (“swap errors”). To quantify the frequencies of random guessing and swap errors,

we pooled participants’ recall data across all cue conditions (e.g., valid vs. invalid; 100%



vs. 75%) and used a hierarchical Bayesian approach to fit participants’ data with a
parametric model assuming that on a given trial (a) participants report the position of the
probed disc with precision k, (b) participants report the position of the non-probed disc
with precision k, or (c) participants randomly guess (Bays et al., 2009). Fitting was
performed via the MemFit MATLAB toolbox (Suchow et al., 2013). Maximum a
posteriori estimates obtained from model fitting indicated that swap errors and random
guesses together accounted for less than 0.70% of all trials in Experiments 1 and 2
(approximately 7-8 trials out of a modal number of 896 trials per participant across all
experimental conditions). Thus, average absolute recall error estimates were driven
primarily by the precision of participants’ memory and not guesses or incorrect
responses.

2.11. Decoding Spatial Positions from Posterior Alpha-Band EEG Signals.

Location decoding was based on the multivariate distance between EEG activity
patterns associated with memory for specific positions. This approach is an extension of
earlier parametric decoding methods (Wolff et al., 2017) designed for use in circular
feature spaces. Following earlier work (e.g., Ester et al., 2018), we extracted
spatiotemporal patterns of alpha-band activity (8-13 Hz) from 17 occipitoparietal
electrode sites (see 2.8). The raw timeseries at each electrode was bandpass filtered
from 8-13 Hz (zero-phase forward-and-reverse filters as implemented by EEGLAB
software), yielding a real-valued signal f(t). The analytic representation of f(t) was

obtained via Hilbert transformation:

z(t) = f(t) +if ()



where i is the imaginary operator and if(t) = A(t)e'*®®. Alpha power was computed by
extracting and squaring the instantaneous amplitude A(t) of the analytic signal z(t).
Location decoding performance was computed separately for each disc (i.e., blue
vs. red), trial type (i.e., informative vs. neutral) and each task (i.e., 100% vs. 75%) on a
timepoint-by-timepoint basis. In the first phase of the analysis, we sorted data from each
condition into 5 unique training and test data sets using stratified sampling while
ensuring that each training set was balanced across remembered positions (i.e., we
ensured that each training data set contained an equal number of observations where
the location of the remembered stimulus was at 22.5°, 67.5°, etc.). We circularly shifted
the data in each training and test data set to a common center (0°, by convention) and
computed trial-averaged patterns of responses associated with memory for each disc
position in each training data set. Next, we computed the Mahalanobis distance
between trial-wise activation patterns in each test data set with position-specific
activation patterns in the corresponding test data set, yielding a location-wise set of
distance estimates. If scalp activation patterns contain information about remembered
positions then distance estimates should be smallest when comparing patterns
associated with memory for identical positions in the training and test data set and
largest when comparing opposite positions (i.e., those +180° apart), yielding an inverted
gaussian-shaped function. Trial-wise distance functions were averaged, sign-reversed,
and convolved with a cosine function to yield a single decoding estimate for condition
and time point with chance decoding yielding a value of 0. Decoding results from each

training- and test-data set pair were averaged (thus ensuring the internal reliability of



our approach), yielding a single decoding estimate per participant, timepoint, and task
condition. Visual inspection of participant- and condition-level decoding performance
revealed the presence of some outliers (see Figure S2). Removing these outliers based
on visual inspection of the data (N = 4 and N = 1 removed participants for Experiments
1 and 2, respectively) had no qualitative effect on any of the findings reported here.
2.12. Searchlight Decoding of Stimulus Positions.

Although our primary decoding analyses focused on occipitoparietal electrode sites, for
completeness we also implemented a searchlight-based decoding analysis (e.g., Ester
et al. 2015; 2016; van Ede et al., 2019) where position decoding performance was
computed from activity in the theta (3-7 Hz), alpha (8-13 Hz), and beta (15-25 Hz)
frequency bands measured across local clusters of electrodes distributed throughout
the scalp. Specifically, we defined a spherical neighborhood (radius 5 cm?3) around each
scalp electrode and computed position decoding performance from all neighborhoods
containing a minimum of 3 electrodes. This allowed us to generate topological maps of
decoding performance across different frequency bands (see Figure S1). Decoding was
performed using data averaged over windows spanning -40 ms to 40 ms at successive
400 ms windows (e.g., 400 ms, 800 ms, etc.).

2.13. Quantifying Peak Decoding Accuracy.

To determine whether changes in cue reliability influenced the strength of location-
specific representations stored in WM, we calculated peak decoding accuracy during
100% reliable and 75% reliable blocks. Peak decoding estimates were then compared
with a bootstrap test. We first selected (with replacement) and averaged time courses of

decoding activity for the probed location from N of N participants. Next, we calculated



the time of maximum decoding performance following the onset of the probe display
(i.e., 2.5 sec after the start of each trial). We defined a 100 ms window around peak
decoding performance (i.e., 50 ms before peak decoding performance to 50 ms after it)
and used this window to compute temporally averaged peak decoding performance in
the same sample of N participants. These calculations were performed separately for
data from 100% valid and 75% valid blocks and permuted 10,000 times, with a new
subsample of participants chosen on every permutation. Finally, we computed the
average and 95% confidence interval of peak decoding performance during 100% valid
and 75% valid blocks. Statistical significance was assessed by counting the proportion
of permutations where peak decoding performance was larger during 100% valid blocks
compared to 75% valid blocks. Comparisons that did not reach statistical significance
via frequentist analysis were further probed with Bayesian pairwise t-tests to quantify
evidence favoring the null hypothesis (see 2.10).

2.14. Quantifying Peak Decoding Latency.

To determine whether changes in cue reliability influenced the timing of access to WM
content, we compared the latencies of above-chance decoding performance during the
cue and probe displays. During neutral trials, we computed a cross-correlation between
average probe-matching decoding performance from 0.0 to 1.5 sec after the onset of
the probe display. Specifically, we calculated the normalized correlation coefficient
between the time course of decoding performance during the 100% and 75% blocks
while temporally shifting the latter relative to the former by -1.0 to +1.0 secin 4 ms
increments. If time courses of decoding performance during 100% blocks and 75%

blocks are identical, then the maximum cross-correlation should be observed at a



temporal lag of 0.0 sec. Conversely, if the time-course of above-chance decoding
performance during 100% valid blocks precedes the time-course of above-chance
decoding performance during 75% valid blocks, then the maximum cross-correlation
should occur at a negative temporal lag (i.e., when the time course of decoding
performance during 75% blocks is shifted earlier in time). We compared the observed
cross correlation function with a null distribution of cross-correlation function estimated
by shuffling participant level condition labels (i.e., 100% valid vs. 75% valid) 10,000
times. An analogous approach was used to quantify temporal lags in decoding
performance during informative cue trials (whether valid or invalid), with the exception
that we used a window spanning -0.5 to 1.5 sec relative to the onset of the probe
display. A broader window was deliberately selected as we anticipated cue-matching
decoding performance to exceed chance levels during the post- or retrocue period when
an informative cue was present.

Note that we used different analysis windows for neutral and informative cue
trials (0.0-1.5 sec and -0.5 to 1.5 sec around the onset of the probe display,
respectively). This was partially by necessity: during neutral trials the cue instructing
participants which disc to report was coincident with the onset of the probe display while
during informative trials informative cues were presented 0.0 (Experiment 1) or 1.0
(Experiment 2) sec following the offset of the sample display. However, all effects
reported here generalized when we used equivalent analysis windows across
informative and neutral cue trials (i.e., either -0.5 to 1.5 sec or 0.0 to 1.5 sec around the
onset of the probe display) when computing either peak decoding latency or peak

decoding accuracy (see 2.13).



2.15. Statistical Comparisons — EEG Data.

The decoding analysis we used assumes chance-level decoding performance of 0.
Likewise, direct comparisons of decoding performance or reconstruction strength across
conditions (e.g., 100% vs. 75%) assume a null statistic of 0. Thus, we evaluated
decoding performance by generating null distributions of decoding performance (or
differences in decoding performance across conditions) by randomly inverting the sign
of each participant’s data with 50% probability and averaging the data across
participants. This procedure was repeated 10,000 times, yielding a 10,000-element null
distribution for each time point. Finally, we implemented a cluster-based permutation
test (Maris & Oostenveld, 2007; Wolff et al. 2017) with cluster-forming and cluster-size
thresholds of p < 0.05 to correct for multiple comparisons across time points.
Differences in peak decoding accuracy were quantified with bootstrap tests (see 2.14),
and differences in decoding latency were quantified via randomization tests (see 2.13).
2.16. Ruling Out Contributions from Eye Movements

Although we used independent components analysis to remove oculomotor and muscle
artifacts from the data (see 2.8), subtle biases in eye position may nevertheless
contribute to position decoding performance. To investigate this possibility, we
attempted to decode the position of the cue-matching disc from patterns of alpha-band
activity recorded at frontal scalp sites (Fp1, Fp2, AF7, AF3, AFz, AF4, and AF8) where
these signals should be largest. For convenience, we restricted our analyses to

informative cue trials.



3. Results

3.1. Experiment 1 - Postcues

3.1.1. Behavioral Performance.
Participants’ memory performance was quantified via average absolute recall error (i.e.,
the angular difference between the polar location of the probed stimulus and the polar
location reported by the participant) and average response latency. During 100%
blocks, participants received a neutral or perfectly informative postcue. Conversely,
during 75% blocks participants received a neutral, valid, or invalid postcue. Thus, we
initially analyzed data from 100% and 75% blocks separately. Participants’ recall errors
during 100% blocks and 75% blocks are summarized in Figure 2A. During 100% blocks,
participants recall errors were significantly lower during valid relative to neutral trials
[t(33) =4.178, p < 0.0002, d = 0.474; BF10 = 133.64, indicating nearly 134-to-1 odds
favoring the alternative hypothesis]. During 75% blocks, a repeated-measures analysis
of variance (ANOVA) with cue type (neutral, valid, or invalid) as the sole factor revealed
a main effect, [F(2,66) = 4.456, p = 0.015, n? = 0.119], with post-hoc analyses revealing
lower errors during valid vs. neutral cue trials [t(33) = 3.00, p = 0.015, BF10=7.716] but
no difference in recall errors across neutral and invalid cue trials [t(33) = 0.166, p =
0.869, BFo1=5.374] nor across valid and invalid cue trials [t(33) = 2.192, p = 0.053,
BFo1=0.667]. Finally, a direct comparison of recall errors during 100% valid and 75%
valid cue trials revealed significantly lower errors during the former (M = 7.778°)
compared to the latter (M = 8.518°) [t(33) = 3.517, p = 0.001, BF10= 25.461].

A complementary analysis of participants’ response times (Figure 2C) revealed a

facilitatory effect of valid vs. neutral cues during 100% blocks [t(33) = 14.540, p < 1e-16,



d = 0.543; BF10=9.07e+12], and a repeated measures ANOVA revealed a significant
effect of cue type during 75% blocks [F(2,66) = 46.749, p < 1e-14; n? = 0.586], with
post-hoc analyses revealing faster responses during valid vs. neutral cue trials [t(33) =
8.394, p < 1e-04, BF10= 1.071e+07] and during valid vs. invalid cue trials [t(33) = 7.670,
p < 1e-04, BF10= 1.626e+06], but not during neutral vs. invalid cue trials [t(33) = 2.005,
p = 0.0563, BFo1=0.921]. A direct comparison between 100% valid and 75% valid cue
trials revealed no difference in response times, 1(33) = 0.579, p = 0.567, BFo1 = 4.658].
Participants completed the 100% and 75% cue conditions in order (see 2.5).
Thus, performance in the 75% condition could be negatively affected by fatigue or
positively affected by practice effects. To facilitate performance comparisons across
different levels of cue reliability (i.e., 100% vs. 75%) while also accounting for order
effects we calculated within-condition cue effects by (a) computing differences in recall
error during 100% valid and 100% neutral trials and (b) computing differences in recall
error between 75% valid, 75% neutral, and 75% invalid trials (Figure 2B). Direct
comparisons of cue effects during 100% valid and 75% valid blocks indicated that valid
cues lowered recall errors by equal amounts during 100% and 75% valid blocks [M = -
0.699° and -0.706°, respectively, t(33) = 0.038, p = 0.969; BFo1 = 5.44, i.e., 5-to-1
evidence favoring the null hypothesis]. Conversely, we found no evidence for an invalid
cue effect during 75% valid blocks; if anything, recall errors were marginally lower
during invalid relative to neutral trials [M = 9.183° vs. 9.225°; t(33) = 0.166, p = 0.869,
BFo1 = 5.37]. Analyses of cue effects on response times (Figure 2D) revealed a
significantly larger effect of valid cues during 100% vs. 75% blocks [M = 0.136 vs. 0.078

sec, respectively; t(33) = 5.884, p < 1.35e-6, d = 1.088; BF10 = 1.31e+04]. Once again,



we found no evidence for an invalid cue cost during 75% valid blocks (M = 19 ms; t(33)
= 2.006, p = 0.0532, d = 0.078; BFo1 = 0.92). Thus, valid cues presented during 100%
and 75% blocks led to equal improvements in recall performance and parametric
improvements in response times compared to neutral cues. Conversely, we found no
evidence indicating that invalid cues impaired either recall error or response times.
3.1.2. EEG Decoding Performance.

We used a decoding analysis to quantify how changes in behavioral priority influenced
location-specific representations stored in WM. During neutral trials, an uninformative
postcue instructed participants to remember the positions of both discs presented in the
sample display; 2.0 sec later a probe display prompted participants to report the location
of one disc via a mouse click. Based on earlier findings (e.g., Ester et al., 2018; Nouri &
Ester, 2019; Ester & Nouri, 2022) we expected equivalent decoding performance for
each disc during the sample and postcue displays, but significantly higher decoding
performance for the probed relative to unprobed disc during the probe display.
Moreover, we expected equivalent performance across different levels of cue reliability,
i.e., 100% vs. 75% blocks. These predictions were borne out in analyses of location
decoding performance during neutral trials (Figure 3). Decoding performance for the
disc that was ultimately probed and the disc that was not ultimately probed increased
rapidly during the sample display but fell back to chance levels during the ensuring
postcue display. Decoding performance for the probe-matching disc — but not the probe-
nonmatching disc — increased rapidly following onset of the probe display before
returning to chance levels shortly after participants responded. Nearly identical patterns

of decoding performance were observed during 100% valid blocks (Figure 3A) and 75%



valid blocks (Figure 3B), These findings were expected and are a straightforward
replication of earlier results (Ester et al., 2018; Nouri & Ester, 2020).

Next, we examined location decoding performance during informative cue trials
(Figure 4). During 100% reliable blocks, valid cues informed participants which disc
would be probed with complete certainty. This condition is a direct replication of our
earlier work (Ester et al., 2018) in which we found that valid postcues slowed or
presented the gradual return to chance-level decoding performance seen during neutral
trials. The current data replicate this finding (Figure 4A): during 100% valid trials
decoding performance for the cue-matching disc remained at above-chance levels
during the postcue display and into the probe display, while decoding performance for
the cue-nonmatching disc quickly returned to chance levels following the appearance of
the postcue. A qualitatively different pattern emerged during 75% reliable blocks (Figure
4B). Since invalid cues had no deleterious effect on participants’ recall errors (Figure
2B) or response times (Figure 2D), our analyses of decoding performance pooled
across valid and invalid cue trials. Decoding performance for the cue-matching and cue-
nonmatching discs returned to chance levels during postcue period, while decoding
performance for the probe-matching disc (whether a valid or invalid trial) increased
rapidly after the appearance of the probe display and remained at above-chance levels
until after participants responded. Direct comparisons of cue- and probe-matching
decoding performance during 100% and 75% blocks (Figure 4C) revealed that
maximum decoding performance was reached significantly earlier during 100% blocks
than 75% blocks (Figure 4D), even though averaged peak decoding performance was

identical across these conditions (Figure 4E; BFo1 = 4.04). Thus, the results of this



analysis support the hypothesis that changes in behavioral priority affect the
accessibility but not the strength of WM representations.
3.1.3 EEG Searchlight Decoding.

In the preceding section, position decoding performance was computed from
spatiotemporal patterns of alpha-band (8-13 Hz) activity recorded over occipitoparietal
electrode sites (see 2.8). For completeness, we used a searchlight-based decoding
approach (see 2.12) to calculate position decoding performance from scalp activity
measured at local electrode clusters distributed across the scalp. We also investigated
whether activity bordering the alpha-band (e.g., theta, 3-7 Hz; and beta, 15-25 Hz) also
supported robust position decoding. Results from this analysis reveal that above-chance
position decoding performance could only be computed from posterior alpha-band
activity (i.e., replicating the results summarized in Figures 3 and 4; Figure S1A). These
results complement existing findings suggesting that internal and external spatial
attention are uniquely indexed by posterior alpha-band oscillations (e.g., Poch et al.,
2014; Foster et al., 2016; Samaha et al., 2016; van Ede, 2018). Qualitatively similar
results were obtained when we applied the same analysis to Experiment 2 (Figure
S1B).

3.1.4 Oculomotor Contributions to Position Decoding.

Although we used independent components analysis (ICA) to remove oculomotor
and muscular artifacts from the EEG data (see 2.8), small differences in eye position
missed by this analysis could contribute to above-chance decoding performance of
stimulus position. We investigated this possibility by attempting to decode cue-matching

stimulus position from alpha-band signals recorded over frontal electrode sites where



the effects of oculomotor signals should be largest. This analysis failed to reveal above-
chance decoding performance during 100% trials or 75% trials (Figure S3A), suggesting
that small changes in eye position did not significantly contribute to observed position
decoding performance. Qualitatively similar findings were also obtained when we

applied this analysis to data from Experiment 2 (Figure S3B).

3.2. Experiment 2 — Retrocues

Experiment 2 was identical to Experiment 1, with the exception that informative
postcues presented immediately after termination of the sample display were replaced
by informative retrocues presented midway through the blank interval separating the
sample and probe displays (see 2.6).

3.2.1. Behavioral Performance.

Behavioral data from Experiment 2 were analyzed identically to Experiment 1.
Participants’ recall errors during 100% blocks and 75% blocks are summarized in Figure
5A. Recall errors were significantly lower during valid compared to neutral trials during
100% blocks [t(32) = 2.637, p = 0.013, d = 0.179; BF10 = 3.51]. A repeated-measures
analysis of variance (ANOVA) applied to recall errors during 75% blocks revealed a
main effect of cue type (i.e., valid, invalid, neutral), [F(2,64) = 8.066, p = 0.0008, n? =
0.201], with post-hoc analyses revealing lower recall errors during valid vs. neutral cue
trials [t(32) = 2.861, p = 0.011, BF10 = 5.653], during valid vs. invalid cue trials [t(32) =
3.373, p = 0.006, BF10 = 17.872], and during neutral vs. invalid cue trials [t(32) = 2.067,
p = 0.048, BF10 = 1.201]. Finally, a direct comparison of recall errors during 100% valid

vs. 75% valid trials revealed a modest effect, with recall errors marginally lower during



100% valid trials (M = 8.514°) vs. 75% valid trials (M = 9.018°) [t(32) = 2.098, p = 0.044,
BF10 = 1.281]. Cue effects - defined as the difference in recall errors between valid vs.
neutral cues during 100% blocks and the difference in recall errors between valid and
invalid vs. neutral cues during 75% blocks - are summarized in Figure 5B. Valid cues
lowered recall errors by an equal amount during 100% and 75% valid blocks [M =
0.335° and 0.814°, respectively, t1(32) = 1.918, p = 0.064; BFo1 = 1.06], while invalid
cues during 75% blocks incurred a significant performance cost compared to neutral
trials [M = 1.086°, t(32) = 2.061, p = 0.048, d = 0.027; BF 10 = 1.20].

A complementary analysis of participants’ response times revealed a facilitatory
effect of valid vs. neutral cues during 100% blocks [M = 0.997 vs. 1.220 sec, 1(32) =
21.83, p = 8.66e-21, d = 0.804; BF10 = 4.52e+17]. A repeated measures ANOVA
applied to recall errors during 75% blocks revealed a significant effect of cue type (i.e.,
valid, invalid, neutral) [F(2,66) = 85.433, p < 1e-31; n? = 0.728; Figure 5C], with post-hoc
analyses revealing faster response times during valid vs. neutral trials [t(32) = 11.001, p
< 1e-04, BF10 = 4.007e+09] and during valid vs. invalid trials [t(32) = 10.881, p < 1e-04,
BF10 = 3.075+e09], but not during invalid vs. neutral trials [t(32) = 1.702, p = 0.098, BFo1
=1.702]. A direct comparison of recall errors during 100% valid and 75% valid cue trials
revealed no differences in response times [t(32) = 0.768, p = 0.448, BFo1 = 4.089].
Analyses of cue effects on response times revealed a greater benefit from valid cues
during 100% vs. 75% blocks significantly larger effect of valid cues during 100% vs.
75% blocks [M = 224 vs. 148 ms, respectively; t(32) = 6.383, p = 3.597e-7, d = 1.093;
BF10 = 4.52e+04; Figure 5D]. Invalid cues during 75% blocks did not incur a response

time cost compared to neutral trials (M = 20.5 ms; t(32) = 1.702, p = 0.098, d = 0.084;



BFo1 = 1.47). Thus, valid retrocues improved participants’ recall errors and response
times, and the magnitude of the response time benefit scaled with cue reliability (i.e.,
100% vs. 75%).

3.2.2. EEG Decoding Performance.

EEG data from Experiment 2 were analyzed in an identical way to those from
Experiment 1. As in Experiment 1, we observed no effect of cue reliability on peak
decoding accuracy or latency during neutral trials (Figure 6). Analyses of data from
informative cue trials (Figure 7) were largely consistent with the findings of Experiment
1. During 100% blocks, decoding performance for the cue matching and non-matching
discs increased rapidly following onset of the encoding display but returned to chance
levels by the onset of the retrocue display 1.5 seconds later. Following the appearance
of the retrocue, decoding performance for the cue-matching disc “recovered” to above-
chance levels, replicating earlier findings showing cue-driven recovery in the quality of
location-specific mnemonic representations (Sprague et al., 2016; Ester et al., 2018).
Decoding performance for the cue-matching item remained at above-chance levels
through the probe display and until shortly after participants’ responses. Conversely,
decoding performance for the cue-nonmatching item remained at chance levels
throughout the retrocue and probe displays.

An analysis of decoding performance during 75% blocks revealed a different
pattern of findings (Figure 7B). Here, cue-matching and cue-nonmatching decoding
performance remained indistinguishable from chance during the retrocue display, with
cue/probe-matching decoding performance reaching above-chance levels only after the

appearance of the probe display (as in Experiment 1, since invalid cues had no effect



on participants’ recall errors or response times, we pooled data from valid and invalid
trials to create the data shown in Figure 7B). Time courses of cue- and probe-matching
decoding performance during 100% and 75% blocks are shown in Figure 7C.
Comparisons of peak decoding latency (Figure 7D) revealed that maximum decoding
performance was reached significantly earlier during 100% blocks relative to 75%
blocks, although average peak decoding performance did not differ across these
conditions (BFot1 = 5.36). Thus, the findings of Experiment 2 are qualitatively identical to
Experiment 1: changes in the priority of location-specific WM representations influenced
the latency but not the magnitude of peak decoding performance.

3.2.3 EEG Searchlight Decoding.

Like Experiment 1, we used a searchlight-based decoding analysis (see 2.712) to probe
whether remembered positions could be decoded from different electrode clusters and
activity in different frequency bands (e.g., theta vs. alpha vs. beta). The results of this
analysis (Figure S1B) are remarkably consistent with those from Experiment 1: only

posterior alpha-band activity enabled robust decoding of stimulus position across time.

3.3. Memory Prioritization or Response Preparation?

An alternative account of our findings holds that the differences in the onset timing of
cue-locked above-chance decoding performance reflect response preparation rather
than memory prioritization. We think this unlikely for several reasons. First, we note that
the exact same physiological signal — total alpha power — was used for decoding
throughout each trial, and that robust above-chance decoding performance was also

observed during memory encoding (e.g., during the sample display and the early portion



of the delay period) when participants had no way of knowing what item would be
probed for report. Thus, an account of our data based on response preparation must
argue either that (a) above-chance decoding during memory encoding also acts as a
form of response preparation (e.g., by encoding multiple different response affordances;
Cisek & Kalaska, 2010), or that (b) above-chance decoding during the sample and
probe periods — which, again, were computed using the exact same physiological signal
— reflect WM and response preparation mechanisms, respectively. Either way, this
argument would conflict with recent papers dissociating occipitoparietal alpha-band
signals like those used for decoding in this study from response preparation and
execution (e.g., van Ede et al., 2019; Boettcher et al., 2021; Ester & Weese, 2022). For
example, van Ede et al. (2019) tracked occipitoparietal alpha power and frontocentral
mu-alpha and mu-beta power while independently manipulating physical location (e.g.,
left vs. right visual field) of a to-be-recalled stimulus and the motor affordance (e.g., left
vs. right hand) needed to perform recall. These authors found that occipitoparietal alpha
power exclusively tracked the spatial position of the remembered item while
frontocentral mu-alpha and -beta power exclusively tracked response demands. Thus,
we think it unlikely that our findings can be explained by mechanisms of response
preparation or execution.

Nevertheless, to obtain more traction on this issue, we examined the time-course
of an EEG signal known to track response preparation and execution: lateralized
frontocentral mu-alpha (~8-13 Hz) and mu-beta (~15-30 Hz) power. In this first phase of
this analysis, we extracted total mu-alpha and -beta power from electrode site pairs

C1/2 and C3/4. Our testing setup requiring all participants to respond with their right



hand, so we computed mu-alpha and -beta lateralization by subtracting average power
estimates from electrode sites C2 and C4 (i.e., ipsilateral to the response hand) from
averaged power estimates from electrode sites C1 and C3 (i.e., contralateral to the
response hand). We divided this difference by the sum of mu-alpha and -beta power
over contralateral and ipsilateral sites to obtain a normalized (percentage) estimate of
lateralization. During Experiment 1, mu-alpha and -beta lateralization steadily
decreased (i.e., lower power over contralateral vs. ipsilateral electrode sites) over the
interval separating the postcue and response displays, reaching a maximum shortly
before the participant’s response (Figure 8A-C). Importantly, neither the timing nor the
peak magnitude of lateralization varied across cue conditions, i.e., 100% vs. 75%. A
similar pattern was observed during Experiment 2 (Figure 8D-F), with lateralization
decreasing during the interval separating the retrocue and probe displays. To further
test the response selection hypothesis, we also examined whether it was possible to
decode the location of the cued/probed stimulus using frontocentral mu-alpha and mu-
beta power. This analysis failed for both cue conditions (i.e., 100% vs. 75% valid) in
Experiment 1 (Figure 9A-B) and Experiment 2 (Figure 9C-D). Thus, we argue that any
observed differences in the timing or magnitude of location decoding performance are
unlikely to reflect response preparation or execution. We describe the results of this

analysis in the revised manuscript.

3.4. Control Analyses.

The data reported here suggest that access to cue-matching information is delayed

when cue reliability is reduced (e.g., Figures 4D and 7D). One ftrivial possibility is that



these findings are idiosyncratic to the parametric decoding approach we used or the
alpha-band signals on which decoding performance was based. We tested these
possibilities in complementary analyses. First, we decoded the locations of the probed
and non-probed discs from occipitoparietal alpha patterns using support vector
machines (“one-versus-all” classification). Since stimuli could appear in eight possible
locations, chance performance is 12.5%. The results of these analyses are summarized
for Experiments 1 and 2 in Figure 10. Overall decoding performance computed using
this approach was noisy (indeed, it was necessary to smooth the decoding time-series
in the Figure with a 200 ms sliding window to identify clear trends in the data).
Nevertheless, the overall pattern of findings obtained using this method was
qualitatively similar to that obtained using our parametric decoding approach (e.g.,
compare the results in Figure 10 with those in Figures 4 and 7). Critically, we again
found no evidence for greater maximum decoding during the 100% vs. 75% cue
reliability condition (Figures 10E and 10J; BFo1 = 2.71 and 3.98, respectively).

Next, we asked whether position decoding performance was contingent on the
use of spatiotemporal alpha power. On the one hand, some studies (e.g., Bae & Luck,
2018) have reported that alpha-band EEG signals uniquely index the positions of
remembered stimuli while event-related potentials (ERPs) uniquely index the feature
content of those memories. On the other hand, more recent studies (e.g., Barbosa et
al., 2021) have shown that remembered orientations can be robustly decoded from
patterns of occipitoparietal alpha-band activity. Since our experimental task required
only memory for location, this may be a distinction without a difference. Nevertheless,

we thought it prudent to establish that our core findings (Figures 4 and 7) generalize



across different signal types. To this end, we used our parametric distance-based
approach to decode the positions of the probed and non-probed positions during each
experimental task and experiment using broadband EEG signals (i.e., voltages from 1-
50 Hz). The results of these analyses were remarkably similar to the results obtained
from decoding alpha-band signals for both Experiment 1 (Figure 11A-E; compare with
Figure 4) and Experiment 2 (Figure 11F-J; compare with Figure 7). Thus, we are
confident that our core findings (Figures 4 and 7) cannot be explained by idiosyncrasies
unique to the alpha-band signal.

Next, we considered the possibility that our experimental manipulation of
attentional priority was insufficient to detect changes in maximum decoding accuracy.
Perhaps differences would be evident if we tested a larger range of cue reliabilities, e.g.,
comparing decoding performance across 100% vs. 60% reliability conditions or across
90% and 60% reliability conditions. Here, we note that our experiments also contained a
50% reliability condition: neutral trials. Thus, we performed direct comparisons between
maximum decoding performance during informative cue and neutral cue trials from the
100% and 75% reliability tasks in each experiment. The results of these comparisons
are summarized in Figure 12. Possible differences in maximum decoding performance
were quantified via two-way repeated-measures analysis of variance (data from
Experiment 1 and Experiment 2 were analyzed separately). When applied to data from
Experiment 1, this analysis revealed neither a main effect of cue reliability (i.e., 100%
vs. 75%; F(1,33) = 0.674, p = 0.417), a main effect of cue type (i.e., informative vs.
neutral; F(1,33) = 2.933, p = 0.096), nor an interaction between these factors (F(1,33) =

1.159, p = 0.289). When applied to data from Experiment 2, this analysis also revealed



neither a main effect of cue reliability [F(1,32) = 2.208, p = 0.147], a main effect of cue
type [F(1,32) = 0.004, p = 0.948], nor an interaction between these factors [F(1,32) =
0.022, p = 0.882). Thus, no significant differences in maximum decoding accuracy were
observed across a 50% reduction in cue reliability, supporting the view that the absence
of task-level differences on this factor were not caused by a lack of sensitivity.

An alternative explanation for our findings holds that participants were simply
more cautious or took more time to respond when cue reliability was fixed at 75%
compared to when it was fixed at 100%, and that delays in the onset of above-chance
decoding during the cue and probe displays reflect this caution rather than a delay in
accessing the relevant WM representation. Analyses of participants response times do
not support this possibility. Specifically, we reasoned that if participants were simply
more cautious or slower in responding during 75% blocks, then their average response
times during 75% valid trials should be significantly greater than during 100% valid
trials. In fact, response times following valid cues were identical during 100% and 75%
blocks in both Experiment 1 (M = 1058 vs. 1068 ms, respectively; t(33) = 0.579, p =
0.567; green bars in Figure 2C) and Experiment 2 (M = 996 vs. 1013 ms, respectively;
t(32) = 0.768, p = 0.448; green bars in Figure 5C). We note, however, that cue effects
(that is, the difference in response times across condition-specific neutral and valid
trials, e.g., neural 100% vs. valid 100% trials) revealed significantly smaller response
time benefits during the 100% vs. the 75% task. Thus, the findings reported here cannot
be explained by general response caution or slowing during 75% vs. 100% blocks.

In both Experiments, cue-matching decoding performance during informative

trials of 75% blocks fell to chance levels by the end of the memory period (Figure 4B



and Figure 7B). This pattern is reminiscent of findings seen during neutral trials (Figures
3 and 6), raising the possibility that participants simply ignored the cues during 75%
blocks. Once again, participants’ memory performance argues against this claim: recall
errors and response times were significantly lower during valid vs. neutral trials during
75% blocks (Figure 2C and 5C). Nevertheless, to investigate the possibility that
participants simply ignored informative cues during 75% valid blocks we undertook
analyses comparing the time-courses of cue-matching decoding performance during
75% valid trials and 75% neutral trials. If participants indeed ignored informative cues,
then the time-courses of decoding performance should be identical during informative
and neutral trials. Conversely, if participants used informative cues to prioritize relevant
information stored in memory, then maximum decoding performance should be reached
earlier during informative vs. neutral trials. We tested these possibilities using the same
cross-correlation analyses used to quantify differences in maximum decoding latency
during 100% and 75% blocks, and the results are summarized in Figure 13. Maximum
decoding latency was reached significantly earlier during informative vs. neutral trials of
75% blocks of Experiment 2 (Figures 13C and 13D), but not Experiment 1 (Figure 13A
and 13B). These findings, coupled with analyses of participants’ memory performance,
provide converging evidence against the possibility that delays in achieving maximum
decoding performance during 75% relative to 100% blocks (Figure 4D and 7D) were

caused by participants simply ignoring informative cues during 75% blocks.

3.5. Alternative Explanations.

Neither Experiment 1 nor Experiment 2 revealed differences in peak decoding

performance across cue reliability (i.e., 100% vs. 75%). However, since peak decoding



performance was computed using data from the probe period (i.e., peak decoding
accuracy was estimated within a window spanning -0.5 to 1.5 sec following the onset of
the probe display during informative cue trials and 0.0 to 1.5 sec following the onset of
the probe display during uninformative cue trials; see 2.13), one possibility is that cue-
level differences in peak decoding performance were obscured by eye movements or
visual signals during the probe period. We address these alternative explanations in
turn:

3.5.1. Oculomotor Signals do not Contribute to Position Decoding Performance

Although we used ICA to remove oculomotor and muscle artifacts from the EEG
data (see 2.8), smaller eye movements or microsaccades missed by this procedure may
have nevertheless contributed to decoding performance. To investigate this possibility
we attempted to decode stimulus position from alpha-band signals recorded over frontal
electrode sites Fp1, Fp2, AF7, AF3, AFz, AF4, and AF8, where the effects of
oculomotor artifacts should be greatest. This analysis failed to reveal above-chance
decoding performance during any epoch of any cue condition (Figure S3), suggesting
that oculomotor artifacts were not a major contributor to decoding performance.

3.5.2. Visual Signals Evoked by the Probe Display are Unlikely to Contribute to Position
Decoding Performance.

A second possibility is that cue-level differences in peak decoding performance
were obscured by bottom-up visual input during the probe display. Specifically, perhaps
visual signals during the probe period — for example, those evoked by the participants’
moving the mouse cursor to the to-be-recalled disc position - obscured differences in

peak decoding performance across the 100% and 75% cue conditions. While we cannot



completely exclude this possibility two factors argue against it. First, dynamic visual
stimulation tends to produce broadband changes in EEG spectra (e.g., Herrmann et al.,
2014). Thus, if above-chance position decoding performance during the probe period
was instead driven (or modulated) by visual inputs, one would expect to observe above-
chance position decoding across multiple frequency bands. However, as our spatial and
spectral searchlight analyses reveal, only posterior alpha-band activity supported robust
above-chance decoding of stimulus position (Figure S1). A second, albeit weaker,
argument against the possibility that visual signals evoked by the probe display
occluded cue-level differences in peak decoding accuracy comes from an analysis of
when peak decoding performance was reached relative to participants’ responses.
Consider Experiment 2. Here, peak decoding performance during 100% and 75%
informative cue trials occurred at a median of 364 and 564 ms after probe onset,
respectively. However, response times in the same conditions averaged 996 and 1014
ms. Thus, there is a 630 and 450 ms lag between peak decoding performance and
participants’ responses. In our view, it stands to reason that some — and perhaps — most
bottom-up visual input related to movement of the mouse cursor occurs during this lag
period, though we concede that we lack precise mouse telemetry data that would allow
us to empirically back this assertion. Thus, while we think it unlikely for the reasons
discussed above, we cannot fully exclude the possibility that visually-evoked signals
during the probe display obscured cue-level differences in peak decoding accuracy

during the probe display.



4. Discussion

Efficient behavioral selection requires rapid comparisons of sensory inputs with
internal representations of motor affordances and goal states, and many of these
comparisons take place in working memory (WM). Rapidly changing behavioral goals
frequently require agents to assign (and re-assign) different levels of behavioral priority
to items stored in WM. Prior studies utilizing retrospective cues suggest that humans
can flexibly assign WM content with different levels of priority; for example,
improvements in WM performance following an informative vs. uninformative
retrospective cue scale positively with informative cue reliability (e.g., Berryhill et al.,
2012; Shimi et al., 2014; Gunseli et al., 2015; Gunseli et al., 2019). Importantly, graded
improvements in WM performance following a probabilistic retrocue could reflect (a)
graded changes in the strength or quality of population-level, stimulus-specific neural
patterns thought to mediate WM storage, (b) graded changes in how easily stimulus-
specific neural patterns associated with high- (vs. low) priority items are accessed to
guide response selection and motor planning, or (c) some mixture or these options.
Here, we leveraged the high temporal resolution of human EEG to adjudicate between
these options. Specifically, we examined how graded changes in behavioral priority
influenced our ability to decode a set of positions stored in WM. We reasoned that if
priority-driven changes in memory performance are driven by changes in the of high-
and low-priority WM content, then population-level representations of high-priority items
should be easier to decode than low-priority items. Conversely, if priority-driven
changes in memory performance are driven by changes in how rapidly WM content can

be access for report, then it should be possible to decode the identity of high-priority



items at an earlier time than low-priority items. Our data support the latter view.
Specifically, we found no evidence suggesting that changes in behavioral priority — as
manipulated via post- or retrocue reliability — influenced asymptotic decoding
performance for cue-matching memoranda. Instead, the latency of asymptotic decoding
performance was significantly earlier for high-priority vs. lower-priority items (Figures 4
and 7). Importantly, this effect could not be explained by mechanisms of response
preparation or other nuisance factors (Figures 8-13). Thus, we conclude that changes in
behavioral priority influence the accessibility but not the quality of stimulus-specific
patterns of neural activity representing memoranda.

4.1. Analyses of Position Decoding During the Delay and Probe Periods.

There are also good reasons to include data from the probe period in our
analyses. On the one hand, our analyses focused on the probe period during neutral
trials out of necessity: probe onset is the first time that participants receive a cue
instructing them which disc to report. On the other hand, our analyses focused on the
memory and probe period during informative cue trials based on known properties of
postcues and retrocues. Studies that have varied the stimulus onset asynchrony (SOA)
between a memory retrocue and a memory probe find benefits only when the SOA is
greater than around 400 ms (Souza et al., 2014); thus, it takes participants about 400
ms to process and utilize information from a retrocue. Since the cue-to-probe SOA in
Experiment 2 was fixed at 1000 ms, and since there might be trial- or subject-level
variance in cue processing (the 400 ms figure quoted above is an average across
participants and trials) it seemed reasonable to extend the analysis window into the

probe period.



While it is possible that things like eye movements, motor responses, and
bottom-up visual inputs could contribute to decoding performance during the probe
period, we do not think that these factors can explain our findings. First, we used ICA to
exclude oculomotor and muscular artifacts from our data and we could not decode
stimulus position from alpha-band activity recorded over frontal electrode sites — where
signals related to eye movements should be largest — from the residual (i.e., artifact-
free) data (3.5.1; Figure S3). Second, we could not decode stimulus position from EEG
signals known to track motor preparation and execution (i.e., lateralized central
alpha/beta power), suggesting that these processes were not major contributors to
decoding performance (Figure 9). Third, at least two lines of evidence argue against the
possibility that decoding performance was driven by bottom-up visual input (see 3.5.2).
Thus, we are confident that decoding performance during the probe period reflects
mnemonic rather than nuisance factors.

4.2. Postcues vs. Retrocues

The current study utilized a mixture of postcues (Experiment 1) and retrocues
(Experiment 2). Following earlier work (e.g., Souza & Oberauer, 2016) we use the term
postcue to refer to any event informing which of a set of remembered item(s) will be
tested that occurs immediately after encoding (including instances where an agent can
apply this information to stimulus representations in sensory memory) and retrocue to
refer to any informative event occurring after memory consolidation is complete. Prior
evidence suggests that post- and retrocues engage separate but complementary
mechanisms that promote storage of high-quality neural representations of memoranda.

In an earlier study (Ester et al., 2018) we used an inverted encoding model to



reconstruct location-specific representations of items stored in WM while presenting
participants with neutral or perfectly informative postcues and retrocues. During neutral
trials, the quality of reconstructed location-specific representations gradually decreased
during WM storage. A perfectly valid postcue presented immediately after encoding
eliminated this decrease, while a perfectly valid retrocue presented midway through
storage partially reversed it. Data from 100% blocks in this study replicate these findings
(e.g., Figure 4A; Figure 7A) while also establishing that assigning lower priority to items
stored in memory reduces these effects (Figure 4B; Figure 7B).

In the absence of a perfectly informative postcue (i.e., Figure 4A), our ability to
decode the location of the cue-matching or nonmatching disc fell to chance levels
during the delay period (e.g., Figures 3A-C; Figure 4B; Figure 6; Figure 7B). This does
not imply a loss of memory: participants still performed quite well during neutral trials
despite no evidence for above-chance decoding during the delay period (Figures 3-4
and 6-7). One possibility is that the amount of location-specific information carried by
induced alpha patterns that were used for decoding in this study gradually decreases
over time. This, however, is difficult to reconcile with observations of robust above-
chance location decoding during recall, as the probe display contained no additional
information about the location of the to-be-reported disc (i.e., the color of the fixation
point instructed participants which disc to recall, but gave no additional information
about its position at the beginning of the trial). To account for this pattern, we speculate
that during WM storage position-specific memory representations are gradually
consolidated into a new format not indexed by alpha-band activity storage (for example,

in an “activity-silent” synaptic network or in long-term memory; Rose et al., 2016;



Sprague et al., 2016; Wolff et al., 2017; Masse, 2019; Barbosa et al., 2021; Beukers et
al., 2021), and later retrieved from this format during memory recall.

Throughout this manuscript, we have interpreted cue-locked changes in
decoding performance as reflecting the assignment of different levels of priority to
remembered positions. The term “priority” has been used to describe different
phenomena in the WM literature (e.g., Riddle et al., 2020; Yu et al., 2020; Wan et al.,
2022) and in visual neuroscience writ large (Rust & Cohen, 2022). Here, we use the
term in the broadest sense to refer to cue-determined changes in the behavioral
relevance of stimuli. This could occur, for example, when participants switch between
sequentially reporting two items stored in WM (e.g., van Loon et al., 2018; Wan et al.,
2022), when participants switch between preparing to report different items in WM
following a retrospective cue (e.g., Lewis-Peacock et al., 2013; Rose et al., 2016), or
when participants drop a subset of items stored in WM to focus on a different set of
behaviorally relevant items stored in WM (Ester et al., 2018; Riddle et al., 2020; this
study). In each of these examples, the sine qua non is an event signaling a change in
the behavioral relevance of WM content. Importantly, what we term priority may reflect
the operation of different mechanisms in different contexts. For example, in the case of
sequentially reporting two items stored in WM, priority may refer to movement of
memorized information from a latent to an active state. Likewise, in the case of
switching between multiple potentially relevant WM items, priority may refer to the
(internal) selection of likely task-relevant WM content. Research emphasizing
transformations in the neural representations of WM content following changes in

behavioral relevance (e.g., Panichello & Buschman, 2021; Bocincova et al., 2022; Li &



Curtis, 2022) may help extirpate the use of colloquial terms like “selection”, “retrieval”,
and “priority”.
4.3. Other Considerations

The present study examined the effects of retrocues on position-specific
representations of memoranda under a low memory load (a maximum of two items).
Retrocue benefits are known to scale with memory load (i.e., larger cue-driven
improvements in memory performance at higher memory loads), but an additional
possibility is that different retrocue mechanisms are engaged at different memory loads.
For example, some evidence suggests that retrocue benefits result from dropping or
eliminating non-cued items from memory, freeing up additional processing capacity and
minimizing inter-item interference (e.g., Williams et al., 2013; Gunseli et al., 2015).
Since inter-item interference naturally scales with memory load, mechanisms that
prompt the removal of cue-nonmatching information in memory may be more likely to
operate at higher vs. lower memory loads. Conversely, other mechanisms (e.g.,
protection from time-based decay, prioritization for comparison or recall, or attentional
refreshing; Souza & Oberauer, 2016) may be responsible for retrocue benefits at
smaller memory loads. This possibility awaits empirical scrutiny.

We have framed our discussion in terms of how changes in behavioral priority
affect items that are likely to be probed for report, but some consideration should also
be given to the effects of priority on items that are unlikely to be probed for report. For
example, at least one previous study has reported that changes in behavioral priority
affect the likelihood that cue-nonmatching items are attended and/or stored in WM

(Gunseli et al., 2019). The authors of this study used lateralized measures of covert



spatial attention (alpha-band suppression; Klimesch, 2012) and WM storage
(contralateral delay activity; Vogel & Machizawa, 2004) to show that cue-nonmatching
items were less likely to be attended or retained in WM when cue reliability was low vs.
high. Conversely, we found little evidence to suggest that changes in behavioral priority
influenced neural patterns associated with memory for cue-nonmatching positions.
However, a major difference between the current study and prior work is that we
included 100% reliable cue blocks, which allowed participants to simply drop or forget
cue-nonmatching information if they chose to do so. Thus, it is difficult to directly
compare cue-nonmatching decoding performance across different levels of cue
reliability (i.e., 100% vs. 75%). Additional traction on this issue could possibly be gained
by comparing decoding performance for non-cued items during 75% blocks with
decoding performance for both remembered items during neutral trials (akin to a 50%
valid condition). However, we failed to observe above-chance decoding for the cue-
nonmatching position during the delay period of 75% blocks or above-chance decoding
for either remembered position during the delay period of neutral trials (e.g., Figures 3,
4B; 6, and 7B). Thus, additional research using a more fine-grained manipulation of cue
reliability (e.g., 60%, 75%, 90%) will be needed to elucidate how changes in behavioral
priority influence neural representations of cue-nonmatching items.
4.4. Conclusions

WM can be conceptualized as a temporal bridge between fleeting sensory
phenomena and possible actions. Recent theoretical conceptualizations of WM have
begun to emphasize the action-oriented nature of this system (e.g., Olivers &

Roelfsema, 2020; Heuer et al., 2020; van Ede & Nobre, 2022), and recent empirical



findings suggest that behavioral (Ohl & Rolfs, 2020), circuit-level (Pho et al., 2018; Tang
et al., 2020; Panichello & Buschman, 2021), and systems-level (Chatham et al., 2014;
van Ede et al., 2019; Boettcher et al., 2021; Galero-Salas et al., 2021; Rac-
Lubashevsky & Frank, 2021; Henderson et al., 2022) mechanisms of WM storage and
action planning are tightly interwoven. In dynamic contexts where the future can take on
several possibilities, the (potential) behavioral relevance of information stored in WM is
often unknown. Thus, the likelihood that that any one piece of information stored in WM
will become behaviorally relevant is best understood as a matter of probability rather
than a certainty. From this perspective, a central purpose of WM may be to prepare for
multiple potential futures, while mechanisms of internal attention act to select and
prioritize relevant WM content as our predictions change or our uncertainties are
reduced. The findings reported here are consistent with this view and further suggest
that human observers can assign prospectively task-relevant representations different

levels of priority that influences how quickly they can be accessed and acted upon.
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Figure Captions

Figure 1. Spatial Memory Task. (A) Participants encoded the positions of two discs into
memory. During Experiment 1 (top row) a postcue presented immediately after the sample
display instructed participants to remember one disc (informative trials) or both discs (neutral
trials) over a blank delay. During Experiment 2 (bottom row) a retrocue presented midway
through the blank delay instructed participants to remember one disc or both discs. In both
Experiments, participants recalled the position of the disc matching the color of the fixation
point. (B) Discs always appeared in two of eight possible positions (upper right), with disc
positions counterbalanced across the experiment. During the first half of experimental blocks
postcue reliability was fixed at 100%; during the second half of experimental blocks reliability
was lowered to 75%. Note: the displays are not drawn to scale. See 2.5-2.6 for stimulus
geometry and additional details.

Figure 2. Memory Performance in Experiment 1. (A) Average absolute recall error as a
function of cue type (valid, neutral, invalid) and cue reliability (100%, 75%). (B) Cue effects,
defined as the difference between valid/invalid and neutral trials. (C) Average response times
and (D) cue effects. Error bars depict the 95% confidence interval of the mean.

Figure 3. Decoding Performance During Neutral Trials. (A) Average decoding performance
for the probe-matching and probe-nonmatching discs during neutral trials of 100% reliable
blocks. (B) Identical to panel A, but for neutral trials of 75% blocks. (C) Overlay of probe-
matching decoding performance from 100% reliable and 75% blocks (i.e., blue traces in panels
A and B). The grey shaded area in each plot marks the sample display; vertical lines at time 0.0,
0.5, and 2.5 mark the onset of the sample, postcue, and response displays, respectively. Blue
and red vertical lines mark the average response time across participants. Horizontal bars at the
top of each plot mark epochs where decoding performance was significantly > 0 or epochs
where decoding performance was significantly greater for the probe-matching vs. non-matching
stimulus. (D) Cross-correlation between the task-relevant decoding time-series during the 100%
and 75% conditions. The blue curve depicts the observed cross-correlation function while the
black curve and grey shaded area depict a range of expected cross-correlation values simulated
under the null hypothesis. (E) Peak decoding performance for the cue-matching disc during the
100% and 75% conditions. Error bars depict the 95% confidence interval of the mean.

Figure 4. Decoding Performance During Informative Cue Trials. Conventions are identical
to Figure 3. See also Figures S1 and S2.

Figure 5. Behavioral Performance in Experiment 2. (A) Average absolute recall error as a
function of cue type (valid, neutral, invalid) and cue reliability (100%, 75%). (B) Cue effects,
defined as the difference between valid/invalid and neutral trials. (C) Average response times
and (D) cue effects. Error bars depict the 95% confidence interval of the mean.

Figure 6. Decoding Performance During Neutral Trials of Experiment 2. \/ertical lines at
times 0.0, 1.5, and 2.5 sec mark the onset of sample, retrocue, and probe displays, respectively.
All other conventions are identical to Figure 4.

Figure 7. Decoding Performance During Informative Trials of Experiment 2. Conventions
are identical to Figure 6. See also Figures S1 and S2.

Figure 8. Frontocentral Signals Linked with Response Selection. To test whether our core
findings (e.g., Figs 4 and 7) could be explained by response selection, we tracked changes in
lateralized frontocentral signals known to track response selection and execution. Analyses of



lateralized frequency-specific activity revealed greater reductions in mu-alpha and beta-power
over left — i.e., contralateral to the response hand — vs. right frontocentral electrode sites during
the 100% task (A) and the 75% task (B). Next, we extracted, averaged, and plotted lateralized
mu-alpha power (8-13 Hz) as a function of task (i.e., 100% vs. 75%, C). Although we observed
robust reductions in mu-alpha power during both tasks, neither the timing or the peak magnitude
of these effects differed across tasks. That we observed no differences in the timing or
magnitude of an EEG signal known to track response preparation and execution suggests that
the timing differences we observed in position decoding (e.g., Figs 4 and 7) cannot be explained
by these factors. (D-F) Identical to panels A-C, but showing data from Experiment 2.

Figure 9. Position Decoding Performance Computed from Frontocentral Mu-alpha Power.
As a further test of the response selection hypothesis, we attempted to decode the location of
the probed (blue and red lines) and non-probed stimulus positions from frontocentral mu-alpha
signals recording during informative cue trials in Experiment 1 (A-B) and Experiment 2 (C-D).
This analysis did not support robust above-chance decoding of either the probed or non-probed
position during either cue condition (i.e., 100% vs. 76%) or Experiment, providing further
evidence against a response selection interpretation of our findings.

Figure 10. Decoding Performance Computed Using Support Vector Classification. (A-E)
Data from Experiment 1; conventions are identical to Figure 4. (F-J) Data from Experiment 2;
conventions are identical to Figure 7.

Figure 11. Decoding Performance Computed from Broadband EEG Activity. (A-E) Data
from Experiment 1; conventions are identical to Figure 4. (F-J) Data from Experiment 2;
conventions are identical to Figure 7.

Figure 12. Comparison of Maximum Decoding Performance During Informative and
Neutral Cue Trials During Experiment 1 (A) and Experiment 2 (B). Error bars depict the 95%
confidence interval of the mean.

Figure 13. Comparisons of Above-Chance Decoding Latency on Informative and Neutral
Trials during 75% blocks. (A) Overlay of above-chance decoding performance during
informative and neutral cue trials of 75% blocks in Experiment 1. (B) Cross-correlation between
probe-locked decoding performance during informative and neutral cue trials of 75% blocks in
Experiment 1. Panels (C) and (D) are identical to panels (A) and (B) but use data from
Experiment 2. Conventions are identical to those used in Figures 3-4 and 6-7.



