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Abstract 
 
 Evolving behavioral goals require the existence of selection mechanisms that 

prioritize task-relevant working memory (WM) content for action. Selecting an item 

stored in WM is known to blunt and/or reverse information loss in stimulus-specific 

representations of that item reconstructed from human brain activity, but extant studies 

have focused on all-or-none circumstances that allow or disallow an agent to select one 

of several items stored in WM. Conversely, behavioral studies suggest that humans can 

flexibly assign different levels of priority to different items stored in WM, but how doing 

so influences neural representations of WM content is unclear. One possibility is that 

assigning different levels of priority to items in WM influences the quality of those 

representations, resulting in more robust neural representations of high- vs. low-priority 

WM content. A second – and non-exclusive – possibility is that asymmetries in 

behavioral priority influence how rapidly neural representations of high- vs. low-priority 

WM content can be selected and reported. We tested these possibilities in two 

experiments by decoding high- and low-priority WM content from EEG recordings 

obtained while human volunteers performed a retrospectively cued WM task. 

Probabilistic changes in the behavioral relevance of a remembered item had no effect 

on our ability to decode it from EEG signals; instead, these changes influenced the 

latency at which above-chance decoding performance was reached. Thus, our results 

indicate that probabilistic changes in the behavioral relevance of WM content influence 

the ease with which memories can be selected independently of their strength.   
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Highlights 
 

• We decoded high- and low-priority working memory representations from EEG 

recordings obtained while human volunteers performed a retrospectively cued WM task. 

• Probabilistic changes in the behavioral relevance of a remembered item had no effect on 

our ability to decode it from EEG signals; instead, these changes influenced the latency 

at which above-chance decoding performance was reached. 

• The results indicate that probabilistic changes in the behavioral relevance of WM content 

influence the ease with which memories can be accessed and independently of memory  

strength.   

 
 

 

   

  



1. Introduction 

Flexible behaviors require sensory inputs to be compared with internal 

representations of goal states. Many of these comparisons take place in working 

memory (WM), a capacity- and duration-limited system that forms a temporal bridge 

between fleeting sensory phenomena and possible actions (van Ede & Nobre, 2022). 

Changing environmental circumstances and evolving behavioral goals necessitate the 

existence of internal selection mechanisms that prioritize task-relevant WM contents for 

action, especially when an agent must select from among multiple prospective actions 

or execute a series of actions in sequence (e.g., Cisek & Kalaska, 2010; Cisek, 2019). 

For example, making your favorite cup of coffee involves performing a series of actions 

in a specific order, and only when certain external conditions – e.g., the water in the 

kettle has begun to boil – are met. 

The neural consequences of assigning priority to specific WM content can be 

studied by measuring brain activity linked with WM storage while participants perform a 

retrospectively cued memory task (Griffin & Nobre, 2003; Lewis-Peacock et al., 2012; 

Ester et al., 2018; Panichello & Buschman, 2021). In a typical retrocue experiment, an 

agent remembers an array of items over a brief delay and uses this information to 

perform a memory-guided behavior. During storage, an informative cue instructs the 

observer which remembered item(s) are most likely to be required for action at the end 

of the trial. The typical finding is that an informative retrocue improves memory 

performance relative to an uninformative cue or no-cue condition (see Souza & 

Oberauer, 2016, and Myers et al., 2017, for recent comprehensive reviews). Moreover, 

improvements in memory performance are typically accompanied by improvements in 



the quality of stimulus-specific WM representations reconstructed from human brain 

activity, with informative retrocues arresting or even reversing information loss that 

accumulates during WM storage in the absence of a cue (Sprague et al., 2014; Sprague 

et al., 2016; Ester et al., 2018; Nouri & Ester, 2020).  

 With notable exceptions (e.g., Berryhill et al., 2012; Shimi et al., 2014; Günseli et 

al., 2015; Günseli et al., 2019) most retrocue studies have used perfectly reliable cues. 

That is, when an informative retrocue appears, it indicates which of a set of 

remembered items will be later probed with perfect accuracy. Living organisms, 

however, exist in dynamic natural environments where the future can take on several 

possibilities. Thus, the likelihood that that any one piece of information stored in WM will 

become behaviorally relevant is best understood as a matter of probability. Behavioral 

studies suggest that retrocue benefits on WM performance are probabilistic and scale 

with cue reliability; thus, human observers can flexibly assign different levels of 

behavioral priority to different items stored in memory. However, less is known about 

how graded changes in behavioral relevance influence neural representations of WM 

content. One possibility is that probabilistic changes in behavioral relevance could 

modulate memory strength, for example by facilitating the allocation of attentional gain 

to neural populations encoding high- vs. low-priority WM content (e.g., Bays & Taylor, 

2017). Conversely, a second – and non-exclusive – possibility is that probabilistic 

changes in behavioral relevance could influence modulate how easily memories can be 

selected for behavioral read-out (e.g., e.g., Souza et al., 2016). A critical test of these 

alternatives would offer new insights into how internal selective attention is used to 

flexibly prioritize task-relevant WM content. Here, we provide this test.  



 In two experiments, we recorded EEG while human volunteers performed a 

retrospectively cued spatial WM task. Across experimental blocks, we varied retrocue 

reliability between 100% (i.e., perfectly predictive) or 75% and quantified how this 

manipulation influenced our ability to decode remembered information from scalp EEG 

measurements. Cue reliability had no influence on maximum decoding performance in 

either experiment; instead, it had a large effect on the latency at which above-chance 

decoding performance was reached. Thus, we show that probabilistic changes in 

behavioral priority affect the accessibility but not the quality of stimulus-specific WM 

representations.  

  

  



2. Methods 

2.1. Ethics Statement.  

All procedures described in this study were approved by the Florida Atlantic University 

institutional review board and comply with standards set by the Declaration of Helsinki. 

2.2. Data Availability Statement. 

Stimulus presentation software and analytic software needed to generate each figure 

are freely available at https://osf.io/gtd5f/. Preprocessed data files for both experiments 

have been archived in Brain Imaging Data Structure (BIDS) format (Pernet et al., 2019) 

and archived on OpenNeuro. Data from Experiment 1 can be downloaded at 

https://openneuro.org/datasets/ds004521, while data from Experiment 2 can be 

downloaded at https://openneuro.org/datasets/ds004520. Researchers interested in 

obtaining the raw data files may do so by e-mailing the corresponding author.   

2.3. Participants.  

A total of 71 human volunteers (both sexes) were enrolled in this study. 36 participants 

completed Experiment 1 and 35 participants completed Experiment 2. Sample sizes in 

each experiment are commensurate – if not slightly larger – than prior work using 

similar experimental and analytic approaches (e.g., Wolff et al., 2017; Ester et al., 2018; 

Ester & Nouri, 2020). Participants were recruited from the Florida Atlantic University 

community and completed a single 2.5-hour testing session in exchange for monetary 

remuneration ($15/h in amazon.com gift cards). All participants self-reported normal or 

corrected-to-normal visual acuity and color vision. All study procedures were approved 

by the local institutional review board, and all participants gave both written and oral 

informed consent prior to enrolling in the study. Two participants in Experiment 1 and 

https://osf.io/gtd5f/
https://openneuro.org/datasets/ds00452
https://openneuro.org/datasets/ds004520


two participants in Experiment 2 voluntarily withdrew from the study prior to completing 

both cue conditions (i.e., 100% valid vs. 75% valid); data from these participants were 

excluded from final analyses. Thus, the data reported here reflect 34 participants in 

Experiment 1 and 33 participants in Experiment 2.  

2.4. Testing Environment.  

Participants were seated in a dimly-lit and acoustically shielded recording chamber for 

the duration of the experiment. Stimuli were generated in MATLAB and rendered on a 

17’’ Dell CRT monitor cycling at 85 Hz (1024 x 768 pixel resolution) via PsychToolbox-3 

software extensions (Kleiner et al., 2007). Participants were seated approximately 65 

cm from the display (head position was unconstrained). To combat fatigue and/or 

boredom, participants were offered short breaks at the end of each experimental block.  

2.5. Experiment 1 - Spatial Postcue Task.  

A task schematic is shown in Figure 1. Each trial began with an encoding display lasting 

500 ms. The encoding display contained two colored circles (blue and red; subtending 

1.75 degrees visual angle [DVA] from a viewing distance of 65 cm) rendered at of eight 

polar locations (22.5° to 337.5° in 45° increments) along the perimeter of an imaginary 

circle (radius 7.5 DVA) centered on a circular fixation point (subtending 0.25 DVA) 

rendered in the middle of the display. The locations of the two discs were 

counterbalanced across each task (i.e., 100% valid vs. 75% valid), though not 

necessarily within an experimental block. Participants were instructed to maintain 

fixation and refrain from blinking for the duration of each trial. The encoding display was 

followed by a 2.0 sec postcue display. During informative cue trials the fixation point 

changed colors from black to either blue or red (i.e., matching the color of a 



remembered disc), while during neutral trials the fixation point changed colors from 

black to purple (e.g., the “average” of blue and red). The postcue display was followed 

by a probe display containing a blue or red fixation point, mouse cursor, and question 

mark symbol (the initial position of the mouse cursor was always on top of the fixation 

point). Participants were required to click on the location of the disc matching the color 

of the fixation point. Participants were instructed to prioritize accuracy over speed, but a 

2.5 sec response deadline was imposed. The trial ended when participants clicked on a 

location or the response deadline elapsed. Sequential trials were separated by a 1.5-2.5 

sec blank period (randomly and independently selected from a uniform distribution after 

each trial). An equal number of informative and neutral cue trials was presented during 

each experimental block.  

Each participant completed 12-18 blocks of 56 trials in this task (i.e., 6-9 blocks 

in the 100% cue condition followed by 6-9 blocks in the 75% cue condition; all 

participants completed an equal number of blocks in each cue condition, and the modal 

number of blocks completed for each participant across both tasks was 16). An equal 

number of informative and neutral cue trials were presented within each experimental 

block, thus, participants completed 168-252 neutral trials and 168-252 informative cue 

trials in the 100% cue condition, and 168-252 neutral trials, 126-189 valid trials, and 42-

63 invalid trials in the 75% cue condition. Since many of our analyses focused on EEG 

activity during the delay period of the task, and since participants had no way of 

knowing whether an informative cue trial would be valid or invalid in the 75% cue 

condition until the presentation of the probe display, we included all informative cue 

trials from the 75% cue condition in our analyses. This step also ensures that 



differences in EEG decoding performance or decoding latency (see 2.11-2.15 below) 

cannot be attributed to differences in trial counts.  

We had no a priori reason to expect that task order would influence participants’ 

performance, thus all participants completed the 6-9 blocks of the 100% cue reliability 

condition followed by 6-9 blocks in the 75% cue reliability condition (the exact number of 

blocks depended on the time available for testing). During valid cue trials the fixation 

point remained the same color during the postcue and probe displays; during invalid cue 

trials the fixation point changed from one color during the postcue display (e.g., blue) to 

a different color during the probe display (e.g., red).  In both cases, participants were 

instructed to click on the location of the disc matching the color of the fixation point 

during the probe period.  

2.6. Experiment 2 – Spatial Retrocue Task.  

Experiment 2 was identical to Experiment 1, with the exception that the postcue was 

replaced by a retrocue presented midway through the delay period (i.e., 1.0 sec after 

termination of the sample display). We use the term postcue in Experiment 1 and 

retrocue in Experiment 2 to emphasize that in the former experiment participants can 

consult an iconic representation of disc positions while in the latter experiment they 

cannot (Souza & Oberauer, 2016). Like Experiment 1, all participants completed the 6-9 

blocks of 56 trials in the 100% cue reliability condition followed by 6-9 blocks of 56 trials 

in the 75% cue reliability condition (the exact number of blocks depended on the time 

available for testing). 

2.7. Postcues vs. Retrocues.  



Following earlier work (e.g., Souza & Oberauer, 2016) we use the term postcue to 

describe circumstances where the timing of an informative cue could allow an observer 

to consult an iconic representation of to-be-remembered information and the term 

retrocue to describe circumstances where the timing of an informative cue precludes 

access to iconic representations. On the assumption that iconic representations tend to 

persist for ~300-700 ms (e.g., Sperling, 1960), we refer to informative cues in 

Experiment 1 – which appear immediately after termination of the sample display – as 

postcues and informative cues in Experiment 2 – which appear 1.0 sec after termination 

of the sample display – as retrocues. Some evidence suggests that postcues and 

retrocues have complementary effects on the quality of WM content. For example, in an 

earlier study we tracked the quality of position-specific WM representations 

reconstructed from human EEG activity and found that an informative postcue blunted 

gradual declines in the quality of WM content while an informative retrocue partially 

reversed earlier declines in the quality of WM content (Ester et al., 2018). Experiments 1 

and 2 in the current manuscript were designed to replicate these findings while also 

exploring the effects of behavioral priority on the overall quality of position-specific WM 

representations.   

2.8. EEG Acquisition and Preprocessing.  

Continuous EEG was recorded from 63 uniformly distributed scalp electrodes using a 

BrainProducts “actiCHamp” system. The horizontal and vertical electrooculogram 

(EOG) were recorded from bipolar electrode montages placed over the left and right 

canthi and above and below the right eye, respectively. Online EEG and EOG 

recordings were referenced to a 64th electrode placed over the right mastoid and 



digitized at 1 kHz. All data were later re-referenced to the algebraic mean of the left- 

and right mastoids, with 10-20 site TP9 serving as the left mastoid reference. Data 

preprocessing was carried out via EEGLAB software extensions (Delorme & Makeig, 

2004) and custom software. Data preprocessing steps included the following, in order: 

(1) resampling (from 1 kHz to 250 Hz), (2) bandpass filtering (1 to 50 Hz; zero-phase 

forward- and reverse finite impulse response filters as implemented by EEGLAB), (3) 

epoching from -1.0 to +5.0 relative to the start of each trial, (4) identification, removal, 

and interpolation of noisy electrodes via EEGLAB software extensions, and (5) 

identification and removal of oculomotor artifacts via independent components analysis 

via EEGLAB (using the infomax algorithm developed by Bell & Sejnowski, 1995). 

Artifactual components were identified and removed from the data via crowd-based 

Drichlet allocation (EEGLAB’s “ICLabel” function; Pion-Tonachini, Makeig, & Kreutz-

Delgado, 2017). Rejected components were visually inspected for accuracy prior to 

removal. We removed an average (±1 S.E.M.) of 6.97 ± 0.72 components per 

participant in Experiment 1 and 6.90 ± 0.70 components per participant in Experiment 2.  

After preprocessing, our analyses focused exclusively on the following 10-20 

occipitoparietal electrodes: P7, P5, P3, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO2, PO4, 

PO8, O1, O2, Oz. These electrodes were selected based on prior research from our 

laboratory (e.g., Ester et al., 2018; Nouri & Ester, 2020) and elsewhere (e.g., Bae & 

Luck, 2017). However, we also computed decoding performance using other electrode 

clusters (see section 2.12 below).  

2.9. Data Cleanup.  



Prior to analyzing participants’ behavioral or EEG data, we excluded all trials where the 

participant responded with a latency of < 0.3 sec (we attributed these trials to accidental 

mouse clicks following the onset of the probe display rather than a deliberate recall of a 

specific stimulus position) or failed to respond within the 2.5 sec deadline. This resulted 

in an average loss (±1 S.E.M.) of 0.429% ± 0.09% trials in Experiment 1 and 0.841% ± 

0.22% of trials in Experiment 2.  

2.10. Quantifying participants’ memory performance.  

We quantified participants’ memory performance as average absolute recall error (i.e., 

the difference in polar angle reported by the participant and the polar angle of the 

probed disc) and average response times. Comparisons of memory performance across 

task conditions were conducted via repeated-measures t-tests and Bayesian pairwise t-

tests with uninformative priors. Bayesian analyses were performed using an open-

source MATLAB toolbox (available for download at 

https://github.com/klabhub/bayesFactor). The result of a Bayesian t-test is a Bayes 

Factor, typically denoted BF10. For example, a Bayes Factor of 3.0 provides 3-to-1 odds 

favoring the alternative over the null hypothesis. For null effects (estimated via 

frequentist statistics) we computed an inverse Bayes Factor denoted BF01 that 

describes the strength of evidence favoring the null over the alternative hypothesis, i.e., 

𝐵𝐹01 =  
1

𝐵𝐹10
. 

Importantly, average absolute recall errors can be influenced by the precision of 

participants’ memory as well as random guessing or accidental reports of a non-probed 

object (“swap errors”). To quantify the frequencies of random guessing and swap errors, 

we pooled participants’ recall data across all cue conditions (e.g., valid vs. invalid; 100% 



vs. 75%) and used a hierarchical Bayesian approach to fit participants’ data with a 

parametric model assuming that on a given trial (a) participants report the position of the 

probed disc with precision k, (b) participants report the position of the non-probed disc 

with precision k, or (c) participants randomly guess (Bays et al., 2009). Fitting was 

performed via the MemFit MATLAB toolbox (Suchow et al., 2013). Maximum a 

posteriori estimates obtained from model fitting indicated that swap errors and random 

guesses together accounted for less than 0.70% of all trials in Experiments 1 and 2 

(approximately 7-8 trials out of a modal number of 896 trials per participant across all 

experimental conditions). Thus, average absolute recall error estimates were driven 

primarily by the precision of participants’ memory and not guesses or incorrect 

responses. 

2.11. Decoding Spatial Positions from Posterior Alpha-Band EEG Signals.  

Location decoding was based on the multivariate distance between EEG activity 

patterns associated with memory for specific positions. This approach is an extension of 

earlier parametric decoding methods (Wolff et al., 2017) designed for use in circular 

feature spaces. Following earlier work (e.g., Ester et al., 2018), we extracted 

spatiotemporal patterns of alpha-band activity (8-13 Hz) from 17 occipitoparietal 

electrode sites (see 2.8). The raw timeseries at each electrode was bandpass filtered 

from 8-13 Hz (zero-phase forward-and-reverse filters as implemented by EEGLAB 

software), yielding a real-valued signal f(t). The analytic representation of f(t) was 

obtained via Hilbert transformation:  

 

𝑧(𝑡) = 𝑓(𝑡) + 𝑖𝑓(𝑡) 



 

where i is the imaginary operator and if(t) = 𝐴(𝑡)𝑒𝑖𝜑(𝑡). Alpha power was computed by 

extracting and squaring the instantaneous amplitude A(t) of the analytic signal z(t).  

 Location decoding performance was computed separately for each disc (i.e., blue 

vs. red), trial type (i.e., informative vs. neutral) and each task (i.e., 100% vs. 75%) on a 

timepoint-by-timepoint basis. In the first phase of the analysis, we sorted data from each 

condition into 5 unique training and test data sets using stratified sampling while 

ensuring that each training set was balanced across remembered positions (i.e., we 

ensured that each training data set contained an equal number of observations where 

the location of the remembered stimulus was at 22.5°, 67.5°, etc.). We circularly shifted 

the data in each training and test data set to a common center (0°, by convention) and 

computed trial-averaged patterns of responses associated with memory for each disc 

position in each training data set. Next, we computed the Mahalanobis distance 

between trial-wise activation patterns in each test data set with position-specific 

activation patterns in the corresponding test data set, yielding a location-wise set of 

distance estimates. If scalp activation patterns contain information about remembered 

positions then distance estimates should be smallest when comparing patterns 

associated with memory for identical positions in the training and test data set and 

largest when comparing opposite positions (i.e., those ±180° apart), yielding an inverted 

gaussian-shaped function. Trial-wise distance functions were averaged, sign-reversed, 

and convolved with a cosine function to yield a single decoding estimate for condition 

and time point with chance decoding yielding a value of 0. Decoding results from each 

training- and test-data set pair were averaged (thus ensuring the internal reliability of 



our approach), yielding a single decoding estimate per participant, timepoint, and task 

condition. Visual inspection of participant- and condition-level decoding performance 

revealed the presence of some outliers (see Figure S2). Removing these outliers based 

on visual inspection of the data (N = 4 and N = 1 removed participants for Experiments 

1 and 2, respectively) had no qualitative effect on any of the findings reported here.  

2.12. Searchlight Decoding of Stimulus Positions.  

Although our primary decoding analyses focused on occipitoparietal electrode sites, for 

completeness we also implemented a searchlight-based decoding analysis (e.g., Ester 

et al. 2015; 2016; van Ede et al., 2019) where position decoding performance was 

computed from activity in the theta (3-7 Hz), alpha (8-13 Hz), and beta (15-25 Hz) 

frequency bands measured across local clusters of electrodes distributed throughout 

the scalp. Specifically, we defined a spherical neighborhood (radius 5 cm3) around each 

scalp electrode and computed position decoding performance from all neighborhoods 

containing a minimum of 3 electrodes. This allowed us to generate topological maps of 

decoding performance across different frequency bands (see Figure S1). Decoding was 

performed using data averaged over windows spanning -40 ms to 40 ms at successive 

400 ms windows (e.g., 400 ms, 800 ms, etc.).  

2.13. Quantifying Peak Decoding Accuracy.  

To determine whether changes in cue reliability influenced the strength of location-

specific representations stored in WM, we calculated peak decoding accuracy during 

100% reliable and 75% reliable blocks. Peak decoding estimates were then compared 

with a bootstrap test. We first selected (with replacement) and averaged time courses of 

decoding activity for the probed location from N of N participants. Next, we calculated 



the time of maximum decoding performance following the onset of the probe display 

(i.e., 2.5 sec after the start of each trial). We defined a 100 ms window around peak 

decoding performance (i.e., 50 ms before peak decoding performance to 50 ms after it) 

and used this window to compute temporally averaged peak decoding performance in 

the same sample of N participants. These calculations were performed separately for 

data from 100% valid and 75% valid blocks and permuted 10,000 times, with a new 

subsample of participants chosen on every permutation. Finally, we computed the 

average and 95% confidence interval of peak decoding performance during 100% valid 

and 75% valid blocks. Statistical significance was assessed by counting the proportion 

of permutations where peak decoding performance was larger during 100% valid blocks 

compared to 75% valid blocks. Comparisons that did not reach statistical significance 

via frequentist analysis were further probed with Bayesian pairwise t-tests to quantify 

evidence favoring the null hypothesis (see 2.10).  

2.14. Quantifying Peak Decoding Latency.  

To determine whether changes in cue reliability influenced the timing of access to WM 

content, we compared the latencies of above-chance decoding performance during the 

cue and probe displays. During neutral trials, we computed a cross-correlation between 

average probe-matching decoding performance from 0.0 to 1.5 sec after the onset of 

the probe display. Specifically, we calculated the normalized correlation coefficient 

between the time course of decoding performance during the 100% and 75% blocks 

while temporally shifting the latter relative to the former by -1.0 to +1.0 sec in 4 ms 

increments. If time courses of decoding performance during 100% blocks and 75% 

blocks are identical, then the maximum cross-correlation should be observed at a 



temporal lag of 0.0 sec. Conversely, if the time-course of above-chance decoding 

performance during 100% valid blocks precedes the time-course of above-chance 

decoding performance during 75% valid blocks, then the maximum cross-correlation 

should occur at a negative temporal lag (i.e., when the time course of decoding 

performance during 75% blocks is shifted earlier in time). We compared the observed 

cross correlation function with a null distribution of cross-correlation function estimated 

by shuffling participant level condition labels (i.e., 100% valid vs. 75% valid) 10,000 

times. An analogous approach was used to quantify temporal lags in decoding 

performance during informative cue trials (whether valid or invalid), with the exception 

that we used a window spanning -0.5 to 1.5 sec relative to the onset of the probe 

display. A broader window was deliberately selected as we anticipated cue-matching 

decoding performance to exceed chance levels during the post- or retrocue period when 

an informative cue was present.  

 Note that we used different analysis windows for neutral and informative cue 

trials (0.0-1.5 sec and -0.5 to 1.5 sec around the onset of the probe display, 

respectively). This was partially by necessity: during neutral trials the cue instructing 

participants which disc to report was coincident with the onset of the probe display while 

during informative trials informative cues were presented 0.0 (Experiment 1) or 1.0 

(Experiment 2) sec following the offset of the sample display. However, all effects 

reported here generalized when we used equivalent analysis windows across 

informative and neutral cue trials (i.e., either -0.5 to 1.5 sec or 0.0 to 1.5 sec around the 

onset of the probe display) when computing either peak decoding latency or peak 

decoding accuracy (see 2.13).    



2.15. Statistical Comparisons – EEG Data.  

The decoding analysis we used assumes chance-level decoding performance of 0. 

Likewise, direct comparisons of decoding performance or reconstruction strength across 

conditions (e.g., 100% vs. 75%) assume a null statistic of 0. Thus, we evaluated 

decoding performance by generating null distributions of decoding performance (or 

differences in decoding performance across conditions) by randomly inverting the sign 

of each participant’s data with 50% probability and averaging the data across 

participants. This procedure was repeated 10,000 times, yielding a 10,000-element null 

distribution for each time point. Finally, we implemented a cluster-based permutation 

test (Maris & Oostenveld, 2007; Wolff et al. 2017) with cluster-forming and cluster-size 

thresholds of p < 0.05 to correct for multiple comparisons across time points. 

Differences in peak decoding accuracy were quantified with bootstrap tests (see 2.14), 

and differences in decoding latency were quantified via randomization tests (see 2.13). 

2.16. Ruling Out Contributions from Eye Movements 

Although we used independent components analysis to remove oculomotor and muscle 

artifacts from the data (see 2.8), subtle biases in eye position may nevertheless 

contribute to position decoding performance. To investigate this possibility, we 

attempted to decode the position of the cue-matching disc from patterns of alpha-band 

activity recorded at frontal scalp sites (Fp1, Fp2, AF7, AF3, AFz, AF4, and AF8) where 

these signals should be largest. For convenience, we restricted our analyses to 

informative cue trials.   



3. Results 

3.1. Experiment 1 - Postcues 

3.1.1. Behavioral Performance.  

Participants’ memory performance was quantified via average absolute recall error (i.e., 

the angular difference between the polar location of the probed stimulus and the polar 

location reported by the participant) and average response latency. During 100% 

blocks, participants received a neutral or perfectly informative postcue. Conversely, 

during 75% blocks participants received a neutral, valid, or invalid postcue. Thus, we 

initially analyzed data from 100% and 75% blocks separately. Participants’ recall errors 

during 100% blocks and 75% blocks are summarized in Figure 2A. During 100% blocks, 

participants recall errors were significantly lower during valid relative to neutral trials 

[t(33) = 4.178, p < 0.0002, d = 0.474; BF10 = 133.64, indicating nearly 134-to-1 odds 

favoring the alternative hypothesis]. During 75% blocks, a repeated-measures analysis 

of variance (ANOVA) with cue type (neutral, valid, or invalid) as the sole factor revealed 

a main effect, [F(2,66) = 4.456, p = 0.015, η2 = 0.119], with post-hoc analyses revealing 

lower errors during valid vs. neutral cue trials [t(33) = 3.00, p = 0.015, BF10 = 7.716] but 

no difference in recall errors across neutral and invalid cue trials [t(33) = 0.166, p = 

0.869, BF01 = 5.374] nor across valid and invalid cue trials [t(33) = 2.192, p = 0.053, 

BF01 = 0.667]. Finally, a direct comparison of recall errors during 100% valid and 75% 

valid cue trials revealed significantly lower errors during the former (M = 7.778°) 

compared to the latter (M = 8.518°) [t(33) = 3.517, p = 0.001, BF10 = 25.461].  

A complementary analysis of participants’ response times (Figure 2C) revealed a 

facilitatory effect of valid vs. neutral cues during 100% blocks [t(33) = 14.540, p < 1e-16, 



d = 0.543; BF10 = 9.07e+12], and a repeated measures ANOVA revealed a significant 

effect of cue type during 75% blocks [F(2,66) = 46.749, p < 1e-14; η2 = 0.586], with 

post-hoc analyses revealing faster responses during valid vs. neutral cue trials [t(33) = 

8.394, p < 1e-04, BF10 = 1.071e+07] and during valid vs. invalid cue trials [t(33) = 7.670, 

p < 1e-04, BF10 = 1.626e+06], but not during neutral vs. invalid cue trials [t(33) = 2.005, 

p = 0.0563, BF01 = 0.921]. A direct comparison between 100% valid and 75% valid cue 

trials revealed no difference in response times, t(33) = 0.579, p = 0.567, BF01 = 4.658]. 

Participants completed the 100% and 75% cue conditions in order (see 2.5). 

Thus, performance in the 75% condition could be negatively affected by fatigue or 

positively affected by practice effects. To facilitate performance comparisons across 

different levels of cue reliability (i.e., 100% vs. 75%) while also accounting for order 

effects we calculated within-condition cue effects by (a) computing differences in recall 

error during 100% valid and 100% neutral trials and (b) computing differences in recall 

error between 75% valid, 75% neutral, and 75% invalid trials (Figure 2B). Direct 

comparisons of cue effects during 100% valid and 75% valid blocks indicated that valid 

cues lowered recall errors by equal amounts during 100% and 75% valid blocks [M = -

0.699° and -0.706°, respectively, t(33) = 0.038, p = 0.969; BF01 = 5.44, i.e., 5-to-1 

evidence favoring the null hypothesis]. Conversely, we found no evidence for an invalid 

cue effect during 75% valid blocks; if anything, recall errors were marginally lower 

during invalid relative to neutral trials [M = 9.183° vs. 9.225°; t(33) = 0.166, p = 0.869, 

BF01 = 5.37]. Analyses of cue effects on response times (Figure 2D) revealed a 

significantly larger effect of valid cues during 100% vs. 75% blocks [M = 0.136 vs. 0.078 

sec, respectively; t(33) = 5.884, p < 1.35e-6, d = 1.088; BF10 = 1.31e+04]. Once again, 



we found no evidence for an invalid cue cost during 75% valid blocks (M = 19 ms; t(33) 

= 2.006, p = 0.0532, d = 0.078; BF01 = 0.92). Thus, valid cues presented during 100% 

and 75% blocks led to equal improvements in recall performance and parametric 

improvements in response times compared to neutral cues. Conversely, we found no 

evidence indicating that invalid cues impaired either recall error or response times.  

3.1.2. EEG Decoding Performance.  

We used a decoding analysis to quantify how changes in behavioral priority influenced 

location-specific representations stored in WM. During neutral trials, an uninformative 

postcue instructed participants to remember the positions of both discs presented in the 

sample display; 2.0 sec later a probe display prompted participants to report the location 

of one disc via a mouse click. Based on earlier findings (e.g., Ester et al., 2018; Nouri & 

Ester, 2019; Ester & Nouri, 2022) we expected equivalent decoding performance for 

each disc during the sample and postcue displays, but significantly higher decoding 

performance for the probed relative to unprobed disc during the probe display. 

Moreover, we expected equivalent performance across different levels of cue reliability, 

i.e., 100% vs. 75% blocks. These predictions were borne out in analyses of location 

decoding performance during neutral trials (Figure 3). Decoding performance for the 

disc that was ultimately probed and the disc that was not ultimately probed increased 

rapidly during the sample display but fell back to chance levels during the ensuring 

postcue display. Decoding performance for the probe-matching disc – but not the probe-

nonmatching disc – increased rapidly following onset of the probe display before 

returning to chance levels shortly after participants responded. Nearly identical patterns 

of decoding performance were observed during 100% valid blocks (Figure 3A) and 75% 



valid blocks (Figure 3B), These findings were expected and are a straightforward 

replication of earlier results (Ester et al., 2018; Nouri & Ester, 2020). 

 Next, we examined location decoding performance during informative cue trials 

(Figure 4). During 100% reliable blocks, valid cues informed participants which disc 

would be probed with complete certainty. This condition is a direct replication of our 

earlier work (Ester et al., 2018) in which we found that valid postcues slowed or 

presented the gradual return to chance-level decoding performance seen during neutral 

trials. The current data replicate this finding (Figure 4A): during 100% valid trials 

decoding performance for the cue-matching disc remained at above-chance levels 

during the postcue display and into the probe display, while decoding performance for 

the cue-nonmatching disc quickly returned to chance levels following the appearance of 

the postcue. A qualitatively different pattern emerged during 75% reliable blocks (Figure 

4B). Since invalid cues had no deleterious effect on participants’ recall errors (Figure 

2B) or response times (Figure 2D), our analyses of decoding performance pooled 

across valid and invalid cue trials. Decoding performance for the cue-matching and cue-

nonmatching discs returned to chance levels during postcue period, while decoding 

performance for the probe-matching disc (whether a valid or invalid trial) increased 

rapidly after the appearance of the probe display and remained at above-chance levels 

until after participants responded. Direct comparisons of cue- and probe-matching 

decoding performance during 100% and 75% blocks (Figure 4C) revealed that 

maximum decoding performance was reached significantly earlier during 100% blocks 

than 75% blocks (Figure 4D), even though averaged peak decoding performance was 

identical across these conditions (Figure 4E; BF01 = 4.04). Thus, the results of this 



analysis support the hypothesis that changes in behavioral priority affect the 

accessibility but not the strength of WM representations.  

3.1.3 EEG Searchlight Decoding.  

 In the preceding section, position decoding performance was computed from 

spatiotemporal patterns of alpha-band (8-13 Hz) activity recorded over occipitoparietal 

electrode sites (see 2.8). For completeness, we used a searchlight-based decoding 

approach (see 2.12) to calculate position decoding performance from scalp activity 

measured at local electrode clusters distributed across the scalp. We also investigated 

whether activity bordering the alpha-band (e.g., theta, 3-7 Hz; and beta, 15-25 Hz) also 

supported robust position decoding. Results from this analysis reveal that above-chance 

position decoding performance could only be computed from posterior alpha-band 

activity (i.e., replicating the results summarized in Figures 3 and 4; Figure S1A). These 

results complement existing findings suggesting that internal and external spatial 

attention are uniquely indexed by posterior alpha-band oscillations (e.g., Poch et al., 

2014; Foster et al., 2016; Samaha et al., 2016; van Ede, 2018). Qualitatively similar 

results were obtained when we applied the same analysis to Experiment 2 (Figure 

S1B).  

3.1.4 Oculomotor Contributions to Position Decoding.  

 Although we used independent components analysis (ICA) to remove oculomotor 

and muscular artifacts from the EEG data (see 2.8), small differences in eye position 

missed by this analysis could contribute to above-chance decoding performance of 

stimulus position. We investigated this possibility by attempting to decode cue-matching 

stimulus position from alpha-band signals recorded over frontal electrode sites where 



the effects of oculomotor signals should be largest. This analysis failed to reveal above-

chance decoding performance during 100% trials or 75% trials (Figure S3A), suggesting 

that small changes in eye position did not significantly contribute to observed position 

decoding performance. Qualitatively similar findings were also obtained when we 

applied this analysis to data from Experiment 2 (Figure S3B).  

 

3.2. Experiment 2 – Retrocues 

Experiment 2 was identical to Experiment 1, with the exception that informative 

postcues presented immediately after termination of the sample display were replaced 

by informative retrocues presented midway through the blank interval separating the 

sample and probe displays (see 2.6).  

3.2.1. Behavioral Performance.  

Behavioral data from Experiment 2 were analyzed identically to Experiment 1. 

Participants’ recall errors during 100% blocks and 75% blocks are summarized in Figure 

5A. Recall errors were significantly lower during valid compared to neutral trials during 

100% blocks [t(32) = 2.637, p = 0.013, d = 0.179; BF10 = 3.51]. A repeated-measures 

analysis of variance (ANOVA) applied to recall errors during 75% blocks revealed a 

main effect of cue type (i.e., valid, invalid, neutral), [F(2,64) = 8.066, p = 0.0008, η2 = 

0.201], with post-hoc analyses revealing lower recall errors during valid vs. neutral cue 

trials [t(32) = 2.861, p = 0.011, BF10 = 5.653], during valid vs. invalid cue trials [t(32) = 

3.373, p = 0.006, BF10 = 17.872], and during neutral vs. invalid cue trials [t(32) = 2.067, 

p = 0.048, BF10 = 1.201]. Finally, a direct comparison of recall errors during 100% valid 

vs. 75% valid trials revealed a modest effect, with recall errors marginally lower during 



100% valid trials (M = 8.514°) vs. 75% valid trials (M = 9.018°) [t(32) = 2.098, p = 0.044, 

BF10 = 1.281]. Cue effects - defined as the difference in recall errors between valid vs. 

neutral cues during 100% blocks and the difference in recall errors between valid and 

invalid vs. neutral cues during 75% blocks - are summarized in Figure 5B. Valid cues 

lowered recall errors by an equal amount during 100% and 75% valid blocks [M = 

0.335° and 0.814°, respectively, t(32) = 1.918, p = 0.064; BF01 = 1.06], while invalid 

cues during 75% blocks incurred a significant performance cost compared to neutral 

trials [M = 1.086°, t(32) = 2.061, p = 0.048, d = 0.027; BF10 = 1.20].  

A complementary analysis of participants’ response times revealed a facilitatory 

effect of valid vs. neutral cues during 100% blocks [M = 0.997 vs. 1.220 sec, t(32) = 

21.83, p = 8.66e-21, d = 0.804; BF10 = 4.52e+17]. A repeated measures ANOVA 

applied to recall errors during 75% blocks revealed a significant effect of cue type (i.e., 

valid, invalid, neutral) [F(2,66) = 85.433, p < 1e-31; η2 = 0.728; Figure 5C], with post-hoc 

analyses revealing faster response times during valid vs. neutral trials [t(32) = 11.001, p 

< 1e-04, BF10 = 4.007e+09] and during valid vs. invalid trials [t(32) = 10.881, p < 1e-04, 

BF10 = 3.075+e09], but not during invalid vs. neutral trials [t(32) = 1.702, p = 0.098, BF01 

= 1.702]. A direct comparison of recall errors during 100% valid and 75% valid cue trials 

revealed no differences in response times [t(32) = 0.768, p = 0.448, BF01 = 4.089]. 

Analyses of cue effects on response times revealed a greater benefit from valid cues 

during 100% vs. 75% blocks significantly larger effect of valid cues during 100% vs. 

75% blocks [M = 224 vs. 148 ms, respectively; t(32) = 6.383, p = 3.597e-7, d = 1.093; 

BF10 = 4.52e+04; Figure 5D]. Invalid cues during 75% blocks did not incur a response 

time cost compared to neutral trials (M = 20.5 ms; t(32) = 1.702, p = 0.098, d = 0.084; 



BF01 = 1.47). Thus, valid retrocues improved participants’ recall errors and response 

times, and the magnitude of the response time benefit scaled with cue reliability (i.e., 

100% vs. 75%).  

3.2.2. EEG Decoding Performance.  

EEG data from Experiment 2 were analyzed in an identical way to those from 

Experiment 1. As in Experiment 1, we observed no effect of cue reliability on peak 

decoding accuracy or latency during neutral trials (Figure 6). Analyses of data from 

informative cue trials (Figure 7) were largely consistent with the findings of Experiment 

1. During 100% blocks, decoding performance for the cue matching and non-matching 

discs increased rapidly following onset of the encoding display but returned to chance 

levels by the onset of the retrocue display 1.5 seconds later. Following the appearance 

of the retrocue, decoding performance for the cue-matching disc “recovered” to above-

chance levels, replicating earlier findings showing cue-driven recovery in the quality of 

location-specific mnemonic representations (Sprague et al., 2016; Ester et al., 2018). 

Decoding performance for the cue-matching item remained at above-chance levels 

through the probe display and until shortly after participants’ responses. Conversely, 

decoding performance for the cue-nonmatching item remained at chance levels 

throughout the retrocue and probe displays.  

An analysis of decoding performance during 75% blocks revealed a different 

pattern of findings (Figure 7B). Here, cue-matching and cue-nonmatching decoding 

performance remained indistinguishable from chance during the retrocue display, with 

cue/probe-matching decoding performance reaching above-chance levels only after the 

appearance of the probe display (as in Experiment 1, since invalid cues had no effect 



on participants’ recall errors or response times, we pooled data from valid and invalid 

trials to create the data shown in Figure 7B). Time courses of cue- and probe-matching 

decoding performance during 100% and 75% blocks are shown in Figure 7C. 

Comparisons of peak decoding latency (Figure 7D) revealed that maximum decoding 

performance was reached significantly earlier during 100% blocks relative to 75% 

blocks, although average peak decoding performance did not differ across these 

conditions (BF01 = 5.36). Thus, the findings of Experiment 2 are qualitatively identical to 

Experiment 1: changes in the priority of location-specific WM representations influenced 

the latency but not the magnitude of peak decoding performance.  

3.2.3 EEG Searchlight Decoding.  

Like Experiment 1, we used a searchlight-based decoding analysis (see 2.12) to probe 

whether remembered positions could be decoded from different electrode clusters and 

activity in different frequency bands (e.g., theta vs. alpha vs. beta). The results of this 

analysis (Figure S1B) are remarkably consistent with those from Experiment 1: only 

posterior alpha-band activity enabled robust decoding of stimulus position across time.  

 

3.3. Memory Prioritization or Response Preparation?  

An alternative account of our findings holds that the differences in the onset timing of 

cue-locked above-chance decoding performance reflect response preparation rather 

than memory prioritization. We think this unlikely for several reasons. First, we note that 

the exact same physiological signal – total alpha power – was used for decoding 

throughout each trial, and that robust above-chance decoding performance was also 

observed during memory encoding (e.g., during the sample display and the early portion 



of the delay period) when participants had no way of knowing what item would be 

probed for report. Thus, an account of our data based on response preparation must 

argue either that (a) above-chance decoding during memory encoding also acts as a 

form of response preparation (e.g., by encoding multiple different response affordances; 

Cisek & Kalaska, 2010), or that (b) above-chance decoding during the sample and 

probe periods – which, again, were computed using the exact same physiological signal 

– reflect WM and response preparation mechanisms, respectively. Either way, this 

argument would conflict with recent papers dissociating occipitoparietal alpha-band 

signals like those used for decoding in this study from response preparation and 

execution (e.g., van Ede et al., 2019; Boettcher et al., 2021; Ester & Weese, 2022). For 

example, van Ede et al. (2019) tracked occipitoparietal alpha power and frontocentral 

mu-alpha and mu-beta power while independently manipulating physical location (e.g., 

left vs. right visual field) of a to-be-recalled stimulus and the motor affordance (e.g., left 

vs. right hand) needed to perform recall. These authors found that occipitoparietal alpha 

power exclusively tracked the spatial position of the remembered item while 

frontocentral mu-alpha and -beta power exclusively tracked response demands. Thus, 

we think it unlikely that our findings can be explained by mechanisms of response 

preparation or execution.  

 Nevertheless, to obtain more traction on this issue, we examined the time-course 

of an EEG signal known to track response preparation and execution: lateralized 

frontocentral mu-alpha (~8-13 Hz) and mu-beta (~15-30 Hz) power. In this first phase of 

this analysis, we extracted total mu-alpha and -beta power from electrode site pairs 

C1/2 and C3/4. Our testing setup requiring all participants to respond with their right 



hand, so we computed mu-alpha and -beta lateralization by subtracting average power 

estimates from electrode sites C2 and C4 (i.e., ipsilateral to the response hand) from 

averaged power estimates from electrode sites C1 and C3 (i.e., contralateral to the 

response hand). We divided this difference by the sum of mu-alpha and -beta power 

over contralateral and ipsilateral sites to obtain a normalized (percentage) estimate of 

lateralization. During Experiment 1, mu-alpha and -beta lateralization steadily 

decreased (i.e., lower power over contralateral vs. ipsilateral electrode sites) over the 

interval separating the postcue and response displays, reaching a maximum shortly 

before the participant’s response (Figure 8A-C). Importantly, neither the timing nor the 

peak magnitude of lateralization varied across cue conditions, i.e., 100% vs. 75%. A 

similar pattern was observed during Experiment 2 (Figure 8D-F), with lateralization 

decreasing during the interval separating the retrocue and probe displays. To further 

test the response selection hypothesis, we also examined whether it was possible to 

decode the location of the cued/probed stimulus using frontocentral mu-alpha and mu-

beta power. This analysis failed for both cue conditions (i.e., 100% vs. 75% valid) in 

Experiment 1 (Figure 9A-B) and Experiment 2 (Figure 9C-D). Thus, we argue that any 

observed differences in the timing or magnitude of location decoding performance are 

unlikely to reflect response preparation or execution. We describe the results of this 

analysis in the revised manuscript.  

 

3.4. Control Analyses.  

The data reported here suggest that access to cue-matching information is delayed 

when cue reliability is reduced (e.g., Figures 4D and 7D). One trivial possibility is that 



these findings are idiosyncratic to the parametric decoding approach we used or the 

alpha-band signals on which decoding performance was based. We tested these 

possibilities in complementary analyses. First, we decoded the locations of the probed 

and non-probed discs from occipitoparietal alpha patterns using support vector 

machines (“one-versus-all” classification). Since stimuli could appear in eight possible 

locations, chance performance is 12.5%. The results of these analyses are summarized 

for Experiments 1 and 2 in Figure 10. Overall decoding performance computed using 

this approach was noisy (indeed, it was necessary to smooth the decoding time-series 

in the Figure with a 200 ms sliding window to identify clear trends in the data). 

Nevertheless, the overall pattern of findings obtained using this method was 

qualitatively similar to that obtained using our parametric decoding approach (e.g., 

compare the results in Figure 10 with those in Figures 4 and 7). Critically, we again 

found no evidence for greater maximum decoding during the 100% vs. 75% cue 

reliability condition (Figures 10E and 10J; BF01 = 2.71 and 3.98, respectively).  

Next, we asked whether position decoding performance was contingent on the 

use of spatiotemporal alpha power. On the one hand, some studies (e.g., Bae & Luck, 

2018) have reported that alpha-band EEG signals uniquely index the positions of 

remembered stimuli while event-related potentials (ERPs) uniquely index the feature 

content of those memories. On the other hand, more recent studies (e.g., Barbosa et 

al., 2021) have shown that remembered orientations can be robustly decoded from 

patterns of occipitoparietal alpha-band activity. Since our experimental task required 

only memory for location, this may be a distinction without a difference. Nevertheless, 

we thought it prudent to establish that our core findings (Figures 4 and 7) generalize 



across different signal types. To this end, we used our parametric distance-based 

approach to decode the positions of the probed and non-probed positions during each 

experimental task and experiment using broadband EEG signals (i.e., voltages from 1-

50 Hz). The results of these analyses were remarkably similar to the results obtained 

from decoding alpha-band signals for both Experiment 1 (Figure 11A-E; compare with 

Figure 4) and Experiment 2 (Figure 11F-J; compare with Figure 7). Thus, we are 

confident that our core findings (Figures 4 and 7) cannot be explained by idiosyncrasies 

unique to the alpha-band signal. 

 Next, we considered the possibility that our experimental manipulation of 

attentional priority was insufficient to detect changes in maximum decoding accuracy. 

Perhaps differences would be evident if we tested a larger range of cue reliabilities, e.g., 

comparing decoding performance across 100% vs. 60% reliability conditions or across 

90% and 60% reliability conditions. Here, we note that our experiments also contained a 

50% reliability condition: neutral trials. Thus, we performed direct comparisons between 

maximum decoding performance during informative cue and neutral cue trials from the 

100% and 75% reliability tasks in each experiment. The results of these comparisons 

are summarized in Figure 12. Possible differences in maximum decoding performance 

were quantified via two-way repeated-measures analysis of variance (data from 

Experiment 1 and Experiment 2 were analyzed separately). When applied to data from 

Experiment 1, this analysis revealed neither a main effect of cue reliability (i.e., 100% 

vs. 75%; F(1,33) = 0.674, p = 0.417), a main effect of cue type (i.e., informative vs. 

neutral; F(1,33) = 2.933, p = 0.096), nor an interaction between these factors (F(1,33) = 

1.159, p = 0.289). When applied to data from Experiment 2, this analysis also revealed 



neither a main effect of cue reliability [F(1,32) = 2.208, p = 0.147], a main effect of cue 

type [F(1,32) = 0.004, p = 0.948], nor an interaction between these factors [F(1,32) = 

0.022, p = 0.882). Thus, no significant differences in maximum decoding accuracy were 

observed across a 50% reduction in cue reliability, supporting the view that the absence 

of task-level differences on this factor were not caused by a lack of sensitivity.  

An alternative explanation for our findings holds that participants were simply 

more cautious or took more time to respond when cue reliability was fixed at 75% 

compared to when it was fixed at 100%, and that delays in the onset of above-chance 

decoding during the cue and probe displays reflect this caution rather than a delay in 

accessing the relevant WM representation.  Analyses of participants response times do 

not support this possibility. Specifically, we reasoned that if participants were simply 

more cautious or slower in responding during 75% blocks, then their average response 

times during 75% valid trials should be significantly greater than during 100% valid 

trials. In fact, response times following valid cues were identical during 100% and 75% 

blocks in both Experiment 1 (M = 1058 vs. 1068 ms, respectively; t(33) = 0.579, p = 

0.567; green bars in Figure 2C) and Experiment 2 (M = 996 vs. 1013 ms, respectively; 

t(32) = 0.768, p = 0.448; green bars in Figure 5C). We note, however, that cue effects 

(that is, the difference in response times across condition-specific neutral and valid 

trials, e.g., neural 100% vs. valid 100% trials) revealed significantly smaller response 

time benefits during the 100% vs. the 75% task. Thus, the findings reported here cannot 

be explained by general response caution or slowing during 75% vs. 100% blocks.  

 In both Experiments, cue-matching decoding performance during informative 

trials of 75% blocks fell to chance levels by the end of the memory period (Figure 4B 



and Figure 7B). This pattern is reminiscent of findings seen during neutral trials (Figures 

3 and 6), raising the possibility that participants simply ignored the cues during 75% 

blocks. Once again, participants’ memory performance argues against this claim: recall 

errors and response times were significantly lower during valid vs. neutral trials during 

75% blocks (Figure 2C and 5C). Nevertheless, to investigate the possibility that 

participants simply ignored informative cues during 75% valid blocks we undertook 

analyses comparing the time-courses of cue-matching decoding performance during 

75% valid trials and 75% neutral trials. If participants indeed ignored informative cues, 

then the time-courses of decoding performance should be identical during informative 

and neutral trials. Conversely, if participants used informative cues to prioritize relevant 

information stored in memory, then maximum decoding performance should be reached 

earlier during informative vs. neutral trials. We tested these possibilities using the same 

cross-correlation analyses used to quantify differences in maximum decoding latency 

during 100% and 75% blocks, and the results are summarized in Figure 13. Maximum 

decoding latency was reached significantly earlier during informative vs. neutral trials of 

75% blocks of Experiment 2 (Figures 13C and 13D), but not Experiment 1 (Figure 13A 

and 13B). These findings, coupled with analyses of participants’ memory performance, 

provide converging evidence against the possibility that delays in achieving maximum 

decoding performance during 75% relative to 100% blocks (Figure 4D and 7D) were 

caused by participants simply ignoring informative cues during 75% blocks.  

 
3.5. Alternative Explanations.  
 
 Neither Experiment 1 nor Experiment 2 revealed differences in peak decoding 

performance across cue reliability (i.e., 100% vs. 75%). However, since peak decoding 



performance was computed using data from the probe period (i.e., peak decoding 

accuracy was estimated within a window spanning -0.5 to 1.5 sec following the onset of 

the probe display during informative cue trials and 0.0 to 1.5 sec following the onset of 

the probe display during uninformative cue trials; see 2.13), one possibility is that cue-

level differences in peak decoding performance were obscured by eye movements or 

visual signals during the probe period. We address these alternative explanations in 

turn: 

3.5.1. Oculomotor Signals do not Contribute to Position Decoding Performance 

 Although we used ICA to remove oculomotor and muscle artifacts from the EEG 

data (see 2.8), smaller eye movements or microsaccades missed by this procedure may 

have nevertheless contributed to decoding performance. To investigate this possibility 

we attempted to decode stimulus position from alpha-band signals recorded over frontal 

electrode sites Fp1, Fp2, AF7, AF3, AFz, AF4, and AF8, where the effects of 

oculomotor artifacts should be greatest. This analysis failed to reveal above-chance 

decoding performance during any epoch of any cue condition (Figure S3), suggesting 

that oculomotor artifacts were not a major contributor to decoding performance.  

3.5.2. Visual Signals Evoked by the Probe Display are Unlikely to Contribute to Position 

Decoding Performance.  

 A second possibility is that cue-level differences in peak decoding performance 

were obscured by bottom-up visual input during the probe display. Specifically, perhaps 

visual signals during the probe period – for example, those evoked by the participants’ 

moving the mouse cursor to the to-be-recalled disc position - obscured differences in 

peak decoding performance across the 100% and 75% cue conditions. While we cannot 



completely exclude this possibility two factors argue against it. First, dynamic visual 

stimulation tends to produce broadband changes in EEG spectra (e.g., Herrmann et al., 

2014). Thus, if above-chance position decoding performance during the probe period 

was instead driven (or modulated) by visual inputs, one would expect to observe above-

chance position decoding across multiple frequency bands. However, as our spatial and 

spectral searchlight analyses reveal, only posterior alpha-band activity supported robust 

above-chance decoding of stimulus position (Figure S1). A second, albeit weaker, 

argument against the possibility that visual signals evoked by the probe display 

occluded cue-level differences in peak decoding accuracy comes from an analysis of 

when peak decoding performance was reached relative to participants’ responses. 

Consider Experiment 2. Here, peak decoding performance during 100% and 75% 

informative cue trials occurred at a median of 364 and 564 ms after probe onset, 

respectively. However, response times in the same conditions averaged 996 and 1014 

ms. Thus, there is a 630 and 450 ms lag between peak decoding performance and 

participants’ responses. In our view, it stands to reason that some – and perhaps – most 

bottom-up visual input related to movement of the mouse cursor occurs during this lag 

period, though we concede that we lack precise mouse telemetry data that would allow 

us to empirically back this assertion. Thus, while we think it unlikely for the reasons 

discussed above, we cannot fully exclude the possibility that visually-evoked signals 

during the probe display obscured cue-level differences in peak decoding accuracy 

during the probe display. 

 
  



4. Discussion 

  Efficient behavioral selection requires rapid comparisons of sensory inputs with 

internal representations of motor affordances and goal states, and many of these 

comparisons take place in working memory (WM). Rapidly changing behavioral goals 

frequently require agents to assign (and re-assign) different levels of behavioral priority 

to items stored in WM. Prior studies utilizing retrospective cues suggest that humans 

can flexibly assign WM content with different levels of priority; for example, 

improvements in WM performance following an informative vs. uninformative 

retrospective cue scale positively with informative cue reliability (e.g., Berryhill et al., 

2012; Shimi et al., 2014; Günseli et al., 2015; Günseli et al., 2019). Importantly, graded 

improvements in WM performance following a probabilistic retrocue could reflect (a) 

graded changes in the strength or quality of population-level, stimulus-specific neural 

patterns thought to mediate WM storage, (b) graded changes in how easily stimulus-

specific neural patterns associated with high- (vs. low) priority items are accessed to 

guide response selection and motor planning, or (c) some mixture or these options. 

Here, we leveraged the high temporal resolution of human EEG to adjudicate between 

these options. Specifically, we examined how graded changes in behavioral priority 

influenced our ability to decode a set of positions stored in WM. We reasoned that if 

priority-driven changes in memory performance are driven by changes in the of high- 

and low-priority WM content, then population-level representations of high-priority items 

should be easier to decode than low-priority items. Conversely, if priority-driven 

changes in memory performance are driven by changes in how rapidly WM content can 

be access for report, then it should be possible to decode the identity of high-priority 



items at an earlier time than low-priority items. Our data support the latter view. 

Specifically, we found no evidence suggesting that changes in behavioral priority – as 

manipulated via post- or retrocue reliability – influenced asymptotic decoding 

performance for cue-matching memoranda. Instead, the latency of asymptotic decoding 

performance was significantly earlier for high-priority vs. lower-priority items (Figures 4 

and 7). Importantly, this effect could not be explained by mechanisms of response 

preparation or other nuisance factors (Figures 8-13). Thus, we conclude that changes in 

behavioral priority influence the accessibility but not the quality of stimulus-specific 

patterns of neural activity representing memoranda. 

4.1. Analyses of Position Decoding During the Delay and Probe Periods.  

There are also good reasons to include data from the probe period in our 

analyses. On the one hand, our analyses focused on the probe period during neutral 

trials out of necessity: probe onset is the first time that participants receive a cue 

instructing them which disc to report. On the other hand, our analyses focused on the 

memory and probe period during informative cue trials based on known properties of 

postcues and retrocues. Studies that have varied the stimulus onset asynchrony (SOA) 

between a memory retrocue and a memory probe find benefits only when the SOA is 

greater than around 400 ms (Souza et al., 2014); thus, it takes participants about 400 

ms to process and utilize information from a retrocue. Since the cue-to-probe SOA in 

Experiment 2 was fixed at 1000 ms, and since there might be trial- or subject-level 

variance in cue processing (the 400 ms figure quoted above is an average across 

participants and trials) it seemed reasonable to extend the analysis window into the 

probe period.  



While it is possible that things like eye movements, motor responses, and 

bottom-up visual inputs could contribute to decoding performance during the probe 

period, we do not think that these factors can explain our findings. First, we used ICA to 

exclude oculomotor and muscular artifacts from our data and we could not decode 

stimulus position from alpha-band activity recorded over frontal electrode sites – where 

signals related to eye movements should be largest – from the residual (i.e., artifact-

free) data (3.5.1; Figure S3). Second, we could not decode stimulus position from EEG 

signals known to track motor preparation and execution (i.e., lateralized central 

alpha/beta power), suggesting that these processes were not major contributors to 

decoding performance (Figure 9). Third, at least two lines of evidence argue against the 

possibility that decoding performance was driven by bottom-up visual input (see 3.5.2). 

Thus, we are confident that decoding performance during the probe period reflects 

mnemonic rather than nuisance factors.  

4.2. Postcues vs. Retrocues 

 The current study utilized a mixture of postcues (Experiment 1) and retrocues 

(Experiment 2). Following earlier work (e.g., Souza & Oberauer, 2016) we use the term 

postcue to refer to any event informing which of a set of remembered item(s) will be 

tested that occurs immediately after encoding (including instances where an agent can 

apply this information to stimulus representations in sensory memory) and retrocue to 

refer to any informative event occurring after memory consolidation is complete. Prior 

evidence suggests that post- and retrocues engage separate but complementary 

mechanisms that promote storage of high-quality neural representations of memoranda. 

In an earlier study (Ester et al., 2018) we used an inverted encoding model to 



reconstruct location-specific representations of items stored in WM while presenting 

participants with neutral or perfectly informative postcues and retrocues. During neutral 

trials, the quality of reconstructed location-specific representations gradually decreased 

during WM storage. A perfectly valid postcue presented immediately after encoding 

eliminated this decrease, while a perfectly valid retrocue presented midway through 

storage partially reversed it. Data from 100% blocks in this study replicate these findings 

(e.g., Figure 4A; Figure 7A) while also establishing that assigning lower priority to items 

stored in memory reduces these effects (Figure 4B; Figure 7B).   

 In the absence of a perfectly informative postcue (i.e., Figure 4A), our ability to 

decode the location of the cue-matching or nonmatching disc fell to chance levels 

during the delay period (e.g., Figures 3A-C; Figure 4B; Figure 6; Figure 7B). This does 

not imply a loss of memory: participants still performed quite well during neutral trials 

despite no evidence for above-chance decoding during the delay period (Figures 3-4 

and 6-7). One possibility is that the amount of location-specific information carried by 

induced alpha patterns that were used for decoding in this study gradually decreases 

over time. This, however, is difficult to reconcile with observations of robust above-

chance location decoding during recall, as the probe display contained no additional 

information about the location of the to-be-reported disc (i.e., the color of the fixation 

point instructed participants which disc to recall, but gave no additional information 

about its position at the beginning of the trial). To account for this pattern, we speculate 

that during WM storage position-specific memory representations are gradually 

consolidated into a new format not indexed by alpha-band activity storage (for example, 

in an “activity-silent” synaptic network or in long-term memory; Rose et al., 2016; 



Sprague et al., 2016; Wolff et al., 2017; Masse, 2019; Barbosa et al., 2021; Beukers et 

al., 2021), and later retrieved from this format during memory recall.  

 Throughout this manuscript, we have interpreted cue-locked changes in 

decoding performance as reflecting the assignment of different levels of priority to 

remembered positions. The term “priority” has been used to describe different 

phenomena in the WM literature (e.g., Riddle et al., 2020; Yu et al., 2020; Wan et al., 

2022) and in visual neuroscience writ large (Rust & Cohen, 2022). Here, we use the 

term in the broadest sense to refer to cue-determined changes in the behavioral 

relevance of stimuli. This could occur, for example, when participants switch between 

sequentially reporting two items stored in WM (e.g., van Loon et al., 2018; Wan et al., 

2022), when participants switch between preparing to report different items in WM 

following a retrospective cue (e.g., Lewis-Peacock et al., 2013; Rose et al., 2016), or 

when participants drop a subset of items stored in WM to focus on a different set of 

behaviorally relevant items stored in WM (Ester et al., 2018; Riddle et al., 2020; this 

study). In each of these examples, the sine qua non is an event signaling a change in 

the behavioral relevance of WM content. Importantly, what we term priority may reflect 

the operation of different mechanisms in different contexts. For example, in the case of 

sequentially reporting two items stored in WM, priority may refer to movement of 

memorized information from a latent to an active state. Likewise, in the case of 

switching between multiple potentially relevant WM items, priority may refer to the 

(internal) selection of likely task-relevant WM content. Research emphasizing 

transformations in the neural representations of WM content following changes in 

behavioral relevance (e.g., Panichello & Buschman, 2021; Bocincova et al., 2022; Li & 



Curtis, 2022) may help extirpate the use of colloquial terms like “selection”, “retrieval”, 

and “priority”.   

4.3. Other Considerations 

 The present study examined the effects of retrocues on position-specific 

representations of memoranda under a low memory load (a maximum of two items). 

Retrocue benefits are known to scale with memory load (i.e., larger cue-driven 

improvements in memory performance at higher memory loads), but an additional 

possibility is that different retrocue mechanisms are engaged at different memory loads. 

For example, some evidence suggests that retrocue benefits result from dropping or 

eliminating non-cued items from memory, freeing up additional processing capacity and 

minimizing inter-item interference (e.g., Williams et al., 2013; Gunseli et al., 2015). 

Since inter-item interference naturally scales with memory load, mechanisms that 

prompt the removal of cue-nonmatching information in memory may be more likely to 

operate at higher vs. lower memory loads. Conversely, other mechanisms (e.g., 

protection from time-based decay, prioritization for comparison or recall, or attentional 

refreshing; Souza & Oberauer, 2016) may be responsible for retrocue benefits at 

smaller memory loads. This possibility awaits empirical scrutiny.    

 We have framed our discussion in terms of how changes in behavioral priority 

affect items that are likely to be probed for report, but some consideration should also 

be given to the effects of priority on items that are unlikely to be probed for report. For 

example, at least one previous study has reported that changes in behavioral priority 

affect the likelihood that cue-nonmatching items are attended and/or stored in WM 

(Günseli et al., 2019). The authors of this study used lateralized measures of covert 



spatial attention (alpha-band suppression; Klimesch, 2012) and WM storage 

(contralateral delay activity; Vogel & Machizawa, 2004) to show that cue-nonmatching 

items were less likely to be attended or retained in WM when cue reliability was low vs. 

high. Conversely, we found little evidence to suggest that changes in behavioral priority 

influenced neural patterns associated with memory for cue-nonmatching positions. 

However, a major difference between the current study and prior work is that we 

included 100% reliable cue blocks, which allowed participants to simply drop or forget 

cue-nonmatching information if they chose to do so. Thus, it is difficult to directly 

compare cue-nonmatching decoding performance across different levels of cue 

reliability (i.e., 100% vs. 75%). Additional traction on this issue could possibly be gained 

by comparing decoding performance for non-cued items during 75% blocks with 

decoding performance for both remembered items during neutral trials (akin to a 50% 

valid condition). However, we failed to observe above-chance decoding for the cue-

nonmatching position during the delay period of 75% blocks or above-chance decoding 

for either remembered position during the delay period of neutral trials (e.g., Figures 3, 

4B; 6, and 7B). Thus, additional research using a more fine-grained manipulation of cue 

reliability (e.g., 60%, 75%, 90%) will be needed to elucidate how changes in behavioral 

priority influence neural representations of cue-nonmatching items.  

4.4. Conclusions 

WM can be conceptualized as a temporal bridge between fleeting sensory 

phenomena and possible actions. Recent theoretical conceptualizations of WM have 

begun to emphasize the action-oriented nature of this system (e.g., Olivers & 

Roelfsema, 2020; Heuer et al., 2020; van Ede & Nobre, 2022), and recent empirical 



findings suggest that behavioral (Ohl & Rolfs, 2020), circuit-level (Pho et al., 2018; Tang 

et al., 2020; Panichello & Buschman, 2021), and systems-level (Chatham et al., 2014; 

van Ede et al., 2019; Boettcher et al., 2021; Galero-Salas et al., 2021; Rac-

Lubashevsky & Frank, 2021; Henderson et al., 2022) mechanisms of WM storage and 

action planning are tightly interwoven. In dynamic contexts where the future can take on 

several possibilities, the (potential) behavioral relevance of information stored in WM is 

often unknown. Thus, the likelihood that that any one piece of information stored in WM 

will become behaviorally relevant is best understood as a matter of probability rather 

than a certainty. From this perspective, a central purpose of WM may be to prepare for 

multiple potential futures, while mechanisms of internal attention act to select and 

prioritize relevant WM content as our predictions change or our uncertainties are 

reduced. The findings reported here are consistent with this view and further suggest 

that human observers can assign prospectively task-relevant representations different 

levels of priority that influences how quickly they can be accessed and acted upon.  
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Figure Captions 
 

Figure 1. Spatial Memory Task. (A) Participants encoded the positions of two discs into 
memory. During Experiment 1 (top row) a postcue presented immediately after the sample 
display instructed participants to remember one disc (informative trials) or both discs (neutral 
trials) over a blank delay. During Experiment 2 (bottom row) a retrocue presented midway 
through the blank delay instructed participants to remember one disc or both discs. In both 
Experiments, participants recalled the position of the disc matching the color of the fixation 
point. (B) Discs always appeared in two of eight possible positions (upper right), with disc 
positions counterbalanced across the experiment. During the first half of experimental blocks 
postcue reliability was fixed at 100%; during the second half of experimental blocks reliability 
was lowered to 75%. Note: the displays are not drawn to scale. See 2.5-2.6 for stimulus 
geometry and additional details. 

 
Figure 2. Memory Performance in Experiment 1. (A) Average absolute recall error as a 
function of cue type (valid, neutral, invalid) and cue reliability (100%, 75%). (B) Cue effects, 
defined as the difference between valid/invalid and neutral trials. (C) Average response times 
and (D) cue effects. Error bars depict the 95% confidence interval of the mean. 

Figure 3. Decoding Performance During Neutral Trials. (A) Average decoding performance 
for the probe-matching and probe-nonmatching discs during neutral trials of 100% reliable 
blocks. (B) Identical to panel A, but for neutral trials of 75% blocks. (C) Overlay of probe-
matching decoding performance from 100% reliable and 75% blocks (i.e., blue traces in panels 
A and B). The grey shaded area in each plot marks the sample display; vertical lines at time 0.0, 
0.5, and 2.5 mark the onset of the sample, postcue, and response displays, respectively. Blue 
and red vertical lines mark the average response time across participants. Horizontal bars at the 
top of each plot mark epochs where decoding performance was significantly > 0 or epochs 
where decoding performance was significantly greater for the probe-matching vs. non-matching 
stimulus. (D) Cross-correlation between the task-relevant decoding time-series during the 100% 
and 75% conditions. The blue curve depicts the observed cross-correlation function while the 
black curve and grey shaded area depict a range of expected cross-correlation values simulated 
under the null hypothesis. (E) Peak decoding performance for the cue-matching disc during the 
100% and 75% conditions. Error bars depict the 95% confidence interval of the mean.  

Figure 4. Decoding Performance During Informative Cue Trials. Conventions are identical 
to Figure 3. See also Figures S1 and S2.  

Figure 5. Behavioral Performance in Experiment 2. (A) Average absolute recall error as a 
function of cue type (valid, neutral, invalid) and cue reliability (100%, 75%). (B) Cue effects, 
defined as the difference between valid/invalid and neutral trials. (C) Average response times 
and (D) cue effects. Error bars depict the 95% confidence interval of the mean. 

Figure 6. Decoding Performance During Neutral Trials of Experiment 2. Vertical lines at 
times 0.0, 1.5, and 2.5 sec mark the onset of sample, retrocue, and probe displays, respectively. 
All other conventions are identical to Figure 4. 

Figure 7. Decoding Performance During Informative Trials of Experiment 2. Conventions 
are identical to Figure 6. See also Figures S1 and S2. 

Figure 8. Frontocentral Signals Linked with Response Selection. To test whether our core 
findings (e.g., Figs 4 and 7) could be explained by response selection, we tracked changes in 
lateralized frontocentral signals known to track response selection and execution. Analyses of 



lateralized frequency-specific activity revealed greater reductions in mu-alpha and beta-power 
over left – i.e., contralateral to the response hand – vs. right frontocentral electrode sites during 
the 100% task (A) and the 75% task (B). Next, we extracted, averaged, and plotted lateralized 
mu-alpha power (8-13 Hz) as a function of task (i.e., 100% vs. 75%; C). Although we observed 
robust reductions in mu-alpha power during both tasks, neither the timing or the peak magnitude 
of these effects differed across tasks. That we observed no differences in the timing or 
magnitude of an EEG signal known to track response preparation and execution suggests that 
the timing differences we observed in position decoding (e.g., Figs 4 and 7) cannot be explained 
by these factors. (D-F) Identical to panels A-C, but showing data from Experiment 2.  

Figure 9. Position Decoding Performance Computed from Frontocentral Mu-alpha Power. 
As a further test of the response selection hypothesis, we attempted to decode the location of 
the probed (blue and red lines) and non-probed stimulus positions from frontocentral mu-alpha 
signals recording during informative cue trials in Experiment 1 (A-B) and Experiment 2 (C-D). 
This analysis did not support robust above-chance decoding of either the probed or non-probed 
position during either cue condition (i.e., 100% vs. 75%) or Experiment, providing further 
evidence against a response selection interpretation of our findings.  

Figure 10. Decoding Performance Computed Using Support Vector Classification. (A-E) 
Data from Experiment 1; conventions are identical to Figure 4. (F-J) Data from Experiment 2; 
conventions are identical to Figure 7. 

Figure 11. Decoding Performance Computed from Broadband EEG Activity. (A-E) Data 
from Experiment 1; conventions are identical to Figure 4. (F-J) Data from Experiment 2; 
conventions are identical to Figure 7. 

Figure 12. Comparison of Maximum Decoding Performance During Informative and 
Neutral Cue Trials During Experiment 1 (A) and Experiment 2 (B). Error bars depict the 95% 
confidence interval of the mean. 

Figure 13. Comparisons of Above-Chance Decoding Latency on Informative and Neutral 
Trials during 75% blocks. (A) Overlay of above-chance decoding performance during 
informative and neutral cue trials of 75% blocks in Experiment 1. (B) Cross-correlation between 
probe-locked decoding performance during informative and neutral cue trials of 75% blocks in 
Experiment 1. Panels (C) and (D) are identical to panels (A) and (B) but use data from 
Experiment 2. Conventions are identical to those used in Figures 3-4 and 6-7. 

 
 
 

 
 
 
 


