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SETTING THE STANDARD

Deep Learning-Driven Design
of Robot Mechanisms

In this paper, we discuss the convergence of recent advances in deep neural networks
(DNNs) with the design of robotic mechanisms, which entails the conceptualization of the
design problem as a learning problem from the space of design specifications to a param-
eterization of the space of mechanisms. We identify three key inter-related problems that are
at the forefront of using the versatility of DNNs in solving mechanism design problems. The
first problem is that of representation of mechanisms and their design specifications, where
the representation challenges arise primarily from the non-Euclidean nature of the data.
The second problem is that of developing a mapping from the space of design specifications
to the mechanisms where, ideally, we would like to synthesize both type and dimensions of
the mechanism for a wide variety of design specifications including path synthesis, motion
synthesis, constraints on pivot locations, etc. The third problem is that of designing the
neural network architecture for end-to-end training and generation of multiple candidate
mechanisms for a given design specification. We also present a brief overview of the
state-of-the-art on each of these problems and identify questions of potential interest to
the research community. [DOI: 10.1115/1.4062542]
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1 Introduction

Neural networks (NNs) are well known as universal function
approximators for a class of functions defined with the Euclidean
space as their domain [1,2]. Classically, for approximating func-
tions whose domain is not Euclidean [3], handcrafted feature
vectors were used to map the data to a Euclidean space and then
NNs could be used to learn or approximate the function. Conse-
quently, the performance of NNs were limited by the human design-
ers’ ability to capture or map the relevant features. The feature
vectors are an Euclidean embedding of the data so that the relevant
aspects of the data required for learning are captured. The modern
revolution in deep learning (DL) came from the insight that the
feature vectors should be learned from data as well, and different
neural network architectures were designed for different data
types that enabled this feature extraction or embedding of the data
in a Euclidean space [4-7]. Examples include convolution neural
networks (CNNs) [8] for image data, graph neural networks
(GNNs) [9] for data obtained from systems most naturally
modeled as a graph, and transformer networks [10] for sequential
data, which have been used for learning large language models.
Use of deep neural networks (DNNSs) in engineering design is rela-
tively new; a recent review on this topic is provided in Ref. [11] and
in a special issue on Machine Learning in Engineering Design by
the ASME Journal of Mechanical Design [12].

NNs have proven to be an interesting alternative in engineering
design problems characterized by difficulty in formulating analyti-
cal representations, imprecise input, and large solution space.
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DNNs’ advantages over classical NNs have been that they allow
one to automate the process of feature generation and provide a
larger representation and mapping capacity. Let us consider an
example of generating a four-bar mechanism for path synthesis
problems. For designing a neural network to solve this problem,
there are various ways of representing the input path that has
been explored in the past, e.g., Fourier descriptors of the curve
and wavelet descriptors of the curve. These are called different
feature vectors for the path and even changing the number of
Fourier descriptors or wavelet descriptors used changes the
feature vectors. The feature vector choice is made by the human
designer a priori and there is no clarity on which feature vector is
preferable, if any. The choice of a feature vector is usually a
trial-and-error process, and there is seldom any universally good
choice (at least, such a choice has not been discovered yet). The
use of DNNs allows the learning of the appropriate feature
vector. The user can input the path as a list of points or an image
and using a training dataset, the neural network will learn the fea-
tures as well as the mapping from the features to the output space
of mechanism parameterization. However, the cost to be paid for
such flexibility is more training data and computational time. The
paradigm of learning features instead of hand-coding them (which
was also prevalent in computer vision and natural language process-
ing (NLP) literature) has worked well across different application
areas including computer vision and NLP. So the hope is, and pre-
liminary results do support this, that the use of DNNs will make the
learned models produce better quality mechanisms that follow the
given input paths as closely as possible.

The design of robotic mechanisms from a given set of design
specifications can also be formulated as a learning problem from
the space of specifications to a parameterization of the space of
mechanisms. Classically, design of mechanisms has been a
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two-step process of type and dimensional synthesis with scant atten-
tion paid to the type synthesis. As a result, the synthesis problems
have been reduced to primarily computing dimensional parameters
after selecting a type [13—15]. This approach has shown to be inef-
fective in creating practical mechanism design solutions from the
given task [16]. In the context of machine learning (ML), the
space of design specifications, which can be quite varied and appli-
cation specific, is non-Euclidean in general. Examples of design
specifications can be a desired planar curve (planar path synthesis
problem), a subset of the group of rigid body configurations or
SE(3)* (mechanism synthesis for a given workspace, which can
be useful in exoskeleton robotic device synthesis), etc. [17]. Fur-
thermore, there can be other geometric and kinematics constraints
and objectives like the location of some of the pivots [18],
moving envelope of mechanisms, relative link length ratios, defect-
free generation [19], etc. The current DL literature does not deal
with this kind of data that arise in mechanism design, and conse-
quently there is no known way of neural network architecture
design to embed the design specifications into a Euclidean space.

Within the mechanism design literature, CNNs have been used to
embed design specifications given as planar curves into a Euclidean
space, by converting the curve to a 2D image [20]. In the past,
Fourier descriptors [21-26] and wavelets [27-31] have also been
used to represent coupler curves. However, creating neural
network architectures that can embed design specifications into a
Euclidean space or learn features of the design task is a largely
unexplored research challenge. More recently, it has been shown
that geometric deep learning models could capture non-Euclidean
domains more efficiently and effectively such as in graphs, trees,
manifolds, and networks [32,33]. The joint representation of the
design space along with the representation of known mechanisms
that produces a design can lead to novel encoder—decoder architec-
tures or deep generative networks that can facilitate novel mecha-
nism synthesis [34]. This is analogous to the use of CNNs with
variational autoencoder (VAE) [35,36] or generative adversarial
network (GAN) [37] for DL-based image synthesis from known
images of object categories. Moreover, it is well known that for
simple one-degree-of-freedom linkage mechanisms, such as
planar four-bar, Fourier descriptors of the path and the orientation
are coupled, which can be exploited to synthesize mechanisms for
motion generation problems [38,39]. An open question is whether
such relationships can be captured by a NN by only providing a
large amount of good synthetic simulation data? If so, this could
lead to a breakthrough in developing artificial intelligence (AI)
systems, which can predict critical kinematic properties of robot
mechanisms. Enforcing a structure on the latent layers in VAEs
and GANSs could enable design synthesis under multiple constraints
while helping such Al systems to be explainable and interpretable.
In summary, there are great opportunities for researchers to (1)
embed existing knowledge to create effective representations of
mechanisms (type and dimension) and (2) use domain-specific
algorithms in conjunction with ML models to process synthetically
produced motion data from simulations or from physical motion
capture. The outcomes could be component-based reusable uni-
fied NN models with sufficient granularity so that they can be
applied in diverse synthesis applications and truly integrate
machine learning with robotic mechanism design.

The rest of this paper discusses specific research questions and
challenges, which could lead to new areas of investigation in
deep learning of robot mechanisms. The foremost of these is the
issue of representation of mechanisms and their properties. While
the mechanisms themselves are defined by their structure, their
properties are defined by the motion generated by a floating link
of mechanisms. The space of design specifications primarily
begins by defining desirable properties, but can also include struc-
tural parameters. We look at the representation aspects in Sec. 2.

2SE(3) is the special Euclidean group of dimension 3, which is the group of all rigid
body positions and orientations.
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Next question is of the mapping from the design specifications to
mechanisms. The goal is to generate a large number of conceptual
design solutions, which satisty design specifications while allowing
users an intuitive way to explore the design space. The mapping
should ideally generate both type and dimensions of single- and
multi-degree-of-freedom mechanisms. This naturally leads to the
questions of (1) representation of mechanism parameters, which
encode both the type and dimensions, and (2) generation of a
dataset for training DNNs with good quality of synthetic motion
data for a variety of mechanisms. We discuss these issues in
Sec. 3. Related to the question of mapping from design speci-
fications to the mechanisms is the design of DNN architectures
which would enable the mapping. While the recent research in
DNNs has proposed a variety of generative frameworks, such as
VAE, GAN, and their variants, it is unclear as to how they
should be leveraged in mechanism synthesis! In Sec. 4, we
discuss a few recent work using VAEs and possible directions for
future efforts in designing DNNs for mechanism synthesis.

2 Representation of Mechanisms and Their Properties

Linkage mechanisms are a collection of rigid bodies connected
via joints; for example, the most ubiquitous of them is a planar
four-bar mechanism consisting of four links connected by prismatic
or revolute joints. Their topology is defined by the pattern of inter-
connection of their links and joints, while the length of the links and
the location of joints define the dimensional parameters of the
mechanism. Kinematic synthesis of such mechanisms is typically
concerned with finding their topology and dimensions given
design specifications, such as path of a point of interest on a floating
link or the complete motion of the floating link as well as additional
constraints. There have been several efforts in recent years to design
NNs, which learn the mapping from the space of design specifica-
tions to the mechanism properties (type and dimensions).
However, these efforts have largely been limited to a path or
motion as the input and dimensional parameters as the output.
Even then, several fundamental questions have remained unan-
swered, such as the choice of best representation for the path or
the motion specifications for a given problem. Typically, one of
these representations would serve as the input vectors for the
DNNs. Fourier descriptors, wavelets, Cartesian coordinates, and
curvature integral have remained the dominant choice for represent-
ing the path of a point; however, the choices made have been arbi-
trary without adequate justification. More recently, it was proposed
that to leverage the learning capabilities of CNN, a path could be
embedded in an image of fixed size, which would be independent
of the algebraic complexity of the curve [20]. This area of research
requires a careful investigation of different representations of the
coupler curves and their comparative advantages and disadvan-
tages. A key question related to their representation is if there
could be a representation, which acts as a normalizer for the
NN-based mechanism synthesis? In other words, could we use a
unifying representation, which is invariant of these base representa-
tions and is insensitive to the generated mechanism solutions. This
would be similar to the idea of a deep CNN extracting features from
an input automatically.

While most work has focused on the path synthesis of planar
mechanisms, their extension to the motion generation problem is
even harder. That begets how the path and orientation together
should be represented? Since they are unit incompatible, how to
combine them in a single input vector for a NN is unclear! While
it is well known that the path and orientation of the coupler of
single-degree-of-freedom mechanisms cannot be decoupled, a
straight-forward extension of the current approach would be to
find Fourier or wavelet descriptors, Cartesian and curvature integral
of path and orientation data independently and flatten the input
vector to include both of them.

A third related question is how these representations should be
extended for spherical and spatial mechanism motions, where the
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paths are in R and motions in SE(3). This debate is not limited just
to the path and motion properties of mechanisms; it gets even more
difficult when one needs to incorporate other geometric and kine-
matic constraints, such as location of the pivots, transmission
angle, range of motion, or dimensional constraints. These design
specifications form a non-Euclidean space for a NN and there is
little literature on this.

It is heartening that alternative representations for the properties
of a mechanism, such as path and motion of a mechanism, have
been proposed. On the other hand, representation of the structure
of mechanisms for NNs has been largely relegated to using an
output vector of few joint positions. This may be fine for synthesiz-
ing dimensional parameters of a mechanism if the type of the mech-
anism chosen is accurate; however, it has been shown that a
pre-selection of the type of mechanism often leads to no or poor
solutions. Thus, there is a need to encode the type and dimensional
information of a mechanism together for its representation in NNs.
Kinematicians are familiar with the seminal work of Tsai [40], who
modeled mechanisms as graphs and represented them using an
adjacency- or incidence-matrix. While such representations may
be useful for enumeration and evaluation of mechanisms, they
form a non-Euclidean space of mechanism parameters, which
makes it difficult to directly employ and interpret them in DNNs.
What may be needed is a structured coupling of the type and dimen-
sional parameters, which can be learnt by DNNs. We discuss such a
possible representation in the next section in the context of motion
synthesis using a DNN.

3 Mapping From the Design Specifications to
Mechanisms

The ultimate goal is to learn a mapping from a diverse and often
conflicting set of design specifications (including path or motion
properties and additional constraints) to mechanism structure
(type and dimensions). This mapping should yield a large set of
conceptual designs satisfying specifications. Existing literature on
using neural networks for mechanism synthesis is largely focused
on the path generation problem, wherein a path is provided as an
input to a NN using one of the aforementioned representations
and the NN is trained to learn the mapping from the path informa-
tion to the dimensional parameters of a mechanism. While these
early efforts have produced desirable outcomes, the problem of
synthesis is defined too narrowly and the results are far and few.
Generally, these approaches yield one or a few mechanisms based
on a specific task requirement, which is often a computational con-
venience rather than true representation of users’ requirements. For
example, a given path or motion is converted into a precision point
or pose problem with discrete data points, which can be embedded
in a Euclidean space and a direct mapping is achieved using a NN.
Moreover, typically the user will have to make an artificial choice
about the type of mechanism and the goal will be limited to
finding dimensional parameters. If the goal is to find a large set
of feasible mechanism building blocks without assuming their
types while accounting for amorphous, incomplete, and imprecise
input, then the traditional or aforementioned NN-based synthesis
approaches fall short.

It has been shown recently that the classical two-step paradigm of
mechanism design, wherein the topology or type of a mechanism is
first picked and then its dimensions are computed, is a flawed
approach, which often yields no or highly suboptimal solution.
Fruits of such endeavor will be sweet only if a true data-driven
approach is incorporated in synthesis—one which includes simulta-
neous type and dimensional synthesis. However, the early work in
this direction have focused on creating unified design equations for
a class of mechanisms and then solving a low-degree polynomial to
generate a limited number of solutions, which mostly produce
defective mechanisms. There have also been several attempts to
incorporate additional design specifications, such as location of
pivots, but their extension to the more complex constraints or
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even higher-order mechanisms using a pure analytical approach
has proven to be much more difficult.

However, a great advantage of unified design equations is that the
choice of joint types for dyad synthesis is totally task driven, i.e., it
does not require user specification for the joint types. For example, a
dyad of a planar four-bar mechanism can be represented by a linear
equation with nine parameters (irrespective of the type of joints).

AoPy + APy + APy +A3P3+ -+ - + AgPy =0 (])

where the parameters A; (i=0, 1, 2, ..., 9) are defined by given input
poses and the parameters P; (i=0, 1, 2, ..., 9) are intermediate
design parameters defined in terms of mechanism parameters that
encodes the type of joints as well as the position of the joints
[16-18,41]. Regardless of the type of dyads, the parameters P;
must satisfy the following two constraints:

P,Pg + PsPs — P3Py =0, 2P;P; — PsPy — P3Ps =0

Hence, each dyad can be represented by a parameter vector P,
which is a possible redundant representation, where the actual
linkage parameters can be obtained from these parameters (in
spite of the redundancy). The pattern of zeros in the parameter
vector gives the type of the dyad. In this way, a four-bar linkage
can be represented by a pair of P vectors. Thus, using P as a repre-
sentation for the mechanism, we have a unified representation of the
mechanism, i.e., the output layer of a NN, which are not the naive
design output variables like the type of joints or position of joints or
even a matrix combining the two. However, a set of P vectors
encodes all the information about the mechanism and the design
output variables can be easily computed from this representation.
This is a promising direction for exploration, which could bring
together recent advances in simultaneous type and dimensional
synthesis with the NNs and computational shape analysis to effec-
tively solve the motion generation problem. This approach could be
extended to a class of mechanisms for which unified design equa-
tions can be created; however, it is a non-trivial exercise in itself.

4 Design of Deep Neural Network Architecture

Another set of key challenges that arise in forming the end-to-end
system is the decision on architecture of the deep neural network,
the design of the training algorithm, and obtaining the data to
train the network for a particular task. The existing NN architectures
for mechanism synthesis have been simple mapping networks from
a path description to mechanism parameters. These have been
limited to mostly planar four-bar mechanisms.

In the recent years, DL-based generative frameworks based on
VAEs, GANs, and deep reinforcement learning have proven to be
quite effective in generating a variety of synthetic data, such as
handwritten digits, images, and videos. They have also been used
in other fields notably autonomous driving, molecule design,
anomaly detection, text classification, recommendation system,
and many more. While autoencoders, a simpler variation of a
VAE, can only compress the input data into a latent space, a
VAE can also generate new data by sampling in the latent space.
These generative models can be used for learning joint probability
distribution of various mechanism parameters and their interdepen-
dence. With that, we can ask the following probabilistic inference
questions: (1) what are the infeasible aspects of the input and
how to modify them to make a more conducive input, (2) given a
path or a motion task, how likely it is that a particular type of mech-
anism can perform the task, and (3) for a given task, what is the dis-
tribution of mechanism parameters with similar coupler motions
(or, paths)?

A VAE-based approach could accept deliberately imprecise or
inherently uncertain input from users and compute a distribution
of conducive inputs and feed them to a synthesis solver to obtain
a large variety of acceptable solution concepts. Having learnt the
probability distribution of the coupler curves of mechanisms, the
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Fig. 1 The raw user input is represented using one of the common Euclidean-based representations, such as Fourier and
wavelet descriptors, or Cartesian coordinates of the input path, or an image of the input, which is passed through an encoder
network e. The encoder captures the salient information in the form of multivariate distribution of latent features. Random
samples from this distribution are fed to the decoder e to generate paths with a high likelihood of producing good solutions.
These random samples can be queried from a database of mechanisms or fed to a fully connected NN to get multiple candidate

mechanisms.

encoder part of the VAE predicts a 2D Gaussian distribution of
latent features for each of the inputs. By drawing random samples
in the vicinity of the computed latent code, the generator network
of the VAE outputs the samples with closed paths that resemble
the original input path. While a traditional VAE would simply gen-
erate outputs similar to the input, our synthesis goal requires that a
VAE be augmented with another mapping to generate mechanism
design parameters. Two potential approaches for this are to (1)
map latent codes to mechanism parameters by a KNN search and
a database query or (2) train another fully connected DNN to map
from the latent code to mechanism parameters. While in the
former approach, generated mechanisms could be tightly con-
trolled, such as Grashof-only or of a certain complexity, in the
latter approach, the capacity to represent a mechanism is completely
built-in a NN, which could lead to more efficient and generalized
query. Figure 1 shows an overview of this approach where a
sequence of discrete points is the input to a trained VAE and the
output are various mechanisms.

MotionGen Pro [17,42], a web-based app awailable,3 has imple-
mented a VAE for path generation with a database and produces up
to 30 four-bar and six-bar mechanisms for a user-sketched path. The
training data were generated from a unified simulation algorithm
presented in Ref. [42]. Figure 2 shows a few mechanism concepts
produced by the MotionGen for a sit-to-stand motion path of hip
joint.

While these VAE-based approaches have resulted in successfully
generating a number of mechanism design solutions of specific
type, they have still been restricted to approximating users’ task
into a set of points embedded in a Euclidean space for the path gen-
eration problem. Several other questions as well remain to be

3htlp://www.motiongen.io
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answered: (1) how can this be scaled to other mechanisms
without having to train separate NNs for each type of mechanisms,
(2) how can motion generation problem be solved using such an
approach, (3) how can additional constraints be handled, and (4)
how can users visualize and filter out a large number of solutions?
There are several variants of VAEs available, such as conditional-
VAE (C-VAE), which enable conditioning input vectors on some
random variables. A C-VAE could be used to condition the given
task on, say, location of joints, which could enable users to directly
synthesize mechanisms with specific properties.

The basic premise of the deep learning-driven robot mechanisms
is that we want to create a probabilistic distribution of output
motions of a variety of mechanisms including planar, spherical,
and spatial ones. We are fortunate that we can algorithmically
assemble different types of mechanisms and perform forward kine-
matics to get the output motions. So far, the NN literature has
largely investigated a mapping between simple planar four-bar
mechanisms and their paths. It is of course, but a prudent choice,
to begin with something simple like planar four-bar mechanisms
for which several simulation algorithms exist, which can create a
large dataset of mechanisms. Their extension to the spherical and
spatial multi-chained mechanisms, such as those found in exoskel-
eton devices for the different human applications, is hardly a
straight-forward extension; see, for example, exoskeleton mecha-
nisms discussed in Refs. [43—45]. This requires that new computa-
tionally efficient algorithms be developed, which can provide
high-quality synthetic data associating mechanism designs with
their output motions. Good quality data used in training a VAE or
GAN or one of its variants will be amenable to exploration in
latent space. Once we have learned this distribution, then the next
question is of querying. While the user provides a raw input, a
kNN or related search in the latent space of a generative network
could find a plethora of design solutions, which can be further
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Fig.2 User input (path) is sketched using a mouse and the MotionGen produces various four-bar and six-bar mechanisms with
a fully rotatable link by sampling in the latent space of a trained VAE

subjected to constraints on type, dimension, as well as range of
motion. This is the basic idea, but a fundamental question is how
to systematically explore the latent space, which requires that we
have some understanding of the manifold structure of the latent
space [46]. With that, it may be possible to impose the constraints
ab initio in the design process, which has not been done before.

5 New Approaches

Apart from the ML approaches discussed so far in representation
of the specification space, mapping from set of specifications to
mechanisms, and DNN models, recently several other generative
models have taken the world by storm. Diffusion models are a
class of generative models and have primarily found applications
in image synthesis [47,48]. The key idea is to iteratively add Gauss-
ian noise to an input image to convert it into noise and also simul-
taneously learn the inverse conditional distribution function from
the noise to an image iteratively. Within the image synthesis litera-
ture, diffusion models have been known to produce more photo-
realistic images than GANs. Although the use of diffusion models
has not been explored thus far in mechanism design, they can be
potentially used in mechanism design problems where the use of
GANSs have been explored.

Transformer networks have been proposed originally for various
learning tasks on sequential data, a hallmark of language processing
applications [49,50]. However, more recently they have also found
applications in image processing tasks and tasks involving multi-
modal input data (e.g., text and image). There are two key strengths
of transformer networks. First, in principle, transformer networks
allow one to encode global structure in the input, if present,
which is usually referred to as long range dependencies or
context in the NLP tasks. Second, they allow a common encoding
(or embedding) of multimodal input data, which allows one to
answer queries or give output for inputs in any modality. From
the perspective of mechanism design, this raises interesting possi-
bilities for embedding design constraints. For example, it may
provide a way for stating qualitative constraints like “make the
coupler shorter than the fixed link.” Furthermore, it can also
provide ways to give constraints on locations of a fixed pivot by
marking an area on an image. To develop such capabilities, the
training dataset also has to be generated appropriately, based on
the types of constraints and modes of specification that may be of
interest to designers. The generation of such training sets itself pro-
vides an interesting opportunity and offers various possibilities of
how designers can interact with a design software.

Physics-informed machine learning (PIML) approaches try to
generate solutions for complex multi-scale systems by combining
observational data with the mathematical models underpinning
the physics of the system [51,52]. This field of research has
gained momentum in many application areas including prediction
of complex systems like atmospheric air-flow, design of functional
materials, etc. PIML approaches can potentially lead to formulation
and study of new problems in mechanism design that to the best of
our knowledge are currently not well studied. For example, for
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given design tasks, there is very little in terms of principled
approaches for synthesizing multi-link mechanisms with both kine-
matics and dynamics constraints as well as rigid and flexible com-
ponents. In such scenarios, the physics could be modeled by
(partial) differential equations governing the dynamics of motion
along with algebraic constraints modeling the kinematic constraints.
It is within the realm of possibility to formalize such problems as
learning problems. Apart from architecture design and modeling
challenges, a key challenge that arises here is in generating training
data sets, which has to be curated carefully and possibly with a
community-driven effort, with data sets coming from multiple
researchers with their own application interest and expertise.

6 Conclusions

The formulation of the robotic mechanism design problem as a
learning problem has immense potential of introducing deep learn-
ing techniques as a new tool to the design engineers toolbox.
DNN-based approaches have the potential of solving problems in
motion synthesis and path synthesis along with other
scenario-specific constraints on the mechanism in a unified frame-
work. However, there are key technical challenges that need to be
overcome for DNN-based synthesis techniques to realize their
potential. The key problems that we identified are that of represen-
tation of the design specifications and the mechanisms, develop-
ment of the mapping from the design specification space to the
mechanism parameterization that allows both type and dimensional
synthesis, and design of the DNN architecture to learn the afore-
mentioned mapping. We summarize key questions and approaches
below:

(1) The first area of investigation pertains to the representation of
mechanisms, including their type, dimensions, and proper-
ties, as well as input specifications related to path, motion,
pivots, and link length, among others. Specifically, there
are several questions that need to be addressed:

(a) How can one embed these properties and specifications
in a Euclidean space, and can DNNSs assist in the creation
of invariant representations that do not require feature
engineering?

(b) What is the best way to develop a unified representation
that combines inputs that are incompatible, such as path
and orientation data?

(c) How can these representations be extended from 2D to
3D spatial data for spherical and spatial mechanisms?

(2) The second area of investigation focuses on NN-based
mapping from the design space to mechanisms. This
involves addressing the following questions:

(a) How can a unified representation of the type and dimen-
sional parameters of mechanisms be developed that can
be learned by NNs? Can traditional representations,
such as adjacency matrices, and newer techniques,
such as GNNs, be useful?

(b) What is the best way to leverage generative models to
create a diverse range of mechanism design concepts?
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(¢) How can conflicting design constraints be accommo-

dated in synthesis and can multimodal models be useful?
(3) The third area of investigation pertains to DNN architecture
and training data. Here are some of the questions that need to

be answered:

(a) What is the best way to generate high-quality training
data from simulations?

(b) Which DNN architecture is most appropriate, and can
end-to-end architectures be developed that meet design
specification requirements?

(c) Can asingle DNN serve the diverse needs of generating
mechanism design concepts?

(d) How can the approach be scaled up to more complex
mechanisms, such as spherical and spatial mechanisms?

The extant literature provides evidence that DNN-based techniques
have the potential to solve challenging mechanism design problems.
However, the state-of-the-art has only scratched the surface of the
research questions that can be formulated, and we have identified
some key questions that we believe are central to the progress of
adapting DNN-based approaches to robotic mechanism design.
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