W) Check for updates

ASME

SETTING THE STANDARD

ASME Journal of Computing and Information Science in Engineering
Online journal at:
https://asmedigitalcollection.asme.org/computingengineering

Anar Nurizada

Computer-Aided Design and Innovation Lab,
Department of Mechanical Engineering,
Stony Brook University,

Stony Brook, NY 11794-2300

e-mail: anar.nurizada@stonybrook.edu

Anurag Purwar’
Computer-Aided Design and Innovation Lab,
Department of Mechanical Engineering,
Stony Brook University,

Stony Brook, NY 11794-2300

e-mail; anurag.purwar@stonybrook.edu

Transforming Hand-Drawn
Sketches of Linkage Mechanisms
Into Their Digital Representation

This paper introduces a new method using deep neural networks for the interactive digital
transformation and simulation of n-bar planar linkages, which consist of revolute and pris-
matic joints, based on hand-drawn sketches. Instead of relying solely on computer vision,
our approach combines topological knowledge of linkage mechanisms with the outcomes
of a convolutional deep neural network. This creates a framework for recognizing hand-
drawn sketches. We generate a dataset of synthetic images that resemble hand-drawn
sketches of linkage mechanisms. Next, we fine-tune a state-of-the-art deep neural network
to detect discrete objects using building blocks that represent joints and links in various
positions, sizes, and orientations within these sketches. We then conduct a topological anal-
ysis on the detected objects to construct a kinematic model of the sketched mechanisms. The
results demonstrate the effectiveness of our algorithm in handling hand-drawn sketches and
converting them into digital representations. This has practical implications for improving

communication, analysis, organization, and classification of planar mechanisms.

[DOI: 10.1115/1.4064037]

Keywords: planar linkage mechanisms, simulation, machine learning, deep learning,

object detection

1 Introduction

During the product design process, sketching plays a pivotal role
in effectively conveying and visualizing ideas. Within engineering
design teams, designers frequently create kinematic sketches of
mechanisms to aid in the brainstorming process. The automated
detection of critical components in linkage mechanisms, including
pivot type and location, link dimensions, and interconnection pat-
terns, has the potential to facilitate various tasks such as transferring
a mechanism from a sketch to computer simulation software, digi-
tally cataloging and classifying existing designs, and generating
similar mechanisms for concept development.

This paper introduces a framework for the automated and real-
time digital conversion of hand-drawn sketches depicting planar
linkage mechanisms. The approach involves training a specialized
deep convolutional neural network (CNN) using a synthetic data-
base of linkage sketches. The trained CNN exhibits the capability
to detect multiple objects within an image, providing bounding
boxes and class probabilities for each detected object. These bound-
ing boxes are subsequently adaptively resized in preparation for the
subsequent topology analysis phase, which determines joint and
link types, connections, link dimensions, and pivot locations. The
final output is presented in the form of an adjacency matrix, as
well as tables detailing links and joints. An overview of this
approach is depicted in Fig. 1.

Recent years have seen numerous attempts to combine hand-
drawn sketches with machine learning for the development of

!Corresponding author.
Manuscript received February 19, 2023; final manuscript received November 1,
2023; published online November 30, 2023. Assoc. Editor: Yan Wang.

Journal of Computing and Information Science in Engineering

methods that enable automated detection of shapes and their fea-
tures. Huang [1] utilized a CNN-based deep neural network to facil-
itate user interface (UI) design by sketching a target UI and then
retrieving Ul screenshots from large-scale datasets. Giicliitiirk
et al. [2] demonstrated the synthesis of photo-realistic human
faces from sketches. Ellis et al. [3] trained a CNN to convert
simple hand-drawn sketches into graphics programs written in
LaTeX. Simo-Serra et al. [4] presented a novel technique to sim-
plify sketch drawings by training a CNN to remove unnecessary
lines in a sketch.

Moreover, there has been a growing interest in developing a
machine learning method for synthesizing 3D models from 2D
sketches. Oh et al. [5] devised a novel way of using deep generative
design frameworks for creating different design options optimized
for engineering performance. A similar work was proposed by Pu
et al. [6], which lets a user sketch a 2D shape in the way engineers
usually draw three views of 3D models—front, top, and side view—
and get a 3D version of the shape from a pre-compiled database.
Willis et al. [7] tackled the problem of learning based engineering
sketch generation as a first step toward synthesis and composition
of parametric computer aided design models. Para et al. [8] intro-
duced SketchGen, which is a generative model based on a trans-
former architecture to address the heterogeneity problem by
carefully designing a sequential language for the primitives and
constraints. Kazi et al. [9] developed DreamSketch, a 3D design
interface that combines the free-form and expressive qualities of
sketching with the computational power of generative design algo-
rithms. Murugappan et al. [10] convert sketches to online sketches
and use existing stroke-based recognition techniques for further
processing. The converted sketch can be edited, segmented, recog-
nized, merged, solved for geometric constraints, beautified, and

JANUARY 2024, Vol. 24 / 011010-1

Copyright © 2023 by ASME

20z Arenige4 |0 uo semind Beunuy yooig Auois Iy ANNS Aq 4pd-0L0LLO L~ ¥Z @sIol/y21.9902/0101 L0/ L/veZ/spd-siome/Bunssuibusbunndwoo/bio-swse:uonos|jooenbipaiise;/:dny woly pepeojumoq

mailto:anar.nurizada@stonybrook.edu
mailto:anurag.purwar@stonybrook.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4064037&domain=pdf&date_stamp=2023-11-30

Training Dataset

Trained
Object
Detector

Test Mechanism Sketches

7 ‘

Results
Interactive Bar Linkage

Link Table

Joint Table

Adjacency Matrix

Fig. 1 Overview: a CNN object detector is trained with a set of synthetic hand-drawn sketches of mechanisms, which are not
required to be valid mechanisms. During testing, users input a sketch of a bar linkage (one of the test mechanism sketches).
The CNN outputs bounding boxes and labels around detected objects. The output bounding boxes are resized and connec-
tions between the joints and links are determined. If there are any prismatic joints present, we find links along which sliders
move. Using the information about the location of joints and their connections with links, the linkage geometry is determined

and presented in joint-link tables and adjacency matrix.

used as input for finite element analysis. Additionally, Murugappan
and Ramani presented a program called FEAasy [11] for perform-
ing finite element analysis on sketches of structural models.
Finally, Nie et al. [12] utilized a CNN to predict the stress fields
in 2D linear elastic cantilevered structures.

The application of machine learning in kinematic synthesis has
gained increasing attention in the recent years. Nobari et al. [13]
introduced LINKS, a comprehensive dataset comprising a
hundred million planar linkage mechanisms, created to support
data-driven approaches in kinematic design. Deshpande and
Purwar [14,15] introduced a novel approach for synthesizing
defects-free, planar four-bar mechanisms by integrating pattern rec-
ognition, machine learning, and rigid body kinematics. They also
proposed a deep generative model for concept generation of mech-
anisms [16]. More recently, Purwar and Chakraborty [17] published
a position paper on deep learning design of robot mechanisms,
which outlines potential avenues for future research in this area.

In this research, we combine kinematic analysis with machine
learning to develop a framework for simulating sketch-based mech-
anisms. Our objective is to create an automated method for identi-
fying different components of an n-bar linkage mechanism, such as
links, free and fixed revolute (R) and prismatic (P) joints, from a
sketch of the mechanism. This work offers an opportunity for mech-
anism design researchers to employ a well-labeled dataset of mech-
anisms for concept generation. Potentially, a computational tool
could be provided to mechanism designers to sketch their ideas or
an existing mechanism from texts or patents. Using the approach
outlined in this study, the tool could produce a labeled mechanism
suitable for supervisory machine learning techniques.

Eicholtz and Kara were the first one to present an approach for
image-based recognition of planar mechanical linkages found in
textbooks and hand-drawn sketches [18—20]. Their method incorpo-
rated a sliding window technique [21] alongside histograms of ori-
ented gradients [22] and a pre-trained soft linear support vector
machine [23] to identify potential joints within an input image.
Upon the detection of joints, mechanical constraints, specifically
mechanisms with one degree-of-freedom, were enforced, and all
feasible connections between joints were determined using the non-
dominated sorting genetic algorithm (NSGA-II) [24]. The approach
is effective for both textbook illustrations and sketches of bar mech-
anisms. Furthermore, it introduces the concept of the user effort,
which informs users about the number of steps required to correct

011010-2 / Vol. 24, JANUARY 2024

a sketched mechanism. A higher score indicates that fewer steps
are needed to refine the sketched mechanism, while a lower score
implies the opposite [20].

While this approach exhibited promise in identifying sketched
mechanisms, it did not distinguish between fixed and free pin
joints and was not suitable for prismatic joints lacking revolute
joints overlaid on them, as seen in a slider-crank mechanism. Fur-
thermore, the average correct detection rate for mechanisms was rel-
atively low, and the work predates the availability of real-time
object detectors, relying entirely on computer vision techniques.

In contrast, this paper proposes using a real-time object detector
to detect joints and links, followed by topological analysis to find
connections and geometric parameters of mechanisms. The contri-
butions of this work are threefold: (1) presenting a methodology
for creating a dataset of synthetic images of sketches with hand-
drawn quality of planar linkages, including arbitrarily placed revo-
lute and prismatic joints; (2) fine-tuning a real-time object detector
to detect discrete building blocks of linkage mechanisms; and (3)
utilizing topological knowledge of mechanisms to identify joint
types, joint-link connections, and output geometric information
for further processing in kinematic design and simulation tools
like MotionGen [25,26]. By doing so, this work establishes a
synergy between machine learning techniques and linkage analysis,
leveraging existing knowledge from kinematics.

Rest of this paper is organized as follows. In Sec. 2, data prepa-
ration methodology for object detector training is presented. Section
3 is dedicated to the details of fine-tuning the detector with planar
n-bar linkage sketches and Sec. 4 presents an algorithm for topology
determination using detected bounding boxes. Section 5 presents
accuracy results of running the object detector on different kinds
of n-bar linkages before presenting conclusions.

2 Synthetic Image Generation of Sketches

Training a CNN-based object detector requires a large number of
input images, which in our case would be a dataset of hand-drawn
planar linkage sketches. Unfortunately, there are no such datasets
available. One way of generating a dataset would be extracting
images of mechanisms from the textbooks, patents, and internet
or asking people to sketch bar mechanisms and upload them;
however, this method would be very time-consuming and not

Transactions of the ASME

20z Arenige4 |0 uo semind Beunuy yooig Auois Iy ANNS Aq 4pd-0L0LLO L~ ¥Z @sIol/y21.9902/0101 L0/ L/veZ/spd-siome/Bunssuibusbunndwoo/bio-swse:uonos|jooenbipaiise;/:dny woly pepeojumoq

3

g

Fig. 2 Top row left to right: gray stroke on white background, gray background with black stroke, mix of gray back-
ground and stroke, black and white sketch with stroke 6. Bottom row left to right: stroke thickness 1, 3, 4, 5.

yield enough training images needed to retrain an object detector.
Thus, in this paper, we introduce an automated method for generat-
ing images of n-bar linkages by writing a script, which uses Scribble
library [27,28] for simulating hand-drawn shapes. Using our script,
we generated 18,000 training, 2000 validation, and 6500 testing
images in less than an hour. Training the object detector also
requires generating a file for each training image which contains
ground truth information about all objects present in an image.
This would further increase manual dataset gathering time since
each image would be manually annotated. Our script provides anno-
tation automatically as well. In addition to that, one could update
our script to include more ways or styles of drawing bar mecha-
nisms. Images scraped from the texts, internet, or from student
assignments were not used as part of this dataset.

The training dataset for fine-tuning the object detector consisted
of black and white images depicting different parts of bar linkages,
such as fixed and free revolute joints, links, and prismatic joints,
some of which are connected. Each image had a different number
of links, free, fixed, revolute, and prismatic joints. This work
assumes that since most people use a pencil and a white paper to
draw sketches, there is no need to train the detector on colored
images. However, real-life images of sketches might be colored
and backgrounds might not be perfectly white; e.g., if one uses a
flash while taking an image of a sketch, it might result in the
central part of an image being brighter than the other part. In
order to ensure that our model performs well in those cases, we
made additional testing datasets: (1) with backgrounds of different
shades of gray, i.e., the stroke of the mechanism was black, whereas
the background was filled with different shade of gray, (2) with
gray-colored stroke on a white background, (3) a mix of different
shades of gray background and gray stroke, and (4) different
stroke thicknesses, ranging from thickness level of 1 (thinnest) to
6 (thickest). The detector was trained on black and white sketches
with a thickness of 2. Thus, we compiled an additional 4500
testing images, bringing a total of our testing images to 6500. Our
results showed that the color of a sketch and thickness levels of
1-3 do not make any difference; however, thickness of 4 and
higher decreases the detection accuracy. However, these thickness
levels result in the stroke being unrealistically thick; thus, we
made another assumption that users will not input such sketches
and there was no need to retrain the detector with such sketch
images. An image from each dataset is shown in Fig. 2. The last

Journal of Computing and Information Science in Engineering

assumption about the input sketch images in this work is that
there is no textual information present in the image.

The dataset must cover as many ways of drawing a planar n-bar
linkage as possible; i.e., different locations of fixed and free joints,
their orientation, type, quantity, etc. At this stage, our goal was to
create not well-formed mechanisms, such as feasible four-bar link-
ages, etc., but rather an ensemble of connections of joints and links
that would cover a high variety of possible ways of drawing bar
mechanisms as shown in the Training Dataset box in the Fig. 1.
The dataset is accessible via a link.?

2.1 Mechanics of the Script. In each iteration or frame of the
script, a fresh canvas measuring 600 x 600 pixels is initialized. The
script proceeds to generate and draw ten ellipses on this canvas.
These ellipses have randomly selected radii ranging from 10 to
30 pixels, and their positions are determined randomly within the
canvas. To ensure that ellipses are not drawn too close to the
canvas borders, their x and y coordinates are constrained within a
range of 50-550 pixels.

To prevent overlapping, if the distance between any two ran-
domly generated ellipses is less than 70 pixels, one of them is
removed. This constraint results in varying the total number of
joints drawn in each frame, ranging from five to ten, with an
average of seven joints per frame.

Furthermore, every second ellipse is drawn as a fixed joint, while
every third one is drawn as a slider joint. The rest are rendered as
free joints. It is worth noting that the specific pixel values, such
as the radius range of 10-30 pixels, were chosen empirically.
This selection ensures that the ellipses maintain a realistic appear-
ance, neither appearing as mere points (when the radius is too
small) nor excessively large (when the radius is too large).

The next step of the program involved defining an NxN zero
matrix, where N represents the total number of joints in a frame.
Subsequently, the program assigned values of 1 to certain lower tri-
angular entries of the zero matrix, following a Bernoulli distribution
with a probability of 30%; that is, assigning 1 with a probability of
30%. While iterating through this matrix, the program established a
link between two joints, denoted as i and j, if the corresponding

2hups://www.kagglc.com/dalascls/anarnuriLada/n—bar—mcchamisms

JANUARY 2024, Vol. 24 / 011010-3

20z Arenige4 |0 uo semind Beunuy yooig Auois Iy ANNS Aq 4pd-0L0LLO L~ ¥Z @sIol/y21.9902/0101 L0/ L/veZ/spd-siome/Bunssuibusbunndwoo/bio-swse:uonos|jooenbipaiise;/:dny woly pepeojumoq

https://www.kaggle.com/datasets/anarnurizada/n-bar-mechanisms
https://www.kaggle.com/datasets/anarnurizada/n-bar-mechanisms
https://www.kaggle.com/datasets/anarnurizada/n-bar-mechanisms
https://www.kaggle.com/datasets/anarnurizada/n-bar-mechanisms

entry in the matrix was equal to 1. For instance, the following
matrix was employed to create the links depicted in Fig. 3.

J1 J2 J3 J4 J5

Ji. 0 0 O O O

J2 0 0 O 0 O

(7= J3 0 0 O O O
JA 0 0 1 0 O

Js 0 0 O O O

Diagonal entries were kept zero, since a joint cannot be con-
nected to itself. It is important to point out that not all joints were
connected since this would result in an unrealistic sketch and
mostly over constrained mechanisms. An excessive number of
links would make it difficult to differentiate various elements in
the drawing even for a human eye. This way the final dataset con-
sisted of 18,000 training, 2000 validation, and 6500 testing images.

A sample generated image is shown in Fig. 3. It has a total of five
joints, three of which are free revolute joints, one is a fixed revolute
joint, and one is a prismatic joint. There is a total of one link con-
necting two random joints. On the other hand, Fig. 4 shows an unre-
alistic image example where almost all joints are connected. This
image has eight joints and 14 links which are hard to differentiate
even visually. In a case where there are ten joints per image, differ-
entiating between links would become even harder.

Fine-tuning of the object detector on a custom dataset requires
annotation for each training image, which provides information
about all the detectable objects in the image. This annotation is of
the following format: object’s class, object’s bounding box’s
center x value, object’s bounding box’s center y value, bounding
box width, bounding box’s height. Object class relates to the class
of an object, which in our case is either a free, slider, or fixed
joints, or a link. The origin of the coordinate system is at the
upper left corner of an image, where +x axis points to the upper
right corner, and +y axis points to the bottom left corner. Object
x value is the central location of a bounding box along the x axis,
and object y value is the central location of a bounding box along
the y axis. All coordinate values are scaled between 0 and 1, i.e.,
x value is divided by the width of the image, whereas y value is
divided by the height of the training image.

J2

Iy

J3

J5 J4

K

N

Fig. 3 A training image example with five joints in total, where
one is a fixed revolute joint, three are free revolute joints, and
one is a prismatic joint. There is a total of one link connecting
joints J3 and J4. Actual training images do not have the bound-
ing boxes as well as text written on them. They are shown in
this example for a better understanding of the corresponding
adjacency matrix.

011010-4 / Vol. 24, JANUARY 2024

3 Real-Time Object Detection

In recent years, “You Only Look Once” (YOLO) family [29-32]
of convolutional neural networks has demonstrated excellent results
with fast object detection. This model uses a single CNN in order to
predict both bounding boxes and their class probabilities. This helps
speed up the whole detection process and yields very high detection
accuracy. In this work, YOLOvV4 [32] architecture is used, which
was pre-trained on the ImageNet dataset [33] consisting of 1.2
million images of 1000 classes of common objects, such as dogs,
cats, etc. Since the images used in ImageNet dataset are markedly
different from geometric line diagrams of mechanisms, one
cannot simply use the pre-trained network to do predictions. We
employed the principle of fine-tuning to retrain YOLOv4 with
our synthetic dataset of mechanisms. Thereafter, the fine-tuned
model is used for detecting and locating different parts of planar
linkage sketches, such as (1) free joints, (2) fixed joints, (3) links,
and (4) sliding joints. Processing these results and calculating inter-
section over union (IoU) values between the links’ and joints’
bounding boxes, the exact connections between the joints are
detected and a full topological model of sketched mechanism is
built. We note that an advantage of this approach is that as the
better quality CNN models for object detection become available
in the future, they could be easily swapped with the one used in
this work to get even more accurate results.

3.1 Making Sense of Object Detection. In the course of label-
ing the dataset, all bounding boxes for the joints were annotated
with precision, ensuring that the center of the joint’s ellipse is
aligned perfectly with the center of the bounding box. This deliber-
ate alignment was undertaken due to the pivotal role the ellipse’s
center plays in our topology determination algorithm. By precisely
ascertaining the positions of the ellipses, we enable the computation
of the lengths of links in pixels, thereby ensuring that the interactive
bar linkage closely resembles the input sketch.

The object detector is primarily designed to identify individual
objects, without inherently recognizing their patterns of intercon-
nection. However, by leveraging the bounding boxes detected by
the object detector, it becomes feasible to calculate the precise con-
nections between joints and subsequently determine the mecha-
nism’s topology.

Our topology determination algorithm, which is elucidated later
in this paper, utilizes the IoU metric [34] for quantifying the
extent of overlap between two bounding boxes, thereby defining
exact connections. The IoU measurement serves as a valuable
metric for assessing the degree of overlap between the detected
bounding boxes and their corresponding ground truth counterparts,
and it can be calculated as follows:

|ANB|
|AUB|

IoU(4, B) = 1)

Fig. 4 An unrealistic image with eight joints and 14 links. It is
hard to visually differentiate between different links and would
result in poor training where it would detect links erroneously.

Transactions of the ASME

20z Arenige4 |0 uo semind Beunuy yooig Auois Iy ANNS Aq 4pd-0L0LLO L~ ¥Z @sIol/y21.9902/0101 L0/ L/veZ/spd-siome/Bunssuibusbunndwoo/bio-swse:uonos|jooenbipaiise;/:dny woly pepeojumoq

where the numerator represents the area of overlap, while the
denominator signifies the area of union between bounding boxes
of shapes A and B. The IoU value is a measure of overlap, with a
higher IoU indicating a greater degree of overlap.

The object detector outputs types of joints and their locations
indicated by bounding boxes, as well as bounding boxes of the
links. Detected bounding boxes are rather big, and this fact can
pose a problem; thus, we would like to process initially obtained
bounding boxes.

Consider Fig. 5, which illustrates a four-bar linkage alongside its
associated bounding boxes. Each bounding box is annotated with
two numbers that convey important information. The first number
designates the detected class of the mechanism, where O signifies
a fixed joint, 1 denotes a free joint, 2 represents a link, and 3 indi-
cates a slider joint (though not depicted in this particular example).
The second number quantifies the confidence of the model in its
prediction; a value closer to 1 indicates a higher degree of
confidence.

Black square-shaped bounding boxes correspond to fixed joints,
while gray square-shaped boxes represent free joints. Square-
shaped bounding boxes with rectangles within represent slider
joints, and rectangular bounding boxes indicate the detection of a
link within the bounding box.

The challenge associated with utilizing bounding boxes output by
the detector becomes evident when examining the bounding box
encompassing the longest link in Fig. 5. Calculating the IoU
values between this bounding box and those encompassing the
joints yields values exceeding 0O, erroneously suggesting that this
link is connected to all the joints depicted in the example. This
clearly illustrates a limitation in using bounding boxes for under-
standing the mechanism’s true topology.

To circumvent this issue, we employ a pre-processing step on
the bounding boxes generated by the detector. The pre-
processing algorithm operates by taking the bounding boxes of
all joints, as produced by the detector, and padding them by 15
pixels. Subsequently, it compiles and stores all pertinent infor-
mation about these joints in an array. This array includes the x
and y coordinates of both the top-left and bottom-right corners
of each joint’s bounding box, along with its type and correspond-
ing number.

While this approach effectively handles joints, it is not suitable
for processing bounding boxes associated with links. Utilizing the
same technique for link bounding boxes would mislead the
program into assuming that a link is not connected to any other
component. Consequently, a distinct technique is employed when
dealing with bounding boxes related to links.

The object detector generates bounding boxes for links in such a
way that the ends of the links coincide with two diagonal corners of
bounding boxes, as shown in Fig. 5. Thus, once the detector

Fig. 5 Unfiltered result produced by the object detector on a
sketch generated by our script. Black bounding boxes suggest
that it is a fixed revolute joint, gray square box—free revolute
joint, and gray rectangular box—link.

Journal of Computing and Information Science in Engineering

produces results for links’ bounding boxes, the program detects a
line in that bounding box, i.e., the link itself, and calculates the
angle of that link with respect to a horizontal line.

All bounding boxes are aligned with the Cartesian x and y axes;
thus, there are two possible positions of a link in a bounding box,
i.e., a link can either go (1) from the upper left to the lower right
corner of a bounding box or go (2) from the lower left to the
upper right corner of a bounding box. Calculating the angle of a
link in a bounding box, the program assumes that if the angle is
more or equal to O and less than or equal to 90deg, then a link
goes from the left bottom to the right upper corner of a bounding
box, whereas if the angle is more than 90 and less or equal to
180deg, then a link goes from the left upper to the right lower
corner of a bounding box. Once the exact orientation of a link is
known, the program fills a separate array with small bounding
boxes around link’s ends. These bounding boxes are 20x20
pixels wide. In other words, each entry of the array has information
about two bounding boxes of each link’s ends. This end result of
post-processing the detector results is shown in Fig. 6. This
process is summarized in Algorithm 1.

Algorithm 1: YOLOV4 results processing

Input: Bounding boxes of all objects in a sketch—[box;, box,, ..., boxy]

Output: Two arrays containing information about bounding boxes of all
joints” and links’ present in a sketch—joints, links

1 Initialize empty arrays of joints, links

2 fori< 1toN do

3 (X, Yit, Xors Yor, type, name) = box;

4 if type is link then

5 link_angle = detect_link_angle(box;)

6 if 0 < link_angle < 90 then

7 links.add([x; — 10, yp, — 10, x4 + 10, y,- + 10],

[x6r — 10, yu — 10, x, + 10, y + 10])

8 else if 90 < link_angle < 180 then
9 links.add([x,; — 10, y; — 10, x4 + 10, y; + 10],
[xpr — 10, ypr — 10, x5, + 10, y, + 10])
10 else
11 | | joints.add([[xy + 15,y + 15], [xer — 15, yur — 15, type, name])
12 end
13 return Arrays with processed bounding boxes’ information— joints,

links

4 Topology and Geometry Determination

In this section, we present an algorithm for determining joint—link
connections and their geometry. The algorithm begins by iterating
through the links. During each iteration, it initializes a zero connec-
tions array with a length equal to the number of joints in the sketch

G

o,

\h—.
72

Fig. 6 Same example as shown in Fig. 5, but with processed
bounding boxes. Bigger bounding boxes are output by the detec-
tor, whereas small bounding boxes relate to links’ ends.

JANUARY 2024, Vol. 24 / 011010-5

20z Arenige4 |0 uo semind Beunuy yooig Auois Iy ANNS Aq 4pd-0L0LLO L~ ¥Z @sIol/y21.9902/0101 L0/ L/veZ/spd-siome/Bunssuibusbunndwoo/bio-swse:uonos|jooenbipaiise;/:dny woly pepeojumoq

and initiates a nested iteration. The nested iteration traverses
through the joints array, calculating IoU values between both
ends of the link and the current joint. If either of the two calculated
IoU values exceeds 0, it indicates a connection between the link and
that joint, prompting a change in the corresponding entry in the con-
nections array to 1. After iterating through all the joints, the connec-
tions array contains exactly two entries set to 1, as each link
connects only two joints, while all other entries remain at 0. By
identifying the indices of nonzero entries in the connections
array, we can determine which two joints are connected to each
other. By looping through all the links, one can identify all the con-
nections present. Algorithm 2 provides a summarized representa-
tion of the entire procedure described. The final result of the
example depicted in Fig. 5 is illustrated in Fig. 7, where each
bounding box indicates the joint type and the order of connection.
Once the topology is defined, it becomes feasible to provide
information regarding the lengths of the links, their types, and the
joints they connect. Furthermore, comprehensive information
about all detected joints, encompassing their type, as well as their
x and y coordinates relative to the top-left corner of a canvas, can
also be obtained. This information is presented in two distinct
tables: one pertaining to links and another pertaining to joints.
The program also generates a square-shaped adjacency matrix
[35]. Nonzero entries within this matrix are assigned a value of 1
if two links are connected by a revolute joint and 2 if connected
by a prismatic joint. In all other cases, the entries are set to 0, indi-
cating that the respective links are not connected to each other.
Table 1 provides a summary of the total number of links detected,
the joints they connect, their respective lengths, and the joint types,
whether prismatic or revolute. Meanwhile, Table 2 presents infor-
mation about the detected joints, encompassing their type and
their x and y coordinates relative to the top-left corner of the
image. Lastly, Table 3 displays the calculated adjacency matrix.

Algorithm 2: n-bar linkage topology determination

Input: Two arrays with processed bounding boxes: joints and links

Output: The filtered array of all joint connections present in a
sketch—final_connections

1 for link in links do

2 connections = zero_array

3 for index, joint in joints do

4 link_one_end = link[0] link_second_end = link[1]

5 IoU_1 = calculate_IoU(joint, link_one_end)

6 IoU_2 = calculate_IoU(joint, link_second_end)

7 if IoU_1> 0 or IoU_2 > 0 then

8 connections[ind] = 1

9 end

10 non_zero_indexes = find_non_zero_entries(connections)
11 final_connections.add(joints[non_zero_indexes))

12 end

13 return final_connections

While the topology determination algorithm for mechanisms
with revolute joints operates as expected, prismatic joints introduce
an additional challenge. For instance, the detector results depicted in
Fig. 1 suggest the presence of all the joints, but it does not furnish
any details regarding the specific connections between the detected
slider and the links, i.e., which link the slider is sliding on. To
address this challenge, an additional step is performed when a
sketch features sliders. Using IoU calculations for the slider, we
find that the slider is associated with either of the two links; hence-
forth called candidate links. Using OpenCV library [36], we can
determine the boundaries of the slider as four connected lines of
an oriented rectangle. If the orientation of a candidate link
matches with the orientation of the longer side of this rectangle,
we conclude that link to be the one on which the slider is

011010-6 / Vol. 24, JANUARY 2024

ixed —]

GQ;*%

A

Fig. 7 Final detection result of the given example. Each bound-
ing box gives the information about the joint type and connection
order, i.e., J1 is connected to J2, whereas joint J2 is connected to
J3, and, likewise, J3 to J4.

Table1 Detected link information for the example given in Fig. 5
Link # Link type Linked joints Length (pixels)
1 RR binary J1-J2 95
2 RR binary J2-J3 389
3 RR binary J13-J4 83
4 RR binary J4-J1 224

Table 2 Detected joint information for the example given in
Fig. 5

Joint Description X Y

J1 Fixed joint 360 337
12 Free joint 455 352
I3 Free joint 107 180
J4 Fixed joint 188 193

Table 3 Adjacency matrix for the example given in Fig. 5

Link 1 Link 2 Link 3 Link 4
Link 1 0 1 1 0
Link 2 1 0 0 1
Link 3 1 0 0 1
Link 4 0 1 1 0

moving. This further means that the slider forms a connection
with the other candidate link via a revolute joint.

This process begins by computing the orientation of each candi-
date link relative to a horizontal line. Next, we proceed to detect an
oriented rectangle within the bounding box of the slider using func-
tions provided in the OpenCV. This rectangle represents the slider.
The OpenCV detects all four boundary lines of this rectangle and by
locating common endpoints of these lines, a complete rectangle is
determined.

After successfully detecting the rectangle, we compare the orien-
tation of the longer side of the rectangle with that of the candidate
links. This angle is regarded as the slider angle. The candidate link
whose orientation matches with the slider angle is the link associ-
ated with the slider. Our assumption is that sliders are generally
drawn as rectangles with longer side oriented same as the link on
which it is sliding. Conversely, if none of the links’ angle match
the slider angle within a tolerance of 5deg, it suggests that the

Transactions of the ASME

20z Arenige4 |0 uo semind Beunuy yooig Auois Iy ANNS Aq 4pd-0L0LLO L~ ¥Z @sIol/y21.9902/0101 L0/ L/veZ/spd-siome/Bunssuibusbunndwoo/bio-swse:uonos|jooenbipaiise;/:dny woly pepeojumoq

Table 4 Detected link information for the example given in Fig. 1

Link # Link type Linked joints Length (pixels)
1 RP J2-14 259

2 Slider J3-J4 -

3 RR J1-13 95

4 Ground link J1-J2 -

Table 5 Detected joints’ information for the example given in
Fig. 1

Joint Description X Y

J1 Revolute fixed 120 353
]2 Revolute fixed 399 359
J3 Revolute free 158 265
J4 Prismatic 158 265

Table 6 Adjacency result for the example given in Fig. 1

Link 1 Link 2 Link 3 Link 4
Link 1 0 2 0 1
Link 2 2 0 1 0
Link 3 0 1 0 1
Link 4 1 0 1 0

slider is sliding on a fixed link. Due to the diverse nature of hand-
drawn styles, the angle between a slider and the link it is sliding on
may slightly differ. Hence, it is necessary to account for this varia-
tion by allowing both angles a tolerance of 5deg. This approach
enables us to precisely determine the connections between the
joints in a mechanism with prismatic joints. Figure 1 visually repre-
sents the angles of all the links in red, with the slider’s angle
depicted in blue. When the slider’s angle coincides with the angle
of a particular link, it signifies that the slider is sliding on that spe-
cific link. Furthermore, Tables 4—6 present comprehensive informa-
tion about the input sketch mechanism illustrated in Fig. 1.

4.1 Limitations of the Approach. Notably, this approach
exhibits scalability for higher n-bar linkages consisting solely of rev-
olute joints or revolute-prismatic connections. For four-bar linkages,
we capitalize on our kinematic understanding of these mechanisms to
interpret the detections produced by our detector. Take, for example,
the RRPP mechanism depicted in the bottom-right section of Fig. 9.
Our detector identifies two slider joints, a link and a fixed joint. Fol-
lowing the initial detection results and post-processing of bounding
boxes, we can establish a connection between the fixed joint and
the upper slider joint. Although the curved link connecting the two
sliders remains undetected due to the absence of curved links in
our training dataset, our kinematic expertise allows us to infer a con-
nection between the two slider joints, as no other type of connection
is feasible in this scenario. Consequently, we can apply our algorithm
to determine the paths along which these prismatic joints slide by cal-
culating the angle of the longest side within the prismatic joints, thus
obtaining the precise topology of this particular mechanism.
However, its applicability becomes constrained when dealing with
prismatic-prismatic joint connections in an n-bar mechanism. This
can be overcome by training the neural network with a more exhaus-
tive style of drawing joints and links.

5 Examples and Analysis

This section provides several examples of running the detector on
various types of sketches, including script-generated and hand-
drawn illustrations.

Journal of Computing and Information Science in Engineering

5.1 Script-Generated Sketches. The object detector was fine-
tuned using the dataset of planar n-bar linkages generated by our
script. The fine-tuning process was carried out on a Dell XPS 15
7590 running on Windows 10 with 32.0GB of RAM, powered
by an Intel Core i7-9750H CPU, and equipped with an NVIDIA
GeForce GTX 1650 with 4GB of dedicated memory. The hyper-
parameters used for fine-tuning the detector included 4000
epochs, which took approximately 28h to complete, an image
size of 416 x 416 pixels, a batch size of 64 sketches, and a learning
rate of 0.001. The decision to keep the batch size low was driven by
computational constraints. The choice of 4000 epochs was based on
experimental observations, as monitoring the training loss, each
epoch revealed that the loss stabilized after epoch number 4000.
Consequently, it was deemed appropriate to conclude the training
process at that point. Furthermore, a low learning rate was
employed to mitigate the risk of significantly altering the existing
weights during training.

Running the fine-tuned detector on the training dataset took
approximately 17 min, while executing it on the testing dataset
required about 2 min. Both runs demonstrated excellent results in
terms of detecting all links and determining their types and loca-
tions. The fine-tuned weights were saved at intervals of 1000
epochs, resulting in four different sets of weights for evaluation—
after 1000, 2000, 3000, and 4000 epochs. The highest average
mean average precision (mAP) [37], with a threshold value of
0.5, reached 98.76% and 98.70% for the training and testing sets,
respectively. This peak performance was attained after 3000
epochs. The outcomes of the model trained for 3000 epochs are pre-
sented in Tables 7 and 8. Each table displays the average precision
(AP) for every class, along with counts of true positives (TPs) and
false positives (FPs). The results revealed that at 4000 epochs, the
model’s accuracy diminished for both datasets, affirming the appro-
priateness of our decision to halt the training process to prevent
over-fitting. Comparing these results to the ones presented in
Ref. [20], we observe a nearly 40% improvement in the average pre-
cision results. Additionally, while their approach is scalable to
higher-order mechanisms, it remains unclear how prismatic joints
are treated or even detected when no revolute joints are drawn on
them. Moreover, the post-processing algorithm presented in the
paper that corrects the initial results of the mechanism detection
might pose challenges as the number of joints increases and could
also require considerably more time [20].

These outcomes indicate that the model achieved nearly flawless
detection of joints; nevertheless, detecting links presented a more
challenging task, as the average precision did not approach 100%,
and a significant number of links were erroneously detected. The
high mAP results for both datasets imply that the model effectively

Table 7 Results of running the detector on the training set after
3000 epochs

Class AP TP FP

Fixed joint 100.00% 38,976 364
Free joint 100.00% 93,691 1773
Link 93.47% 105,133 16,094
Slider joint 100.00% 19,516 53

Table 8 Results of running the detector fine-tuned for 3000
epochs on the test set

Class AP TP FP

Fixed joint 100.00% 3929 43
Free joint 100.00% 9329 173
Link 93.17% 10,577 1700
Slider joint 100.00% 1968 7

JANUARY 2024, Vol. 24 / 011010-7

20z Arenige4 |0 uo semind Beunuy yooig Auois Iy ANNS Aq 4pd-0L0LLO L~ ¥Z @sIol/y21.9902/0101 L0/ L/veZ/spd-siome/Bunssuibusbunndwoo/bio-swse:uonos|jooenbipaiise;/:dny woly pepeojumoq

[n ,—-———-"6?%
/

&=

L4

Fig. 8 An example result of running the detector on a sketch
generated through our script similar to the training dataset
sketches

learned to identify various components accurately, as well as to gen-
erate bounding boxes resembling the ground truth boxes. Figure 8
illustrates the outcome of applying the detector to a sketch gener-
ated using our script. Importantly, this sketch was not part of
either the training or testing datasets.

Running the detector on testing sets with varying stroke and
background colors and different stroke thicknesses revealed that
alterations in stroke color, background color, and stroke thickness
levels 1, 2, and 3 had a minimal impact on accuracy results.
However, increasing the stroke thickness from level 4 to 6 led to
a decrease in accuracy precision. The average mAP values for
each testing dataset are presented in Table 9. One approach to
improving accuracy with these thickness levels would involve
retraining the model using these images. However, given the low
likelihood of real sketches having such high stroke thickness
levels, we opted not to fine-tune our model accordingly.

Table 9 Results of running the fine-tuned detector on different
testing datasets

Testing set mAP

Colored stroke on white background 97.75%
Colored background with black stroke 97.58%
Mix of colored background and stroke 96.69%
Stroke level 1 98.29%
Stroke level 2 98.70%
Stroke level 3 98.46%
Stroke level 4 94.80%
Stroke level 5 74.55%
Stroke level 6 64.87%

5.2 True Hand-Drawn Sketches. Training and test images
generated by the Scribble library simulate hand-drawn sketches,
but they may not perfectly replicate the handwriting styles of all
individuals. Therefore, it was imperative to assess the detector’s
performance on genuine hand-drawn sketches. To facilitate this,
we developed a straightforward graphical user interface program
using the pyTHON library tkinter. This program allowed users to
create and save various black and white sketches, with a focus on
bar sketches for our purposes.

We employed this interface to generate and evaluate different
types of planar n-bar linkage sketches. Six of the most commonly
used four-bar linkages were examined using the detector, and the
results are displayed in Fig. 9. Additionally, Fig. 10 features two
random n-bar linkages. It is worth noting that the examples were
drawn without strict adherence to whether the resulting mechanism
would be physically valid or not. Our primary objective was to
assess the model’s ability to accurately detect objects in hand-drawn
sketches.

The testing dataset used to evaluate the detector’s accuracy on
actual hand-drawn sketches was relatively small, consisting only
30 images. This limited size was due to the challenge of gathering
a larger number of hand-drawn samples compared to the training
data. Upon visual inspection of the results, it became evident that

A

g)

7

1

¢ U

[Wat

=1 [

)
/
7

Fig. 9 Example of running the detector on hand-drawn sketches of commonly used four-bar linkages: top-left—RRRP, top
middle—RPPR, top right—RRPR; bottom left—RRRR with a coupler link shown as three different binary links, bottom
middle—PRRP, bottom-right—RRPP. All objects were detected correctly.

011010-8 / Vol. 24, JANUARY 2024

Transactions of the ASME

20z Arenige4 |0 uo semind Beunuy yooig Auois Iy ANNS Aq 4pd-0L0LLO L~ ¥Z @sIol/y21.9902/0101 L0/ L/veZ/spd-siome/Bunssuibusbunndwoo/bio-swse:uonos|jooenbipaiise;/:dny woly pepeojumoq

i§r

O\

/Gié

/
f\&a\

™|
&

Fig. 10 Example of running the detector on two hand-drawn sketches. All objects were detected

correctly.

Table 10 Results of running the detector fine-tuned for 3000
epochs on the test set of hand-drawn sketches

Class Total # TP FP
Fixed joint 60 60 0
Free joint 119 119 0
Link 249 230 5
Slider joint 35 35 0

the fine-tuned model performs admirably in detecting objects and
their types within hand-drawn sketches depicting n-bar linkages.

It is noteworthy that during training, the detector was taught to
recognize a single straight line between two joints as a link.
However, some individuals sketch a link as two separate lines
between joints. For instance, the left sketch in Fig. 10 features
such a link in the top right corner, and the detector correctly iden-
tified it. This suggests that our model can effectively handle cases
that it has not encountered during training.

Table 10 provides an overview of the dataset, showcasing the
total number of joints and links within it and how many were accu-
rately detected. All joints were correctly identified, although a few
links were not detected, and there were five false positives.

6 Conclusions

This study introduced an innovative framework that combines
real-time object detection with rigid body kinematics to facilitate
the digitization and organization of hand-drawn linkage mechanism
sketches. Specifically, we proposed a methodology for generating
synthetic images of such sketches and demonstrated how the
results obtained from a convolutional neural network (CNN)-based
object detector can be integrated with the topological understanding
of mechanisms to achieve the desired outcomes. Our experimental
results show the effectiveness of this approach, and it holds poten-
tial for further enhancements in machine learning research, while
still leveraging the extensive knowledge available in the field of
kinematics. Looking ahead, future research directions may
involve extending this approach to non-planar sketches and
textbook-style images of linkage sketches.

Acknowledgment

This work has been financially supported by The National
Science Foundation under research grants #CMMI-1563413 and

Journal of Computing and Information Science in Engineering

STTR phase II #2126882 to co-author Purwar who also holds
stocks in Mechanismic Inc. The research findings included in this
publication may or may not necessarily relate to the interests of
Mechanismic Inc. The terms of this arrangement have been
reviewed and approved by Stony Brook University in accordance
with its policy on objectivity in research.

All findings and results presented in this paper are those of the
authors and do not represent those of the funding agencies.

Conflict of Interest

There are no conflicts of interest.

Data Availability Statement

The data and information that support the findings of this article
are freely available.’

References

[1] Huang, Z., 2020, “Deep-Learning-Based Machine Understanding of Sketches:
Recognizing and Generating Sketches With Deep Neural Networks,” Master’s
thesis, University of California at Berkeley, Berkeley, CA.

[2] Giigliitiirk, Y., Giiglii, U., van Lier, R., and van Gerven, M. A. J., 2016,
“Convolutional Sketch Inversion,” European Conference on Computer Vision,
Amsterdam, The Netherlands, Oct. 11-14.

[3] Ellis, K., Ritchie, D., Solar-Lezama, A., and Tenenbaum, J. B., 2017, “Learning
to Infer Graphics Programs From Hand-Drawn Images,” CoRR, abs/1707.09627.

[4] Simo-Serra, E., lizuka, S., Sasaki, K., and Ishikawa, H., 2016, “Learning to
Simplify,” Trans. Graph., 35(4), pp. 1-11.

[5] Oh, S., Jung, Y., Kim, S., Lee, L., and Kang, N., 2019, “Deep Generative Design:
Integration of Topology Optimization and Generative Models,” ASME J. Mech.
Des., 141(11), p. 111405.

[6] Pu, J., Lou, K., and Ramani, K., 2005, “A 2d Sketch-Based User Interface for 3d
CAD Model Retrieval,” Comput. Aided Des. Appl., 2(6), pp. 717-725.

[7] Willis, K. D. D., Jayaraman, P. K., Lambourne, J. G., Chu, H., and Pu, Y., 2021,
“Engineering Sketch Generation for Computer-Aided Design,” CoRR, abs/
2104.09621.

[8] Para, W. R., Bhat, S. F., Guerrero, P., Kelly, T., Mitra, N. J., Guibas, L. J., and
Wonka, P., 2021, “Sketchgen: Generating Constrained CAD Sketches,” CoRR,
abs/2106.02711.

[9] Kazi, R. H., Grossman, T., Cheong, H., Hashemi, A., and Fitzmaurice, G., 2017,
“DreamSketch,” The 30th Annual ACM Symposium on User Interface Software
and Technology, Québec City QC Canada, Oct. 22-25.

[10] Murugappan, S., Vinayak, Ramani, K., and Yang, M. C., 2011, “APIX: Analysis
From Pixellated Inputs in Early Design Using a Pen-Based Interface.” ASME
2011 International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, Washington, DC, Aug. 28-31.

3See Note 2.

JANUARY 2024, Vol. 24 / 011010-9

20z Arenige4 |0 uo semind Beunuy yooig Auois Iy ANNS Aq 4pd-0L0LLO L~ ¥Z @sIol/y21.9902/0101 L0/ L/veZ/spd-siome/Bunssuibusbunndwoo/bio-swse:uonos|jooenbipaiise;/:dny woly pepeojumoq

http://dx.doi.org/10.1145/2897824.2925972
https://dx.doi.org/10.1115/1.4044229
https://dx.doi.org/10.1115/1.4044229
http://dx.doi.org/10.1080/16864360.2005.10738335
https://arxiv.org/abs/2104.09621
https://arxiv.org/abs/2104.09621
https://arxiv.org/abs/2106.02711

[11] Murugappan, S., and Ramani, K., 2009, “FEAsy: A Sketch-Based Interface
Integrating Structural Analysis in Early Design,” 29th Computers and
Information in Engineering Conference, San Diego, CA, Aug. 30-Sept. 2.

[12] Nie, Z., Jiang, H., and Kara, L. B., 2020, “Stress Field Prediction in Cantilevered
Structures Using Convolutional Neural Networks,” ASME J. Comput. Inf. Sci.
Eng., 20(1), p. 011002.

[13] Nobari, A. H., Srivastava, A., Gutfreund, D., and Ahmed, F., 2022, “LINKS: A
Dataset of a Hundred Million Planar Linkage Mechanisms for Data-Driven
Kinematic Design,” International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference, St. Louis, MO, Aug. 14-17.

[14] Deshpande, S., and Purwar, A., 2019, “A Machine Learning Approach to
Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages,” ASME
J. Comput. Inf. Sci. Eng., 19(2), p. 021004.

[15] Deshpande, S., and Purwar, A., 2020, “An Image-Based Approach to Variational
Path Synthesis of Linkages,” ASME J. Comput. Inf. Sci. Eng., 21(2), p. 021005.

[16] Deshpande, S., and Purwar, A., 2019, “Computational Creativity Via Assisted
Variational Synthesis of Mechanisms Using Deep Generative Models,” ASME
J. Mech. Des., 141(12), p. 121402.

[17] Purwar, A., and Chakraborty, N., 2023, “Deep Learning-Driven Design of Robot
Mechanisms,” ASME J. Comput. Inf. Sci. Eng., 23(6), p. 060811.

[18] Eicholtz, M., Kara, L. B., and Lohn, J., 2014, “Recognizing Planar Kinematic
Mechanisms From a Single Image Using Evolutionary Computation,” Genetic
and Evolutionary Computation Conference, Vancouver, BC, Canada, July 12—
16, ACM.

[19] Eicholtz, M., and Kara, L. B., 2015, “Intermodal Image-Based Recognition of
Planar Kinematic Mechanisms,” J. Vis. Lang. Comput., 27(1), pp. 3848.

[20] Eicholtz, M., and Kara, L. B., 2015, “Characterizing the Performance of an
Image-Based Recognizer for Planar Mechanical Linkages in Textbook
Graphics and Hand-Drawn Sketches,” Comput. Graph., 52(C), pp. 1-17.

[21] Papageorgiou, C., Oren, M., and Poggio, T., 1998, “A General Framework for
Object Detection,” Sixth International Conference on Computer Vision,
Bombay, India, Jan. 7, pp. 555-562.

[22] Dalal, N., and Triggs, B., 2005, “Histograms of Oriented Gradients for Human
Detection,” 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, San Diego, CA, June 20-26.

[23] Evgeniou, T., and Pontil, M., 2001, “Support Vector Machines: Theory and
Applications,” Machine Learning and lIts Applications, G. Paliouras, V.
Karkaletsis, and C. D. Spyropoulos, eds., Springer, Berlin, pp. 249-257.

011010-10 / Vol. 24, JANUARY 2024

[24] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., 2002, “A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-IL” IEEE Trans. Evol. Comput.,
6(2), pp. 182-197.

[25] Purwar, A., Deshpande, S., and Ge, Q. J., 2017, “MotionGen: Interactive Design
and Editing of Planar Four-Bar Motions Via a Unified Framework for Generating
Pose- and Geometric-Constraints,” ASME J. Mech. Rob., 9(2), p. 024504.

[26] Mechanismic Inc., 2022, “MotionGen Pro”, St. James, NY, http://www.
motiongen.io

[27] Wullschleger, J., and Vucetic, O., 2017, p5.scribble.js, https:/github.com/
generative-light/p5.scribble.js

[28] Wood, J., Isenberg, P., Isenberg, T., Dykes, J., Boukhelifa, N., and Slingsby, A.,
2012, “Sketchy Rendering for Information Visualization,” IEEE Trans. Vis.
Comput. Graph, 18(12), pp. 2749-2758.

[29] Redmon, J., Divvala, S. K., Girshick, R. B., and Farhadi, A., 2015,
“You Only Look Once: Unified, Real-Time Object Detection,” CoRR, abs/
1506.02640.

[30] Redmon, J., and Farhadi, A., 2016, “YOLO9000: Better, Faster, Stronger,”
CoRR, abs/1612.08242.

[31] Redmon, J., and Farhadi, A., 2018, “YOLOvV3: An Incremental Improvement,”
CoRR, abs/1804.02767.

[32] Bochkovskiy, A., Wang, C., and Liao, H. M., 2020, “Yolov4: Optimal Speed and
Accuracy of Object Detection,” CoRR, abs/2004.10934.

[33] Krizhevsky, A., Sutskever, L., and Hinton, G. E., 2012, “Imagenet Classification
With Deep Convolutional Neural Networks,” Advances in Neural Information
Processing Systems, F. Pereira, C. J. Burges, L. Bottou, and K. Q. Weinberger,
eds., Curran Associates, Inc., Red Hook, NY, pp. 1097-1105.

[34] Rezatofighi, S. H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I. D., and Savarese, S.,
2019, “Generalized Intersection Over Union: A Metric and a Loss for Bounding
Box Regression,” CoRR, abs/1902.09630.

[35] Tsai, L.-W., 2001, Mechanism Design Enumeration of Kinematic Structures
According to Function, CRC Press, Boca Raton, FL.

[36] Culjak, I., Abram, D., Pribanic, T., Dzapo, H., and Cifrek, M., 2012, “A Brief
Introduction to Opencv,” 2012 Proceedings of the 35th International
Convention MIPRO, Opatija, Croatia, May 21-25, pp. 1725-1730.

[37] Henderson, P., and Ferrari, V., 2016, “End-to-End Training of Object Class
Detectors for Mean Average Precision,” CoRR, abs/1607.03476.

Transactions of the ASME

20z Arenige4 |0 uo semind Beunuy yooig Auois Iy ANNS Aq 4pd-0L0LLO L~ ¥Z @sIol/y21.9902/0101 L0/ L/veZ/spd-siome/Bunssuibusbunndwoo/bio-swse:uonos|jooenbipaiise;/:dny woly pepeojumoq

https://doi.org/10.1115/1.4044097
https://doi.org/10.1115/1.4044097
http://dx.doi.org/10.1115/1.4042325
http://dx.doi.org/10.1115/1.4042325
http://dx.doi.org/10.1115/1.4048422
http://dx.doi.org/10.1115/1.4044396
http://dx.doi.org/10.1115/1.4044396
https://doi.org/10.1115/1.4062542
http://dx.doi.org/10.1109/4235.996017
https://doi.org/10.1115/1.4035899
http://www.motiongen.io
http://www.motiongen.io
https://github.com/generative-light/p5.scribble.js
https://github.com/generative-light/p5.scribble.js
https://dx.doi.org/10.1109/TVCG.2012.262
https://dx.doi.org/10.1109/TVCG.2012.262

	1 Introduction
	2 Synthetic Image Generation of Sketches
	2.1 Mechanics of the Script

	3 Real-Time Object Detection
	3.1 Making Sense of Object Detection

	4 Topology and Geometry Determination
	4.1 Limitations of the Approach

	5 Examples and Analysis
	5.1 Script-Generated Sketches
	5.2 True Hand-Drawn Sketches

	6 Conclusions
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 References

