W) Check for updates

ASME

SETTING THE STANDARD

ASME Journal of Computing and Information Science in Engineering
Online journal at:
https://asmedigitalcollection.asme.org/computingengineering

Anar Nurizada

Computer-Aided Design and Innovation Lab,
Department of Mechanical Engineering,
Stony Brook University,

Stony Brook, NY 11794-2300

e-mail: anar.nurizada@stonybrook.edu

Anurag Purwar’
Computer-Aided Design and Innovation Lab,
Department of Mechanical Engineering,
Stony Brook University,

Stony Brook, NY 11794-2300

e-mail: anurag.purwar@stonybrook.edu

An Invariant Representation
of Coupler Curves Using a
Variational AutoEncoder:
Application to Path Synthesis
of Four-Bar Mechanisms

This paper focuses on the representation and synthesis of coupler curves of planar mecha-
nisms using a deep neural network. While the path synthesis of planar mechanisms is not a
new problem, the effective representation of coupler curves in the context of neural networks
has not been fully explored. This study compares four commonly used features or represen-
tations of four-bar coupler curves: Fourier descriptors, wavelets, point coordinates, and
images. The results demonstrate that these diverse representations can be unified using a
generative Al framework called variational autoencoder (VAE). This study shows that a
VAE can provide a standalone representation of a coupler curve, regardless of the input
representation, and that the compact latent dimensions of the VAE can be used to describe
coupler curves of four-bar linkages. Additionally, a new approach that utilizes a VAE in
conjunction with a fully connected neural network to generate dimensional parameters of
Sfour-bar linkage mechanisms is proposed. This research presents a novel opportunity for

the automated conceptual design of mechanisms for robots and machines.
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1 Introduction

The challenge of path generation, which involves synthesis of
linkage mechanisms, such as four-bar and higher-order ones, to
follow a sequence of consecutive points (x; y;) in R?, has been
the subject of numerous studies, yielding a multitude of proposed
solutions. Often these solutions hinge on optimization approaches.
These methods represent the coupler point path by precision points
and utilize an objective function to minimize the error between
them. Despite their prevalent use, they suffer from significant draw-
backs, including slow optimization, dependence on initial condi-
tions, and lack of guaranteed results, often failing to capture the
true shape of a given path [1].

The complexity of these mechanisms is further emphasized by
the nonlinear relationships between input and dimensional para-
meters. Even minor changes to the input can lead to a significantly
different mechanism. In the context of coupler-curve generation for
a four-bar linkage synthesis, the problem appears to be defined but
is often considered over-determined, leaving the synthesis problem
without an analytical solution [2]. As the number of links in a mech-
anism grows beyond the simplicity of a four-bar linkage, it enables
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the production of more complex motions, which makes the design
of such linkages considerably more challenging compared to
four-bar linkages [3].

Due to these reasons, there has been a growing interest in using
neural networks (NNs) for mechanism synthesis. NNs are widely
recognized for their ability to approximate a class of mappings
defined in Euclidean space. This further translates to their applica-
tion in learning a mapping from design specifications of mechanism
design problems to the dimensional parameters of mechanisms. The
use of NNs in mechanism synthesis is motivated by a desire to
address fundamental issues that lack analytical or theoretical foun-
dations, such as synthesizing circuit-, branch-, and order-defect-free
mechanisms, translating user intent into well-defined problems, and
satisfying additional kinematic and geometric constraints.

Variational autoencoders (VAEs), a class of generative deep
neural network models, offer the potential to approximate these
nonlinear relationships more effectively. Unlike conventional opti-
mization methods, VAESs can provide a comprehensive representa-
tion of the entire path shape, offering numerous stable solutions.
Once trained, VAESs eliminate the need for initial guesses, generate
approximations from defect-free datasets, and provide a more
robust response to minor input changes. Consequently, VAEs
present a promising avenue for the synthesis of closed-loop
linkage mechanisms, extending the potential for designing more
complex systems with greater accuracy and efficiency.
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A key challenge in the use of NNs for mechanism synthesis is the
representation of mechanisms and their properties, which form a
non-Euclidean space. In the case of planar four-bar mechanisms, a
crucial property is the coupler curve generated by a floating link.
To date, most researchers using NNs have utilized a Euclidean
embedding of the input path, leading to various representations of
the input coupler curves, including point coordinates, Fourier descrip-
tors, wavelets, and 2D pixel representations in an image. Of these,
Fourier and wavelet representations are derived from the point coor-
dinates only, and therefore, they can be considered features instead.
However, for simplicity, we will forego this distinction and call
them representations only for the purpose of this paper. Despite
these representations having produced effective outcomes, there
have been no studies investigating the relative merits of different rep-
resentations and their impact on linkage mechanism synthesis. This
lack of knowledge has impeded the field’s progress in using
modern machine learning algorithms for mechanism synthesis.

Apart from a comparative analysis of the representations, this
paper also presents a machine learning approach for the generation
of four-bar linkages that approximate a desired coupler curve. The
approach uses a VAE and a fully connected neural network (FCNN)
to generate a multitude of possible linkages. Four widely utilized
representations, namely, Fourier descriptors, wavelets, point coor-
dinates, and image-based representations, were investigated.

The input (desired) coupler curve is normalized to make it invari-
ant with respect to translation, rotation, and scale. Each of the four
representations is then fed to their respective pre-trained VAEs,
which map the input curve to a latent space. The k-nearest neighbor
(k-NN) [4] search in the latent space yields k similar coupler curves
represented as latent points. These & latent representations are input
to a fully connected neural network to generate k mechanisms. This
is a major difference between the previous approaches which would
only yield a single mechanism for a desired coupler curve. The use
of the VAE allows us to cluster similar looking coupler curves
together, thus, providing us with several mechanisms approximat-
ing the input curve. This process is illustrated in Fig. 1.

The generated coupler curves were compared to the desired
coupler curves by computing the mean square error (MSE). The
representation with the lowest MSE was determined to be the

most optimal representation. It is important to point out that the
initial starting points of the mechanisms compared are the same,
thus, there is a one-to-one mapping between the points of two
curves compared. In case the initial starting points of the two
curves would be different, the MSE for two exactly similar
curves would be high. In those cases, it would be necessary to con-
sider other methods of curve comparison, such as Frechet distance
[5], dynamic time warping [6], etc.

The results demonstrate that all of the representations yield com-
parable outcomes, with the MSE values obtained from the wavelet-
and point coordinates-based approaches being the lowest and
similar to each other. Although the Fourier- and image-based
approaches yielded higher MSE values, the generated linkages
still provided a reasonable approximation of the input coupler
curves. The MSE served as a useful and meaningful metric
because the compared curves were closed and subsequently
sampled and parameterized identically.

The results also indicate that the VAE can serve as a standalone
representation of a coupler curve and that a 5D latent space of the
VAE is sufficient to describe a coupler curve of a four-bar
linkage. It is crucial to emphasize that there is no inherent relation-
ship between the latent space and the actual characteristics of the
coupler curves. This gives rise to the possibility of using latent
space as the invariant description of coupler curves, which normal-
izes several different representations used in the literature.

The results of this study suggest that all of the representations
generate several mechanisms that approximate the input coupler
curve well and produce comparable outcomes. The similarities
among the mechanisms generated using different representations
indicate that the latent space of a VAE can be used as an invariant
representation of a coupler curve. The kNN search in the latent
space, which led to similar curves and their mechanisms, provides
the evidence that this mapping is locally Euclidean.

This paper also explores the effects of linear interpolation
between two random curve latent representations. Previous research
[7] has shown that reconstructing the interpolated latent representa-
tions directly from a VAE can result in unrealistic artifacts. In con-
trast, this study demonstrates that utilizing a FCNN in conjunction
with a VAE can overcome this problem by ignoring the decoder and
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An input curve consisting out of 360 (x, y) points is normalized, i.e., translated, scaled, and rotated. Once normalized, one

of the representations, for example wavelet descriptors, is computed and fed into the trained VAE which maps it to its latent
space. Performing k-NN search in the latent space yields k latent vectors of coupler curves similar to the desired coupler
curve. Taking these latent representations through a fully connected neural network yields k mechanisms that approximate
the desired input coupler curves. The output of the NN is a vector of unknown joint coordinates of mechanisms.
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producing coupler curves that smoothly morph from one input
coupler curve to another, resulting in mechanisms that transform
from one to another without singularity.

This work makes two key contributions to the field. First, it
investigates and compares effective representations of four-bar
coupler curves and demonstrates that a normalized representation
using a VAE can simplify storage and computation. Second, it pro-
poses a combined VAE-FCNN architecture that learns an effective
mapping from the task space (path) to the mechanism (dimensional
parameters) and produces four-bar mechanisms by sampling and
interpolating in the latent space of the VAE. Although this paper
primarily focuses on the most widely used planar four-bar mecha-
nisms, the approach presented can be extended to high-order
single-degree-of-freedom mechanisms.

The remainder of the paper is organized as follows. First, the
existing literature is reviewed in light of the goals of this study.
The planar four-bar mechanism dataset and normalization tech-
niques are presented in Sec. 3. Mathematical fundamentals of
Fourier descriptors, wavelets, VAEs, and t-distributed stochastic
neighbor embedding (t-SNE) are reviewed in Sec. 4, while the
architecture of the neural networks used in this study is presented
in Sec. 5. Finally, results of the study are presented via several
examples in Sec. 6, followed by a conclusion section.

2 Neural Network Literature for Mechanism Synthesis

In the field of path synthesis and representation of coupler curves
in four-bar mechanisms, several key works have been published. In
this section, we present a review of these works, focusing on those
relevant to the development of this paper.

Vermeer et al. [8] introduce a novel approach that combines
reinforcement learning techniques with neural network-based
policies and reward functions to achieve optimal link lengths for
straight-line mechanism synthesis tasks. Fogelson et al. [9]
graph convolution policy for high-order linkage graph optimi-
zation is an algorithm that utilizes machine learning techniques,
such as hierarchical optimization and high-order linkage con-
struction, to effectively generate feasible paths in complex
environments.

Unruh and Krishnaswami developed a computer-aided design
algorithm for synthesizing a four-bar linkage that best approximates
a given closed trajectory with an infinite number of points [10]. The
algorithm utilizes B-splines to store a large number of coupler
curves in a database and an algorithm for fitting B-splines to
closed curves. In contrast, Mcgarva and Mullineux used Fourier
descriptors (FDs) to represent closed curves [11]. The authors nor-
malized low-order coefficients to eliminate the difference between
two curves that are either translated, rotated, or scaled versions of
each other. Their results suggest that a curve can be represented
by the fundamental and the first harmonic terms of FDs. Mcgarva
later provided an algorithm for searching a catalog of coupler
curves represented as FDs to find the best match to a desired
input [12].

Ullah and Kota also used FDs for optimal synthesis of mecha-
nisms for the path generation problem [13]. They introduced an
objective function that finds the difference between two curves.
Once the function is minimized, it provides an approximation to a
candidate curve. However, FDs require the curve to be a closed
one. Wu et al. devised a method for extending the FD approach
to open curves by incorporating finite Fourier series in a curve-
fitting scheme for approximation of periodic as well as non-periodic
functions [14]. Li et al. extended the use of FDs for the motion gen-
eration problem, in which the coordinates (x;, y;) and orientation (6;)
of the path points are given [15]. The authors show that the rota-
tional component of a motion in combination with the translational
part is enough to determine all of the necessary components of a
four-bar linkage for approximate motion generation.

Sharma et al. exploited the relationship between the path and ori-
entation of coupler of four-bar mechanisms to devise a solution to
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the Alt-Burmester problem, which is essentially a mixed path
points and position problem [16]. Leveraging this relationship,
they translated this problem into a pure motion generation
problem. Another drawback of using FD approach is its dependence
on the time parametrization. This is usually overcome by consider-
ing the uniform parametrization of the data points, which in turn
usually disregards the uniqueness of harmonic properties of a
given coupler curve. Sharma and Purwar introduced a nonuniform
parametrization that considers the harmonic properties of a coupler
curve of a given four-bar linkage and allows imposing additional
user-specified constraints [17].

Vasiliu and Yannou presented a method for synthesizing the
parameters of four-bar linkages for path generation by combin-
ing Fourier descriptor feature extraction and machine learning
[1]. This approach demonstrated promising results. The procedure
involved first calculating Fourier descriptors from a desired
closed coupler curve, which were then fed into a neural network
that was trained to map the descriptors to bar linkage parameters
such as the link coordinates in the initial position of the
mechanism.

Similarly, Khan et al. proposed a method for determining the
dimensions of a four-bar mechanism by analyzing the shape of its
coupler curve [18]. The shape was represented using Fourier
descriptors of cumulative angular deviation, which eliminated the
need to consider the position or scale of the curve. An artificial
neural network was trained to learn the relationship between these
Fourier descriptors and the dimensions of the mechanism.

The use of Fourier descriptors as shape descriptors for represent-
ing curves is not the only approach available. Another family of
shape descriptors, known as wavelet descriptors (WDs), has been
employed in a variety of engineering disciplines. Chuang and
Kuo were among the first researchers to explore the use of WDs,
demonstrating the capability to decompose a closed planar curve
into a hierarchy of scales that contain important information
about the curve’s features [19]. The study revealed that some of
the descriptors capture the global features of the curve, while
others focus on its more detailed aspects. Osowski and Nghia con-
ducted a comparative study between Fourier descriptors and
wavelet descriptors in the extraction of 2D pattern features, with
their results suggesting that the wavelet approach outperforms the
Fourier approach in situations where the input is noisy [20].
Nabout and Tibken applied WDs in object shape recognition,
using puzzle-shaped animals as the input shapes [21-23]. The rec-
ognition process involved calculating the WDs for the input shapes
and comparing them with the previously stored WDs of contour
patterns.

Liu et al. presented a technique for the representation of open
curves utilizing wavelets [24,25]. They proposed a path generator
that considers the WDs extracted from the curve, rather than the
curve itself, and outputs the actual parameters of a four-bar mecha-
nism that approximates the input curve. Li et al. used wavelets and
neural networks for flaw classification [26]. The 2D flaw shape was
transformed into wavelet descriptors and utilized as the input to a
neural network for classification. The study compared the perfor-
mance of wavelet descriptors, Fourier descriptors, and principal
component analysis [27] as feature extractors. The results indicated
that the wavelet descriptors outperformed the other methods, partic-
ularly when the input was noisy, which was in accordance with the
findings of Osowski and Nghia [20].

Galan-Marin et al. developed a pipeline for synthesizing the path
of crank-rocker mechanisms through the use of wavelet-based
neural networks [28]. Similar to the work done by Li et al. [26],
the wavelet descriptors were extracted from a given coupler curve
and utilized as feature vectors in the neural network to determine
the parameters of the mechanism. A comparison was made
between the use of Fourier descriptors and wavelet descriptors as
feature extractors and the latter was found to produce superior
results.

The previously discussed methods have demonstrated promising
results; however, they are limited in their ability to provide design
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solutions. Deshpande and Purwar addressed this issue by introduc-
ing an approach that leverages a pre-compiled database of four- and
six-bar linkage parameters and a convolutional neural network-
based deep generative machine learning model [29]. During the
training process, the coupler-curve images of mechanisms stored
in the database serve as inputs, and the NN learns the probabilistic
distribution of the input data.

In another study, Deshpande and Purwar utilized the curvature
integral as a signature for the prescribed path and motion [30].
These signatures were then compiled in a database. The k-NN algo-
rithm was employed to find suitable mechanisms that would satisfy
the requirements. The authors also made use of a conditional VAE
that incorporates uncertain user input to provide the user with
greater control over the design process, as described in Ref. [31].
Regenwetter et al. conducted a comprehensive review of the use
of deep generative machine learning models in engineering
design [32]. They examined several types of deep generative
models that have been successful in engineering design applica-
tions, including structural optimization, materials design, and
shape synthesis. More recently, in a review paper, Purwar and
Chakraborty [33] highlighted the recent advances in deep neural
networks for design of robot mechanisms and outlined future direc-
tions for research in this area.

3 Dataset Compilation and Normalization Procedure

One of the major challenges facing the engineering design com-
munity in the utilization of data-driven methods, specifically deep
learning, is the scarcity of large, publicly accessible datasets. This
presents a significant hindrance not only for kinematic design but
also for other branches of engineering design. Nobari et al. [34]
address the problem by introducing LINKS, a comprehensive
dataset comprising a hundred million planar linkage mechanisms,
created to support data-driven approaches in kinematic design.
This dataset serves as a valuable resource enabling researchers to
conduct extensive experimentation and analysis in the field of kine-
matic design.

Despite the comprehensiveness of the dataset, conducting numer-
ous experiments utilizing it would necessitate significant time and
computational resources. Therefore, in order to address this chal-
lenge, we have devised an algorithm for generating planar
four-bar mechanisms, represented as a sequence of five points
(joints). We imposed that the mechanisms in the dataset satisfy
the Grashof condition [35], have reasonable link ratios, and
produce a diverse set of coupler curves [36]. Computational exper-
iments showed that a 9 x 9 grid with the joint locations at one of the
grid points was optimal in providing a sufficiently large number of
mechanisms while also ensuring a wide range of coupler curves.

A four-bar mechanism consists of four joints, two of which are
fixed and two are moving joints, and a coupler point. These joint
locations can be collected in a tensor as ¢=(jo, j1, jo» J3» Ja);
Ji = (x;, ;), where jy and j3 are fixed joints’ locations, j; and j, are
free moving pivots connected to j, and js, respectively, and, finally
Ja represents the coupler point. It was decided to keep the fixed
link of unit length for all mechanisms by setting j, = (0.0, 0.0) and
J3=(1.0, 0.0). Since the coupler curves’ shape remains unchanged
as long as the link ratios are the same, this choice did not exclude
any mechanisms and kept the computation and storage more manage-
able. By varying the positions of the moving pivots and the coupler
point on the grid, a large dataset of four-bar joint combinations was
compiled satisfying the following conditions:

(1) If two or more joints’ locations were at the same grid spot,
this mechanism would be discarded. For example, if loca-
tions of two moving pivots are the same, it would create a
structure without relative movement of links.

(2) To make sure that the dataset does not consist of mechanisms
with the same link ratios, we introduced the following crite-
ria. Denoting the ground link length as /y, /; as the input link
length connecting jo and j;, [, as the coupler link length
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Fig.2 An example combination of joints’ locations. Each joint’s
location is shown in the brackets next to the joint. For each com-
bination, moving pivots and coupler points can be at any point
denoted with a circle, as long as the combination passes the fil-
tering rules.

connecting j; and j,, and /3 as the output link connecting j,
and j3, we check that no two mechanisms have equal ratios
L/, Ly, Lll).

(3) Removing all nonviable and repetitive mechanisms, we
perform the last filtering step removing all of the mechanisms
not satisfying the Grashof condition.

Performing the aforementioned steps, we were able to compile 43,
572 combinations of joint locations. Supplying each combination to
our coupler-curve generator that takes in the information of the
joints’ locations, and outputs 360 (x; y;,) points on a coupler
curve, we transformed these combinations into a dataset with infor-
mation about these points and joints’ locations. Checking the
extreme coordinates corresponding to the normalized coupler
curves from the database, we get that 99% of the generated
coupler curves fit in a seven by seven unit square. Further examina-
tion of the dataset showed that the minimum link ratio of the bar
mechanisms is equal to 1.1, whereas the maximum link ratio is
8.9, with most of the mechanisms’ link ratios being between two
and five. Figure 2 shows one example of the combinations. Fixed
joints jo and j; are at locations (0, 0) and (1, 0), respectively.
Moving pivots j, and j, are at locations (—0.5, 0.5) and (1, 0.75),
whereas the coupler point is at location (0.25, 1.0).

The compiled dataset was later partitioned into randomly selected
training and testing sets, with proportions of 90% and 10%, respec-
tively. Both sets exhibit similarity to one another since four-bar
mechanisms do not generate significantly diverse coupler curves.
Access to the dataset is available.”> Upon closer examination of
the dataset, it becomes evident that there exist curves that bear a
striking resemblance to each other. Consequently, the training and
testing datasets do not exhibit complete dissimilarity. The trained
weights corresponding to each representation pipeline can be
acquired upon request.

3.1 Normalization. In this work, each coupler curve is nor-
malized to make sure it is invariant with respect to translation,
scale, and rotation. The normalization procedure starts with ensur-
ing that the curve is centered around (0, 0) by subtracting the

2hups://Www.kaggle.com/dalasets/amarnurizade\/four—bar—coupler—curve—dalaset
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mean (¥, y) from each coupler point (x;, y;). Scaling consists of
dividing the coupler-curve points by the root mean squared variance
in both X- and Y-directions. Normalization of the orientation
requires finding the principal component axes. The principal com-
ponent axes are eigenvectors of the covariance matrix C of a
coupler path comprising of m two-dimensional points {x;, y;}.;,
where C is given by

Co Cy
C= [ ’ ] where (D
C,vx yy
1 & _ _
Cu =Z;°‘" —Hx = 3) )
1 & _ _
Cyy =%;(Yi -9 - ) 3)
1 m
Coy=Cp=—-3 (=D =) “
i=1

To achieve full normalization of the coupler curve, the authors
employed a rotation technique. This rotation involves aligning the
principal component axes of the curve with the Cartesian coordinate
system. By doing so, the curve is transformed to a standardized ori-
entation. However, it is crucial to note that no normalization proce-
dure was applied to address mirrored mechanisms and their
associated coupler curves. In other words, mirrored mechanisms
were treated as distinct entities, and their respective coupler
curves were mapped to separate locations within the latent space.

4 Mathematical Fundamentals of Fourier Descriptor,
Wavelet Descriptor, Variational Autoencoder, and
t-Distributed Stochastic Neighbor Embedding

In this section, we review background material covering FDs,
WDs, VAE, and t-SNE to the extent necessary for the development
of this paper.

4.1 Fourier Descriptors. Fourier descriptors (FDs) are a
common way of representing the shape of a closed curve at
varying levels of detail. Regarding X- and Y-coordinates of a
coupler curve as real and imaginary numbers, respectively, we
can represent them as a complex function:

() = x(t) + iy() (&)

For a closed path curve, z(¢) is periodic and can be rewritten in a
form of sum of series as follows:

Z(t) — Z amezm'ml (6)

m=—oo

where a,, is the Fourier descriptor and, in the case when a given
curve is not a function but a sequence of points on the curve, can
be calculated using the following approximation:

1 N-1 i
a, =— e wim(k/N) 7
n N;zk )

where z;, are the given points in their complex representation and N
is the total number of points given. Descriptor ay is called the fun-
damental, whereas descriptors a_; and a, are called first harmonic,
etc. In other words, there can be an endless number of FDs,
however, it has been shown that a task curve with m =35 captures
the four-bar coupler path very accurately and is deemed sufficient
for practical implementation [15]. In this work, we have also used
a coupler-curve representation with m =35. In addition to that, two
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more Fourier descriptor representations with m=10 and m=20
were also tested to see whether they yielded better results for mech-
anism generation. This choice was made to balance the input data
load across different representations.

4.2 Wavelet Descriptors. Wavelets are mathematical func-
tions that are used to analyze and represent data, particularly in
the field of signal processing. They are based on the idea of analyz-
ing a signal at different scales or resolutions, and are particularly
useful for analyzing data with sudden changes or singularities.
The most common type of wavelet is the Daubechies wavelet,
named after Ingrid Daubechies [37], who first introduced them in
1988. The Daubechies wavelets are defined by

‘l/a,b(x) ZJLE Z h(n)eZ”i((nX—b)/a) ®

n=—00

where h(n) is the wavelet coefficient, a is the scaling factor, and b is
the translation factor. The Daubechies wavelets are characterized by
the number of vanishing moments, which is the number of times the
integral of the wavelet multiplied by a polynomial of a certain
degree is zero. Daubechies wavelets are widely used in various
fields such as image compression [38], audio processing [39], and
medical imaging [40]. They are effective in capturing the important
information in a signal while discarding the noise.

The formula for the wavelet coefficient in the Daubechies
wavelet is given by the sequence h(n), which is a parameter in
the wavelet function definition. It can also be computed from the
scaling function coefficients using the equation:

h(n) = (=1)" > (=)' nkf (k) ©)
k=0

where f(k) is the sequence of scaling function coefficients, and n is
the index of the wavelet coefficient. The computation of wavelet
coefficient is typically done as part of the wavelet transform
process, which decomposes a signal into its different frequency
components using the wavelet function.

It is worth noting that the wavelet coefficient is different from the
wavelet function, which is the function that represents the wavelet.
While the wavelet function gives us a way to visualize the wavelet,
the wavelet coefficients gives us a way to quantitatively represent
the wavelet in the form of a sequence of numbers.

We treated x and y locations of the points on a coupler curve as
two separate signals and performed five-level decomposition using
Daubechies wavelets on them separately. Similar to the Fourier
descriptor representation, we wanted to check how discarding coef-
ficients affects the coupler-curve approximation; and thus, we chose
three different representations with 38, 76, and 136 wavelet coeffi-
cients describing our initial input. We selected a representation of
38 coefficients as the initial approximation of the coupler curve,
as it was determined to be the minimum number required to accu-
rately capture the necessary details without significant loss of
information.

4.3 Variational Autoencoder. VAE is a modified version of
the traditional autoencoder [41] architecture, which comprises
three essential components: an encoder, a latent space, and a
decoder. The utilization of autoencoder architectures for dimension-
ality reduction has been well established in the literature [42]. The
encoder component of VAE comprises a series of convolutional
and/or fully connected layers, which are stacked on top of each
other. The encoder retains only the key features of the input in
the latent space and the resulting encoded vector comprises of the
most salient information about the input. The decoder component
of VAE comprises of transposed convolutional and/or fully con-
nected layers, which take the latent space vector as input and trans-
form it back to the original input. However, as it is impossible to
retain all the information while keeping the dimensionality of the
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Encoder

Input Image Y

Decoder

Fig. 3 VAE takes an input image of a coupler curve and maps it to a 2D latent space representation through the use of the
encoder and t-SNE. This latent space shows that similar coupler curves are grouped together. By passing the latent representa-
tion of the input image through the decoder, the original input image can be reconstructed.

latent space much smaller than the input, the output tends to be
lossy. It is worth noting that the latent space of an autoencoder is
a single vector, in contrast to a VAE, thus, it is impossible to gen-
erate new data with it.

VAE differs from traditional autoencoder in that it approximates
the probability distribution of the true distribution of the training
data, rather than producing a single latent vector. VAE utilizes a
mean and a standard deviation to generate multiple latent vectors
by sampling from them. This allows for the generation of new
data by interpolating in the latent space or by varying the mean
and standard deviation values. This is a key feature of VAE, as it
allows for the generation of diverse and realistic samples, which
can be used for various applications such as image synthesis,
image completion, and anomaly detection.

A VAE is trained by maximizing the expectation lower bound
(ELBo) of the marginal likelihood, which is given by

L3 s = Egirion(log (p('[2)) = DxL(QGIY: 0)lIp@)  (10)

where x’ represents a training image and z represents the vector
sampled from the latent space. The first term on the right side of
Eq. (10) represents reconstruction error and the second term is
called the Kullback-Leibler divergence (KL divergence) [43]
which ensures that our learned distribution Q(zIX; 6,) is similar to
the true prior distribution p(z), which in our case was chosen to
be a Gaussian distribution. Representing the reconstruction error
as cross-entropy of original and reconstructed images, we can
rewrite the first term of the right side of Eq. (10) as

Eocivia,(log (p(x'|2)) = xlog (}) + (x = Dlog (1 =%) (11

where % is a reconstructed image vector. Since we assume that p(z)
is a Gaussian distribution, we can rewrite the second term of the
right side of Eq. (10) as

k
DM@M@W@=Z@H#—M@%n (12)

where y; and o; are mean and standard deviation values from the
latent space.

The latent space of a trained VAE clusters similar looking curves
with each other. Figure 3 shows how analogous curves are mapped
close to each other in the latent space. In other words, given a
desired coupler curve, it is possible to map it to the latent space
and take several neighboring latent representations to get several
coupler curves that would approximate the desired coupler curve
k-NN [4] algorithm was implemented to find k closest latent
points given a latent representation of a coupler curve by calculating
the Euclidean distance between the input coupler-curve latent

011008-6 / Vol. 24, JANUARY 2024

representation and all latent points available. It is important to
mention that the results of the k-NN search are supplied to the
second neural network in the pipeline and not the decoder since
the decoder would reconstruct the input information rather than
provide us with a mechanism capable of approximating the input
curve.

4.4 t-Distributed Stochastic Neighbor Embedding. Visual-
izing high-dimensional data is important in order to understand
how the VAE would cluster the given data in the latent space.
The latent space dimensionality chosen for this work was equal to
five; thus, it is mandatory to use a dimensionality reduction tech-
nique, such as t-SNE [44], to visualize the data in 2D or 3D maps.

The t-SNE technique consists of three major steps: (1) calculating
a joint probability distribution that determines neighboring points,
(2) calculating a joint probability distribution of a dataset of
points created in the target dimension, and (3) using gradient
descent to make these two joint probabilities as close as possible.

The conditional probability of a point x; being a neighbor of x; is
given by

. exp (= llxi — x> /267)
Ty exp (= llxi — xil|?/207)

where o; is a standard deviation of a Gaussian distribution centered
at Xi.

Gradient descent in t-SNE is performed by minimizing the KL
divergence given by

13)

cost=KLPIQ) =Y ) pistoe (14)
i i

where P is a joint probability distribution of the higher-dimensional
space, whereas Q is a joint probability distribution of the lower-
dimensional space that we would like to decrease our dimension to.

5 Neural Network Architectures of VAE-FCNN

In this section, we outline architectures for the VAE and the
FCNN for each of the four representations. Due to the differences
in the input vector and their cardinality, we trained a different
VAE and FCNN for each representation. We tested and compared
13 different parameterizations of a coupler curve as follows: (1)
Fourier descriptors with 5, 10, and 20 fundamentals, (2) wavelet
descriptors with 38, 76, and 136 coefficients, (3) coordinates with
15, 23, 45, 90, 180, and 360 points on a curve, and (4) 64 x 64
image-based representation. The architecture of VAE for Fourier-,
wavelet-, and point coordinates-based representations were the
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Table 1 Fully connected neural network architecture

Layer (activation) Input neuron # Output neuron #

Dense (ReLU) 5 1280
Dense (ReLLU) 1280 1280
Dense (ReLU) 1280 1280
Dense (ReLU) 1280 1280
Dense (ReLU) 1280 1280
Dense (ReLLU) 1280 1280
Dense (ReLU) 1280 1280
Dense (ReLU) 1280 1280
Dense (ReLU) 1280 1280
Dense (Tanh) 1280 6

same as well except for the input and output layers since their
dimension are a function of the chosen representation; for
example, for a wavelet representation with 38 coefficients, the
input and output layers have 38 neurons. The architecture of the
FCNN was exactly the same for all of the representations since
the input and output in all the cases were the same. Table 1
shows the architecture of the FCNN with rectified linear unit
(ReLU) activation functions, where the input layer is 5D because
the latent space of the VAE is 5D, while the output is a 6D layer,
which represents the locations of three unknown joints of a
mechanism.

In this study, the architecture for the image-based VAE differed
from the other representations as it employed convolutional layers
instead of fully connected layers. The architecture of the VAEs
used for image and other representations are presented in Tables
2 and 3, respectively. In an effort to maintain comparability, the
neural network architectures were kept as similar as possible. The
latent dimensions for all VAEs were set to 5. All neural networks
were trained for 200 epochs. The training loss for the image-based
VAE composed of two components: reconstruction loss, which
measures the difference between the reconstructed image and the
original image, and the KL divergence loss, which compares the
predicted distribution to a Gaussian distribution. The point
coordinates-, Fourier-, and wavelet-based VAEs utilized flattened
vectors for their input and output layers, with MSE as the recon-
struction loss. Conversely, the image representation utilized
binary cross-entropy as the loss function. The loss function for
the fully connected neural network was set to MSE, which com-
pares the predicted values to the actual values.

6 Results and Discussion

Figure 1 illustrates the overall approach, which we explain via a
chosen representation, say FDs. A desired coupler curve consisting
out of 360 (x, y) points is normalized following the steps described

Table 2 Image-based VAE architecture

Layer Filter count Filter size
Convolution 1 32 4, 4)
Convolution 2 64 4,4
Convolution 3 128 4, 4)
Convolution 4 256 4, 4)
Flatten 1 - -
Mean—std. dev. - -
Sampling 1 - -
Fully connected 1 - -
Un-flatten 1 - -
Transpose convolution 1 128 5,5)
Transpose convolution 2 64 (6, 6)
Transpose convolution 3 32 (6, 6)
Transpose convolution 4 1 (6, 6)

Journal of Computing and Information Science in Engineering

Table 3 Fourier-, wavelet-, and (x, y) point coordinates-based
VAE architecture

Layer (activation) Input neuron # Output neuron #

Encoder

Dense (ReLU) @ 512
Dense (ReLLU) 512 512
Dense (RelLLU) 512 512
Dense (ReLLU) 512 512
Dense (ReLLU) 512 512
Dense (ReLLU) 512 5
Decoder

Dense (ReLLU) 512 512
Dense (ReLLU) 512 512
Dense (ReLLU) 512 512
Dense (ReLU) 512 512
Dense (ReLLU) 512 512
Dense (—) 512 a

“lindicates the variable size of the layer dependent on the representation.

in Sec. 3. Once normalized, Fourier descriptors are calculated and
fed into the trained VAE which maps it to a latent representation.
Performing k-NN search in the latent space yields k latent vectors
of coupler curves similar to the input curve. Taking these latent rep-
resentations through the fully connected neural network yields k
mechanisms that approximate the desired input coupler curve. In
case the wavelet representation is used instead of the Fourier
descriptors, the only change would be in the input size to the
VAE since there are a different number of wavelets coefficients
being used than the FDs.

In order to compare the approaches using different representa-
tions, we measured the MSE between the input curve and the
output curve obtained at the very end of our pipeline. Neural
network outputs the locations of the moving joints, and knowing
the locations of the fixed joints, since they were the same for all
of the mechanisms, this is j, and js, located at (0, 0) and (1, 0), it
is possible to generate the final (output) coupler curve. The same
generator was used to get the input and output curves; thus, there
is a one-to-one mapping between the curves. Therefore, it is possi-
ble to use the MSE loss to compare the input with the output.
A lower MSE implies better performance of a particular
representation.

There were two kinds of error calculations performed. In the first
calculation, for each input curve only one output curve was gener-
ated. In other words, k-NN search was not performed in this case.
Five thousand random mechanisms from the dataset were chosen
and run through each representation pipeline. The average MSE
loss for each representation is shown in column “MSE loss” in
Table 4. The second kind of error calculation involved the k-NN
search, where for each input coupler curve, ten approximate
output coupler curves were generated. Taking the average of
these ten coupler curves, and averaging these losses for 5000 mech-
anisms, we get the results presented in column “k-MSE loss” in
Table 4. Table 4 also shows the number of parameters used in the
whole pipeline. The higher the input number, the more parameters
are needed since the input and output layers’ neurons’ number
depends on the input number.

Average k-MSE results are higher than the respective MSE loss
results as shown in Table 4, which is expected since the MSE
loss is now averaged over a set of neighbors, which are at least
some distance away from the input curve. If a larger number of
neighbors are sampled, the MSE loss will be larger resulting in a
worse approximation. A different number of Fourier descriptors
as well as wavelet descriptors were chosen to see how they affect
the output coupler curve approximation. The results suggest that
increasing the number of the descriptors does not result in a
better coupler curve generated since loss values fluctuate around
the same number. Image-based approach showed the worst results
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Table 4 Average MSE losses (+ 0.25%) for 5000 random
mechanisms

Representation  Input#  Parameters MSE  k-MSE Noisy-MSE
Fourier 22 15,265,318 0.1175 0.4847 0.3285
descriptors
42 15,285,818 0.1337 0.4636 0.3196
82 15,326,818 0.1481 0.4690 0.3397
Wavelet 38 15,281,718 0.1759 0.2384 0.2390
descriptors
76 15,320,668 0.1554 0.2333 0.2168
136 15,382,168 0.1300 0.2092 0.2107
(x, y) points 720 15,980,768 0.0789 0.1892 0.1702
360 15,611,768 0.1115 0.2191 0.1969
180 15,427,268 0.0817 0.2004 0.2099
90 15,335,018 0.0854 0.2322 0.1927
46 15,289,918 0.0918 0.2062 0.2508
30 15,273,518 0.0818 0.1741 0.2399
Image 4096 17,441,135 03850 1.1583 0.3760

having the highest MSE losses in both cases compared to the other
three representations. This can also be attributed to the specific
choice of the architecture rather than to the representation.
Wavelet descriptors and point coordinates (x, y) approaches with
different number of points on the coupler curve performed approx-
imately the same when taking ten neighbors into account. Fourier
descriptors representation had worse results when considering ten
neighbors instead of one-to-one comparison. The results also
suggest that not all 360 (x, y) points on the coupler curve are
needed in order to get a good output since both MSE and k-MSE
values fluctuated around 0.09 and 0.18, respectively. This suggest
that one does not need too many points on the curve in order to
get a good approximation.

Figure 4 shows four different input curves together with four
output curves generated using a Fourier descriptor approach with
five fundamentals, a wavelet approach with 38 descriptors, 360
(x, y) points approach, and 64 x 64 image-based approach. Also
shown in the figure are the respective four-bar mechanisms that gen-
erate these coupler curves. The marker locations are related to the
fixed joints which are the same for all of the mechanisms. These
results suggest that our approach generates similar mechanisms
regardless of the chosen representation.

Fig. 4 Four different input coupler curves together with their
corresponding curves generated using a Fourier descriptor
approach with five fundamentals, a wavelet approach with 38
descriptors, 360 (x, y) points, and image-based approach. Input
curve—solid curve; Fourier representation—dotted curve;
wavelet representation—dashed-dotted curve; (x, y) representa-
tion—dashed curve; image representation—loosely dotted
curve

011008-8 / Vol. 24, JANUARY 2024

Figures 5-8 show an input (black) curve and output curves gen-
erated through our pipeline using 360 (x, y) points-, wavelet-,
Fourier-, and image-based approaches. While the k-MSE loss calcu-
lations used k = 10, we are showing only five (k=15) nearest neigh-
bor output curves as plotting all of them would have made the figure
busy. The results shown are consistent with the numerical loss
results presented; i.e., the 360 (x, y) points- and wavelet-based
approaches perform equally well, whereas mechanisms obtained
using the Fourier- and image-based representations quickly
become worse. In Figs. 5 and 6, the input (black) curve can
hardly be seen because approximations are so accurate that the
input curve gets covered. It can also be seen that the higher the
k-number, the further is the coupler curve from the best approxima-
tion. Choosing the representation with the lowest MSE values—
point coordinates representation—we plot nine possible solutions
to an input coupler curve using k-NN search together with the
respective four-bar linkages in Fig. 9. It can be seen that the best
result (top-left) gives the best approximation for the moving
pivots’ locations. The further the neighboring solution, the worse
the approximation becomes.

Figures 10-13 show the results of a linear interpolation L(#) =
(1 —t)Lo+1L,, t€[0, 1], between the latent representations of

Fig.5 Input (black) curve approximation obtained using the 360
(x, y) point-based approximation with k =5. k =1—loosely dotted
curve; k =2—dotted curve; k = 3—densely dotted curve; k =4—
long dashed curve; k =5—loosely dashed curve. Average MSE
value: top-left—0.245, top right—0.152, bottom left—0.348,
bottom-right—0.096.

Fig. 6 Input (black) curve approximation obtained using the 38
wavelet coefficients-based approximation with k=5. k=1—
loosely dotted curve; k=2—dotted curve; k=3—densely
dotted curve; k =4—Ilong dashed curve; k =5—loosely dashed
curve. Average MSE value: top-left—0.142, top right—0.169,
bottom left—0.309, bottom-right—0.238.

Transactions of the ASME

[/9196502/8001 LO/L/Z/spd-sone/butissuiBusbunnduwos;/Bio-swse uonosjjoojenbipawse//:dny wouy pspeojumoq

L g osiol

€202 Jaquiada( G| uo Jemind Beunuy Yooig Auols 1y ANNS 4Aq Jpd'8001 L0



Fig. 7 Input (black) curve approximation obtained using the
Fourier-based (five fundamentals) approximation with k=5. k=
1—loosely dotted curve; k=2—dotted curve; k=3—densely
dotted curve; k =4—Ilong dashed curve; k =5—loosely dashed
curve. Average MSE value: top-left—0.209, top right—0.262,
bottom left—0.207, bottom-right—0.157.

Fig. 8 Input (solid) curve approximation obtained using the
image-based approximation with k=5. k=1—loosely dotted
curve; k =2—dotted curve; k = 3—densely dotted curve; k =4—
long dashed curve; k =5—loosely dashed curve. Average MSE
value: top-left—0.510, top right—0.537, bottom left—0.429,
bottom-right—0.347.

top-left and bottom-right coupler curves, given by latent vectors Ly
and L, respectively. It can be seen that the interpolation in the
latent space and then mapping to the FCNN yield well-behaved
transitions of mechanisms.

We also investigated the performance of our pipeline when pre-
sented with a noisy curve. To accomplish this, Gaussian noise with
a mean of 0 and variance of 0.1 was introduced to the input and
5000 random mechanisms were subsequently processed through
each representation pipeline. The results represented as the
average MSE loss for each noisy representation are displayed in
the column “noisy-MSE loss” in Table 4. Additionally, Fig. 14
illustrates the impact of noise on four input coupler curves, with
comparison to coupler curves generated using a Fourier descriptor
approach with five fundamentals, a wavelet approach with 38
descriptors, a 360 (x, y) points approach, and an image-based
approach, along with the corresponding linkage mechanisms. It is
worth noting that the noise introduced for the purpose of generating
this figure has a variance of 0.01, rather than 0.1 used for loss
calculation, as higher levels of variance resulted in a cluttered
visual representation.

The findings indicate that the FD descriptor method exhibits infe-
rior performance compared to the wavelet-based method when

Journal of Computing and Information Science in Engineering

Fig. 9 Nine approximations (dashed line) of an input coupler
curve (solid line) using a 360 (x, y) points-based approach
obtained by sampling nine neighboring latent representations
in the latent space. The best approximation is shown in the top
left corner and the worst (farthest neighbor) approximation is
shown in the bottom-right corner of the figure. The results
show us that the approach provides several mechanisms that
approximate the input well.

Fig. 10 Linear interpolation between the two coupler curves
from top-left to bottom-right using 360 (x, y) points-based
representation

Fig. 11 Linear interpolation between the two coupler curves
from top-left to bottom-right using 38 wavelet coefficient-based
representation

exposed to a noisy input. This aligns with the outcomes reported
in Ref. [20]. Conversely, both point-based and wavelet-based repre-
sentations yield poorer results when presented with a non-smooth
coupler curve, but they still demonstrate the most favorable out-
comes. It is noteworthy that the image-based representation per-
forms equally well in both scenarios: with a smooth curve and a
non-smooth curve.

6.1 Falsification. The final stage of the study shows the
results obtained by testing the pipeline on the coupler curves
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Fig. 12 Linear interpolation between the two coupler curves
from top-left to bottom-right using Fourier descriptor-based rep-
resentation with five fundamentals

Fig. 13 Linear interpolation between the two coupler curves
from top-left to bottom-right using image-based representation

Fig. 14 Four different noisy input couple curves together with
four coupler curves generated using a Fourier descriptor
approach with five fundamentals, a wavelet approach with 38
descriptors, 360 (x, y) points approach, and image-based
approach. Input curve—solid curve; Fourier representation—
dotted curve; wavelet representation—dashed-dotted curve;
(x, y) representation—dashed curve; image representation—
loosely dotted curve.

that are substantially different from the ones the pipeline was
trained on, i.e., the coupler curves that cannot be achieved using
a four-bar mechanism. Figure 15 shows four different coupler
curves in black color that are significantly different from the train-
ing and testing sets. The outcome shows us that the pipeline pro-
duces unsatisfactory results, which was anticipated, as the dataset
did not consist of these types of curves during training. Some of
the produced results are open curves although the training set con-
sisted of Grashof mechanisms only. This happens because the pre-
dictions of the neural network might result in a joints’ location of a
non-Grashof mechanism.

011008-10 / Vol. 24, JANUARY 2024

Fig. 15 Four different noisy input couple curves together with
four coupler curves generated using a Fourier descriptor
approach with five fundamentals, a wavelet approach with 38
descriptors, 360 (x, y) points approach, and image-based
approach. Input curve—solid curve; Fourier representation—
dotted curve; wavelet representation—dashed-dotted curve; (x,
y) representation—dashed curve; image representation—
loosely dotted curve.

7 Conclusions and Future Work

In this paper, we presented a novel methodology for generating
planar four-bar mechanisms that approximate input couple curves.
Four different representations of the coupler curves were analyzed,
including Fourier, point coordinates, wavelets, and image-based.
The findings of the study indicated that the wavelet and point coor-
dinates representations produced the best approximations with only
slight differences between the input and output curves. However,
the Fourier and image-based representations resulted in higher
errors. Nevertheless, all of the representations resulted in acceptable
approximations, indicating that the latent space of the VAE could be
used as an invariant representation of coupler curves.

Moreover, the study also tackled the issue of linear interpolation
artifacts in the latent space by proposing a smooth interpolation
solution. As a result, the study provides valuable insights for
future research in this field. Possible avenues for future research
may include exploring the use of the proposed pipeline for different
types of linkage systems, such as six-bar, eight-bar, and spatial
linkages.
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