ASME

SETTING THE STANDARD
——

ASME Journal of Mechanical Design
Online journal at:
https://asmedigitalcollection.asme.org/mechanicaldesign

Zhijie Lyu

Computer-Aided Design and Innovation Lab,
Department of Mechanical Engineering,
Stony Brook University,

Stony Brook, NY 11794-2300

e-mail: zhijie.lyu@stonybrook.edu

Anurag Purwar’
Computer-Aided Design and Innovation Lab,
Department of Mechanical Engineering,
Stony Brook University,

Stony Brook, NY 11794-2300

e-mail; anurag.purwar@stonybrook.edu

Wei Liao

Mechanismic Inc.,

St James, NY 11780

e-mail: wei@mechanismic.com

A Unified Real-Time Motion
Generation Algorithm for
Approximate Position Analysis
of Planar N-Bar Mechanisms

This paper presents a novel real-time kinematic simulation algorithm for planar N-bar
linkage mechanisms, both single- and multi-degrees-of-freedom, comprising revolute
and/or prismatic joints and actuators. A key feature of this algorithm is a reinterpretation
technique that transforms prismatic elements into a combination of revolute joint and links.
This gives rise to a unified system of geometric constraints and a general-purpose solver
which adapts to the complexity of the mechanism. The solver requires only two types of
methods—fast dyadic decomposition and relatively slower optimization-based—to simulate
all types of planar mechanisms. From an implementation point of view, this algorithm sim-
plifies programming without requiring handling of different types of mechanisms. This ver-
satile algorithm can handle serial, parallel, and hybrid planar mechanisms with varying
degrees-of-freedom and joint types. Additionally, this paper presents an estimation of simu-
lation time and structural complexity, shedding light on computational demands. Demon-
strative examples showcase the practicality of this method. [DOI: 10.1115/1.4064132]

Keywords: kinematic simulation, geometric constraints, graph-based constraint solvers,

mobility analysis, computational kinematics, linkages

1 Introduction

The kinematic simulation of multi-body systems is crucial for the
rapid design and evaluation of mechanisms in computer-aided
design (CAD) systems. Faster simulation algorithms can signifi-
cantly reduce the time required for mechanism design and enable
the creation of high-quality datasets for machine learning research,
which has garnered interest in recent years [1-9]. A recent position
paper by Purwar and Chakraborty [10] emphasizes the importance
of generating high-quality datasets for designing robot mechanisms
that rely on robust and fast kinematic simulation. Planar linkage
mechanisms are widely utilized in products due to their practicality,
simplicity, and performance characteristics. While several commer-
cially available CAD systems have general-purpose multi-body
dynamics capabilities, the development of stand-alone kinematic
simulation programs with comprehensive capabilities has been
limited, with most software applications originating from academic
research groups. Examples of such programs include LINCAGES
[11,12], xinsyn III [13], Kihonge et al. [14], Spades [15], Sphinx
[16], Sphinxpc [17], Osiris [18], and Synthetica [19]. Although
these projects are no longer active, a few notable commercially
available systems include SAM [20], MechGen [21], Linkages
[22], Ch Mechanism Toolkit [23], MechDesigner [24], and Univer-
sal Mechanism [25]. Geometer’s Sketchpad [26] and Geogebra

'Corresponding author.

Contributed by Mechanisms and Robotics Committee of ASME for publication in
the JOURNAL OF MECHANICAL DESIGN. Manuscript received July 6, 2023; final manuscript
received November 15, 2023; published online December 15, 2023. Assoc. Editor: Bin
Zi.

Journal of Mechanical Design

Copyright © 2023 by ASME

[27], which are primarily geometry tools, have also been used for
simulating mechanisms. Several other kinematic simulation tools,
such as Linkage Mechanism Simulator [28], PMKS+ [29,30],
GIM [31], Simionescu [32,33], and Schmidt and Lax [34],
provide varying levels of capabilities and have filled a critical
need for the mechanism simulation. This paper presents a novel
simulation algorithm implemented in a web-based kinematic
design and simulation application called MoTIONGEN,” which pro-
vides real-time simulation of N-bar planar linkage mechanisms
with an arbitrary number of revolute and prismatic joints, rotary
and linear actuators, and topological structures. Real-time simula-
tion requires prompt feedback and data updates with low latency.
While there are no rigid rules for the time to update, it is generally
expected that this updating will happen quickly and typically at a
rate that mimics real-world time, such as seconds or milliseconds
per simulation time-step.

Kinematic simulation of planar linkages requires computing the
unknown positions of moving joints, which leads to solving a set
of geometric constraints—a system of equations constructed from
the mechanism. Generally, there are two main issues in reducing
the simulation time. The first is to create a fast computation
method, or solver, to solve a specific set of geometric constraints.
One of the simplest analytical methods for planar linkages is the
dyadic decomposition [35,36], which solves one planar joint posi-
tion, or two variables (x and y), at a time. While this works for
simpler mechanisms, researchers have developed other methods
for handling more complex structures. Dhingra et al. [37] employed

2hup://www.moliongcn.io

JUNE 2024, Vol. 146 / 063302-1

mailto:zhijie.lyu@stonybrook.edu
mailto:anurag.purwar@stonybrook.edu
mailto:wei@mechanismic.com
http://www.motiongen.io
http://www.motiongen.io

symbolic computation and followed the computation of a Grobner
basis with a solution based on a Sylvester-type determinant. On
the other hand, Wampler [38,39] proposed a combination of the
Dixon determinant procedure from Nielsen and Roth [40] with a
complex plane formulation. He presented a method for formulating
kinematic equations in complex planes using isotropic coordinates,
which results in loop equations in a simplified form that can be
solved using the Sylvester-type formula. Hernandez and Petuya
[41] have introduced a novel geometric iterative (GI) technique
for solving the position problem with only revolute joints, which
does not require an initial guess, as in the case of local optimization
methods. However, the Newton—Raphson (NR) method is still a
popular choice for solving systems of nonlinear equations [42]
due to its numerical search for a particular solution, with quadratic
convergence in the neighborhood of the solution.

The second issue is the identification and joint position analysis
of subassemblies within a mechanism using a divide-and-conquer
approach. This technique involves identifying subsets within the
geometric constraints of the system, which can be used to solve
some of the unknown variables, or unknown joints. The subset
can then be substituted back into the system to solve the remaining
unknown variables. This approach enables the solution of a set of
kinematic constraints to be broken down into a sequence of solu-
tions of the kinematic constraint subsets, a process that typically
takes less time than solving the entire set of constraints together.
This process of identifying subsets is also referred to as the decom-
position of the system. Researchers have proposed various methods
for implementing the divide-and-conquer approach in system anal-
ysis. Ait-Aoudia et al. [43,44] demonstrated a decomposition
method that utilizes bipartite graphs under-laid by systems of geo-
metric constraint equations. Bouma et al. [45] and Fudos and Hoft-
mann [46] proposed a graph-theory-based method to reduce the
number of variables that need to be solved in each step. Addition-
ally, Fudos and Hoffmann developed a phase called the reduction
of the system that simplifies the system of equations by merging
fixed links together into a single link.

Most simulation software apply one or more of these aforemen-
tioned techniques. For example, LINKAGES [22] uses the dyadic
decomposition extensively, while pmks/pPMks+ [29,30] and Gm
[31] use the GI technique. autocap based simulation [47] and
MEKIN2D [32] use the modular approach to directly identify the sub-
assemblies with a saved Assur group library.

Compared to these simulation packages, our method’s originality
lies in reducing all geometric constraints to a unified form and con-
verting all elements of a mechanism into revolute only joints and
links, thereby allowing us to require only two types of solvers for
all degrees-of-freedom (DOF) planar N-bar mechanisms. We also
developed a method to analyze the complexity of a certain mecha-
nism. Specifically,

(1) The prismatic joints and actuators are converted to a combi-
nations of revolute joints and links. This novel reinterpreta-
tion means that an additional solver for the prismatic joint
is not necessary. Furthermore, this also means a simpler opti-
mization function to program.

(2) Our algorithm requires only two solvers. One provides the
fastest computation speed possible using dyadic decomposi-
tion and the other is the optimization-based method for
solving complex subassemblies.

(3) This algorithm also allows arbitrary placement of actuators
and arbitrary combinations of revolute joints and prismatic
joints.

(4) A mobility analysis method is presented to analyze the
system of equations, which includes the reduction phase
(static link merge) and the decomposition phase (dynamic
and static link merge).

A flowchart of the complete simulation process can be seen in
Fig. 1. The details of various steps in this figure are described in
the following sections. Section 2 presents a matrix representation
of the kinematic structures. Following that, Sec. 3 presents the

063302-2 / Vol. 146, JUNE 2024

Raw Data

Initial Formulation of
System of Equations
Formulation of

i System of :
! Equations '
1 Reinterpretation of :
s Prismatic Joint :
; Static Link Merge :
\ Operation !
% s A AN "
' Y !
; E‘t"’“.i"“ of Dynamic and Static :
H Solving Link Merge Operation | |
! Procedure !

‘. .
3 Positional Solution of System of :
H Analysis Equations according to | |
; Routine steps and input E
: '

Fig. 1 The complete simulation process

reinterpretation trick and a derivation of the accuracy error incurred
during the reinterpretation. Next, the general formulation of the
system of equations is presented in Sec. 4. Then, Sec. 5 provides
an overview of the two types of solvers. After that, the analysis
of the kinematic system, an estimate of the time cost, and a
measure of the structural complexity of mechanisms are presented
in Sec. 6. Finally, we present a few typical example mechanisms
in Sec. 7, which seek to illustrate the overall method.

In summary, the main contributions of this work are in (1) pro-
posing a reinterpretation trick to reduce all geometric constraints
to a single type, (2) topological modification of N-bar mechanisms
to only include revolute joints, (3) formulation of a general-purpose
solver which can automatically select the fastest method for com-
puting joint positions, and (4) implementation in a cross-platform
browser-based software to satisfy the needs of users with varied
expertise.

2 General Matrix Representation of Linkages

The mechanisms in this paper are described by their topological
configurations. To fully represent a planar linkage mechanism, four
basic components are considered:

(1) Joints: Joints in this work are considered as points of interest
characterized by their positional variables, denoted as x,, and
¥, whether or not there are two links connected at that joint.
Each joint is represented by j,, where p is the joint identifier.
Coupler or tracer points, which are points only on one link,
are also considered joints since they can potentially function
as joints. They are not distinguished from joints shared by
multiple links.

(2) Links: A link is a rigid body consisting of one or more joints.

The relative positions of the joints in a link remain constant

throughout the mechanism’s operation. A link can be binary,

containing two joints, or n-ary, containing n specified

number of joints. Additionally, a binary link with joints i

and j can be denoted as /; ;.

Slots: Slots are assumed to be straight and finite constraints

placed on binary links to represent linear constraints. A

@3

~

Transactions of the ASME

slot is defined by its two endpoint joints, which determine the
slot axis.

(4) Actuators: Actuators introduce changes to the mechanism by
varying either the angle or the length. There are two types of
actuators: rotary and linear. An actuator is defined by its type
and three joints; see Fig. 2 for an illustration.

Throughout this paper, subscripts are used to represent matrix
elements, with indexing starting from 0. For example, K;; refers
to the element in the ith row and jth column of the matrix K. If a
single number represents a link, it indicates the index of that link.
For instance, [, represents the (n + 1)th link.

The relationship between links and joints can be represented
using the incidence matrix B as mentioned in Tsai’s book [48].
This matrix is also known as the LJ-matrix [49]. Its definition is
shown in Eq. (1). The two subscripts mean this notation corre-
sponds to the ith row and the jth column in the matrix.

1,
Bid': {0’

Then, two vectors are used to save the property of the joints and
the links, respectively. The link property vector is a column vector,
while the joint vector is a row vector. These two vectors are defined
by Egs. (2) and (3), respectively.

if link i contains joint j
otherwise

()]

1, if link 7 is a ground link
Liog=1;= e . 2)
0, if link i is a moving link
. 1, if joint i is a ground joint
Joi=ji= . 3)
0, otherwise

The arrangement of the link property vector and joint property
vector as described allows them to stack with the incidence
matrix B in a specific format. The stacked format is as follows:

(J — vector)
(L — vector) i (B - matrix)

Ixn
Ixn

Next, the distance matrix D to save the distance between any two
joints is defined in Eq. (4) as

g, i)
Dl,] - {0’ l=] (4)

The reduced and unweighted form of the matrix D is denoted as
matrix 7, as defined in Eq. (5). This format is used during the ini-
tialization of distances. In the initial state, the matrix D can be cal-
culated according to Eq. (6). Moreover, the joint property vector J
can be saved in the diagonal of T for space efficiency concerns.

1, if By;=1and By; =1, excluding i =
T - i k‘. % xcluding i =)
J
0, otherwise
_ 2 2
Dij= i) + 0i =y Ty ©)

Next, the slots in the mechanism are stored in the slot matrix S.
The inclusion of a slot constraint relationship depends on the pres-
ence of a joint within the slot, referred to as a “slot joint.” If there are

A i X p

Fig.2 The letters denote the joints. For the rotary actuator (left),
li x is the corresponding dynamic link, and for the linear actuator
(right), I, 4 is the corresponding dynamic link.

Journal of Mechanical Design

a total of m slot joints, the slot matrix S is defined according to Eq.
(7). Before the analysis of the kinematic system phase, each slot is
converted into a combination of links and joints.

Po q0 1o
S T @)

Pm—-1 dm—-1 T'm—1 mx3

Next, we discuss a representation of rotary and linear actuators.
Figure 2 illustrates these two types of actuators. A rotary actuator
constrains the angle between two links. More specifically, it gives
a constraint relationship between the common joint and two joints
in the two links. Next, a linear actuator constrains the slope (slot
axis) and the distance between the output joint (slot joint) and
one of the end joints. All @ number of actuators are saved in a a x
4 matrix according to Eq. (8). In the / matrix, the first three
columns specify the joint indices and the last column specifies
their corresponding actuator type. Here, R denotes a rotary actuator,
while P stands for a linear actuator, with P being an abbreviation for
prismatic.

i j k R
e ®)
p g9 r Pl

It should be noted that the joints are order sensitive. For example,
for the rotary actuator a; ;, shown in the first row of /in Eq. (8), the
angle constraint is between vector v;; and v ;. Furthermore, we use
the cross-product value to represent this constraint so that the angle
is not flipped. For the linear actuator e, , - in the last row of I, the
direction is defined by vector v),,, and the output distance is
defined by the length of v}, ;. Figure 2 follows this description.

Last, it should be pointed out that each actuator brings one
dynamic link (a similar concept is the active pair in Ref. [49]).
For the rotary actuator a;;4, when the link lengths of [;; and [;;
and the input angle are given, /;; is the dynamic link and can be
computed according to the law of cosine. For the linear actuator
Qp g.r» Ip 4 1s the dynamic link, and the length is the input itself.

Storage of Simulation Input and Results: A state corresponds
to a specific set of inputs and the number of inputs is unchanged
throughout the simulation. All the state input can be stacked in a
state matrix V according to Eq. (9). Here a; is the (i — 1)th actuator
in matrix I. In the jth state, its input is a;_;(#—1). When there are s
number of states successfully simulated, the size of Vis a xs.

S0 81 Ss—1
ao(to) ao(t) ao(ts-1)
ai(t) ay(ty) ay(t-1)
V=1 at)) a(ts—1) (€

ag_1(to) ag—1(t) Aa1(ts=1)) s

Correspondingly, the simulation result is the joint positions,
which can be saved in a position tensor P defined in Eq. (10).

P= [P(), Plv PZ’) Ps—l]sxn)(Z (10)

For the kth state, the joint positions can be saved in a slice of the P
tensor according to Eq. (11).

Xy
Jo (X0 Yo
o lx »n

L

Pi=jp | x2 »

Jn—1 Xn Yn/ px2

In conclusion, generally, for a mechanism M, if there are [/
number of links, a number of actuators, n number of joints, m

JUNE 2024, Vol. 146 / 063302-3

J4

w

Ji

e /
Jo 0 o)

Fig. 3 An example RRRR mechanism

number of slot relationships, and s number of states that are success-
fully simulated, then all these can be stored in a compact format
denoted in Eq. (12). This representation is a concise saving struc-
ture: in brief, matrices J, L, B, D, S, and [save all types of con-
straints. Matrices V and P store the simulation results of all states
for input and the joint positions, respectively. Furthermore, the B
matrix is a standard representation of kinematic structures [48]:
this means that graph isomorphism detection and mobility analysis
can be readily applied to the system.

: Jlxn
tLixi

: len

: Dyxn

: Smx3

: Iax4

: Vaxs
:PSXHXQ

(12)

V<~ L O~

As an example, the matrices to save the geometric constraints for
a typical RRRR mechanism shown in Fig. 3 are as follows. First,
according to this figure, the joint property vector J, and the link
property vector L are, respectively,

b i b b
1 00 0)

_Jo v 2 J3 s

T _
= 0 1 0 o) ML=

There are no slots in an RRRR mechanism, meaning the S matrix
is empty. Additionally, there is only one actuator in this mechanism.
Therefore, the input matrix / is

I=[2 0 1 R]

The B matrix is

o Jo Jv J2 J3 Ja

! 1 01 0 O
B—l; 11000
Is 001 1 0
01 0 1 1

And finally, the T matrix is shown below. Additionally, the D
matrix can be computed according to Eq. (6) and the initial joint
positions.

. Jo i J2 J3 Ja

;001100

1

11 00 1 1
T=k{1 001 0

Blo 11 01

A\ 0 101 0

5%5

3 Reinterpretation of Slots

The idea of reinterpreting prismatic joints as revolute joints arises
from the fact that PR and RP links can be considered as sufficiently
large RR links with one of their joints located either proximate or

063302-4 / Vol. 146, JUNE 2024

distal from the workspace of the mechanism. In the case of a PR
link with a fixed line, the RR link can be chosen to be large
enough within a desired accuracy with a distal fixed pivot while
for the RP link with a fixed pivot, the link length of the approxi-
mated RR link should be large enough, but this time with the
fixed pivot proximate. By using homogeneous coordinates, a
planar joint position is represented in a projective plane as (x, y,
w) with its position in Euclidean space given by (x/w, y/w). By
setting the homogenizing factor w to a small value, the joint is
moved far away from the origin (0, 0) and effectively converted
into a prismatic joint. In the kinematic simulation, we perform the
inverse operation by converting the prismatic joint back into revo-
lute joints and links. This allows solvers that can only handle revo-
lute joints to solve systems that include prismatic joints.

For ease of implementation and intuitive sketching, we use joints
in a slot to represent prismatic joints. Figure 4(a) shows an example
mechanism with a slot, which restricts the slot joint to a fixed-line
segment. Slots can be fixed or can be moving so as to represent
RP or PR links.

Here, the slot joint j, performs a linear motion along the slot. A
straight line can be reinterpreted as the arc of a circle whose radius is
large enough such that the curvature is near zero. Consequently, the
straight line is represented as the arc of a circle, and the intersections
between the straight line and the arc occur at the slot’s edges (end
joints). Furthermore, the center of the circle lies on the perpendicu-
lar bisector of the straight line.

The resultant reinterpretation can be seen in Fig. 4(b). First, the
slot is removed, and a new far joint (js, or jo is added to the
slotted link. Then, two constraining links (/56 and /,) and a con-
straining joint (js, or j.) are added to constrain the motion along
the straight line. These two binary links together can also be seen
as an RRR robot arm so that when the arm is stretched, the slot
joint j, goes near ju, and when two binary links overlap, j, goes
near j;. During simulation, the slot is removed, and the joint previ-
ously in the slot now moves along an arc. The farther the joint js, the
flatter the arc is. Therefore, the difference between the arc and the
straight line can be controlled by changing the distance of js from
the two end joints j3 and j,.

The far joint position and the reinterpretation error are derived as
follows. Apropos Fig. 4(b), since the bisector is perpendicular to the
slot axis, we can compute the perpendicular unit vector as

ve =0 = y3)/v/ (x4 = x3) + (4 — y3)°

13)
vy = (1 — x3)/v/ (s — x3)° + (v — y3)°

(@)

0 5(J)

Fig.4 The reinterpreted RRRP mechanism in (a) is shown in (b).
The far joint js (or jy) is in the far bottom-right: (a) joint notations
before the P-joint conversion and (b) joint notations after the
P-joint conversion.

Transactions of the ASME

The intersection point p,,;; of the bisector and the slot axis and

correspondingly the far joint js are given by, respectively
Xmid = (X4 +x3)/2 X5 = Xmid + V- h

— 14

{ymid=(y4 +y3)/2 Y5 =Ymid +Vy - h 1

The value of & depends on the required accuracy. In MOTIONGEN,
the value of # is set dynamically such that the error of approxima-
tion is within a threshold. The expressions below give the deviation
from the curve to the straight line. First, the distance between two
edge joints is

d= 0 =3+ (s =3 (s)

The reinterpretation error e is measured with the distance
between the point on the arc and its corresponding point in the
straight line. At its maximum, where the slot joint is close to one
of the end joints, we have

A
e= 3 +Mh) —h (16)
which can be simplified to
d2
(e+h)2=ez+h2+2e~h=T+h2 (17)

Since the ¢ term is extremely small compared to other terms, by
removing e and canceling 4> on both sides, we get

d2
h=

=% (18)

The next to compute is the location of the constraining joint,
which connects the two constraining links and is denoted as j. (or
Je in the figure). Computing its position requires the offsets from
the two end joints. For example, j, should be distance o4 away
from j, when stretched and distance o5 away from j; when one con-
straining link is on top of the other. We can derive a set of equations
with these two additional conditions. Then, the two link lengths can
be obtained.

I _d+03—04

Lethe=d—o04 35—?
N ' 19
{13,6—12,6=03 -] _d—o03—o4 (19)

2,6) -

With these two link lengths and the positions of j, and j; in the
initial state, the initial position of js can be computed through arc
intersection. Of course, there are usually two solutions, but both
work for the simulation, and choosing either is sufficient.

The reinterpretation changes the topological structure of
the mechanism. Therefore, the J, L, B, and D matrices will need
to be changed accordingly. Here, we show the change of B
matrix in Eq. (20) and the change of T matrix in Eq. (21). J is in
the diagonal of 7, and L adds three more zeros at its end because
there are three moving links. The D matrix can be computed accord-
ing to Eq. (6).

Jo Jv j2 J3 Ja Js Je
o1 00 1 1700
Jo Ji J2 J3 J4 L{1 1.0 0 0[{0 O

/100 1 1
Ll o1 10000

L1 1000
—5]1 0 001 1|1 0

Llo1 100
Noooi1 1) 4l O00TO00[TO
3 Is] 001 0 0/0 1
6\ 0 00 1 0/01
(20)

Journal of Mechanical Design

Jo J1v j2 J3 Jja Js Je

Jo Jv 2 J3 Ja Jo/1 1.0 1 1,00
/1 1011\ Jjil1o100[00
jif 1. 01 0 O j2f O 1. 0 0 O1 1
j210 1 0 0 O] —=j31 1 001 1|1 1
jal 1 0 0 1 1 jal 1. 0 0 1 1|1 O
ja\1 0 0 1 1 js 0 0 1 1 1|10 O
js\0 O 1 1 0,0 O

@n

4 System of Equations

When slots are converted into a combination of links and joints,
the planar mechanism has only two types of constraints. One is the
distance constraint from the links’ lengths, and the other is the angle

nn—1)

constraint from the rotary actuators. An n-ary link has

number of binary links (its two-joint sub-collections), and each of
these binary links corresponds to one specific distance constraint.
Furthermore, the actuators are reinterpreted as dynamic links,
which are also distance constraints in the system. For a binary
link 1,4, this distance constraint is written as shown in Eq. (22).
The i in the equation means it is the ith distance constraint. When
this constraint is satisfied, f;=0.

Fo= =5+ 0 =30 = Ly (22)

As mentioned, we use the cross-product value to represent the
angle constraint to avoid the flipping issue. Therefore, the jth
angle constraint function between vector v, and V,, can be
written as shown in Eq. (23). Here, a), ,, is to specify the three
joints that define the actuator together. Similarly, when this angle
constraint is satisfied, g;=0.

8j= (xp - xq)()’r -)’q) - (x, — xq)(yp - Yq) - lp,q : lq,r - sin (ap,q,r)
(23)

The system of equations to solve can be now derived accord-
ingly. The positional analysis problem is formulated as given a spe-
cific state, find the stack of variables x that satisfies f=0. All the
states are solved one by one. Vectors x and f are shown in Eq.
(24). Here, k number of binary links and a number of rotary actu-
ators are taken into account. It is worth noting that not all binary
links need to be taken into account to solve the system because
some of them are redundant constraints and can be automatically
satisfied.

. B

Xp f2

Yp

)Cq .

x=| Y fw=| (24)

. 81

Xy .
L Yr douxi 8a-1

L 8a d(krayx1

5 Solvers

We utilize two types of solvers for kinematic analysis: (1)
the analytical (arc intersection) and (2) the numerical-based
(Newton’s method). These methods are employed to handle mech-
anisms with varying complexity and optimize computational
efficiency.

JUNE 2024, Vol. 146 / 063302-5

The analytical method, specifically the arc intersection method, is
highly time-efficient. However, it is not capable of solving mecha-
nisms with complex loop structures. On the other hand, the
numerical-based method, i.e., Newton’s method, can handle mech-
anisms with arbitrary complexity, but requires more computational
time compared to the arc intersection method, especially when the
number of joints increases.

We also experimented with two variations of Newton’s method
for kinematic structures when multiple joints need to be solved
simultaneously. The first variant is the NR method, which aims to
find the extremum of an overall cost function. This cost function
is iteratively computed using Eq. (25).

X1 < Xe — /[Hpo) 7' VF(X0), 120, 0<y<1 (25

Here, F(x,) = f(x,)"f(x,), which is the sum of squared error (SSE).
This value is close to zero when vector X is a good numerical
approximation, which also serves as the termination of the iteration.
Term VF(x¢) is the gradient of F(xy) and [Hp,] is the Hessian
matrix of F(Xy).

Another variant of Newton’s method is the Levenberg—Mar-
quardt (LMA or LM) algorithm [50]. This algorithm introduces
the damping factor into the Gauss—Newton algorithm to make the
update robust. Specifically, it ensures the existence of the inverse
matrix. The updated policy for this numerical method is shown in
Eq. (26).

X1 < X — 7T + A - diag3 I I E(xy)

Here, the Jacobian matrix J is given by Eq. (27) and A= 1. The
updated policy for y is the same as the NR method.

(26)

O
ox, Ay, = ox. Oy
ox, Oy, ox. Oy
J= : : : : @7
5gu—1 ag(/z—l aga—l agoz—l
ox, oy, 1 ox Oy,
L Oxp y Oy (k+a)x(2n)

These two methods are both computationally expensive because
they require matrix multiplications. Furthermore, the optimization
methods take several iterations to converge. So, for the same
number of joints to solve, they are much slower compared to the
arc intersection solver. Through our experiments, we found that
LM tended to converge faster in most scenarios.

6 Analysis of System and Cost

The previous section presented a system of multi-variable
equations, which represent geometric constraints of planar mecha-
nisms. However, solving all the variables simultaneously is time-
consuming and often unnecessary. There have been several
efforts to develop different analysis algorithms to look for
optimum solving paths [43—47]. Each solution step deals with
part of the unknown variables in a given particular subassembly.
Then, the already solved variables can be substituted back into
the system to help solve the remaining variables. Generally, an anal-
ysis algorithm involves two processes. The first is the reduction of
the system. This process tries to find the link set where all members
do not change their relative positions with respect to other members;
in other words, we try to find Assur groups [51,52] within the mech-
anism. We can merge these links into one link (rigid body), reduc-
ing the number of links and simplifying the system. The second
process is the decomposition. This process starts from the ground
link/known link, and tries to find the least number of links that for-
mulate a zero DOF system; in other words, we find the smallest

063302-6 / Vol. 146, JUNE 2024

possible Assur group that contains the ground link. The joints on
these links are marked to be solved in one step. As a result,
solving the joint positions on each step leads to solving all the
joint positions. Links being amenable to be merged into a rigid
body and a subassembly being a zero degrees-of-freedom system
mean the solution for the involved variables bounded. We use the
Chebychev-Grubler—Kutzbach criterion to determine the DOF of
a system [53], i.e.,

dof =3n—-1)-2-1—-h (28)

where

< 0 At least one sub-kinematic chain is over-

constrained.

Undecided if its sub-kinematic chain is

undecided; is properly constrained if

each sub-kinematic chain is properly

constrained.

>0 At least one sub-kinematic chain is under-
constrained.

DOF =

According to the description above, to ensure a specific set of
links having 0ODOF, we must start the examination from the smallest
subset of this link set. In the worst-case scenario, all subsets except
the empty set and one-member sets need to be examined. This leads
to a possibly unacceptable time cost, which is one of the reasons
why some modern simulation software uses the Assur Group
library. However, the Assur Group is infinite, and the library
saves the most common kinematic assembly. As for our algorithm,
we employed the aforementioned criterion to maintain generality.

Then, the overall time cost can be divided into three parts. The
first part is the position analysis part, which depends on multiple
things, e.g., the number of states to compute, the number of steps,
and the variables to compute in these steps. The second part is
the system analysis. Finally, the third part includes all the remaining
processes because they usually take insignificant time compared to
the first two. Therefore, the overall time cost can be estimated with
Eq. (29).

len(steps)
Time = (Z @n)'t - (a; + 1) - C,~) - § + AoS-time + Prep-time
i=0

(29)

Here n; denotes the number of joints to solve in step i and #; is
determined by the type of solver for the ith step, shown in Eq.
(30). Moreover, a; and [; are the number of actuators and the
number of binary links to solve in the system of equations in step
i, respectively. Term s represents the number of states, and C; is
the estimated time constant for the solver used in the step i. This
constant is related to the solver’s convergence speed and the time
to stack all equations in this step.

If the arc intersection is used for the i-th step

=1 (30)
"7 12 1If a Newton solver is used for the i-th step

With the time analysis stated above, we can even use the time
cost for one state of position analysis to determine the complexity
of a certain mechanism, i.e.,

len(steps)
Complexity = Z @n)' - (ai+1) - G
i=0

3D

7 Case Analysis

In this section, we present a few examples to illustrate the
working of our algorithm. The first example includes all steps of
the solving procedure for a mechanism with a combination of

Transactions of the ASME

e Is(Link with Slot)
o \
& "

: Wl N
~ ‘ \ \

Iy(Ground Link) \/7
o

Fig. 5 This figure shows (a) links and (b) joint labels

binary, ternary, quaternary links, and a moving slot connected by
revolute and prismatic joints. Then, this section will go through
several cases as subsections to discuss each aspect of this simulation
algorithm. Furthermore, in Sec. 7.6, we present the time complexity
of each of the example mechanisms.

7.1 Example 1: A Seven-Bar Mechanism With a Moving
Slot and Revolute and Prismatic Joints. Figure 5 shows the
example mechanism to be analyzed in this section. We note that
this is purely an academic example chosen to illustrate several
steps of position analysis presented earlier.

Initial Topological Structure: The topological structure for this
mechanism is given by several matrices presented earlier

lo Jo Jv J2 J3 Ja Js Je J1 Jg Jo
L (100010000
Lt 110000000
Lot o1t o0oo00000
B=l30011000000
140000110000
150001001000
160000001110
\o 0 000O0O0T1 1 1
S=(3 5 6)
I1=(0 4 5 R)
J=j0 Jv J2 J3 Ja Js Js J1 Js Jo
(1 00010000 1)
Lr:jo L L LIy ls s L
(1 000000 0)

Jo v 2 J3 Ja Js Jo J1 Js o
jO 0 lO,l 10,2 0 10,4 0 0 0 0 lo’g
jl 10,1 0 11,2 11’3 0 0 0 0 0 0
j2 10'2 11’2 0 12’3 0 0 0 0 0 0
j3 0 11’3 12,3 0 0 0 l3,6 0 0 0

D= j4 10,4 0 0 0 0 14’5 0 0 0 14’9
Js 0O 0 0 O Ls O O o0 0 O
j6 0 0 0 l3,6 0 0 0 l6,7 l6,8 0
j7 0 0 0 0 0 0 l6,7 0 l7,8 17’9
jS 0 0 0 0 0 0 l6,8 l7’3 0 13’9
j9 10,9 0 0 0 14,9 0 0 l7,9 lg,g 0

Reinterpretation of Slot and Prismatic Joint: This step focuses
on representing a slot with a combination of revolute joints and
links. Figure 6 shows the converted mechanism and the notations
for all its elements. The new system has two more joints and
three more links. Furthermore, one of the new joints, i.e., the far

Journal of Mechanical Design

joint, is added to /s, which previously was a binary link. The topo-
logical notations for this new mechanism are as follows:

Jo J1 J2 J3 Ja Js Jje J7 Js Jo Jio Jui
hb/1 0001000O01{0 O
L1111 1000000O0[0 O
LIOTO0O10000O0O0O|0 O
51001 100000O0[0 O
L1 OO0OO0O01T1T000O0/0 O
B=1]10001001000|1 O
t]OO0OO0OO0OO0O0O11T1O0[0 O
100000001 T11{0 O
Ig] 000001 00O0O0C|1 O
Ib] 0OO0O010000O0O0]0 1
lipo\OOOOO100O0O0|]0 1
I:<O45R)

Jo J1 J2 J3 Ja Js Je J7 Js Jo Jio Jji
7 :(1000100001\0 0)

ol bl3lylsls b7 Iyl Lo
LT:(looooooo\oo 0)

Jo Jv J2 J3 Ja Js Jo J1 Js Jo Jio Jii

~

Jo/ 0 loiloo O Ipgy O O O O lpo| O O
Jillon O Lhp hy 0 0 O O O OO O
Jollo2lia O by O 0 0 O O OO0 O

Bl 0 hszbhs 0 0 0 Leg O O O |Biohn
Jjalloa 0 0 0 O L4s O O O Lo/ O O
D— Jjs5] 0 0 0 0 L4ts O O O O O |l510/5n
“Jjel 0O 0 O 13,6 0 0 O l@j l@}g 0 16,10 0
jil 0 0 0 0 O O Iy O L1809 0 O

sl 00 0 0 0 0 feshs 0 5o 0 0
Jolloo O 0 O lto O O ILj9lgo O O O
Jiof 0 0 0 Lo O I510l650 0 0 00 O
Jju\0 0 01Zh3 063 0O 0O 0 OO0 O

The length of the triad, /g, /y and /,o are computed according to
Sec. 3 in the paper.

Static Link Merge: In the reduction phase, some of the links in
the mechanism can be merged, resulting in less number of links.
Furthermore, through this merge operation, two new binary links
are found, which are lp; and lg9. The subscripts of the new
binary links represent the endpoint joint location of the links.
Figure 7 shows the complete process.

Decomposition of System: At the beginning of this step, the
actuator is converted into a dynamic link, which is /y s, as shown

JUNE 2024, Vol. 146 / 063302-7

(a)

Tk

Jio(Far Jo{m)

s/
o J6
| 2 =
| lKl
e (’ ‘ :
9 4 A
=1 J7\=

Fig. 6 This figure shows the notation of (a) joints and (b) links, respectively

(@)

(b)

Fig. 7 This figure shows the merge process of links with two different rules: (a) Is and I; are merged because they share more
than one joint and (b) the mobility formula shows the DOF of I,, I, and /5 is zero, meaning they can be merged into one rigid body

Jlo(Far Joih)

)

(h)

Fig.8 (a) Initial state for the mechanism’s decomposition process and (b)—(h) shows the decomposition process, where the used

binary links are colored in dark/black for each step

in Fig. 8(a). The input angle is O 45), meaning it is the angle
between vector vy and vy s, then the link’s length is

los = \/lis + 1421,0 —2X 140X ly5 X cosbOa45) (32)

Following the conversion, the next step is to find the least
number of joints to solve per step, as shown in Fig. 8. The decom-
position starts from the known joints jg, js4, and jy, as shown in
Fig. 8(a).

First, in Fig. 8(b), js can be solved with two ground joints (jo, j4)
and two binary links /5 and /; s. An actuator is within this triangle
formed by jo, j4, and js. Therefore, a cross-product calculation is

063302-8 / Vol. 146, JUNE 2024

needed. The system of equations for this step is

fi =0 —x5)* + 3o —y5)* = o3

h= \/(X4 - xS)z + (4 —))5)2 —lss
81 = (xo — xa)(ys — ya) — (x5 — x4)(yo — ya)
—lo,z . 10,4 - sin (9(0,4’5))

(33)

It is worth noting that a dynamic link does not replace its corre-
sponding actuator. Instead, it is a necessary condition to satisfy the
angle constraint. Although not shown in this example, a dynamic
link can be useful sometimes to help decompose the system, i.e.,
giving more possible solving paths.

Next, in Fig. 8(c), the next solvable subassembly is a triad with
three binary links. lp3 is a subcollection of the four-ary link

Transactions of the ASME

Table 1 This table specifies which joints are used to solve for
the unknown joint with the arc intersection method for the last
five steps

Step Known joints To solve Need cross-product
d Jos J3 J1 Yes
e Jos J3 J2 Yes
f Je»Jo J1 Yes
g Jer Jo Js Yes
h J3sJs Jin No

Fig. 9 Result of the positional analysis

(@) (b)

formed by jo, ji, j2, and j3, and [g ¢ is a subcollection of the four-ary
link formed by jg, j7, js, and jo. The known joints that are used in this
step are jo, js, and jo and the joints to solve are js, js, and jjo (the far
joint). The system of equations for this step is shown in Eq (34).

fi =0 —x3)* + (o — y3)* — lo3
fr=+ s —x10% + 05 — 10)* — Is.10
f3 =6 = x0)* + (v — y9)> — I
fir=v (5 —x6)* + (03 — y6)* — 36
S5 = = x10)% + (3 = y10)* = .10
fo =6 = x10)* + (0% = ¥10)* = lo.10

(34)

The next steps from Figs. 8(d)-8(k) use the same logic: if two
joints are solved and one unknown joint connects to these two
joints, this unknown joint can be solved through arc intersection.
Table 1 shows the details.

Solving the positions of the joints is in the positional analysis
stage, where the actual input 6 45 is given. Iteratively solving
all these steps with different input values gives the path of all
joints as shown in Fig. 9.

Complexity Analysis: In the decomposition phase, there are five
steps that use dyadic decomposition with an angle constraint respec-
tively (js, j1, jo, j7, and jg), one step that uses dyadic decomposition
without the angle constraint (j;), and one step that needs to solving
for three joints. For simplicity, we use C, and C, to represent the

()

Fig. 10 All nine combinations of RR, PR, RP, and PP dyads are displayed. All nine mecha-
nisms can be simulated successfully: (a) RRRR, (b) RRRP, (c) RRPR, (d) RRPP, (e) RPPR,

() RPRP, (g) PRRP, (h) RPPP, and (i) PRPP.

Journal of Mechanical Design

JUNE 2024, Vol. 146 / 063302-9

2 = 3 2 7 3
28 5
{ D, (g x:
4 6 5 4 6)
10
Fig. 11 (a) The multi-slot mechanism and (b) the interpretation

of such a mechanism. The constraining joints and constraining
links are not displayed for visual clarity.

Fig. 12 This millipede-like mechanism can only be solved by an
optimization method, and all movable joints have to be solved all
atonce. I, ~ I5, Is together with the actuator and link I5, and I7 ~ 11
are the “leg” links. Link I13 ~ 54 are the “body” links. Link I is
the ground link.

time constants for the arc intersection solver and Newton’s solver
(regardless of which one), respectively, i.e.,

C = { C, If the arc intersection is used for the i-th step
;=

C, If a Newton solver is used for the i-th step (35)

According to Eq. (30), the structural complexity is

QR'X3%X5+2'X2)XC, + (2% 3> X6 C, =34C, + 216C,

7.2 Example 2: Mechanisms With RR, RP, PR, and PP
Links. With the reinterpretation of prismatic joints, our algorithm
can simulate all combinations of RR, RP, PR, and PP links,
whether fixed or moving; see Fig. 10. Notably, a true slider in a
slot is represented by two joints. This is how a prismatic joint is
drawn in mMoTIONGEN. Comparatively, the three-joint relationship
for a slot joint and two end joints is equivalent to an RP link.

7.3 Example 3: A Multi-Slot Mechanism. Our algorithm
supports moving slots and their combinations as well. Furthermore,
a slot can be embedded in other slots. An example is shown in
Fig. 11. For this mechanism, jg in the right figure shows that
when the reinterpreted far joints (jo, jio, and jj;) are avoidably
placed too close to the two end joints, the resulting path is curved
and incurs large approximation error.

7.4 Example 4: Extremely Complex Structure. In this
example, we present a complex kinematic structure, which requires

063302-10 / Vol. 146, JUNE 2024

Fig. 13 A pantograph machine

Table 2 This table shows the statics of mechanisms

Estimated structural Time

Mechanism complexity (# of simulated states)
RRRR 10 C, ~4ms (360)
RRRP 26 C, ~4ms (90)
RRPR 30 C, ~4ms (149)
RRPP 46 C, ~4ms (81)
RPPR 50 C, ~3ms (14)
RPRP 46 C, ~4ms (33)
PRRP 44 C, ~5ms (50)
RPPP 52 C,+216 C, ~10ms (90) for NR
PRPP in Fig. 10 60 C, ~5ms (93)
Multi-slot in 22 C,+216 C, ~30ms (360) for both NR
Fig. 11 and LM
Millipede in 17,576 C, 400 ms (122) for NR
Fig. 12 200 ms (122) for LM
Pantograph in 26 C, 60 ms (14,400)
Fig. 13

Note: The second column is computed according to Eq. (31). Here NR and
LM represent Newton—Raphson and Levenberg—Marquardt algorithm,
respectively. The simulation is done in MOTIONGEN and is coded using
JAVASCRIPT.

that all the moving joints are solved simultaneously. Figure 12
shows such a mechanism, where there are 12 “legs” that connect
with the ground and 12 serial links that each connect two legs
one after another. In this case, all the distance constraints (links)
and all the angle constraints (the actuator between /g and link /»5)
need to be accounted for in the system of equations in order to
solve for positions of movable joints. Additionally, removing any
moving link will result in an under-constrained system. Therefore,
this system cannot be further decomposed. Furthermore, this
example also shows that an actuator can be placed on a moving
joint and that an Assur group can be an infinite group because
there can be n number of legs in a certain subassembly.

7.5 Example 5: Extremely Large Number of States. Panto-
graphs are harmonic graphs that use electric motors and links to
move a pen to create artistic drawings. Figure 13 is an example
of such a machine. This mechanism is a rotating two-DOF
five-bar mechanism with revolute joints only, where the path of js
is a long curve. This case is a simple system (only the arc intersec-
tion method is needed). However, it has many states (i.e., a big s in
Eq. (30)). Therefore, the simulation time is comparatively long.

7.6 Time Complexity Analysis. Table 2 presents the time
complexity statistics for the mechanisms demonstrated in Secs.
7.2—-17.5. Again, for simplicity, we use C, and C,, to represent the
time constants for the arc intersection solver and Newton’s solver
(regardless of which one), respectively.

Transactions of the ASME

From this table, it is clear that when a mechanism can be solved
with the arc intersection solver only, the time to compute is short,
usually less than 10ms. The outlier is the Pantograph machine,
which has a comparatively much larger number of states. If an
optimization-based solver is used, the computation time is always
more than 10 ms. Furthermore, its path is not long because the mil-
lipede structure is mechanically inefficient. However, it takes more
than 200 ms for this small number of states.

We also tested the speed difference between the arc intersection
solver and Newton’s solvers for the same question (system of two/
three equations). For the pantograph machine in Fig. 13, the LM
takes around 1750 ms to finish, and the Newton—Raphson solver
takes around 1450 ms to complete, compared to 60 ms for the arc
intersection solver.

8 Conclusions

In this paper, we have introduced a simulation algorithm that
reinterprets prismatic joints in planar linkage mechanisms as a com-
bination of links and revolute joints. We provided representations of
the modified mechanisms and showed that there are only two
methods needed to perform positional analysis of any planar mech-
anism. One of the methods, dyadic decomposition is computation-
ally efficient, but can perform simulation only on relatively simpler
mechanisms, while the optimization-based method works in all of
the other cases. Both of the methods leverage a unified form of geo-
metric and actuation constraints to find the unknown positions of
moving joints, while the error incurred in approximating prismatic
elements with revolute joints and links is user-controllable. Addi-
tionally, this paper presented expressions for estimating simulation
time and structural complexity based on mobility analysis. Several
examples demonstrated the algorithm’s efficiency and effectiveness
in simulating mechanisms with various joint types and actuators.
Moreover, this work highlights the conversion potential of Assur
groups from mixed revolute joints and prismatic joints to exclu-
sively revolute joints. Future extensions of this work include simu-
lation of one and multi-degrees-of-freedom spatial and spherical
mechanisms.

Acknowledgment

This work has been financially supported by the National Science
Foundation under research grant STTR phase II #2126882 to
co-author and Co-PI Purwar who also holds stocks in Mechanismic
Inc. The research findings included in this publication may or may
not necessarily relate to the interests of Mechanismic Inc. The terms
of this arrangement have been reviewed and approved by Stony
Brook University in accordance with its policy on objectivity in
research.

All findings and results presented in this paper are those of the
authors and do not represent those of the funding agencies.

Data Availability Statement

The datasets generated and supporting the findings of this article
are obtainable from the corresponding author upon reasonable
request.

References

[1] Deshpande, S., and Purwar, A., 2019, “A Machine Learning Approach to
Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages,” ASME
J. Comput. Inf. Sci. Eng., 19(2), p. 021004.

[2] Deshpande, S., and Purwar, A., 2019, “Computational Creativity Via Assisted
Variational Synthesis of Mechanisms Using Deep Generative Models,” ASME
J. Mech. Des., 141(12), p. 121402.

[3] Deshpande, S., and Purwar, A., 2020, “An Image-Based Approach to
Variational Path Synthesis of Linkages,” ASME J. Comput. Inf. Sci. Eng.,
21(2), p. 021005.

[4] Nobari, A. H., Srivastava, A., Gutfreund, D., and Ahmed, F., 2022, "LINKS: A
Dataset of a Hundred Million Planar Linkage Mechanisms for Data-Driven

Journal of Mechanical Design

Kinematic Design,” Volume 3A: 48th Design Automation Conference (DAC),
St. Louis, MO, Aug. 14-17, American Society of Mechanical Engineers, pp.
1-14.

[5] Regenwetter, L., Nobari, A. H., and Ahmed, F., 2022, “Deep Generative Models
in Engineering Design: A Review,” ASME J. Mech. Des., 144(7), p. 071704.

[6] Yu, S.-C., Chang, Y., and Lee, J.-J., 2022, “A Generative Model for Path
Synthesis of Four-Bar Linkages Via Uniform Sampling Dataset,” Proc. Inst.
Mech. Eng., Part C: J. Mech. Eng. Sci., 237(4), p. 095440622211237.

[7] Vermeer, K., Kuppens, R., and Herder, J., 2018, “Kinematic Synthesis Using
Reinforcement Learning,” Volume 2A: 44th Design Automation Conference,
Quebec, Canada, Aug. 26-29, American Society of Mechanical Engineers, pp.
1-12.

[8] Sharma, S., and Purwar, A., 2022, “A Machine Learning Approach to Solve the
Alt-Burmester Problem for Synthesis of Defect-Free Spatial Mechanisms,”
ASME J. Comput. Inf. Sci. Eng., 22(2), p. 021003.

[9] Khan, N., Ullah, 1., and Al-Grafi, M., 2015, “Dimensional Synthesis of
Mechanical Linkages Using Artificial Neural Networks and Fourier
Descriptors,” Mech. Sci., 6(1), pp. 29-34.

[10] Purwar, A., and Chakraborty, N., 2023, “Deep Learning-Driven Design of Robot
Mechanisms,” ASME J. Comput. Inf. Sci. Eng., 23(6), p. 060811.

[11] Erdman, A., and Gustafson, J., 1977, LINCAGES: Linkage INteractive Computer
Analysis and Graphically Enhanced Synthesis Packages, Technical Report.

[12] Erdman, A. G., and Riley, D., 1981, ”Computer-Aided Linkage Design Using the
Lincages Package,” ASME Design Engineering Technical Conferences, Paper
No. 81-DET-121.

[13] Rubel, A. J., and Kaufman, R. E., 1977, “Kinsyn III: A New Human-Engineered
System for Interactive Computer-Aided Design of Planar Linkages,” ASME
J. Eng. Ind., 99(2), pp. 440-448.

[14] Kihonge, J., Vance, J., and Larochelle, P., 2001, ”Spatial Mechanism Design in
Virtual Reality With Networking,” ASME 2001 Design Engineering Technical
Conferences, Pittsburgh, PA, Sept. 9-12, pp. 1-8.

[15] Larochelle, P., 1998, Spades: Software for Synthesizing Spatial 4C Linkages,”
CD-ROM Proceedings of the ASME DETC’98, Paper No. DETC98/Mech-5889.

[16] Larochelle, P., Dooley, J., Murray, A., and McCarthy, J. M., 1993, "SPHINX:
Software for Synthesizing Spherical 4R Mechanisms,” Proceedings of the 1993
NSF Design and Manufacturing Systems Conference, Charlotte, NC, Vol. 1,
pp. 607-611.

[17] Ruth, D., and McCarthy, J., 1997, ”Sphinxpc: An Implementation of Four
Position Synthesis for Planar and Spherical 4R Linkages,” ASME Design
Engineering Technical Conferences, Sacramento, CA, Sept. 14-17.

[18] Tse, D., and Larochelle, P., 1999, Osiris: A New Generation Spherical and
Spatial Mechanism CAD Program,” Florida Conference on Recent
Advancements in Robotics, Gainesville, FL, Apr. 29-30.

[19] Su, H.-J., Collins, C., and McCarthy, J., 2002, ”An Extensible Java Applet for
Spatial Linkage Synthesis,” ASME International Design Engineering Technical
Conferences, Montreal, Quebec, Canada, Sept. 29-Oct. 2, pp. 1-5.

[20] Artas Engineering, “SAM (Synthesis and Analysis of Mechanisms),” http:/www.
artas.nl/en.

[21] Associates, M. D., “MechGen, http:/mechanicaldesign101.com/mechanism-
generator-2-0/#MechGen3.

[22] Norton Associates Engineering, “Linkages,” http:/www.designofmachinery.com/
Linkage/index.html.

[23] SoftIntegration, Ch Mechanism Toolkit, http:/www.softintegration.com/
products/toolkit/mechanism/, http:/www.softintegration.com/products/toolkit/
mechanism/.

[24] Ltd., P. M., “MechDesigner,” http:/www.psmotion.com/.

[25] Laboratory of Computational Mechanics, R., Bryansk State Technical University,
“Universal Mechanism”.

[26] KCP Technologies, “The Geometer’s Sketchpad,” http:/www.dynamicgeometry.
com/.

[27] International GeoGebra Institute, “Geogebra,” http:/www.geogebra.org/cms/.

[28] Rector, D., “Linkage,” http:/blog.rectorsquid.com/linkage-mechanism-designer-
and-simulator/.

[29] Campbell, M., “Planar Mechanism Kinematic Simulator,” http:/design.engr.
oregonstate.edu/pmksintro.html.

[30] Trevor Dowd, H. Z., Robert Dutile, “PMKS+,” https:/pmksplus.mech.website/,
Accessed October 16, 2022.

[31] Petuya, V., Macho, E., Altuzarra, O., and Pinto, C., 2011, “Educational Software
Tools for the Kinematic Analysis of Mechanisms,” Comp. Appl. Eng. Edu., 6(4),
pp. 261-266.

[32] Simionescu, P.A., 2016, "MeKin2D: Suite for Planar Mechanism Kinematics,”
Volume 5B: 40th Mechanisms and Robotics Conference of International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, p. vOSBT07A083.

[33] Simionescu, P., 2004, “Enhancing Programming Skills to Engineering Students
Using MeKin2D Modular Kinematics Subroutines”.

[34] Schmidt, P., and Lax, P., 2018, “Use of Computer Coding to Teach Design in a
Mechanics Course,” Resulting in an Implementation of a Kinematic Mechanism
Design Tool Using PYTHON.

[35] Erdman, A. G., and Sandor, G. N., 1991, Mechanism Design: Analysis and
Synthesis, Vol. 1, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ.

[36] Hain, K., 1967, Applied Kinematics, McGraw Hill, New York.

[37] Dhingra, A. K., Almadi, A. N., and Kohli, D., 1999, “A Grébner-Sylvester Hybrid
Method for Closed-Form Displacement Analysis of Mechanisms,” ASME
J. Mech. Des., 122(4), pp. 431-438.

JUNE 2024, Vol. 146 / 063302-11

http://dx.doi.org/10.1115/1.4042325
http://dx.doi.org/10.1115/1.4042325
http://dx.doi.org/10.1115/1.4044396
http://dx.doi.org/10.1115/1.4044396
http://dx.doi.org/10.1115/1.4048422
http://dx.doi.org/10.1115/1.4053859
http://dx.doi.org/10.1115/1.4051913
http://dx.doi.org/10.5194/ms-6-29-2015
http://dx.doi.org/10.1115/1.4064059
http://dx.doi.org/10.1115/1.3439257
http://dx.doi.org/10.1115/1.3439257
http://www.artas.nl/en
http://www.artas.nl/en
http://www.artas.nl/en
http://mechanicaldesign101.com/mechanismgenerator-2-0/#MechGen3
http://mechanicaldesign101.com/mechanismgenerator-2-0/#MechGen3
http://mechanicaldesign101.com/mechanismgenerator-2-0/#MechGen3
http://mechanicaldesign101.com/mechanismgenerator-2-0/#MechGen3
http://mechanicaldesign101.com/mechanismgenerator-2-0/#MechGen3
http://www.designofmachinery.com/Linkage/index.html
http://www.designofmachinery.com/Linkage/index.html
http://www.designofmachinery.com/Linkage/index.html
http://www.softintegration.com/products/toolkit/mechanism/
http://www.softintegration.com/products/toolkit/mechanism/
http://www.softintegration.com/products/toolkit/mechanism/
http://www.softintegration.com/products/toolkit/mechanism/
http://www.softintegration.com/products/toolkit/mechanism/
http://www.softintegration.com/products/toolkit/mechanism/
http://www.psmotion.com/
http://www.psmotion.com/
http://www.dynamicgeometry.com/
http://www.dynamicgeometry.com/
http://www.dynamicgeometry.com/
http://www.geogebra.org/cms/
http://www.geogebra.org/cms/
http://blog.rectorsquid.com/linkage-mechanism-designer-and-simulator/
http://blog.rectorsquid.com/linkage-mechanism-designer-and-simulator/
http://blog.rectorsquid.com/linkage-mechanism-designer-and-simulator/
http://blog.rectorsquid.com/linkage-mechanism-designer-and-simulator/
http://design.engr.oregonstate.edu/pmksintro.html
http://design.engr.oregonstate.edu/pmksintro.html
http://design.engr.oregonstate.edu/pmksintro.html
https://pmksplus.mech.website/
https://pmksplus.mech.website/
http://dx.doi.org/10.1115/1.1290395
http://dx.doi.org/10.1115/1.1290395

[38] Wampler, C. W., 2000, “Solving the Kinematics of Planar Mechanisms by Dixon
Determinant and a Complex-Plane Formulation,” ASME J. Mech. Des., 123(3),
pp. 382-387.

[39] Wampler, C. W., 1999, “Solving the Kinematics of Planar Mechanisms,” ASME
J. Mech. Des., 121(3), pp. 387-391.

[40] Nielsen, J., and Roth, B., 1999, “On the Kinematic Analysis of Robotic
Mechanisms,” Int. J. Rob. Res., 18(12), pp. 1147-1160.

[41] Herndndez, A., and Petuya, V., 2004, “Position Analysis of Planar Mechanisms
With R-Pairs Using a Geometrical-Iterative Method,” Mech. Mach. Theory,
39(2), pp. 133-152.

[42] Javier Garcia de Jalon, E. B., 2001, Kinematic and Dynamic Simulation of
Multibody Systems-The Real-Time Challenge, Springer-Verlag, New York.

[43] Ait-Aoudia, S., Jegou, R., and Michelucci, D., 1993, Reduction of Constraint
Systems, Compugraphics, Alvor, Algarve, Portugal, pp. 331-340.

[44] Ait-Aoudia, S., and Foufou, S., 2010, “A 2D Geometric Constraint Solver Using a
Graph Reduction Method,” Adv. Eng. Soft., 41(10-11), pp. 1187-1194.

[45] Bouma, W., Fudos, 1., Hoffmann, C., Cai, J., and Paige, R., 1995, “Geometric
Constraint Solver,” Comput. Aided Des., 27(6), pp. 487-501.

063302-12 / Vol. 146, JUNE 2024

[46] Fudos, 1., and Hoffmann, C., 2004, “A Graph-Constructive Approach to Solving
Systems of Geometric Constraints,” ACM Trans. Graph., 16(2), pp. 179-216.

[47] Simionescu, P., 2014, Computer-Aided Graphing and Simulation Tools for
AutoCAD Users.

[48] Tsai, L., 2001, Mechanism Design: Enumeration of Kinematic Structures
According to Function, CRC Press LLC, Boca Raton, FL.

[49] Yamamoto, T., Iwatsuki, N., and Ikeda, I., 2020, “Automated Kinematic Analysis
of Closed-Loop Planar Link Mechanisms,” Machines, 8(3).

[50] Moré, J. J., 1978, The Levenberg-Marquardt Algorithm: Implementation and
Theory, G. A. Watson, ed., Numerical Analysis, Springer, Berlin, Heidelberg,
pp. 105-116.

[51] Galletti, C., and Giannotti, E., 2009, Assur’s-Groups-Based Simulation for
Teaching Kinematics of Planar Linkages.

[52] Galletti, C. U., 1979, “On the Position Analysis of Assur’s Groups of High Class,”
Meccanica, 14(1), pp. 6-10.

[53] Gogu, G., 2005, “Chebychev—Griibler—Kutzbach’s Criterion for Mobility
Calculation of Multi-Loop Mechanisms Revisited Via Theory of Linear
Transformations,” Eur. J. Mech. - A/Solids, 24(3), pp. 427-441.

Transactions of the ASME

http://dx.doi.org/10.1115/1.1372192
http://dx.doi.org/10.1115/1.2829473
http://dx.doi.org/10.1115/1.2829473
http://dx.doi.org/10.1177/02783649922067771
http://dx.doi.org/10.1016/j.advengsoft.2010.07.008
http://dx.doi.org/10.1016/0010-4485(94)00013-4
http://dx.doi.org/10.3390/machines8030041
http://dx.doi.org/10.1007/BF02134963
http://dx.doi.org/10.1016/j.euromechsol.2004.12.003
http://dx.doi.org/10.1016/j.euromechsol.2004.12.003

	1 Introduction
	2 General Matrix Representation of Linkages
	3 Reinterpretation of Slots
	4 System of Equations
	5 Solvers
	6 Analysis of System and Cost
	7 Case Analysis
	7.1 Example 1: A Seven-Bar Mechanism With a Moving Slot and Revolute and Prismatic Joints
	7.2 Example 2: Mechanisms With RR, RP, PR, and PP Links
	7.3 Example 3: A Multi-Slot Mechanism
	7.4 Example 4: Extremely Complex Structure
	7.5 Example 5: Extremely Large Number of States
	7.6 Time Complexity Analysis

	8 Conclusions
	 Acknowledgment
	 Data Availability Statement
	 References

