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This paper presents a novel real-time kinematic simulation algorithm for planar N-bar
linkage mechanisms, both single- and multi-degrees-of-freedom, comprising revolute
and/or prismatic joints and actuators. A key feature of this algorithm is a reinterpretation
technique that transforms prismatic elements into a combination of revolute joint and links.
This gives rise to a unified system of geometric constraints and a general-purpose solver
which adapts to the complexity of the mechanism. The solver requires only two types of
methods—fast dyadic decomposition and relatively slower optimization-based—to simulate
all types of planar mechanisms. From an implementation point of view, this algorithm sim-
plifies programming without requiring handling of different types of mechanisms. This ver-
satile algorithm can handle serial, parallel, and hybrid planar mechanisms with varying
degrees-of-freedom and joint types. Additionally, this paper presents an estimation of simu-
lation time and structural complexity, shedding light on computational demands. Demon-
strative examples showcase the practicality of this method. [DOI: 10.1115/1.4064132]
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1 Introduction
The kinematic simulation of multi-body systems is crucial for the

rapid design and evaluation of mechanisms in computer-aided
design (CAD) systems. Faster simulation algorithms can signifi-
cantly reduce the time required for mechanism design and enable
the creation of high-quality datasets for machine learning research,
which has garnered interest in recent years [1–9]. A recent position
paper by Purwar and Chakraborty [10] emphasizes the importance
of generating high-quality datasets for designing robot mechanisms
that rely on robust and fast kinematic simulation. Planar linkage
mechanisms are widely utilized in products due to their practicality,
simplicity, and performance characteristics. While several commer-
cially available CAD systems have general-purpose multi-body
dynamics capabilities, the development of stand-alone kinematic
simulation programs with comprehensive capabilities has been
limited, with most software applications originating from academic
research groups. Examples of such programs include LINCAGES

[11,12], KINSYN III [13], Kihonge et al. [14], Spades [15], Sphinx
[16], Sphinxpc [17], Osiris [18], and Synthetica [19]. Although
these projects are no longer active, a few notable commercially
available systems include SAM [20], MechGen [21], Linkages
[22], Ch Mechanism Toolkit [23], MechDesigner [24], and Univer-
sal Mechanism [25]. Geometer’s Sketchpad [26] and Geogebra

[27], which are primarily geometry tools, have also been used for
simulating mechanisms. Several other kinematic simulation tools,
such as Linkage Mechanism Simulator [28], PMKS+ [29,30],
GIM [31], Simionescu [32,33], and Schmidt and Lax [34],
provide varying levels of capabilities and have filled a critical
need for the mechanism simulation. This paper presents a novel
simulation algorithm implemented in a web-based kinematic
design and simulation application called MOTIONGEN,2 which pro-
vides real-time simulation of N-bar planar linkage mechanisms
with an arbitrary number of revolute and prismatic joints, rotary
and linear actuators, and topological structures. Real-time simula-
tion requires prompt feedback and data updates with low latency.
While there are no rigid rules for the time to update, it is generally
expected that this updating will happen quickly and typically at a
rate that mimics real-world time, such as seconds or milliseconds
per simulation time-step.
Kinematic simulation of planar linkages requires computing the

unknown positions of moving joints, which leads to solving a set
of geometric constraints—a system of equations constructed from
the mechanism. Generally, there are two main issues in reducing
the simulation time. The first is to create a fast computation
method, or solver, to solve a specific set of geometric constraints.
One of the simplest analytical methods for planar linkages is the
dyadic decomposition [35,36], which solves one planar joint posi-
tion, or two variables (x and y), at a time. While this works for
simpler mechanisms, researchers have developed other methods
for handling more complex structures. Dhingra et al. [37] employed
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symbolic computation and followed the computation of a Gröbner
basis with a solution based on a Sylvester-type determinant. On
the other hand, Wampler [38,39] proposed a combination of the
Dixon determinant procedure from Nielsen and Roth [40] with a
complex plane formulation. He presented a method for formulating
kinematic equations in complex planes using isotropic coordinates,
which results in loop equations in a simplified form that can be
solved using the Sylvester-type formula. Hernández and Petuya
[41] have introduced a novel geometric iterative (GI) technique
for solving the position problem with only revolute joints, which
does not require an initial guess, as in the case of local optimization
methods. However, the Newton–Raphson (NR) method is still a
popular choice for solving systems of nonlinear equations [42]
due to its numerical search for a particular solution, with quadratic
convergence in the neighborhood of the solution.
The second issue is the identification and joint position analysis

of subassemblies within a mechanism using a divide-and-conquer
approach. This technique involves identifying subsets within the
geometric constraints of the system, which can be used to solve
some of the unknown variables, or unknown joints. The subset
can then be substituted back into the system to solve the remaining
unknown variables. This approach enables the solution of a set of
kinematic constraints to be broken down into a sequence of solu-
tions of the kinematic constraint subsets, a process that typically
takes less time than solving the entire set of constraints together.
This process of identifying subsets is also referred to as the decom-
position of the system. Researchers have proposed various methods
for implementing the divide-and-conquer approach in system anal-
ysis. Ait-Aoudia et al. [43,44] demonstrated a decomposition
method that utilizes bipartite graphs under-laid by systems of geo-
metric constraint equations. Bouma et al. [45] and Fudos and Hoff-
mann [46] proposed a graph-theory-based method to reduce the
number of variables that need to be solved in each step. Addition-
ally, Fudos and Hoffmann developed a phase called the reduction
of the system that simplifies the system of equations by merging
fixed links together into a single link.
Most simulation software apply one or more of these aforemen-

tioned techniques. For example, LINKAGES [22] uses the dyadic
decomposition extensively, while PMKS/PMKS+ [29,30] and GIM

[31] use the GI technique. AUTOCAD based simulation [47] and
MEKIN2D [32] use the modular approach to directly identify the sub-
assemblies with a saved Assur group library.
Compared to these simulation packages, our method’s originality

lies in reducing all geometric constraints to a unified form and con-
verting all elements of a mechanism into revolute only joints and
links, thereby allowing us to require only two types of solvers for
all degrees-of-freedom (DOF) planar N-bar mechanisms. We also
developed a method to analyze the complexity of a certain mecha-
nism. Specifically,

(1) The prismatic joints and actuators are converted to a combi-
nations of revolute joints and links. This novel reinterpreta-
tion means that an additional solver for the prismatic joint
is not necessary. Furthermore, this also means a simpler opti-
mization function to program.

(2) Our algorithm requires only two solvers. One provides the
fastest computation speed possible using dyadic decomposi-
tion and the other is the optimization-based method for
solving complex subassemblies.

(3) This algorithm also allows arbitrary placement of actuators
and arbitrary combinations of revolute joints and prismatic
joints.

(4) A mobility analysis method is presented to analyze the
system of equations, which includes the reduction phase
(static link merge) and the decomposition phase (dynamic
and static link merge).

A flowchart of the complete simulation process can be seen in
Fig. 1. The details of various steps in this figure are described in
the following sections. Section 2 presents a matrix representation
of the kinematic structures. Following that, Sec. 3 presents the

reinterpretation trick and a derivation of the accuracy error incurred
during the reinterpretation. Next, the general formulation of the
system of equations is presented in Sec. 4. Then, Sec. 5 provides
an overview of the two types of solvers. After that, the analysis
of the kinematic system, an estimate of the time cost, and a
measure of the structural complexity of mechanisms are presented
in Sec. 6. Finally, we present a few typical example mechanisms
in Sec. 7, which seek to illustrate the overall method.
In summary, the main contributions of this work are in (1) pro-

posing a reinterpretation trick to reduce all geometric constraints
to a single type, (2) topological modification of N-bar mechanisms
to only include revolute joints, (3) formulation of a general-purpose
solver which can automatically select the fastest method for com-
puting joint positions, and (4) implementation in a cross-platform
browser-based software to satisfy the needs of users with varied
expertise.

2 General Matrix Representation of Linkages
The mechanisms in this paper are described by their topological

configurations. To fully represent a planar linkage mechanism, four
basic components are considered:

(1) Joints: Joints in this work are considered as points of interest
characterized by their positional variables, denoted as xp and
yp whether or not there are two links connected at that joint.
Each joint is represented by jp, where p is the joint identifier.
Coupler or tracer points, which are points only on one link,
are also considered joints since they can potentially function
as joints. They are not distinguished from joints shared by
multiple links.

(2) Links: A link is a rigid body consisting of one or more joints.
The relative positions of the joints in a link remain constant
throughout the mechanism’s operation. A link can be binary,
containing two joints, or n-ary, containing n specified
number of joints. Additionally, a binary link with joints i
and j can be denoted as li,j.

(3) Slots: Slots are assumed to be straight and finite constraints
placed on binary links to represent linear constraints. A

Fig. 1 The complete simulation process
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slot is defined by its two endpoint joints, which determine the
slot axis.

(4) Actuators: Actuators introduce changes to the mechanism by
varying either the angle or the length. There are two types of
actuators: rotary and linear. An actuator is defined by its type
and three joints; see Fig. 2 for an illustration.

Throughout this paper, subscripts are used to represent matrix
elements, with indexing starting from 0. For example, Ki,j refers
to the element in the ith row and jth column of the matrix K. If a
single number represents a link, it indicates the index of that link.
For instance, ln represents the (n+ 1)th link.
The relationship between links and joints can be represented

using the incidence matrix B as mentioned in Tsai’s book [48].
This matrix is also known as the LJ-matrix [49]. Its definition is
shown in Eq. (1). The two subscripts mean this notation corre-
sponds to the ith row and the jth column in the matrix.

Bi,j =
1, if link i contains joint j
0, otherwise

{
(1)

Then, two vectors are used to save the property of the joints and
the links, respectively. The link property vector is a column vector,
while the joint vector is a row vector. These two vectors are defined
by Eqs. (2) and (3), respectively.

Li,0 = li =
1, if link i is a ground link

0, if link i is a moving link

{
(2)

J0,i = ji =
1, if joint i is a ground joint

0, otherwise

{
(3)

The arrangement of the link property vector and joint property
vector as described allows them to stack with the incidence
matrix B in a specific format. The stacked format is as follows:

J − vector
( )

1×n

L − vector
( )

l×1 B −matrix
( )

l×n

Next, the distance matrix D to save the distance between any two
joints is defined in Eq. (4) as

Di,j =
li,j, i ≠ j
0, i = j

{
(4)

The reduced and unweighted form of the matrix D is denoted as
matrix T, as defined in Eq. (5). This format is used during the ini-
tialization of distances. In the initial state, the matrix D can be cal-
culated according to Eq. (6). Moreover, the joint property vector J
can be saved in the diagonal of T for space efficiency concerns.

Ti,j =
1, if Bk,i = 1 and Bk,j = 1, excluding i = j

0, otherwise

{
(5)

Di,j =
����������������������
(xi − xj)2 + (yi − yj)2

√
· Ti,j (6)

Next, the slots in the mechanism are stored in the slot matrix S.
The inclusion of a slot constraint relationship depends on the pres-
ence of a joint within the slot, referred to as a “slot joint.” If there are

a total of m slot joints, the slot matrix S is defined according to Eq.
(7). Before the analysis of the kinematic system phase, each slot is
converted into a combination of links and joints.

S =

p0 q0 r0

..

. ..
. ..

.

pm−1 qm−1 rm−1

⎡
⎢⎣

⎤
⎥⎦

m×3

(7)

Next, we discuss a representation of rotary and linear actuators.
Figure 2 illustrates these two types of actuators. A rotary actuator
constrains the angle between two links. More specifically, it gives
a constraint relationship between the common joint and two joints
in the two links. Next, a linear actuator constrains the slope (slot
axis) and the distance between the output joint (slot joint) and
one of the end joints. All a number of actuators are saved in a a×
4 matrix according to Eq. (8). In the I matrix, the first three
columns specify the joint indices and the last column specifies
their corresponding actuator type. Here, R denotes a rotary actuator,
while P stands for a linear actuator, with P being an abbreviation for
prismatic.

I =

i j k R

..

. ..
. ..

. ..
.

p q r P

⎡
⎢⎣

⎤
⎥⎦

a×4

(8)

It should be noted that the joints are order sensitive. For example,
for the rotary actuator αi,j,k shown in the first row of I in Eq. (8), the
angle constraint is between vector �v j,i and �v j,k . Furthermore, we use
the cross-product value to represent this constraint so that the angle
is not flipped. For the linear actuator αp,q,r in the last row of I, the
direction is defined by vector �vp,r , and the output distance is
defined by the length of �vp,q. Figure 2 follows this description.
Last, it should be pointed out that each actuator brings one

dynamic link (a similar concept is the active pair in Ref. [49]).
For the rotary actuator αi,j,k, when the link lengths of li,j and lj,k
and the input angle are given, li,k is the dynamic link and can be
computed according to the law of cosine. For the linear actuator
αp,q,r, lp,q is the dynamic link, and the length is the input itself.
Storage of Simulation Input and Results: A state corresponds

to a specific set of inputs and the number of inputs is unchanged
throughout the simulation. All the state input can be stacked in a
state matrix V according to Eq. (9). Here αi is the (i− 1)th actuator
in matrix I. In the jth state, its input is αi−1(tj−1). When there are s
number of states successfully simulated, the size of V is a× s.

V =

s0 s1 · · · ss−1
α0(t0) α0(t1) · · · α0(ts−1)
α1(t0) α1(t1) · · · α1(ts−1)
α2(t0) α2(t1) · · · α2(ts−1)

..

. ..
. . .

. ..
.

αa−1(t0) αa−1(t1) · · · αa−1(ts−1)

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

a×s

(9)

Correspondingly, the simulation result is the joint positions,
which can be saved in a position tensor P defined in Eq. (10).

P = [P0, P1, P2, . . . , Ps−1]s×n×2 (10)

For the kth state, the joint positions can be saved in a slice of the P
tensor according to Eq. (11).

Pk−1 =

j0
j1
j2

..

.

jn−1

x y
x0 y0
x1 y1
x2 y2

..

. ..
.

xn yn

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

n×2

(11)

In conclusion, generally, for a mechanism M, if there are l
number of links, a number of actuators, n number of joints, m

Fig. 2 The letters denote the joints. For the rotary actuator (left),
li,k is the corresponding dynamic link, and for the linear actuator
(right), lp,q is the corresponding dynamic link.
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number of slot relationships, and s number of states that are success-
fully simulated, then all these can be stored in a compact format
denoted in Eq. (12). This representation is a concise saving struc-
ture: in brief, matrices J, L, B, D, S, and I save all types of con-
straints. Matrices V and P store the simulation results of all states
for input and the joint positions, respectively. Furthermore, the B
matrix is a standard representation of kinematic structures [48]:
this means that graph isomorphism detection and mobility analysis
can be readily applied to the system.

M =

J : J1×n
L : Ll×1
B :Bl×n

D :Dn×n

S : Sm×3
I : Ia×4
V :Va×s

P :Ps×n×2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

As an example, the matrices to save the geometric constraints for
a typical RRRR mechanism shown in Fig. 3 are as follows. First,
according to this figure, the joint property vector J, and the link
property vector L are, respectively,

J =
j0 j1 j2 j3 j4
1 0 1 0 0
( ) and LT =

l0 l1 l2 l3
1 0 0 0
( )

There are no slots in an RRRR mechanism, meaning the Smatrix
is empty. Additionally, there is only one actuator in this mechanism.
Therefore, the input matrix I is

I = 2 0 1 R
[ ]

The B matrix is

B =

l0
l1
l2
l3

j0 j1 j2 j3 j4
1 0 1 0 0
1 1 0 0 0
0 0 1 1 0
0 1 0 1 1

⎛
⎜⎜⎝

⎞
⎟⎟⎠

And finally, the T matrix is shown below. Additionally, the D
matrix can be computed according to Eq. (6) and the initial joint
positions.

T =

j0
j1
j2
j3
j4

j0 j1 j2 j3 j4
0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

5×5

3 Reinterpretation of Slots
The idea of reinterpreting prismatic joints as revolute joints arises

from the fact that PR and RP links can be considered as sufficiently
large RR links with one of their joints located either proximate or

distal from the workspace of the mechanism. In the case of a PR
link with a fixed line, the RR link can be chosen to be large
enough within a desired accuracy with a distal fixed pivot while
for the RP link with a fixed pivot, the link length of the approxi-
mated RR link should be large enough, but this time with the
fixed pivot proximate. By using homogeneous coordinates, a
planar joint position is represented in a projective plane as (x, y,
w) with its position in Euclidean space given by (x/w, y/w). By
setting the homogenizing factor w to a small value, the joint is
moved far away from the origin (0, 0) and effectively converted
into a prismatic joint. In the kinematic simulation, we perform the
inverse operation by converting the prismatic joint back into revo-
lute joints and links. This allows solvers that can only handle revo-
lute joints to solve systems that include prismatic joints.
For ease of implementation and intuitive sketching, we use joints

in a slot to represent prismatic joints. Figure 4(a) shows an example
mechanism with a slot, which restricts the slot joint to a fixed-line
segment. Slots can be fixed or can be moving so as to represent
RP or PR links.
Here, the slot joint j2 performs a linear motion along the slot. A

straight line can be reinterpreted as the arc of a circle whose radius is
large enough such that the curvature is near zero. Consequently, the
straight line is represented as the arc of a circle, and the intersections
between the straight line and the arc occur at the slot’s edges (end
joints). Furthermore, the center of the circle lies on the perpendicu-
lar bisector of the straight line.
The resultant reinterpretation can be seen in Fig. 4(b). First, the

slot is removed, and a new far joint (j5, or jf) is added to the
slotted link. Then, two constraining links (l3,6 and l2,6) and a con-
straining joint (j6, or jc) are added to constrain the motion along
the straight line. These two binary links together can also be seen
as an RRR robot arm so that when the arm is stretched, the slot
joint j2 goes near j4, and when two binary links overlap, j2 goes
near j3. During simulation, the slot is removed, and the joint previ-
ously in the slot now moves along an arc. The farther the joint j5, the
flatter the arc is. Therefore, the difference between the arc and the
straight line can be controlled by changing the distance of j5 from
the two end joints j3 and j4.
The far joint position and the reinterpretation error are derived as

follows. Apropos Fig. 4(b), since the bisector is perpendicular to the
slot axis, we can compute the perpendicular unit vector as

vx = −(y4 − y3)/
������������������������
(x4 − x3)2 + (y4 − y3)2

√
vy = (x4 − x3)/

������������������������
(x4 − x3)2 + (y4 − y3)2

√
{

(13)

Fig. 4 The reinterpreted RRRPmechanism in (a) is shown in (b).
The far joint j5 (or jf) is in the far bottom-right: (a) joint notations
before the P-joint conversion and (b) joint notations after the
P-joint conversion.

Fig. 3 An example RRRR mechanism
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The intersection point pmid of the bisector and the slot axis and
correspondingly the far joint j5 are given by, respectively

xmid = (x4 + x3)/2
ymid = (y4 + y3)/2

{
→

x5 = xmid + vx · h
y5 = ymid + vy · h

{
(14)

The value of h depends on the required accuracy. In MOTIONGEN,
the value of h is set dynamically such that the error of approxima-
tion is within a threshold. The expressions below give the deviation
from the curve to the straight line. First, the distance between two
edge joints is

d =
������������������������
(x4 − x3)2 + (y4 − y3)2

√
(15)

The reinterpretation error e is measured with the distance
between the point on the arc and its corresponding point in the
straight line. At its maximum, where the slot joint is close to one
of the end joints, we have

e =

�������������
d

2

( )2

+ (h)2

√
− h (16)

which can be simplified to

(e + h)2 = e2 + h2 + 2e · h = d2

4
+ h2 (17)

Since the e2 term is extremely small compared to other terms, by
removing e2 and canceling h2 on both sides, we get

h =
d2

8e
(18)

The next to compute is the location of the constraining joint,
which connects the two constraining links and is denoted as jc (or
j6 in the figure). Computing its position requires the offsets from
the two end joints. For example, j2 should be distance o4 away
from j4 when stretched and distance o3 away from j3 when one con-
straining link is on top of the other. We can derive a set of equations
with these two additional conditions. Then, the two link lengths can
be obtained.

l3,6 + l2,6 = d − o4
l3,6 − l2,6 = o3

{
→

l3,6 =
d + o3 − o4

2

l2,6 =
d − o3 − o4

2

⎧⎪⎨
⎪⎩ (19)

With these two link lengths and the positions of j2 and j3 in the
initial state, the initial position of j6 can be computed through arc
intersection. Of course, there are usually two solutions, but both
work for the simulation, and choosing either is sufficient.
The reinterpretation changes the topological structure of

the mechanism. Therefore, the J, L, B, and D matrices will need
to be changed accordingly. Here, we show the change of B
matrix in Eq. (20) and the change of T matrix in Eq. (21). J is in
the diagonal of T, and L adds three more zeros at its end because
there are three moving links. TheDmatrix can be computed accord-
ing to Eq. (6).

(20)

(21)

4 System of Equations
When slots are converted into a combination of links and joints,

the planar mechanism has only two types of constraints. One is the
distance constraint from the links’ lengths, and the other is the angle

constraint from the rotary actuators. An n-ary link has
n(n − 1)

2
number of binary links (its two-joint sub-collections), and each of
these binary links corresponds to one specific distance constraint.
Furthermore, the actuators are reinterpreted as dynamic links,
which are also distance constraints in the system. For a binary
link lp,q, this distance constraint is written as shown in Eq. (22).
The i in the equation means it is the ith distance constraint. When
this constraint is satisfied, fi= 0.

fi =
�������������������������
(xp − xq)2 + (yp − yq)2

√
− l p,q (22)

As mentioned, we use the cross-product value to represent the
angle constraint to avoid the flipping issue. Therefore, the jth
angle constraint function between vector �vq,p and �vq,r can be
written as shown in Eq. (23). Here, αp,q,r is to specify the three
joints that define the actuator together. Similarly, when this angle
constraint is satisfied, gj= 0.

g j = (xp − xq)(yr − yq) − (xr − xq)(yp − yq) − l p,q · lq,r · sin (α p,q,r)

(23)

The system of equations to solve can be now derived accord-
ingly. The positional analysis problem is formulated as given a spe-
cific state, find the stack of variables x that satisfies f= 0. All the
states are solved one by one. Vectors x and f are shown in Eq.
(24). Here, k number of binary links and a number of rotary actu-
ators are taken into account. It is worth noting that not all binary
links need to be taken into account to solve the system because
some of them are redundant constraints and can be automatically
satisfied.

x =

xp
y p
xq
yq

..

.

xr
yr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2n×1

f(x) =

f1
f2

..

.

fk
g1

..

.

ga−1
ga

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k+a)×1

(24)

5 Solvers
We utilize two types of solvers for kinematic analysis: (1)

the analytical (arc intersection) and (2) the numerical-based
(Newton’s method). These methods are employed to handle mech-
anisms with varying complexity and optimize computational
efficiency.
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The analytical method, specifically the arc intersection method, is
highly time-efficient. However, it is not capable of solving mecha-
nisms with complex loop structures. On the other hand, the
numerical-based method, i.e., Newton’s method, can handle mech-
anisms with arbitrary complexity, but requires more computational
time compared to the arc intersection method, especially when the
number of joints increases.
We also experimented with two variations of Newton’s method

for kinematic structures when multiple joints need to be solved
simultaneously. The first variant is the NR method, which aims to
find the extremum of an overall cost function. This cost function
is iteratively computed using Eq. (25).

xt+1 ← xt − γ[HF(xt)]
−1∇F(xt), t ≥ 0, 0 ≤ γ ≤ 1 (25)

Here, F(xt)= f(xt)
Tf(xt), which is the sum of squared error (SSE).

This value is close to zero when vector x is a good numerical
approximation, which also serves as the termination of the iteration.
Term ∇F(xt) is the gradient of F(xt) and [HF(xt)] is the Hessian
matrix of F(xt).
Another variant of Newton’s method is the Levenberg–Mar-

quardt (LMA or LM) algorithm [50]. This algorithm introduces
the damping factor into the Gauss–Newton algorithm to make the
update robust. Specifically, it ensures the existence of the inverse
matrix. The updated policy for this numerical method is shown in
Eq. (26).

xt+1 ← xt − γ(JTJ + λ · diag(JTJ))−1JT f(xt) (26)

Here, the Jacobian matrix J is given by Eq. (27) and λ= 1. The
updated policy for γ is the same as the NR method.

J =

∂f1
∂xp

∂f1
∂yp

. . .
∂f1
∂xr

∂f1
∂yr

∂f2
∂xp

∂f2
∂yp

. . .
∂f2
∂xr

∂f2
∂yr

..

. ..
. . .

. ..
. ..

.

∂ga−1
∂xp

∂ga−1
∂yp

. . .
∂ga−1
∂xr

∂ga−1
∂yr

∂ga
∂xp

∂ga
∂yp

. . .
∂ga
∂xr

∂ga
∂yr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k+a)×(2n)

(27)

These two methods are both computationally expensive because
they require matrix multiplications. Furthermore, the optimization
methods take several iterations to converge. So, for the same
number of joints to solve, they are much slower compared to the
arc intersection solver. Through our experiments, we found that
LM tended to converge faster in most scenarios.

6 Analysis of System and Cost
The previous section presented a system of multi-variable

equations, which represent geometric constraints of planar mecha-
nisms. However, solving all the variables simultaneously is time-
consuming and often unnecessary. There have been several
efforts to develop different analysis algorithms to look for
optimum solving paths [43–47]. Each solution step deals with
part of the unknown variables in a given particular subassembly.
Then, the already solved variables can be substituted back into
the system to help solve the remaining variables. Generally, an anal-
ysis algorithm involves two processes. The first is the reduction of
the system. This process tries to find the link set where all members
do not change their relative positions with respect to other members;
in other words, we try to find Assur groups [51,52] within the mech-
anism. We can merge these links into one link (rigid body), reduc-
ing the number of links and simplifying the system. The second
process is the decomposition. This process starts from the ground
link/known link, and tries to find the least number of links that for-
mulate a zero DOF system; in other words, we find the smallest

possible Assur group that contains the ground link. The joints on
these links are marked to be solved in one step. As a result,
solving the joint positions on each step leads to solving all the
joint positions. Links being amenable to be merged into a rigid
body and a subassembly being a zero degrees-of-freedom system
mean the solution for the involved variables bounded. We use the
Chebychev–Grubler–Kutzbach criterion to determine the DOF of
a system [53], i.e.,

dof = 3(n − 1) − 2 · l − h (28)

where

DOF =

< 0 At least one sub-kinematic chain is over-
constrained.

= 0 Undecided if its sub-kinematic chain is
undecided; is properly constrained if
each sub-kinematic chain is properly
constrained.

>0 At least one sub-kinematic chain is under-
constrained.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

According to the description above, to ensure a specific set of
links having 0DOF, we must start the examination from the smallest
subset of this link set. In the worst-case scenario, all subsets except
the empty set and one-member sets need to be examined. This leads
to a possibly unacceptable time cost, which is one of the reasons
why some modern simulation software uses the Assur Group
library. However, the Assur Group is infinite, and the library
saves the most common kinematic assembly. As for our algorithm,
we employed the aforementioned criterion to maintain generality.
Then, the overall time cost can be divided into three parts. The

first part is the position analysis part, which depends on multiple
things, e.g., the number of states to compute, the number of steps,
and the variables to compute in these steps. The second part is
the system analysis. Finally, the third part includes all the remaining
processes because they usually take insignificant time compared to
the first two. Therefore, the overall time cost can be estimated with
Eq. (29).

Time =
∑len(steps)

i=0

(2ni)
ti · (ai + li) · Ci

( )
· s + AoS-time + Prep-time

(29)

Here ni denotes the number of joints to solve in step i and ti is
determined by the type of solver for the ith step, shown in Eq.
(30). Moreover, ai and li are the number of actuators and the
number of binary links to solve in the system of equations in step
i, respectively. Term s represents the number of states, and Ci is
the estimated time constant for the solver used in the step i. This
constant is related to the solver’s convergence speed and the time
to stack all equations in this step.

ti =
1 If the arc intersection is used for the i-th step
2 If a Newton solver is used for the i-th step

{
(30)

With the time analysis stated above, we can even use the time
cost for one state of position analysis to determine the complexity
of a certain mechanism, i.e.,

Complexity =
∑len(steps)

i=0

(2ni)
ti · (ai + li) · Ci (31)

7 Case Analysis
In this section, we present a few examples to illustrate the

working of our algorithm. The first example includes all steps of
the solving procedure for a mechanism with a combination of
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binary, ternary, quaternary links, and a moving slot connected by
revolute and prismatic joints. Then, this section will go through
several cases as subsections to discuss each aspect of this simulation
algorithm. Furthermore, in Sec. 7.6, we present the time complexity
of each of the example mechanisms.

7.1 Example 1: A Seven-Bar Mechanism With a Moving
Slot and Revolute and Prismatic Joints. Figure 5 shows the
example mechanism to be analyzed in this section. We note that
this is purely an academic example chosen to illustrate several
steps of position analysis presented earlier.
Initial Topological Structure: The topological structure for this

mechanism is given by several matrices presented earlier

B =

l0
l1
l2
l3
l4
l5
l6
l7

j0 j1 j2 j3 j4 j5 j6 j7 j8 j9
1 0 0 0 1 0 0 0 0 1
1 1 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S = 3 5 6
( )

I = 0 4 5 R
( )

J =
j0 j1 j2 j3 j4 j5 j6 j7 j8 j9
1 0 0 0 1 0 0 0 0 1
( )

LT =
j0 l1 l2 l3 l4 l5 l6 l7
1 0 0 0 0 0 0 0
( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D =

j0
j1
j2
j3
j4
j5
j6
j7
j8
j9

j0 j1 j2 j3 j4 j5 j6 j7 j8 j9
0 l0,1 l0,2 0 l0,4 0 0 0 0 l0,9
l0,1 0 l1,2 l1,3 0 0 0 0 0 0
l0,2 l1,2 0 l2,3 0 0 0 0 0 0
0 l1,3 l2,3 0 0 0 l3,6 0 0 0
l0,4 0 0 0 0 l4,5 0 0 0 l4,9
0 0 0 0 l4,5 0 0 0 0 0
0 0 0 l3,6 0 0 0 l6,7 l6,8 0
0 0 0 0 0 0 l6,7 0 l7,8 l7,9
0 0 0 0 0 0 l6,8 l7,8 0 l8,9
l0,9 0 0 0 l4,9 0 0 l7,9 l8,9 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Reinterpretation of Slot and Prismatic Joint: This step focuses
on representing a slot with a combination of revolute joints and
links. Figure 6 shows the converted mechanism and the notations
for all its elements. The new system has two more joints and
three more links. Furthermore, one of the new joints, i.e., the far

joint, is added to l5, which previously was a binary link. The topo-
logical notations for this new mechanism are as follows:

The length of the triad, l8, l9 and l10 are computed according to
Sec. 3 in the paper.
Static Link Merge: In the reduction phase, some of the links in

the mechanism can be merged, resulting in less number of links.
Furthermore, through this merge operation, two new binary links
are found, which are l0,3 and l6,9. The subscripts of the new
binary links represent the endpoint joint location of the links.
Figure 7 shows the complete process.
Decomposition of System: At the beginning of this step, the

actuator is converted into a dynamic link, which is l0,5, as shown

Fig. 5 This figure shows (a) links and (b) joint labels
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in Fig. 8(a). The input angle is θ(0,4,5), meaning it is the angle
between vector �v4,0 and �v4,5, then the link’s length is

l0,5 =
����������������������������������������
l24,5 + l24,0 − 2 × l4,0 × l4,5 × cos θ(0,4,5)

√
(32)

Following the conversion, the next step is to find the least
number of joints to solve per step, as shown in Fig. 8. The decom-
position starts from the known joints j0, j4, and j9, as shown in
Fig. 8(a).
First, in Fig. 8(b), j5 can be solved with two ground joints (j0, j4)

and two binary links l0,5 and l4,5. An actuator is within this triangle
formed by j0, j4, and j5. Therefore, a cross-product calculation is

needed. The system of equations for this step is

f1 =
������������������������
(x0 − x5)2 + (y0 − y5)2

√
− l0,5

f2 =
������������������������
(x4 − x5)2 + (y4 − y5)2

√
− l4,5

g1 = (x0 − x4)(y5 − y4) − (x5 − x4)(y0 − y4)
−l0,2 · l0,4 · sin (θ(0,4,5))

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(33)

It is worth noting that a dynamic link does not replace its corre-
sponding actuator. Instead, it is a necessary condition to satisfy the
angle constraint. Although not shown in this example, a dynamic
link can be useful sometimes to help decompose the system, i.e.,
giving more possible solving paths.
Next, in Fig. 8(c), the next solvable subassembly is a triad with

three binary links. l0,3 is a subcollection of the four-ary link

Fig. 6 This figure shows the notation of (a) joints and (b) links, respectively

Fig. 7 This figure shows the merge process of links with two different rules: (a) l6 and l7 are merged because they share more
than one joint and (b) the mobility formula shows the DOF of l1, l2, and l3 is zero, meaning they can be merged into one rigid body

Fig. 8 (a) Initial state for themechanism’s decomposition process and (b)–(h) shows the decomposition process, where the used
binary links are colored in dark/black for each step
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formed by j0, j1, j2, and j3, and l6,9 is a subcollection of the four-ary
link formed by j6, j7, j8, and j9. The known joints that are used in this
step are j0, j5, and j9 and the joints to solve are j3, j6, and j10 (the far
joint). The system of equations for this step is shown in Eq (34).

f1 =
������������������������
(x0 − x3)2 + (y0 − y3)2

√
− l0,3

f2 =
��������������������������
(x5 − x10)2 + (y5 − y10)2

√
− l5,10

f3 =
������������������������
(x6 − x9)2 + (y6 − y9)2

√
− l6,9

f4 =
������������������������
(x3 − x6)2 + (y3 − y6)2

√
− l3,6

f5 =
��������������������������
(x3 − x10)2 + (y3 − y10)2

√
− l3,10

f6 =
��������������������������
(x6 − x10)2 + (y6 − y10)2

√
− l6,10

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

The next steps from Figs. 8(d )–8(h) use the same logic: if two
joints are solved and one unknown joint connects to these two
joints, this unknown joint can be solved through arc intersection.
Table 1 shows the details.
Solving the positions of the joints is in the positional analysis

stage, where the actual input θ(0,4,5) is given. Iteratively solving
all these steps with different input values gives the path of all
joints as shown in Fig. 9.
Complexity Analysis: In the decomposition phase, there are five

steps that use dyadic decomposition with an angle constraint respec-
tively (j5, j1, j2, j7, and j8), one step that uses dyadic decomposition
without the angle constraint (j11), and one step that needs to solving
for three joints. For simplicity, we use Ca and Cn to represent theFig. 9 Result of the positional analysis

Table 1 This table specifies which joints are used to solve for
the unknown joint with the arc intersection method for the last
five steps

Step Known joints To solve Need cross-product

d j0, j3 j1 Yes
e j0, j3 j2 Yes
f j6, j9 j7 Yes
g j6, j9 j8 Yes
h j3, j5 j11 No

Fig. 10 All nine combinations of RR, PR, RP, and PP dyads are displayed. All nine mecha-
nisms can be simulated successfully: (a) RRRR, (b) RRRP, (c) RRPR, (d) RRPP, (e) RPPR,
(f) RPRP, (g) PRRP, (h) RPPP, and (i) PRPP.
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time constants for the arc intersection solver and Newton’s solver
(regardless of which one), respectively, i.e.,

Ci =
Ca If the arc intersection is used for the i-th step
Cn If a Newton solver is used for the i-th step

{
(35)

According to Eq. (30), the structural complexity is

(21 × 3 × 5 + 21 × 2) × Ca + (2 × 3)2 × 6 × Cn = 34Ca + 216Cn

7.2 Example 2: Mechanisms With RR, RP, PR, and PP
Links. With the reinterpretation of prismatic joints, our algorithm
can simulate all combinations of RR, RP, PR, and PP links,
whether fixed or moving; see Fig. 10. Notably, a true slider in a
slot is represented by two joints. This is how a prismatic joint is
drawn in MOTIONGEN. Comparatively, the three-joint relationship
for a slot joint and two end joints is equivalent to an RP link.

7.3 Example 3: A Multi-Slot Mechanism. Our algorithm
supports moving slots and their combinations as well. Furthermore,
a slot can be embedded in other slots. An example is shown in
Fig. 11. For this mechanism, j8 in the right figure shows that
when the reinterpreted far joints (j9, j10, and j11) are avoidably
placed too close to the two end joints, the resulting path is curved
and incurs large approximation error.

7.4 Example 4: Extremely Complex Structure. In this
example, we present a complex kinematic structure, which requires

that all the moving joints are solved simultaneously. Figure 12
shows such a mechanism, where there are 12 “legs” that connect
with the ground and 12 serial links that each connect two legs
one after another. In this case, all the distance constraints (links)
and all the angle constraints (the actuator between l6 and link l25)
need to be accounted for in the system of equations in order to
solve for positions of movable joints. Additionally, removing any
moving link will result in an under-constrained system. Therefore,
this system cannot be further decomposed. Furthermore, this
example also shows that an actuator can be placed on a moving
joint and that an Assur group can be an infinite group because
there can be n number of legs in a certain subassembly.

7.5 Example 5: Extremely Large Number of States. Panto-
graphs are harmonic graphs that use electric motors and links to
move a pen to create artistic drawings. Figure 13 is an example
of such a machine. This mechanism is a rotating two-DOF
five-bar mechanism with revolute joints only, where the path of j5
is a long curve. This case is a simple system (only the arc intersec-
tion method is needed). However, it has many states (i.e., a big s in
Eq. (30)). Therefore, the simulation time is comparatively long.

7.6 Time Complexity Analysis. Table 2 presents the time
complexity statistics for the mechanisms demonstrated in Secs.
7.2– 7.5. Again, for simplicity, we use Ca and Cn to represent the
time constants for the arc intersection solver and Newton’s solver
(regardless of which one), respectively.

Fig. 12 This millipede-like mechanism can only be solved by an
optimization method, and all movable joints have to be solved all
at once. l1∼ l5, l6 together with the actuator and link l25, and l7∼ l12
are the “leg” links. Link l13∼ l24 are the “body” links. Link l26 is
the ground link.

Fig. 11 (a) The multi-slot mechanism and (b) the interpretation
of such a mechanism. The constraining joints and constraining
links are not displayed for visual clarity.

Fig. 13 A pantograph machine

Table 2 This table shows the statics of mechanisms

Mechanism
Estimated structural

complexity
Time

(# of simulated states)

RRRR 10 Ca ∼4ms (360)
RRRP 26 Ca ∼4ms (90)
RRPR 30 Ca ∼4ms (149)
RRPP 46 Ca ∼4ms (81)
RPPR 50 Ca ∼3ms (14)
RPRP 46 Ca ∼4ms (33)
PRRP 44 Ca ∼5ms (50)
RPPP 52 Ca+ 216 Cn ∼10ms (90) for NR
PRPP in Fig. 10 60 Ca ∼5ms (93)
Multi-slot in
Fig. 11

22 Ca+ 216 Cn ∼30ms (360) for both NR
and LM

Millipede in
Fig. 12

17,576 Cn 400ms (122) for NR
200ms (122) for LM

Pantograph in
Fig. 13

26 Ca 60ms (14,400)

Note: The second column is computed according to Eq. (31). Here NR and
LM represent Newton–Raphson and Levenberg–Marquardt algorithm,
respectively. The simulation is done in MOTIONGEN and is coded using
JAVASCRIPT.
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From this table, it is clear that when a mechanism can be solved
with the arc intersection solver only, the time to compute is short,
usually less than 10ms. The outlier is the Pantograph machine,
which has a comparatively much larger number of states. If an
optimization-based solver is used, the computation time is always
more than 10ms. Furthermore, its path is not long because the mil-
lipede structure is mechanically inefficient. However, it takes more
than 200ms for this small number of states.
We also tested the speed difference between the arc intersection

solver and Newton’s solvers for the same question (system of two/
three equations). For the pantograph machine in Fig. 13, the LM
takes around 1750ms to finish, and the Newton–Raphson solver
takes around 1450ms to complete, compared to 60ms for the arc
intersection solver.

8 Conclusions
In this paper, we have introduced a simulation algorithm that

reinterprets prismatic joints in planar linkage mechanisms as a com-
bination of links and revolute joints. We provided representations of
the modified mechanisms and showed that there are only two
methods needed to perform positional analysis of any planar mech-
anism. One of the methods, dyadic decomposition is computation-
ally efficient, but can perform simulation only on relatively simpler
mechanisms, while the optimization-based method works in all of
the other cases. Both of the methods leverage a unified form of geo-
metric and actuation constraints to find the unknown positions of
moving joints, while the error incurred in approximating prismatic
elements with revolute joints and links is user-controllable. Addi-
tionally, this paper presented expressions for estimating simulation
time and structural complexity based on mobility analysis. Several
examples demonstrated the algorithm’s efficiency and effectiveness
in simulating mechanisms with various joint types and actuators.
Moreover, this work highlights the conversion potential of Assur
groups from mixed revolute joints and prismatic joints to exclu-
sively revolute joints. Future extensions of this work include simu-
lation of one and multi-degrees-of-freedom spatial and spherical
mechanisms.
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