Early Warnings for Multistage Transitions in Dynamics on Networks

Neil G. MacLaren¹, Prosenjit Kundu^{1,†}, and Naoki Masuda^{1,2*}

¹Department of Mathematics, State University of New York at Buffalo, NY 14260-2900, USA

²Computational and Data-Enabled Science and Engineering Program,

State University of New York at Buffalo, Buffalo, NY 14260-5030, USA and

[†]Present address: Dhirubhai Ambani Institute of Information and

Communication Technology, Gandhinagar, Gujarat 382007, India.

(Dated: March 2, 2023)

Successfully anticipating sudden major changes in complex systems is a practical concern. Such complex systems often form a heterogeneous network, which may show multistage transitions in which some nodes experience a regime shift earlier than others as an environment gradually changes. Here we investigate early warning signals for networked systems undergoing a multistage transition. We found that knowledge of both the ongoing multistage transition and network structure enables us to calculate effective early warning signals for multistage transitions. Furthermore, we found that small subsets of nodes could anticipate transitions as well as or even better than using all the nodes. Even if we fix the network and dynamical system, no single best subset of nodes provides good early warning signals, and a good choice of sentinel nodes depends on the tipping direction and the current stage of the

Keywords: complex networks; early warning signals; critical transitions; tipping points; dynamics on networks

dynamics within a multistage transition, which we systematically characterize.

I. INTRODUCTION

A characterization of complex systems is dependence among components, which often leads to surprising, nonlinear behavior. One important nonlinear phenomenon is that of a tipping point: a transition in which stable aspects of the system suddenly shift to a drastically altered state when the system's environment changes by a small amount; recovery from the altered state is typically difficult. Tipping points have been described in, for example, the switch from clear to turbid water in lake ecosystems [1], changes in fish community composition [2], alterations in global climate regimes [3], and in the progression of disease [4, 5]. This shared feature of such disparate systems can be described mathematically by bifurcations, and several early warning signals—statistical

^{*} Correspondence: naokimas@buffalo.edu

indications that a bifurcation point is nearby—have been developed that attempt to anticipate such transitions. These early warning signals rely on a process called critical slowing down: systems recover from perturbations more slowly near a bifurcation point [6]. Critical slowing down results in predictable signatures in time series data, including increasing variance and autocorrelation, and it is these signatures that are used to construct early warning signals. Early warning signals based on the critical slowing down phenomenon have been validated in several model systems [2, 7], and their practical utility has been demonstrated in, e.g., predicting electrical grid failures [8] and reversing cyanobacterial blooms [9].

Many systems showing tipping points can be modeled by a network in which a node represents a dynamical system and different dynamical systems interact through the edges of the network [10]. Studying tipping points in such systems is an integral part of studying network robustness and resiliency [11]. An example with applications in conservation ecology is the anticipation of a breakdown in mutualistic species networks [12–14]. In such models, species populations are typically represented by stochastic differential equations interacting through a bipartite network of plants and pollinators [15, 16] or a unipartite projection focusing on only plants or pollinators [12, 17]. Early warning signals can then predict major adjustments in species composition [12] or population collapse [14]. Similarly, exploiting information on interactions between weather patterns in different regions may improve the forecasting of climate tipping points [18].

In fact, the inherent heterogeneity in networked systems may make tipping points more complex.

Specifically, multistage transitions, in which not all components transition to an alternate state at
the same parameter values, may be the rule rather than the exception in networks with certain
features [19, 20]. Multistage transitions have been documented in studies of mutualistic species
dynamics [12, 14] and climate systems [18], and are consistent with evidence from human commensal
bacteria [21] and social upheaval [22]. The ability to anticipate multistage transitions would thus
have applications in many fields.

A variety of methods have been proposed to provide early warning of tipping points on networks.

Examples include aggregations of univariate (i.e., single-node) early warning signals and explicitly
multivariate methods such as measures derived from a principal component analysis (PCA) of
state variables [11, 23]. However, most of the available early warning signals for networks treat the
network as a united entity and do not exploit the fact that a network is composed of subsystems
that may show different dynamics and provide different early warning signals. There are some
notable exceptions. First, Chen et al. used cross-correlations to identify clusters of nodes that
were more sensitive to an approaching bifurcation than the network as a whole [24]. Although

Chen et al. exploited network heterogeneity for constructing early warning signals, they did not consider multistage transitions. Second, Lever et al. developed PCA methods to predict the direction and magnitude of change for each node's state after a bifurcation [12]. Lever et al. noted parameter ranges for their model in which multistage transitions were possible and that the 67 early warning signal they proposed tended to correctly anticipate the first transition. However, Lever et al. noted that their method was less reliable for describing further nodes' transitions the multistage transition. Third, Aparicio et al. used network control theory—rather than system dynamics—to identify nodes that would be capable of providing a reliable early warning signal [14]. 71 They also identified parameter values that caused multistage transitions in their model and also found that their method underperformed in those regions. In contrast to Lever et al.'s method, Aparicio et al.'s method tended to miss early transitions of nodes but correctly predicted the final 74 collapse. Based on the ubiquitousness of multistage transitions in networks, discussed above, there is a need for early warning signals that can provide alerts for each of the major tipping points 76 within a multistage transition that a networked system may experience. 77

In the present study, we build on key points from these three studies—namely that (1) some nodes may be more informative about impending transitions than others and (2) information may be available in the network structure or dynamics with which to anticipate multistage transitions—to investigate early warning signals for multistage transitions in tipping dynamics on networks. We find that traditional early warning signals are in fact able to provide early warning in a network undergoing a multistage transition. Using knowledge of the network allows us to choose "sentinel" nodes, i.e., node sets that can provide early warning more efficiently than using all nodes in terms of the number of nodes we must observe. Furthermore, it is often the case that such early warning signals even improve in accuracy.

II. METHODS

A. Model

87

88

Consider an undirected and unweighted network of N nodes and denote its adjacency matrix by $A = (a_{ij})$ with $a_{ii} = 0$ and $a_{ij} = a_{ji} \in \{0,1\} \ \forall i,j \in \{1,\ldots,N\}$. We simulate the stochastic dynamics of a coupled double-well model on networks given by

$$\frac{dx_i}{dt} = -(x_i - r_1)(x_i - r_2)(x_i - r_3) + D\sum_{j=1}^{N} a_{ij}x_j + s\xi_i,$$
(1)

where x_i is the state of node i; r_1 , r_2 , and r_3 are parameters that control the location of the equilibria and satisfy $r_1 < r_2 < r_3$; $D \ (\geq 0)$ is the coupling strength; and $s\xi_i$ is a Gaussian noise process with standard deviation s. The first term is the derivative of a fourth-order polynomial representing a double-well potential. In the uncoupled and noiseless case, it produces lower and 95 upper stable equilibria at $x_i = r_1$ and $x_i = r_3$, respectively, and an unstable equilibrium at $x_i = r_2$, and it also creates hysteresis. Unless we state otherwise, we set $(r_1, r_2, r_3) = (1, 4, 7)$. The coupling 97 term $D\sum_{j=1}^{N} a_{ij}x_j$ shifts x_i at the stable equilibria out of $x_i = r_1 = 1$ or $x_i = r_3 = 7$. In addition, 98 the noise term $s\xi_i$ lets x_i jitter around the stable equilibria obtained in the absence of noise. We 99 therefore consider that nodes with $x_i < 2.268$ are in the lower state and $x_i > 2.268$ are in the upper 100 state. We selected this threshold value for x_i because the cubic term in Eq. (1) has an inflection 101 point at $x_i \approx 2.268$ in the absence of the coupling term, demarcating a basin of attraction for 102 the lower stable point at $x_i = 1$. We numerically verified that we can reliably classify x_i into the 103 lower and upper stable equilibria with these threshold values even in the presence of the coupling 104 term (see Figure S1). Equation (1) represents dynamics of species abundance [12] or climates 105 in interconnected regions [18]. We primarily consider D as a bifurcation parameter. A possible 106 mechanism underlying variation in D is the volume of moisture moving from one climate basin to 107 another [18]. 108

For applications such as species loss in population ecology, one is interested in beginning with the upper state, which corresponds to the situation in which all the species are abundant, and gradually varying a parameter value to anticipate transitions of various nodes to their lower states [6]. For example, a transition to the lower state could correspond to the collapse of a species' population. To validate the relevance of multistage transitions and early warning signals in this scenario, we consider an extension of Eq. (1) given by

109

110

111

112

113

114

$$\frac{dx_i}{dt} = -(x_i - r_1)(x_i - r_2)(x_i - r_3) + D\sum_{j=1}^{N} a_{ij}x_j + u + s\xi_i.$$
(2)

Variable u is a stressor that directly and uniformly influences all nodes. An increase in u represents, for example, increased global mean temperature [18] or degradation of the local environment causing increased mortality for all species [12]. With Eq. (2), we hold either D or u constant and vary the other as the bifurcation parameter.

Numerical Simulations

119

135

136

137

138

139

140

141

142

Unless we state otherwise, we used D as the bifurcation parameter and began simulations with 120 all nodes in the lower state. For the given network and the value of D, we started the dynamics 121 from the initial condition $x_1 = \cdots = x_N = 1$. For any given value of D, we integrated Eq. (1) 122 using the Euler-Maruyama method with time step $\Delta t = 0.01$ for 50 time units (TU) to allow 123 $\{x_1,\ldots,x_N\}$ to relax to an equilibrium. In fact, allowing 50 TU was sufficient except in rare cases 124 in which some nodes changed their macroscopic state (i.e., lower versus upper state) after 50 TU 125 due to dynamical noise. We then continued simulating the dynamics for a further 25 TU to take 126 samples from $\{x_1(t), \ldots, x_N(t)\}$ for calculating early warning signals. We used s = 0.05 except 127 where noted. 128

To determine whether or not early warning signals increase prior to transitions of various nodes 129 from their lower state to upper state, we conducted sequences of the above simulations for a given 130 network and set of parameters. Each sequence began with D = 0.01. After we simulated the 131 dynamics for 75 TU in total and calculated early warning signals, we increased D by 0.005, reset 132 $x_i \, \forall i$ to the initial condition, ran the simulation with the new value of D, and calculated early 133 warning signals from the new $x_i(t)$. We continued this procedure (i.e., increasing D by 0.005 and 134 running a new simulation) until at least 90% of nodes reached the upper state at equilibrium.

In simulations with D as the bifurcation parameter but with the nodes beginning in the upper state, we set $x_i = 7 \,\forall i$ and u = -15. In this case, we consider that nodes with $x_i < 5.732$ are in the lower state and $x_i > 5.732$ are in the upper state; note that Eq. (1) has a second inflection point at $x_i \approx 5.732$ in the absence of the coupling term. We initially set D=1 and decreased D by 0.005 in each simulation, continuing until > 90% of nodes transitioned to the lower state at equilibrium. All other parameters were the same regardless of whether we began simulations with the nodes at the upper or lower state.

This simulation method attempts to ensure that we always study the system at equilibrium and 143 has been used in previous studies of tipping points on networks (e.g., [18]). De-trending or other 144 preprocessing of data from the simulations is therefore not needed: by the time we take data from 145 each simulation, the system is stationary by design (c.f. [25] for a different simulation method, for 146 which de-trending is required). 147

C. Early Warning Signals

At each value of D, we calculated the following early warning signals [23, 25] from M=250 equally spaced samples of $\{x_1(t), \ldots, x_N(t)\}$ with $t \in \{50, 75]$, i.e., with $t \in \{50.1, 50.2, \ldots, 75.0\}$:

- The dominant eigenvalue λ_{\max} of the covariance matrix, of which the (i,j) entry is the covariance of $\{x_i(50.1), x_i(50.2), \dots, x_i(75)\}$ and $\{x_j(50.1), x_j(50.2), \dots, x_j(75)\}$.
 - The standard deviation of each $x_i(t)$ estimated from the M samples.

148

153

• The lag-1 autocorrelation of each $x_i(t)$, defined as $\frac{\sum_{m=1}^{M-1}(x_{i,m}-\overline{x}_i)(x_{i,m+1}-\overline{x}_i)}{\sum_{m=1}^{M}(x_m-\overline{x}_i)^2}$, where $x_{i,m}\equiv x_i(50+0.1m)$ and $\overline{x}_i=\sum_{m=1}^{M}x_{i,m}/M$.

To define an early warning signal for a given node set, we used both the maximum and the mean of the standard deviation and lag-1 autocorrelation in addition to λ_{max} calculated from the node set of interest. Therefore, we examine five different early warning signals for a given set of nodes (see section IID for the node sets).

We quantify the extent to which an early warning signal anticipates a bifurcation with the 160 Kendall rank correlation, τ , between D before the bifurcation occurs and the early warning signal 161 [26]. The reasoning behind using Kendall's τ as a performance metric is as follows. Consider a 162 range of D in which no nodes change state at equilibrium except at the final value of D. We refer 163 to a range of D in which the number of nodes in the lower/upper state is constant as a stable range. 164 Given our simulation protocol, D is linearly increasing in a stable range. If an early warning signal 165 tends to increase as D increases towards the bifurcation point, indicating critical slowing down, 166 then the early warning signal is considered to be useful in anticipating the bifurcation, and τ tends 167 to be large. However, in the network dynamics that we are considering, there are potentially many 168 values of D at which some nodes switch from the lower to the upper state. Therefore, we correlate 169 D with a given early warning signal to obtain τ only within stable ranges of D having at least 15 170 unique values of D. We report the τ value averaged over all such stable ranges. For example, if 171 there is no node transitioning from its lower state to the upper state for $D \in \{0.01, 0.015, \dots, 0.5\}$, 172 $D \in \{0.505, 0.51, 0.515\}$, and $D \in \{0.52, 0.525, \dots, 1\}$, some nodes transit from the lower to the 173 upper state at D = 0.505, 0.52, and 1.005, and the transition at D = 1.005 makes the fraction of the nodes in the upper state exceed 0.9, then we calculated τ for the first and third ranges of D 175 and took the average of the two τ values. 176

D. Node Sets

We defined the following nine node sets for calculating the early warning signals:

• "All" refers to the set of all nodes.

- "Lower State" refers to the set of all nodes in the lower state at t = 50 TU.
 - "Upper State" refers to the set of all nodes in the upper state at t = 50 TU. If there are no nodes in the upper state, this node set is empty and early warning signals for this node set are undefined.
 - "High Input" refers to the n nodes that are largest in terms of $R_i = \sum_{j=1}^N a_{ij} \overline{x}_j$, where i is the index of an available node in the sense that it is still in its original macro state. For example, a lower-state node is an available node if nodes are initially in the lower state in a simulation. Note that such a node is available to transition to the upper state as D increases. We remind that \overline{x}_j is the mean of x_j calculated over the M samples. We define the High Input node set based on the idea that a lower-state node with many neighbors or with neighbors in the upper state is more likely to transition from the lower to the upper state earlier than other nodes.
 - "Low Input" refers to the n nodes that are the smallest in terms of R_i . As for High Input, we require that the ith node is in its original macro state. The Low Input node set reflects the observation that, if the nodes are initially in the upper state, then the node with the smallest contribution from the coupling term, i.e., those with smallest R_i , would be the first to transition to the lower state as D decreases.
 - "Lower Half" refers to the set of lower-state nodes below the median in terms of R_i ; we do not use this node set when all the nodes are initially in the upper state in the simulation. If the nodes begin in the lower state, Lower Half nodes are the farthest from a bifurcation as one gradually increases D.
 - "Random" refers to the set of n nodes selected uniformly at random.
- "Large Correlation" nodes are the top n nodes in terms of $R'_i = \sum_{j=1; j \neq i}^N \operatorname{cor}(x_i, x_j) \overline{x}_j$,
 where the ith node is a lower-state node, and $\operatorname{cor}(x_i, x_j)$ is the Pearson correlation coefficient
 between x_i and x_j calculated over the M samples. This is an alternative for High Input when
 we do not have access to the network structure, i.e., the adjacency matrix.

• "Large Standard Deviation (Large SD)" nodes are the n nodes with the largest standard deviation of x_i over the M samples. A node tends to have a larger standard deviation when it receives a larger input from the coupling term. Thus, the Large SD node set is also an alternative for High Input when we do not have information about the network structure.

The All node set corresponds to established early warning signal methods and is the most costly in terms of sampling effort. The High Input, Low Input, Random, Large Correlation, and Large SD node sets require a limited number of nodes, which we set n = 5, and are therefore the least costly. The other node sets are variable in terms of the number of nodes. However, with the exception of the first stable range, the number of nodes used is typically much larger than n and much smaller than n across a wide range of n0. All, Lower State, Upper State, Random, Large Correlation, and Large SD do not use the information on the network structure, whereas High Input, Low Input, and Lower Half do. Random, Large Correlation, and Large SD are most economic in the sense that it only uses n nodes and does not require the network structure. We updated node set membership each time we change the value of n0.

E. Networks

We conducted simulations on 6 model networks and 17 empirical networks; see the Supplementary Information (SI) for details of the networks. We chose networks having the order of 100 nodes, similar in size to many empirical networks and small enough to be computationally feasible for our simulations. We chose model networks with a range of degree heterogeneities and with and without a planted community structure, including networks that show a multistage transition to different extents [20]. Empirical networks may have a variety of features difficult to capture with model networks and thus present hidden challenges to our methods. An example of our empirical networks is a dolphin social network [27]. In this network, the nodes are individual dolphins and two nodes are adjacent if individuals i and j were observed together more often than expected by chance. On such a network, x_i represents, for example, a behavioral state or possession of particular information.

F. Robustness Analysis

We tested several variations of our methods to examine robustness under different scenarios.
First, to test the robustness of these results with respect to the network structure, we conducted

simulations on the 23 networks explained in Section II E. Ten of the 23 networks had at least two stable ranges, showing clear multistage transitions. We selected these ten networks for further analysis.

Consider an early warning signal. On each of the ten selected networks, we calculated τ between 238 the early warning signal and D for each stable range of D. We then averaged τ over the stable 239 ranges of D. We calculated such an averaged τ value 50 times, restarting simulations with a new 240 random seed each time, for each of the three node sets (i.e., All, Lower State, and High Input) and 241 each network. Finally, we estimated a linear mixed effects model to predict the averaged τ value 242 based on three levels of a node-set fixed effect variable (i.e., All as the reference, Lower State, and 243 High Input) with a random effect for network. We estimated the linear mixed effects model in this 244 manner for each of the five early warning signals. 245

Second, we varied several simulation parameters on two arbitrarily selected networks. The adjusted parameters were the noise intensity $(s \in \{0.01, 0.1, 0.5\})$, the number of samples taken from each $x_i(t)$ when calculating early warning signals $(M \in \{25, 50, 150\})$, the double-well model parameters $((r_1, r_2, r_3) \in \{(1, 3, 5), (1, 2.5, 7), (1, 5.5, 7)\})$, and the duration T of the simulation before we start to sample $\{x_1(t), \ldots, x_N(t)\}$ to calculate the early warning signals at each value of D $(T \in \{25, 75, 100\})$.

Third, we altered the model itself, examining transitions from the upper to the lower state using Eq. (2).

G. Software

255

256

257

258

259

We conducted all simulations and analyses in R (v4.2); dependencies include the "igraph" package (v1.3) for network analysis [28], the "nlme" package (v3.1) for mixed effects statistical models [29], and the "parallel" package (v4.2) [30] for parallel processing. Empirical networks were drawn from the "networkdata" package [31]. Code and data to reproduce these analyses are available at https://github.com/ngmaclaren/doublewells.

260 III. RESULTS

261

262

A. Multistage Transitions and Performance of Early Warning Signals Based on Different Node Sets

Let us first consider a network with 100 nodes and a power-law degree distribution generated 263 by a configuration model, which we call the power-law network. We show by the gray line in Figure 1A the proportion of nodes in the lower state in the equilibrium as a function of the 265 coupling strength between nodes, D. The figure shows that more nodes tend to be in the upper 266 state in the equilibrium when D is larger. Additionally, there are ranges of D in which relatively 267 large changes in D do not induce transition of any node from the lower to the upper state at 268 equilibrium. In other ranges of D, small changes in D trigger transitions of some nodes between 269 macro states. In this manner, the noisy double-well model on this network shows a multistage 270 transition. We also find a multistage transition when we use Eq. (2) and vary u instead of D as the bifurcation parameter (Fig. S2). 272 Early warning signals appear to be sensitive to changes in D. Figure 1A also shows a typical 273 early warning signal, i.e., the lag-1 autocorrelation of $x_i(t)$, averaged over three different node sets. The first, "All" (black), corresponds to traditional early warning signals and refers to the set of

early warning signal, i.e., the lag-1 autocorrelation of $x_i(t)$, averaged over three different node sets.

The first, "All" (black), corresponds to traditional early warning signals and refers to the set of all nodes. Within the stable ranges of D, the early warning signal value tends to increase as D increases. However, different nodes may be differently informative as to an impending transition.

Both observed dynamics [12, 24] and knowledge of network structure [14] may improve the accuracy of early warning signals or their efficiency in terms of the amount of observed signals necessary for the calculation. In fact, it may be more efficient to monitor nodes that are most likely to transition to an alternate state with a perturbation of a control parameter.

To show that monitoring sentinel node sets can be effective, Figure 1A also displays the early 282 warning signal calculated for the set of nodes in the lower state at t = 50 TU ("Lower State", red) 283 and the set of five nodes most likely to transition from the lower to upper state ("High Input", green). These latter nodes have many neighbors, are connected to nodes that have transitioned 285 to the upper state, or both; they have the highest value of $R_i \equiv \sum_{j=1}^N a_{ij} \overline{x}_j$ by definition. Figure 286 1A shows that the sensitivity of the average autocorrelation to the increase in D towards the end 287 of a stable range varies depending on the node set and the value of D. For example, there is a 288 major sudden increase in the number of nodes in the upper state at equilibrium at D = 0.95. 280 This transition is associated with, looking from left to right, a marked increase in the average

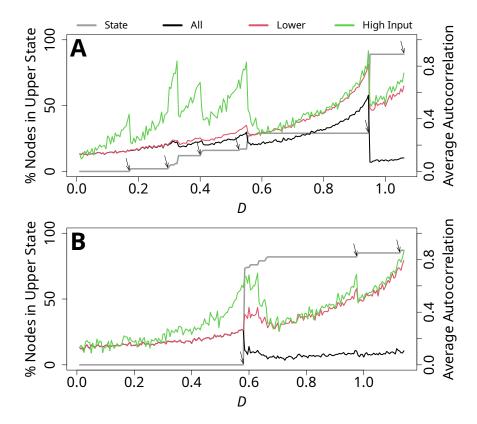


FIG. 1. Multistage transitions when the nodes are initially in the lower state. We show the number of nodes in the upper state at equilibrium (gray), and the average lag-1 autocorrelation of $x_{i,t}$ calculated for all nodes (black), the nodes in the lower state (red), and the low-input nodes (green). The arrows mark transitions of some nodes at the ends of stable ranges. (A) A network with 100 nodes and a power-law degree distribution; (B) Dolphin social network.

autocorrelation of the nodes in each of the node sets at D just below 0.95 and a decrease in the average autocorrelation at D=0.95. A similar tendency is present around the transitions of smaller batches of nodes at, for example, D=0.175, 0.33, and 0.55. Changes in the average autocorrelation of the High Input nodes tend to be larger in absolute value than for the Lower State and All node sets, particularly at smaller values of D, but the overall range is similar in this network.

Figure 1B shows that the double-well model on a dolphin social network [27] also exhibits a multistage transition. See Fig. S2 for similar results when u is the bifurcation parameter. Compared to the case of the power-law network, the dolphin network allows larger stable ranges of D, and the ranges of D in which small changes in D induce a transition of a notable fraction of nodes from the lower to the upper state are narrower. Similar to Fig. 1A, the autocorrelation tends to reliably increase in each stable range of D as we increase D towards the value at which some nodes

transit from the lower to the upper state. In addition, the average autocorrelation based on the
Lower State and High Input node sets apparently better signals such transitions than that based
on all nodes in the sense that the average autocorrelation increases more drastically as D increases
towards the bifurcation.

To quantify the performance of the average autocorrelation and other early warning signals, we 307 computed the Kendall's τ for each of the two networks used in Fig. 1 and for each of the five early 308 warning signals calculated for each node set. We show the results in Fig. 2, which indicates that 309 τ is high (i.e., > 0.65) across both networks and all five early warning signals and for All (circles), 310 Lower State (triangles), and High Input (pluses) node sets. The τ values for each early warning 311 signal in both networks are similar between Lower State and High Input, and they are higher than 312 for All in a majority of cases. In addition to having a high average τ value, the High Input node 313 set has $\tau > 0.7$ for each major transition in both networks (see SI section S4 and Fig. S6 for 314 details). If we calculate the average autocorrelation for the nodes that actually changed state at 315 each major transition, we of course find that the τ value for this retroactively identified node set 316 is high. However, the High Input node set has almost the same performance, in terms of τ at each 317 transition, as the nodes that actually changed state (Fig. S6). Furthermore, by definition, early 318 warning signals calculated with the Lower State and High Input node sets are more cost-efficient 319 than those calculated with all nodes because the former use only a fraction of nodes. However, our 320 typical simulations use samples of x_i at all M time points for both assigning nodes to node sets 321 and calculating early warning signals. We performed additional simulations, described in section 322 S5, which only used the samples at the first ten time points to determine node set membership. 323 We then monitored the node set members for the full M samples including the first ten samples for calculating early warning signals. Our results are robust to this decision, as we show in Fig. S7. 325 Finally, the High Input node set performs well even when we consider all node transitions, not just 326 those occurring after a stable range (Fig. S8). 327

Although the Lower State node set is both more accurate and efficient than the set of all nodes, this result does not imply that any nodes in the lower state provide a good early warning signal. To show this, we investigated early warning signals constructed from half of the lower-state nodes whose R_i score is the lowest—those with relatively few neighbors or few neighbors in the upper state. This node set, termed "Lower Half" and shown by the diamonds in Fig. 2, typically yielded lower τ values than the All, Lower State, and High Input node sets. This result implies that one needs to assemble an early warning signal from carefully chosen lower-state nodes such as those with large R_i values. Finally, Upper State (shown by the crosses in Fig. 2) and Random (shown

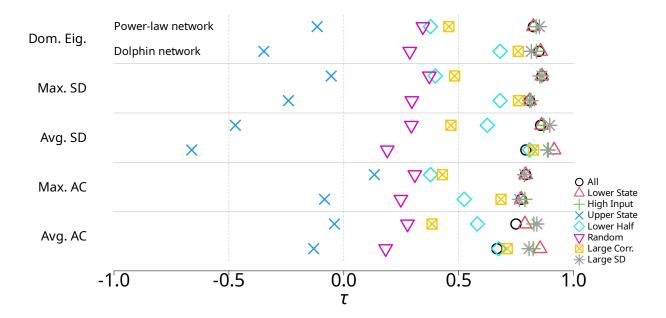


FIG. 2. Kendall correlations (τ) between each of the five early warning signals and the coupling strength, D, for different sets of nodes. See main text for details of node set membership. Dom. Eig: dominant eigenvalue of the covariance matrix of all nodes in the node set, Max. SD, Avg. SD: maximum and average standard deviation of x_i , Max. AC and Avg AC: maximum and average autocorrelation of x_i , Large Corr.: the Large Correlation node set.

by the inverted triangles) node sets are either negatively correlated or not correlated with D, reinforcing our claim that the choice of nodes to be observed is essential. In sum, our simulation results suggest that, with a proper choice of observed node set—including the case of observing all nodes—standard multivariate and aggregated univariate indicators reliably increased in value prior to several transitions of nodes from the lower to upper state, performing well throughout a multistage transition.

B. Robustness against Variation in Networks and Parameter Values

To quantitatively examine the dependence of τ on network structure, we constructed a linear mixed effects model explaining τ with a fixed effect of node set and a random effect of network (Fig. 3; see section S9 for the statistical results). We found that the predicted τ is large (i.e., approximately larger than 0.75) across most networks, early warning signals, and node sets; the combination of the All node set and the average autocorrelation early warning signal yielded a somewhat lower predicted τ value (i.e., 0.667). Variance-based methods (i.e., dominant eigenvalue

and the maximum and average node-level standard deviation) tended to produce higher predicted 349 τ , ranging between 0.792 and 0.828. The autocorrelation methods produced lower predicted τ , 350 ranging between 0.667 and 0.766, although these values were still relatively high compared to 351 other published results (e.g., [25, 26]). The early warning signals based on the Lower State nodes 352 were either no different (dominant eigenvalue, p = 0.050; maximum standard deviation, p = 0.173; 353 and maximum autocorrelation, p = 0.290; uncorrected for multiple comparison) or better (average 354 standard deviation, $p < 10^{-4}$; and average autocorrelation, $p < 10^{-4}$) than those based on all 355 nodes. The early warning signals based on the High Input nodes improved over those based on all 356 nodes ($p < 10^{-4}$ for all the early warning signals except the maximum standard deviation, for which 357 p = 0.025) on average but were not as good as those based on the Lower State nodes in the case 358 of the average standard deviation (High Input: $\tau = 0.873$, Lower State: $\tau = 0.883$). The τ values 359 at most moderately depended on the network structure. Specifically, the distribution of random 360 intercepts for network had the smallest standard deviation in the estimated linear mixed effects 361 models for the maximum standard deviation early warning signal (0.022, 2.7% of the magnitude 362 of the intercept) and the largest standard deviation for the average autocorrelation early warning 363 signal (0.041, 6.2%). These results are consistent with and generalize in terms of the variety of 364 networks those shown in Fig. 2. 365

We then investigated the robustness of the results shown in Fig. 2 against changes in parameter values. The full results are shown in the SI (see section S10). Consistent with previous results (e.g., [32]), decreasing the number of samples for calculating the early warning signal, M, has the strongest negative effect on the performance of early warning signals. We have also found that the average standard autocorrelation calculated from all nodes tends to perform worse than that calculated from the other node sets when the double-well equilibrium points are relatively close together (i.e., $(r_1, r_2, r_3) = (1, 3, 5)$ as opposed to (1, 4, 7)) or r_1 , r_2 , and r_3 are not evenly spaced (i.e., $(r_1, r_2, r_3) = (1, 2.5, 7)$ or (1, 5.5, 7) as opposed to (1, 4, 7)). As expected, allowing more than 50 TU for the model to relax to an equilibrium does not markedly improve the performance of the early warning signals. Thus, with the notable exception of the effect of M, the performance of each early warning signal is in general fairly similar across the different parameter settings.

366

367

368

369

370

371

372

373

374

375

376

377

C. When We Do Not Know the Network Structure

When we do not know the network structure, we cannot calculate R_i , which uses the adjacency matrix, to identify High Input nodes. Therefore, we explored the use of a correlation-based index,

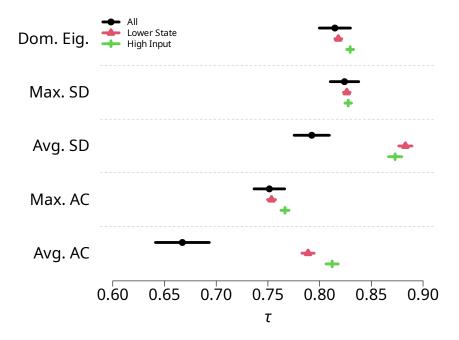


FIG. 3. Predicted Kendall correlations (τ) for five early warning signals and three node sets, estimated by a linear mixed effects model with a fixed effect for node set and a random effect for network. The results are based on the ten networks that have multiple stable ranges of D in our numerical simulations. Markers (All: circles, Lower State: triangles, High Input: pluses) signify the predicted τ value. The horizontal lines represent the 95% confidence intervals.

 R'_i (see section IID for the definition), to choose alternative sentinel nodes, called the Large Correlation nodes, and computed the same set of early warning signals. We show the results for the 381 Large Correlation node set by the box-times symbols in Fig. 2. The Large Correlation node set 382 performed worse than the High Input node set. This result is expected because High Input uses 383 the information about the network structure, whereas Large Correlation does not. However, the 384 Large Correlation node set performed better than the Lower Half and Random node sets. In fact, 385 au with the Large Correlation node set is reasonably large in the dolphin network, roughly ranging between 0.6 and 0.8, whereas it is low in the power-law network (i.e., $\tau < 0.5$). The discrepancy 387 between the results for the two networks is associated with the different fidelity with which the 388 Pearson correlation matrix, $cor(x_i, x_j)$, reflects the actual adjacency matrix (see Fig. S9). 389

We also considered the nodes with the largest standard deviation in x_i , called Large SD, as another node set that does not need the information about the network structure. The rationale behind Large SD is that, when the *i*th node receives large input from other nodes, i.e., when R_i is large, the standard deviation of R_i should also be large because each x_j in Eq. (1) is fluctuating due to dynamical noise. A large fluctuation in R_i is expected to make the standard deviation of x_i large

390

391

392

393

394

through Eq. (1). We found that early warning signals based on Large SD nodes (shown by stars in Fig. 2) perform better than those based on Large Correlation nodes and that the Large SD node set is approximately as well as the High Input node set. Both the Large SD and, to a lesser extent, the Large Correlation node sets perform well even when we consider all node transitions, not just those occurring after a stable range (Fig S8). However, the Large SD node set is particularly sensitive to the number of samples used to determine node membership; its performance declines substantially on this test when we use only the first ten samples to determine node membership (Fig. S7).

Overall, these results support the idea of network-aware choice of sentinel nodes for early warning multistage transitions even when we do not have connectivity data at hand.

D. Transition from the Upper State to the Lower State

405

Simulations of Eq. (2) on the power-law and dolphin networks with all nodes beginning in the 406 upper state also show multistate transitions (see Fig S10). With Eq. (2), high-degree nodes receive 407 a large positive contribution from the coupling term, which is the same as with Eq. (1). Therefore, 408 lower-degree nodes or those adjacent to fewer upper-state nodes are most likely to transition from 409 the upper to the lower state when D gradually decreases. For this reason, Lower State and High 410 Input, which are two node sets that performed well when we attempted to anticipate transition 411 from the lower to upper states, are not expected to be equally good sentinels when the tipping 412 direction is reversed, that is, when the system begins with nodes at the upper state and transits 413 to the lower state. Therefore, we additionally considered two node sets that are mirror images 414 of Lower State and High Input. One is the set of nodes in the upper state, which we already 415 considered in Fig. 2. The other is Low Input, which is the n nodes with the smallest R_i among the 416 upper-state nodes; they are candidate of nodes that may transit from the upper to the lower state 417 earlier than other nodes as D decreases. 418

We show the Kendall's τ for the power-law and dolphin networks in Fig. 4. In Fig. 4, a negative τ indicates that the early warning signal became large as D decreased towards a transition from the upper to the lower state. Therefore, large negative τ values are indicative of critical slowing down as we decrease D. We find that the early warning signals calculated from lower-state nodes (Lower State, shown by the triangles, and High Input, shown by pluses) are not useful for anticipating transitions. In contrast, those calculated from the All node set (shown by the circles) or those informed by upper-state node dynamics (Upper State, shown by crosses; Low Input, shown by

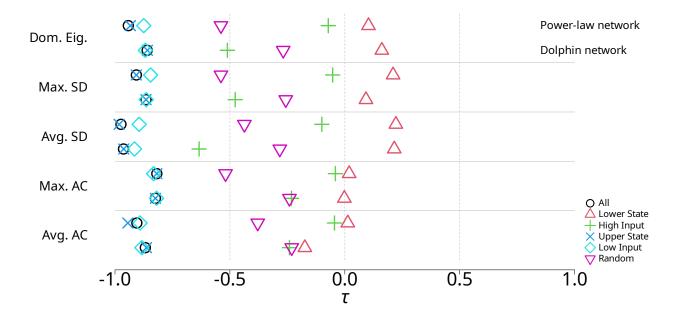


FIG. 4. Early warning signals in multistage transitions from the upper to lower equilibria. Kendall correlations (τ) between each of the five early warning signals and the coupling strength, D, for different sets of nodes when the dynamics begin with the nodes in the upper state and D gradually decreases are shown. See the caption of Fig. 2 for the abbreviation of the early warning signals.

diamonds) are highly negatively correlated with D. This result indicates that the nodes in the upper state, not those in the lower state, provide useful early warning signals. Furthermore, the best sentinel nodes are opposite in terms of R_i from when we started with the lower equilibrium and observed transitions of the nodes from the lower to the upper state. A suitable choice of sentinel nodes depends on the tipping direction, even if the dynamical system model is similar or essentially the same.

IV. DISCUSSION

We showed that both multivariate (i.e., eigenvalue-based) and aggregated univariate (i.e., variance- and autocorrelation-based) early warning signals can provide advance notice of state changes in multistage transitions in coupled double-well systems. Furthermore, we showed that constructing early warning signals only based on a subset of nodes, called sentinel nodes, is competitive with, and sometimes more effective than, using all nodes to calculate the early warning signals. Specifically, it is useful to monitor nodes that have not transitioned to the alternative state but are connected to other nodes that have already transitioned to such a state. We showed

that the early warning signals calculated based on the thus selected sentinel nodes were effective both when nodes were transitioning from a lower state to an upper state and vice versa. Up to our numerical efforts, the results were robust against parameter variation, network structure, and choice of early warning signals.

We have shown that the choice of which nodes to monitor for early warning signals has a marked impact on the effectiveness of the early warning signal. In particular, when we observed transitions 445 from the lower to upper states, a good set of nodes to monitor was those with a large degree or with 446 many connections to other nodes that have already transitioned to the upper state, as quantified by 447 R_i . At first glance, this result seems at odds with those by Aparicio et al. [14], who used network 448 control theory to propose that lower-degree nodes tended to make better sentinels. In fact, in their 449 model, the dynamics always starts with nodes in the upper state because it is a model of species 450 abundance and its loss. We showed that lower-degree nodes are good sentinel nodes when the 451 nodes are initially in their upper states and transit to their lower states as a bifurcation parameter 452 gradually changes. Aparicio et al. provided two indices for the suitability of their sentinel nodes. 453 Because one of the two indices only depends on the network structure, we calculated the other 454 measure, called ρ , for our simulations given the network. A value of ρ closer to zero indicates that 455 their sentinel nodes are more suitable. We found for our power-law network $\rho = 0.042$ when all 456 nodes start in the lower state and $\rho = 0.038$ when all nodes start in the upper state; for the dolphin 457 network, we obtained $\rho = 0.030$ and $\rho = 0.007$, respectively. These results are consistent with our 458 numerical results, in which low-degree nodes provide informative early warning signals when we 459 started with the upper but not the lower state. We emphasize that a good choice of sentinel nodes 460 depends on the initial condition and the tipping direction even if we fix the dynamical system as 461 well as the network structure. 462

There are many cases in which a network model is thought to represent a complex system 463 showing tipping phenomena but the edges of the network are not directly known [33]. Examples 464 include the co-occurrence of symptoms of neurological conditions [34] and the rates of return 465 on traded financial securities [35]. In such cases, we are typically given only multivariate time 466 series data and want to derive informative early warning signals for tipping points that possibly 467 constitute a multistage transition. A strategy in this situation is to infer the network structure from 468 multivariate time series data [33, 36] and then calculate candidate sentinel nodes from the estimated 469 network using, for example, the node's ranking in terms of R_i . We avoided this approach because 470 network inference from time series data is subject to error due to, e.g., thresholding decisions [33] or uncertainty in model estimation [36]. Instead, we proposed a method to identify sentinel nodes only 472

based on the Pearson correlation between the time series at pairs of nodes, which provides a proxy to edges (although one should not use the Pearson correlation as an estimate of the network edge in general [37]). Our sentinel nodes determined based on the Pearson correlation provided reasonably strong early warning signals, but their performance did not reach that for the case in which we know the network structure. However, choosing sentinel nodes based on the standard deviation of the node's state performed in a similar manner to sentinel nodes chosen using information on network structure. Finding better sentinel nodes given multivariate time series data for which the explicit network structure is unknown warrants future work. We also point out that we currently do not have equivalent methods when the nodes are initially in their upper states and transit to their lower states as the value of a control parameter gradually varies, which is typical in ecological modeling.

Although we have shown that High and Low Input node sets are efficient at anticipating major changes of state in the models we studied, there is much room for further improvements. First, multistage transitions imply that there are intermediate stages in which some nodes have tipped and the others have not and that we have seen a history of which nodes have tipped and when. If we use such information, we may be able to improve performances of early warning signals with respect to both the node set selection and the definition of the signal. Second, it may be helpful to use benchmark networks that show multistage transitions. If a network is composed of multiple disconnected components of tipping elements, the entire network should show multistage transitions because the different disconnected components show a bifurcation at different values of a control parameter in general. Therefore, a network with a strong planted community structure is expected to show multistage transitions for various dynamical systems. Degree-heterogeneous random graphs also show multistage transitions, which is underpinned by both numerical simulations and a mean field theory [20]. Studying multistage transitions and early warning signals on these networks may be useful.

We used cubic polynomials to drive the node's dynamics (and hence a potential in the form
of quartic polynomials) and unipartite networks to test our ideas. These modeling assumptions
are reasonable for investigating, for example, climate and vegetation cover transitions [38, 39].
In contrast, various ecological systems are better modeled by bipartite networks, in which the
two layers of nodes typically represent pollinators (or seed dispersers) and plants [12, 40]. In
fact, ecological dynamics on bipartite networks also show multistage transitions [12]. Despite the
seminal work based on network control theory [14], discussed above, further work is desirable for
identifying informative sentinel nodes in ecological dynamics on bipartite networks. Other types of

dynamics such as reactive and synchronization dynamics on networks should also be investigated. Additionally, although saddle-node bifurcations have been frequently studied, natural systems may also show other types of bifurcations. Early warning signals for transcritical, Hopf, and other bifurcations are beyond the scope of this work, but anticipating such transitions is important in several fields, including the epidemiology [41] and ecology [12]. Finally, although we have shown that a careful choice of sentinel nodes can dramatically reduce the amount of data needed without sacrificing the quality of early warning signals, we are ignorant of the amount of the data needed from each node in this study. Shortening the length of temporal data required will be an important next step, given that sampling can be expensive and invasive in various applications such as ecology and medicine. Spatial correlations such as Moran's I have been used to provide early warning signals on square lattices [42], and their extensions to the case of complex networks may help reduce the required amount of temporal sampling.

In addition to sampling limitations, the specificity of early warning signals is a known challenge [43–46]. Suppose that an early warning signal tends to increase as a control parameter gradually increases towards a tipping point. It is difficult in general, however, to suggest a particular range of values of the early warning signal that indicates an impending transition. In fact, the Kendall's τ , which is deemed to be a standard performance measure, may be large for several reasons, including when the early warning signal monotonically increases as the control parameter increases regardless of tipping points [44]. This lack of specificity is also present in our results (see Fig. 1). Developing methods, such as maximum likelihood [44] or algorithmic classification [45] techniques, to improve the specificity of early warning signals is an important area of further research. With all these tasks saved for future work, by combining information about the network structure and dynamics, the present study takes a significant step towards accurately and cost-efficiently anticipating different types of tipping points in complex dynamical systems.

DATA ACCESSIBILITY

The datasets generated and analyzed during the current study are available in the GitHub repository, https://github.com/ngmaclaren/doublewells, along with all relevant computer code.

ACKNOWLEDGMENTS

We thank Hiroshi Kori and Makito Oku for valuable discussion.

AUTHOR CONTRIBUTIONS

N.M. conceived and supervised the project. N.G.M. performed the simulations and computations with assistance from P.K.. N.G.M. and N.M. analyzed the data and wrote the paper.

538 FUNDING

535

543

N. Masuda acknowledges support from AFOSR European Office (under Grant No. FA9550-191-7024), the Sumitomo Foundation, the Japan Science and Technology Agency (JST) Moonshot
R&D (under Grant No. JPMJMS2021), and the National Science Foundation (under Grant No.
2052720).

CONFLICT OF INTEREST DECLARATION

The authors declare no competing interests.

- [1] Marten Scheffer, S Harry Hosper, Marie-Louise Meijer, Brian Moss, and Erik Jeppesen. Alternative
 equilibria in shallow lakes. Trends in Ecology & Evolution, 8(8):275–279, 1993.
- [2] Stephen R Carpenter, Jonathan J Cole, Michael L Pace, Ryan Batt, William A Brock, Timmothy Cline, Jim Coloso, James R Hodgson, Jim F Kitchell, David A Seekell, et al. Early warnings of regime shifts: a whole-ecosystem experiment. *Science*, 332(6033):1079–1082, 2011.
- Philip C Reid, Renata E Hari, Grégory Beaugrand, David M Livingstone, Christoph Marty, Dietmar
 Straile, Jonathan Barichivich, Eric Goberville, Rita Adrian, Yasuyuki Aono, et al. Global impacts of
 the 1980s regime shift. Global Change Biology, 22(2):682–703, 2016.
- Jose G Venegas, Tilo Winkler, Guido Musch, Marcos F Vidal Melo, Dominick Layfield, Nora Tgavalekos, Alan J Fischman, Ronald J Callahan, Giacomo Bellani, and R Scott Harris. Self-organized patchiness in asthma as a prelude to catastrophic shifts. *Nature*, 434(7034):777–782, 2005.
- [5] Jerome Clifford Foo, Hamid Reza Noori, Ikuhiro Yamaguchi, Valentina Vengeliene, Alejandro Cosa Linan, Toru Nakamura, Kenji Morita, Rainer Spanagel, and Yoshiharu Yamamoto. Dynamical state
 transitions into addictive behaviour and their early-warning signals. Proceedings of the Royal Society
 B: Biological Sciences, 284(1860):20170882, 2017.
- [6] Marten Scheffer, Jordi Bascompte, William A Brock, Victor Brovkin, Stephen R Carpenter, Vasilis
 Dakos, Hermann Held, Egbert H Van Nes, Max Rietkerk, and George Sugihara. Early-warning signals
 for critical transitions. Nature, 461(7260):53–59, 2009.

- ⁵⁶³ [7] Lei Dai, Daan Vorselen, Kirill S Korolev, and Jeff Gore. Generic indicators for loss of resilience before a tipping point leading to population collapse. *Science*, 336(6085):1175–1177, 2012.
- [8] Paul DH Hines, Eduardo Cotilla-Sanchez, Benjamin O'hara, and Christopher Danforth. Estimating
 dynamic instability risk by measuring critical slowing down. In 2011 IEEE Power and Energy Society
 General Meeting, Detroit, MI, page 12303648, New York, NY, 2011. IEEE.
- Michael L Pace, Ryan D Batt, Cal D Buelo, Stephen R Carpenter, Jonathan J Cole, Jason T Kurtzweil,
 and Grace M Wilkinson. Reversal of a cyanobacterial bloom in response to early warnings. Proceedings
 of the National Academy of Sciences of the United States of America, 114(2):352–357, 2017.
- 571 [10] Thilo Gross and Bernd Blasius. Adaptive coevolutionary networks: a review. *Journal of the Royal*572 *Society Interface*, 5(20):259–271, 2008.
- 573 [11] Xueming Liu, Daqing Li, Manqing Ma, Boleslaw K Szymanski, H Eugene Stanley, and Jianxi Gao.

 Network resilience. *Physics Reports*, 971:1–108, 2022.
- J Jelle Lever, Ingrid A van de Leemput, Els Weinans, Rick Quax, Vasilis Dakos, Egbert H van Nes, Jordi
 Bascompte, and Marten Scheffer. Foreseeing the future of mutualistic communities beyond collapse.
 Ecology Letters, 23(1):2–15, 2020.
- Vasilis Dakos. Identifying best-indicator species for abrupt transitions in multispecies communities.

 Ecological Indicators, 94:494–502, 2018.
- [14] Andrea Aparicio, Jorge X Velasco-Hernández, Claude H Moog, Yang-Yu Liu, and Marco Tulio Angulo.
 Structure-based identification of sensor species for anticipating critical transitions. Proceedings of the
 National Academy of Sciences of the United States of America, 118(51):e2104732118, 2021.
- ⁵⁸³ [15] J Jelle Lever, Egbert H van Nes, Marten Scheffer, and Jordi Bascompte. The sudden collapse of ⁵⁸⁴ pollinator communities. *Ecology Letters*, 17(3):350–359, 2014.
- Vasilis Dakos and Jordi Bascompte. Critical slowing down as early warning for the onset of collapse in mutualistic communities. *Proceedings of the National Academy of Sciences of the United States of* America, 111(49):17546–17551, 2014.
- Jianxi Gao, Baruch Barzel, and Albert-László Barabási. Universal resilience patterns in complex net works. Nature, 530(7590):307-312, 2016.
- [18] Nico Wunderling, Maximilian Gelbrecht, Ricarda Winkelmann, Jürgen Kurths, and Jonathan F Donges.
 Basin stability and limit cycles in a conceptual model for climate tipping cascades. New Journal of
 Physics, 22(12):123031, 2020.
- [19] Prosenjit Kundu, Hiroshi Kori, and Naoki Masuda. Accuracy of a one-dimensional reduction of dynamical systems on networks. *Physical Review E*, 105(2):024305, 2022.
- Prosenjit Kundu, Neil G MacLaren, Hiroshi Kori, and Naoki Masuda. Mean-field theory for double-well
 systems on degree-heterogeneous networks. Proceedings of the Royal Society A: Mathematical, Physical,
 and Engineering Sciences, 478:20220350, 2022.
- [21] Leo Lahti, Jarkko Salojärvi, Anne Salonen, Marten Scheffer, and Willem M de Vos. Tipping elements in the human intestinal ecosystem. *Nature Communications*, 5(1):4344, 2014.

- [22] Charles D Brummitt, George Barnett, and Raissa M D'Souza. Coupled catastrophes: sudden shifts cascade and hop among interdependent systems. Journal of The Royal Society Interface, 12(112):20150712,
 2015.
- [23] Els Weinans, Rick Quax, Egbert H van Nes, and Ingrid A van de Leemput. Evaluating the performance of multivariate indicators of resilience loss. *Scientific Reports*, 11(1):9148, 2021.
- [24] Luonan Chen, Rui Liu, Zhi-Ping Liu, Meiyi Li, and Kazuyuki Aihara. Detecting early-warning signals
 for sudden deterioration of complex diseases by dynamical network biomarkers. Scientific Reports,
 2(1):342, 2012.
- Vasilis Dakos, Stephen R Carpenter, William A Brock, Aaron M Ellison, Vishwesha Guttal, Anthony R
 Ives, Sonia Kefi, Valerie Livina, David A Seekell, Egbert H van Nes, et al. Methods for detecting early
 warnings of critical transitions in time series illustrated using simulated ecological data. PloS ONE,
 7(7):e41010, 2012.
- [26] Vasilis Dakos, Marten Scheffer, Egbert H van Nes, Victor Brovkin, Vladimir Petoukhov, and Hermann
 Held. Slowing down as an early warning signal for abrupt climate change. Proceedings of the National
 Academy of Sciences of the United States of America, 105(38):14308–14312, 2008.
- David Lusseau, Karsten Schneider, Oliver J Boisseau, Patti Haase, Elisabeth Slooten, and Steve M
 Dawson. The bottlenose dolphin community of doubtful sound features a large proportion of long lasting associations. Behavioral Ecology and Sociobiology, 54(4):396–405, 2003.
- [28] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research. *Inter-Journal*, Complex Systems:1695, 2006.
- [29] Jose Pinheiro, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, and R Core Team. nlme: Linear and
 Nonlinear Mixed Effects Models, 2021. R package version 3.1-153.
- [30] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
 Computing, Vienna, Austria, 2022.
- 624 [31] David Schoch. networkdata: Repository of Network Datasets, 2022. R package version 0.1.10.
- [32] Christopher F Clements, John M Drake, Jason I Griffiths, and Arpat Ozgul. Factors influencing the detectability of early warning signals of population collapse. *American Naturalist*, 186(1):50–58, 2015.
- [33] Ivan Brugere, Brian Gallagher, and Tanya Y Berger-Wolf. Network structure inference, a survey: Motivations, methods, and applications. *ACM Computing Surveys*, 51(2):24, 2018.
- [34] Stefan G Hofmann, Joshua Curtiss, and Richard J McNally. A complex network perspective on clinical
 science. Perspectives on Psychological Science, 11(5):597–605, 2016.
- [35] Rick Quax, Drona Kandhai, and Peter M A Sloot. Information dissipation as an early-warning signal for the lehman brothers collapse in financial time series. *Scientific Reports*, 3(1):1898, 2013.
- [36] Marc Timme and Jose Casadiego. Revealing networks from dynamics: an introduction. *Journal of Physics A: Mathematical and Theoretical*, 47(34):343001, 2014.
- 635 [37] Andrew Zalesky, Alex Fornito, and Ed Bullmore. On the use of correlation as a measure of network 636 connectivity. *NeuroImage*, 60(4):2096–2106, 2012.

- [38] Nico Wunderling, Jonathan F Donges, Jürgen Kurths, and Ricarda Winkelmann. Interacting tipping elements increase risk of climate domino effects under global warming. *Earth System Dynamics*, 12(2):601–619, 2021.
- [39] Nico Wunderling, Arie Staal, Boris Sakschewski, Marina Hirota, Obbe A. Tuinenburg, Jonathan F.
 Donges, Henrique M. J. Barbosa, and Ricarda Winkelmann. Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the amazon rainforest. Proceedings of the
 National Academy of Sciences of the United States of America, 119(32):e2120777119, 2022.
- [40] Jordi Bascompte and Pedro Jordano. Plant-animal mutualistic networks: the architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 38:567–593, 2007.
- [41] John M Drake, Tobias S Brett, Shiyang Chen, Bogdan I Epureanu, Matthew J Ferrari, Eric Marty,
 Paige B Miller, Eamon B O'dea, Suzanne M O'regan, Andrew W Park, et al. The statistics of epidemic
 transitions. PLoS Computational Biology, 15(5):e1006917, 2019.
- [42] Vasilis Dakos, Egbert H van Nes, Raúl Donangelo, Hugo Fort, and Marten Scheffer. Spatial correlation
 as leading indicator of catastrophic shifts. Theoretical Ecology, 3(3):163–174, 2010.
- [43] Alena Sonia Gsell, Ulrike Scharfenberger, Deniz Özkundakci, Annika Walters, Lars-Anders Hansson,
 Annette BG Janssen, Peeter Nõges, Philip C Reid, Daniel E Schindler, Ellen Van Donk, et al. Evaluating
 early-warning indicators of critical transitions in natural aquatic ecosystems. Proceedings of the National
 Academy of Sciences of the United States of America, 113(50):E8089–E8095, 2016.
- 655 [44] Carl Boettiger and Alan Hastings. Quantifying limits to detection of early warning for critical transi-656 tions. Journal of the Royal Society Interface, 9(75):2527–2539, 2012.
- [45] Thomas M Bury, RI Sujith, Induja Pavithran, Marten Scheffer, Timothy M Lenton, Madhur Anand,
 and Chris T Bauch. Deep learning for early warning signals of tipping points. Proceedings of the
 National Academy of Sciences of the United States of America, 118(39):e2106140118, 2021.
- [46] Maarten C Boerlijst, Thomas Oudman, and André M de Roos. Catastrophic collapse can occur without
 early warning: examples of silent catastrophes in structured ecological models. *PloS ONE*, 8(4):e62033,
 2013.