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Successfully anticipating sudden major changes in complex systems is a practical concern.9

Such complex systems often form a heterogeneous network, which may show multistage tran-10

sitions in which some nodes experience a regime shift earlier than others as an environment11

gradually changes. Here we investigate early warning signals for networked systems under-12

going a multistage transition. We found that knowledge of both the ongoing multistage13

transition and network structure enables us to calculate effective early warning signals for14

multistage transitions. Furthermore, we found that small subsets of nodes could anticipate15

transitions as well as or even better than using all the nodes. Even if we fix the network and16

dynamical system, no single best subset of nodes provides good early warning signals, and a17

good choice of sentinel nodes depends on the tipping direction and the current stage of the18

dynamics within a multistage transition, which we systematically characterize.19

Keywords: complex networks; early warning signals; critical transitions; tipping points; dynamics20

on networks21

I. INTRODUCTION22

A characterization of complex systems is dependence among components, which often leads to23

surprising, nonlinear behavior. One important nonlinear phenomenon is that of a tipping point: a24

transition in which stable aspects of the system suddenly shift to a drastically altered state when25

the system’s environment changes by a small amount; recovery from the altered state is typically26

difficult. Tipping points have been described in, for example, the switch from clear to turbid water27

in lake ecosystems [1], changes in fish community composition [2], alterations in global climate28

regimes [3], and in the progression of disease [4, 5]. This shared feature of such disparate systems29

can be described mathematically by bifurcations, and several early warning signals—statistical30
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indications that a bifurcation point is nearby—have been developed that attempt to anticipate such31

transitions. These early warning signals rely on a process called critical slowing down: systems32

recover from perturbations more slowly near a bifurcation point [6]. Critical slowing down results33

in predictable signatures in time series data, including increasing variance and autocorrelation,34

and it is these signatures that are used to construct early warning signals. Early warning signals35

based on the critical slowing down phenomenon have been validated in several model systems [2, 7],36

and their practical utility has been demonstrated in, e.g., predicting electrical grid failures [8] and37

reversing cyanobacterial blooms [9].38

Many systems showing tipping points can be modeled by a network in which a node represents39

a dynamical system and different dynamical systems interact through the edges of the network40

[10]. Studying tipping points in such systems is an integral part of studying network robustness41

and resiliency [11]. An example with applications in conservation ecology is the anticipation of42

a breakdown in mutualistic species networks [12–14]. In such models, species populations are43

typically represented by stochastic differential equations interacting through a bipartite network44

of plants and pollinators [15, 16] or a unipartite projection focusing on only plants or pollinators45

[12, 17]. Early warning signals can then predict major adjustments in species composition [12] or46

population collapse [14]. Similarly, exploiting information on interactions between weather patterns47

in different regions may improve the forecasting of climate tipping points [18].48

In fact, the inherent heterogeneity in networked systems may make tipping points more complex.49

Specifically, multistage transitions, in which not all components transition to an alternate state at50

the same parameter values, may be the rule rather than the exception in networks with certain51

features [19, 20]. Multistage transitions have been documented in studies of mutualistic species52

dynamics [12, 14] and climate systems [18], and are consistent with evidence from human commensal53

bacteria [21] and social upheaval [22]. The ability to anticipate multistage transitions would thus54

have applications in many fields.55

A variety of methods have been proposed to provide early warning of tipping points on networks.56

Examples include aggregations of univariate (i.e., single-node) early warning signals and explicitly57

multivariate methods such as measures derived from a principal component analysis (PCA) of58

state variables [11, 23]. However, most of the available early warning signals for networks treat the59

network as a united entity and do not exploit the fact that a network is composed of subsystems60

that may show different dynamics and provide different early warning signals. There are some61

notable exceptions. First, Chen et al. used cross-correlations to identify clusters of nodes that62

were more sensitive to an approaching bifurcation than the network as a whole [24]. Although63
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Chen et al. exploited network heterogeneity for constructing early warning signals, they did not64

consider multistage transitions. Second, Lever et al. developed PCA methods to predict the65

direction and magnitude of change for each node’s state after a bifurcation [12]. Lever et al.66

noted parameter ranges for their model in which multistage transitions were possible and that the67

early warning signal they proposed tended to correctly anticipate the first transition. However,68

Lever et al. noted that their method was less reliable for describing further nodes’ transitions—69

the multistage transition. Third, Aparicio et al. used network control theory—rather than system70

dynamics—to identify nodes that would be capable of providing a reliable early warning signal [14].71

They also identified parameter values that caused multistage transitions in their model and also72

found that their method underperformed in those regions. In contrast to Lever et al.’s method,73

Aparicio et al.’s method tended to miss early transitions of nodes but correctly predicted the final74

collapse. Based on the ubiquitousness of multistage transitions in networks, discussed above, there75

is a need for early warning signals that can provide alerts for each of the major tipping points76

within a multistage transition that a networked system may experience.77

In the present study, we build on key points from these three studies—namely that (1) some78

nodes may be more informative about impending transitions than others and (2) information may79

be available in the network structure or dynamics with which to anticipate multistage transitions—80

to investigate early warning signals for multistage transitions in tipping dynamics on networks. We81

find that traditional early warning signals are in fact able to provide early warning in a network82

undergoing a multistage transition. Using knowledge of the network allows us to choose “sentinel”83

nodes, i.e., node sets that can provide early warning more efficiently than using all nodes in terms84

of the number of nodes we must observe. Furthermore, it is often the case that such early warning85

signals even improve in accuracy.86

II. METHODS87

A. Model88

Consider an undirected and unweighted network of N nodes and denote its adjacency matrix89

by A = (aij) with aii = 0 and aij = aji ∈ {0, 1} ∀ i, j ∈ {1, . . . , N}. We simulate the stochastic90

dynamics of a coupled double-well model on networks given by91

dxi
dt

= −(xi − r1)(xi − r2)(xi − r3) +D

N∑
j=1

aijxj + sξi, (1)
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where xi is the state of node i; r1, r2, and r3 are parameters that control the location of the92

equilibria and satisfy r1 < r2 < r3; D (≥ 0) is the coupling strength; and sξi is a Gaussian noise93

process with standard deviation s. The first term is the derivative of a fourth-order polynomial94

representing a double-well potential. In the uncoupled and noiseless case, it produces lower and95

upper stable equilibria at xi = r1 and xi = r3, respectively, and an unstable equilibrium at xi = r2,96

and it also creates hysteresis. Unless we state otherwise, we set (r1, r2, r3) = (1, 4, 7). The coupling97

term D
∑N

j=1 aijxj shifts xi at the stable equilibria out of xi = r1 = 1 or xi = r3 = 7. In addition,98

the noise term sξi lets xi jitter around the stable equilibria obtained in the absence of noise. We99

therefore consider that nodes with xi < 2.268 are in the lower state and xi > 2.268 are in the upper100

state. We selected this threshold value for xi because the cubic term in Eq. (1) has an inflection101

point at xi ≈ 2.268 in the absence of the coupling term, demarcating a basin of attraction for102

the lower stable point at xi = 1. We numerically verified that we can reliably classify xi into the103

lower and upper stable equilibria with these threshold values even in the presence of the coupling104

term (see Figure S1). Equation (1) represents dynamics of species abundance [12] or climates105

in interconnected regions [18]. We primarily consider D as a bifurcation parameter. A possible106

mechanism underlying variation in D is the volume of moisture moving from one climate basin to107

another [18].108

For applications such as species loss in population ecology, one is interested in beginning with109

the upper state, which corresponds to the situation in which all the species are abundant, and110

gradually varying a parameter value to anticipate transitions of various nodes to their lower states111

[6]. For example, a transition to the lower state could correspond to the collapse of a species’112

population. To validate the relevance of multistage transitions and early warning signals in this113

scenario, we consider an extension of Eq. (1) given by114

dxi
dt

= −(xi − r1)(xi − r2)(xi − r3) +D
N∑
j=1

aijxj + u+ sξi. (2)

Variable u is a stressor that directly and uniformly influences all nodes. An increase in u repre-115

sents, for example, increased global mean temperature [18] or degradation of the local environment116

causing increased mortality for all species [12]. With Eq. (2), we hold either D or u constant and117

vary the other as the bifurcation parameter.118
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B. Numerical Simulations119

Unless we state otherwise, we used D as the bifurcation parameter and began simulations with120

all nodes in the lower state. For the given network and the value of D, we started the dynamics121

from the initial condition x1 = · · · = xN = 1. For any given value of D, we integrated Eq. (1)122

using the Euler-Maruyama method with time step ∆t = 0.01 for 50 time units (TU) to allow123

{x1, . . . , xN} to relax to an equilibrium. In fact, allowing 50 TU was sufficient except in rare cases124

in which some nodes changed their macroscopic state (i.e., lower versus upper state) after 50 TU125

due to dynamical noise. We then continued simulating the dynamics for a further 25 TU to take126

samples from {x1(t), . . . , xN (t)} for calculating early warning signals. We used s = 0.05 except127

where noted.128

To determine whether or not early warning signals increase prior to transitions of various nodes129

from their lower state to upper state, we conducted sequences of the above simulations for a given130

network and set of parameters. Each sequence began with D = 0.01. After we simulated the131

dynamics for 75 TU in total and calculated early warning signals, we increased D by 0.005, reset132

xi ∀ i to the initial condition, ran the simulation with the new value of D, and calculated early133

warning signals from the new xi(t). We continued this procedure (i.e., increasing D by 0.005 and134

running a new simulation) until at least 90% of nodes reached the upper state at equilibrium.135

In simulations with D as the bifurcation parameter but with the nodes beginning in the upper136

state, we set xi = 7 ∀ i and u = −15. In this case, we consider that nodes with xi < 5.732 are137

in the lower state and xi > 5.732 are in the upper state; note that Eq. (1) has a second inflection138

point at xi ≈ 5.732 in the absence of the coupling term. We initially set D = 1 and decreased139

D by 0.005 in each simulation, continuing until > 90% of nodes transitioned to the lower state at140

equilibrium. All other parameters were the same regardless of whether we began simulations with141

the nodes at the upper or lower state.142

This simulation method attempts to ensure that we always study the system at equilibrium and143

has been used in previous studies of tipping points on networks (e.g., [18]). De-trending or other144

preprocessing of data from the simulations is therefore not needed: by the time we take data from145

each simulation, the system is stationary by design (c.f. [25] for a different simulation method, for146

which de-trending is required).147
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C. Early Warning Signals148

At each value of D, we calculated the following early warning signals [23, 25] from M = 250149

equally spaced samples of {x1(t), . . . , xN (t)} with t ∈ (50, 75], i.e., with t ∈ {50.1, 50.2, . . . 75.0}:150

• The dominant eigenvalue λmax of the covariance matrix, of which the (i, j) entry is the151

covariance of {xi(50.1), xi(50.2), . . . , xi(75)} and {xj(50.1), xj(50.2), . . . , xj(75)}.152

• The standard deviation of each xi(t) estimated from the M samples.153

• The lag-1 autocorrelation of each xi(t), defined as
∑M−1

m=1 (xi,m−xi)(xi,m+1−xi)∑M
m=1(xm−xi)2

, where xi,m ≡154

xi(50 + 0.1m) and xi =
∑M

m=1 xi,m/M .155

To define an early warning signal for a given node set, we used both the maximum and the mean156

of the standard deviation and lag-1 autocorrelation in addition to λmax calculated from the node157

set of interest. Therefore, we examine five different early warning signals for a given set of nodes158

(see section IID for the node sets).159

We quantify the extent to which an early warning signal anticipates a bifurcation with the160

Kendall rank correlation, τ , between D before the bifurcation occurs and the early warning signal161

[26]. The reasoning behind using Kendall’s τ as a performance metric is as follows. Consider a162

range of D in which no nodes change state at equilibrium except at the final value of D. We refer163

to a range of D in which the number of nodes in the lower/upper state is constant as a stable range.164

Given our simulation protocol, D is linearly increasing in a stable range. If an early warning signal165

tends to increase as D increases towards the bifurcation point, indicating critical slowing down,166

then the early warning signal is considered to be useful in anticipating the bifurcation, and τ tends167

to be large. However, in the network dynamics that we are considering, there are potentially many168

values of D at which some nodes switch from the lower to the upper state. Therefore, we correlate169

D with a given early warning signal to obtain τ only within stable ranges of D having at least 15170

unique values of D. We report the τ value averaged over all such stable ranges. For example, if171

there is no node transitioning from its lower state to the upper state for D ∈ {0.01, 0.015, . . . , 0.5},172

D ∈ {0.505, 0.51, 0.515}, and D ∈ {0.52, 0.525, . . . , 1}, some nodes transit from the lower to the173

upper state at D = 0.505, 0.52, and 1.005, and the transition at D = 1.005 makes the fraction of174

the nodes in the upper state exceed 0.9, then we calculated τ for the first and third ranges of D175

and took the average of the two τ values.176
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D. Node Sets177

We defined the following nine node sets for calculating the early warning signals:178

• “All” refers to the set of all nodes.179

• “Lower State” refers to the set of all nodes in the lower state at t = 50 TU.180

• “Upper State” refers to the set of all nodes in the upper state at t = 50 TU. If there are no181

nodes in the upper state, this node set is empty and early warning signals for this node set182

are undefined.183

• “High Input” refers to the n nodes that are largest in terms of Ri =
∑N

j=1 aijxj , where184

i is the index of an available node in the sense that it is still in its original macro state.185

For example, a lower-state node is an available node if nodes are initially in the lower state186

in a simulation. Note that such a node is available to transition to the upper state as D187

increases. We remind that xj is the mean of xj calculated over the M samples. We define188

the High Input node set based on the idea that a lower-state node with many neighbors or189

with neighbors in the upper state is more likely to transition from the lower to the upper190

state earlier than other nodes.191

• “Low Input” refers to the n nodes that are the smallest in terms of Ri. As for High Input,192

we require that the ith node is in its original macro state. The Low Input node set reflects193

the observation that, if the nodes are initially in the upper state, then the node with the194

smallest contribution from the coupling term, i.e., those with smallest Ri, would be the first195

to transition to the lower state as D decreases.196

• “Lower Half” refers to the set of lower-state nodes below the median in terms of Ri; we do197

not use this node set when all the nodes are initially in the upper state in the simulation. If198

the nodes begin in the lower state, Lower Half nodes are the farthest from a bifurcation as199

one gradually increases D.200

• “Random” refers to the set of n nodes selected uniformly at random.201

• “Large Correlation” nodes are the top n nodes in terms of R′
i =

∑N
j=1;j ̸=i cor(xi, xj)xj ,202

where the ith node is a lower-state node, and cor(xi, xj) is the Pearson correlation coefficient203

between xi and xj calculated over the M samples. This is an alternative for High Input when204

we do not have access to the network structure, i.e., the adjacency matrix.205
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• “Large Standard Deviation (Large SD)” nodes are the n nodes with the largest standard206

deviation of xi over the M samples. A node tends to have a larger standard deviation when207

it receives a larger input from the coupling term. Thus, the Large SD node set is also an208

alternative for High Input when we do not have information about the network structure.209

The All node set corresponds to established early warning signal methods and is the most costly in210

terms of sampling effort. The High Input, Low Input, Random, Large Correlation, and Large SD211

node sets require a limited number of nodes, which we set n = 5, and are therefore the least costly.212

The other node sets are variable in terms of the number of nodes. However, with the exception of213

the first stable range, the number of nodes used is typically much larger than n and much smaller214

than N across a wide range of D. All, Lower State, Upper State, Random, Large Correlation, and215

Large SD do not use the information on the network structure, whereas High Input, Low Input,216

and Lower Half do. Random, Large Correlation, and Large SD are most economic in the sense that217

it only uses n nodes and does not require the network structure. We updated node set membership218

each time we change the value of D.219

E. Networks220

We conducted simulations on 6 model networks and 17 empirical networks; see the Supple-221

mentary Information (SI) for details of the networks. We chose networks having the order of 100222

nodes, similar in size to many empirical networks and small enough to be computationally feasible223

for our simulations. We chose model networks with a range of degree heterogeneities and with and224

without a planted community structure, including networks that show a multistage transition to225

different extents [20]. Empirical networks may have a variety of features difficult to capture with226

model networks and thus present hidden challenges to our methods. An example of our empirical227

networks is a dolphin social network [27]. In this network, the nodes are individual dolphins and228

two nodes are adjacent if individuals i and j were observed together more often than expected229

by chance. On such a network, xi represents, for example, a behavioral state or possession of230

particular information.231

F. Robustness Analysis232

We tested several variations of our methods to examine robustness under different scenarios.233

First, to test the robustness of these results with respect to the network structure, we conducted234
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simulations on the 23 networks explained in Section II E. Ten of the 23 networks had at least two235

stable ranges, showing clear multistage transitions. We selected these ten networks for further236

analysis.237

Consider an early warning signal. On each of the ten selected networks, we calculated τ between238

the early warning signal and D for each stable range of D. We then averaged τ over the stable239

ranges of D. We calculated such an averaged τ value 50 times, restarting simulations with a new240

random seed each time, for each of the three node sets (i.e., All, Lower State, and High Input) and241

each network. Finally, we estimated a linear mixed effects model to predict the averaged τ value242

based on three levels of a node-set fixed effect variable (i.e., All as the reference, Lower State, and243

High Input) with a random effect for network. We estimated the linear mixed effects model in this244

manner for each of the five early warning signals.245

Second, we varied several simulation parameters on two arbitrarily selected networks. The246

adjusted parameters were the noise intensity (s ∈ {0.01, 0.1, 0.5}), the number of samples taken247

from each xi(t) when calculating early warning signals (M ∈ {25, 50, 150}), the double-well model248

parameters ((r1, r2, r3) ∈ {(1, 3, 5), (1, 2.5, 7), (1, 5.5, 7)}), and the duration T of the simulation249

before we start to sample {x1(t), . . . , xN (t)} to calculate the early warning signals at each value of250

D (T ∈ {25, 75, 100}).251

Third, we altered the model itself, examining transitions from the upper to the lower state using252

Eq. (2).253

G. Software254

We conducted all simulations and analyses in R (v4.2); dependencies include the “igraph”255

package (v1.3) for network analysis [28], the “nlme” package (v3.1) for mixed effects statistical256

models [29], and the “parallel” package (v4.2) [30] for parallel processing. Empirical networks257

were drawn from the “networkdata” package [31]. Code and data to reproduce these analyses are258

available at https://github.com/ngmaclaren/doublewells.259

https://github.com/ngmaclaren/doublewells
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III. RESULTS260

A. Multistage Transitions and Performance of Early Warning Signals Based on Different261

Node Sets262

Let us first consider a network with 100 nodes and a power-law degree distribution generated263

by a configuration model, which we call the power-law network. We show by the gray line in264

Figure 1A the proportion of nodes in the lower state in the equilibrium as a function of the265

coupling strength between nodes, D. The figure shows that more nodes tend to be in the upper266

state in the equilibrium when D is larger. Additionally, there are ranges of D in which relatively267

large changes in D do not induce transition of any node from the lower to the upper state at268

equilibrium. In other ranges of D, small changes in D trigger transitions of some nodes between269

macro states. In this manner, the noisy double-well model on this network shows a multistage270

transition. We also find a multistage transition when we use Eq. (2) and vary u instead of D as271

the bifurcation parameter (Fig. S2).272

Early warning signals appear to be sensitive to changes in D. Figure 1A also shows a typical273

early warning signal, i.e., the lag-1 autocorrelation of xi(t), averaged over three different node sets.274

The first, “All” (black), corresponds to traditional early warning signals and refers to the set of275

all nodes. Within the stable ranges of D, the early warning signal value tends to increase as D276

increases. However, different nodes may be differently informative as to an impending transition.277

Both observed dynamics [12, 24] and knowledge of network structure [14] may improve the accuracy278

of early warning signals or their efficiency in terms of the amount of observed signals necessary for279

the calculation. In fact, it may be more efficient to monitor nodes that are most likely to transition280

to an alternate state with a perturbation of a control parameter.281

To show that monitoring sentinel node sets can be effective, Figure 1A also displays the early282

warning signal calculated for the set of nodes in the lower state at t = 50 TU (“Lower State”, red)283

and the set of five nodes most likely to transition from the lower to upper state (“High Input”,284

green). These latter nodes have many neighbors, are connected to nodes that have transitioned285

to the upper state, or both; they have the highest value of Ri ≡
∑N

j=1 aijxj by definition. Figure286

1A shows that the sensitivity of the average autocorrelation to the increase in D towards the end287

of a stable range varies depending on the node set and the value of D. For example, there is a288

major sudden increase in the number of nodes in the upper state at equilibrium at D = 0.95.289

This transition is associated with, looking from left to right, a marked increase in the average290
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FIG. 1. Multistage transitions when the nodes are initially in the lower state. We show the number of nodes

in the upper state at equilibrium (gray), and the average lag-1 autocorrelation of xi,t calculated for all nodes

(black), the nodes in the lower state (red), and the low-input nodes (green). The arrows mark transitions of

some nodes at the ends of stable ranges. (A) A network with 100 nodes and a power-law degree distribution;

(B) Dolphin social network.

autocorrelation of the nodes in each of the node sets at D just below 0.95 and a decrease in the291

average autocorrelation at D = 0.95. A similar tendency is present around the transitions of292

smaller batches of nodes at, for example, D = 0.175, 0.33, and 0.55. Changes in the average293

autocorrelation of the High Input nodes tend to be larger in absolute value than for the Lower294

State and All node sets, particularly at smaller values of D, but the overall range is similar in this295

network.296

Figure 1B shows that the double-well model on a dolphin social network [27] also exhibits a297

multistage transition. See Fig. S2 for similar results when u is the bifurcation parameter. Compared298

to the case of the power-law network, the dolphin network allows larger stable ranges of D, and299

the ranges of D in which small changes in D induce a transition of a notable fraction of nodes300

from the lower to the upper state are narrower. Similar to Fig. 1A, the autocorrelation tends to301

reliably increase in each stable range of D as we increase D towards the value at which some nodes302
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transit from the lower to the upper state. In addition, the average autocorrelation based on the303

Lower State and High Input node sets apparently better signals such transitions than that based304

on all nodes in the sense that the average autocorrelation increases more drastically as D increases305

towards the bifurcation.306

To quantify the performance of the average autocorrelation and other early warning signals, we307

computed the Kendall’s τ for each of the two networks used in Fig. 1 and for each of the five early308

warning signals calculated for each node set. We show the results in Fig. 2, which indicates that309

τ is high (i.e., > 0.65) across both networks and all five early warning signals and for All (circles),310

Lower State (triangles), and High Input (pluses) node sets. The τ values for each early warning311

signal in both networks are similar between Lower State and High Input, and they are higher than312

for All in a majority of cases. In addition to having a high average τ value, the High Input node313

set has τ > 0.7 for each major transition in both networks (see SI section S4 and Fig. S6 for314

details). If we calculate the average autocorrelation for the nodes that actually changed state at315

each major transition, we of course find that the τ value for this retroactively identified node set316

is high. However, the High Input node set has almost the same performance, in terms of τ at each317

transition, as the nodes that actually changed state (Fig. S6). Furthermore, by definition, early318

warning signals calculated with the Lower State and High Input node sets are more cost-efficient319

than those calculated with all nodes because the former use only a fraction of nodes. However, our320

typical simulations use samples of xi at all M time points for both assigning nodes to node sets321

and calculating early warning signals. We performed additional simulations, described in section322

S5, which only used the samples at the first ten time points to determine node set membership.323

We then monitored the node set members for the full M samples including the first ten samples324

for calculating early warning signals. Our results are robust to this decision, as we show in Fig. S7.325

Finally, the High Input node set performs well even when we consider all node transitions, not just326

those occurring after a stable range (Fig. S8).327

Although the Lower State node set is both more accurate and efficient than the set of all nodes,328

this result does not imply that any nodes in the lower state provide a good early warning signal.329

To show this, we investigated early warning signals constructed from half of the lower-state nodes330

whose Ri score is the lowest—those with relatively few neighbors or few neighbors in the upper331

state. This node set, termed “Lower Half” and shown by the diamonds in Fig. 2, typically yielded332

lower τ values than the All, Lower State, and High Input node sets. This result implies that one333

needs to assemble an early warning signal from carefully chosen lower-state nodes such as those334

with large Ri values. Finally, Upper State (shown by the crosses in Fig. 2) and Random (shown335
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FIG. 2. Kendall correlations (τ) between each of the five early warning signals and the coupling strength,

D, for different sets of nodes. See main text for details of node set membership. Dom. Eig: dominant

eigenvalue of the covariance matrix of all nodes in the node set, Max. SD, Avg. SD: maximum and average

standard deviation of xi, Max. AC and Avg AC: maximum and average autocorrelation of xi, Large Corr.:

the Large Correlation node set.

by the inverted triangles) node sets are either negatively correlated or not correlated with D,336

reinforcing our claim that the choice of nodes to be observed is essential. In sum, our simulation337

results suggest that, with a proper choice of observed node set—including the case of observing338

all nodes—standard multivariate and aggregated univariate indicators reliably increased in value339

prior to several transitions of nodes from the lower to upper state, performing well throughout a340

multistage transition.341

B. Robustness against Variation in Networks and Parameter Values342

To quantitatively examine the dependence of τ on network structure, we constructed a linear343

mixed effects model explaining τ with a fixed effect of node set and a random effect of network344

(Fig. 3; see section S9 for the statistical results). We found that the predicted τ is large (i.e.,345

approximately larger than 0.75) across most networks, early warning signals, and node sets; the346

combination of the All node set and the average autocorrelation early warning signal yielded a347

somewhat lower predicted τ value (i.e., 0.667). Variance-based methods (i.e., dominant eigenvalue348
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and the maximum and average node-level standard deviation) tended to produce higher predicted349

τ , ranging between 0.792 and 0.828. The autocorrelation methods produced lower predicted τ ,350

ranging between 0.667 and 0.766, although these values were still relatively high compared to351

other published results (e.g., [25, 26]). The early warning signals based on the Lower State nodes352

were either no different (dominant eigenvalue, p = 0.050; maximum standard deviation, p = 0.173;353

and maximum autocorrelation, p = 0.290; uncorrected for multiple comparison) or better (average354

standard deviation, p < 10−4; and average autocorrelation, p < 10−4) than those based on all355

nodes. The early warning signals based on the High Input nodes improved over those based on all356

nodes (p < 10−4 for all the early warning signals except the maximum standard deviation, for which357

p = 0.025) on average but were not as good as those based on the Lower State nodes in the case358

of the average standard deviation (High Input: τ = 0.873, Lower State: τ = 0.883). The τ values359

at most moderately depended on the network structure. Specifically, the distribution of random360

intercepts for network had the smallest standard deviation in the estimated linear mixed effects361

models for the maximum standard deviation early warning signal (0.022, 2.7% of the magnitude362

of the intercept) and the largest standard deviation for the average autocorrelation early warning363

signal (0.041, 6.2%). These results are consistent with and generalize in terms of the variety of364

networks those shown in Fig. 2.365

We then investigated the robustness of the results shown in Fig. 2 against changes in parameter366

values. The full results are shown in the SI (see section S10). Consistent with previous results367

(e.g., [32]), decreasing the number of samples for calculating the early warning signal, M , has the368

strongest negative effect on the performance of early warning signals. We have also found that369

the average standard autocorrelation calculated from all nodes tends to perform worse than that370

calculated from the other node sets when the double-well equilibrium points are relatively close371

together (i.e., (r1, r2, r3) = (1, 3, 5) as opposed to (1, 4, 7)) or r1, r2, and r3 are not evenly spaced372

(i.e., (r1, r2, r3) = (1, 2.5, 7) or (1, 5.5, 7) as opposed to (1, 4, 7)). As expected, allowing more than373

50 TU for the model to relax to an equilibrium does not markedly improve the performance of the374

early warning signals. Thus, with the notable exception of the effect of M , the performance of375

each early warning signal is in general fairly similar across the different parameter settings.376

C. When We Do Not Know the Network Structure377

When we do not know the network structure, we cannot calculate Ri, which uses the adjacency378

matrix, to identify High Input nodes. Therefore, we explored the use of a correlation-based index,379
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FIG. 3. Predicted Kendall correlations (τ) for five early warning signals and three node sets, estimated by

a linear mixed effects model with a fixed effect for node set and a random effect for network. The results

are based on the ten networks that have multiple stable ranges of D in our numerical simulations. Markers

(All: circles, Lower State: triangles, High Input: pluses) signify the predicted τ value. The horizontal lines

represent the 95% confidence intervals.

R′
i (see section IID for the definition), to choose alternative sentinel nodes, called the Large Cor-380

relation nodes, and computed the same set of early warning signals. We show the results for the381

Large Correlation node set by the box-times symbols in Fig. 2. The Large Correlation node set382

performed worse than the High Input node set. This result is expected because High Input uses383

the information about the network structure, whereas Large Correlation does not. However, the384

Large Correlation node set performed better than the Lower Half and Random node sets. In fact,385

τ with the Large Correlation node set is reasonably large in the dolphin network, roughly ranging386

between 0.6 and 0.8, whereas it is low in the power-law network (i.e., τ < 0.5). The discrepancy387

between the results for the two networks is associated with the different fidelity with which the388

Pearson correlation matrix, cor(xi, xj), reflects the actual adjacency matrix (see Fig. S9).389

We also considered the nodes with the largest standard deviation in xi, called Large SD, as390

another node set that does not need the information about the network structure. The rationale391

behind Large SD is that, when the ith node receives large input from other nodes, i.e., when Ri is392

large, the standard deviation of Ri should also be large because each xj in Eq. (1) is fluctuating due393

to dynamical noise. A large fluctuation in Ri is expected to make the standard deviation of xi large394
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through Eq. (1). We found that early warning signals based on Large SD nodes (shown by stars in395

Fig. 2) perform better than those based on Large Correlation nodes and that the Large SD node396

set is approximately as well as the High Input node set. Both the Large SD and, to a lesser extent,397

the Large Correlation node sets perform well even when we consider all node transitions, not just398

those occurring after a stable range (Fig S8). However, the Large SD node set is particularly399

sensitive to the number of samples used to determine node membership; its performance declines400

substantially on this test when we use only the first ten samples to determine node membership401

(Fig. S7).402

Overall, these results support the idea of network-aware choice of sentinel nodes for early warning403

multistage transitions even when we do not have connectivity data at hand.404

D. Transition from the Upper State to the Lower State405

Simulations of Eq. (2) on the power-law and dolphin networks with all nodes beginning in the406

upper state also show multistate transitions (see Fig S10). With Eq. (2), high-degree nodes receive407

a large positive contribution from the coupling term, which is the same as with Eq. (1). Therefore,408

lower-degree nodes or those adjacent to fewer upper-state nodes are most likely to transition from409

the upper to the lower state when D gradually decreases. For this reason, Lower State and High410

Input, which are two node sets that performed well when we attempted to anticipate transition411

from the lower to upper states, are not expected to be equally good sentinels when the tipping412

direction is reversed, that is, when the system begins with nodes at the upper state and transits413

to the lower state. Therefore, we additionally considered two node sets that are mirror images414

of Lower State and High Input. One is the set of nodes in the upper state, which we already415

considered in Fig. 2. The other is Low Input, which is the n nodes with the smallest Ri among the416

upper-state nodes; they are candidate of nodes that may transit from the upper to the lower state417

earlier than other nodes as D decreases.418

We show the Kendall’s τ for the power-law and dolphin networks in Fig. 4. In Fig. 4, a negative419

τ indicates that the early warning signal became large as D decreased towards a transition from the420

upper to the lower state. Therefore, large negative τ values are indicative of critical slowing down421

as we decrease D. We find that the early warning signals calculated from lower-state nodes (Lower422

State, shown by the triangles, and High Input, shown by pluses) are not useful for anticipating423

transitions. In contrast, those calculated from the All node set (shown by the circles) or those424

informed by upper-state node dynamics (Upper State, shown by crosses; Low Input, shown by425
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FIG. 4. Early warning signals in multistage transitions from the upper to lower equilibria. Kendall correla-

tions (τ) between each of the five early warning signals and the coupling strength, D, for different sets of

nodes when the dynamics begin with the nodes in the upper state and D gradually decreases are shown.

See the caption of Fig. 2 for the abbreviation of the early warning signals.

diamonds) are highly negatively correlated with D. This result indicates that the nodes in the426

upper state, not those in the lower state, provide useful early warning signals. Furthermore, the427

best sentinel nodes are opposite in terms of Ri from when we started with the lower equilibrium428

and observed transitions of the nodes from the lower to the upper state. A suitable choice of429

sentinel nodes depends on the tipping direction, even if the dynamical system model is similar or430

essentially the same.431

IV. DISCUSSION432

We showed that both multivariate (i.e., eigenvalue-based) and aggregated univariate (i.e.,433

variance- and autocorrelation-based) early warning signals can provide advance notice of state434

changes in multistage transitions in coupled double-well systems. Furthermore, we showed that435

constructing early warning signals only based on a subset of nodes, called sentinel nodes, is com-436

petitive with, and sometimes more effective than, using all nodes to calculate the early warning437

signals. Specifically, it is useful to monitor nodes that have not transitioned to the alternative438

state but are connected to other nodes that have already transitioned to such a state. We showed439
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that the early warning signals calculated based on the thus selected sentinel nodes were effective440

both when nodes were transitioning from a lower state to an upper state and vice versa. Up to441

our numerical efforts, the results were robust against parameter variation, network structure, and442

choice of early warning signals.443

We have shown that the choice of which nodes to monitor for early warning signals has a marked444

impact on the effectiveness of the early warning signal. In particular, when we observed transitions445

from the lower to upper states, a good set of nodes to monitor was those with a large degree or with446

many connections to other nodes that have already transitioned to the upper state, as quantified by447

Ri. At first glance, this result seems at odds with those by Aparicio et al. [14], who used network448

control theory to propose that lower-degree nodes tended to make better sentinels. In fact, in their449

model, the dynamics always starts with nodes in the upper state because it is a model of species450

abundance and its loss. We showed that lower-degree nodes are good sentinel nodes when the451

nodes are initially in their upper states and transit to their lower states as a bifurcation parameter452

gradually changes. Aparicio et al. provided two indices for the suitability of their sentinel nodes.453

Because one of the two indices only depends on the network structure, we calculated the other454

measure, called ρ, for our simulations given the network. A value of ρ closer to zero indicates that455

their sentinel nodes are more suitable. We found for our power-law network ρ = 0.042 when all456

nodes start in the lower state and ρ = 0.038 when all nodes start in the upper state; for the dolphin457

network, we obtained ρ = 0.030 and ρ = 0.007, respectively. These results are consistent with our458

numerical results, in which low-degree nodes provide informative early warning signals when we459

started with the upper but not the lower state. We emphasize that a good choice of sentinel nodes460

depends on the initial condition and the tipping direction even if we fix the dynamical system as461

well as the network structure.462

There are many cases in which a network model is thought to represent a complex system463

showing tipping phenomena but the edges of the network are not directly known [33]. Examples464

include the co-occurrence of symptoms of neurological conditions [34] and the rates of return465

on traded financial securities [35]. In such cases, we are typically given only multivariate time466

series data and want to derive informative early warning signals for tipping points that possibly467

constitute a multistage transition. A strategy in this situation is to infer the network structure from468

multivariate time series data [33, 36] and then calculate candidate sentinel nodes from the estimated469

network using, for example, the node’s ranking in terms of Ri. We avoided this approach because470

network inference from time series data is subject to error due to, e.g., thresholding decisions [33] or471

uncertainty in model estimation [36]. Instead, we proposed a method to identify sentinel nodes only472
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based on the Pearson correlation between the time series at pairs of nodes, which provides a proxy473

to edges (although one should not use the Pearson correlation as an estimate of the network edge in474

general [37]). Our sentinel nodes determined based on the Pearson correlation provided reasonably475

strong early warning signals, but their performance did not reach that for the case in which we476

know the network structure. However, choosing sentinel nodes based on the standard deviation477

of the node’s state performed in a similar manner to sentinel nodes chosen using information on478

network structure. Finding better sentinel nodes given multivariate time series data for which the479

explicit network structure is unknown warrants future work. We also point out that we currently480

do not have equivalent methods when the nodes are initially in their upper states and transit to481

their lower states as the value of a control parameter gradually varies, which is typical in ecological482

modeling.483

Although we have shown that High and Low Input node sets are efficient at anticipating major484

changes of state in the models we studied, there is much room for further improvements. First,485

multistage transitions imply that there are intermediate stages in which some nodes have tipped486

and the others have not and that we have seen a history of which nodes have tipped and when. If487

we use such information, we may be able to improve performances of early warning signals with488

respect to both the node set selection and the definition of the signal. Second, it may be helpful489

to use benchmark networks that show multistage transitions. If a network is composed of multiple490

disconnected components of tipping elements, the entire network should show multistage transitions491

because the different disconnected components show a bifurcation at different values of a control492

parameter in general. Therefore, a network with a strong planted community structure is expected493

to show multistage transitions for various dynamical systems. Degree-heterogeneous random graphs494

also show multistage transitions, which is underpinned by both numerical simulations and a mean495

field theory [20]. Studying multistage transitions and early warning signals on these networks may496

be useful.497

We used cubic polynomials to drive the node’s dynamics (and hence a potential in the form498

of quartic polynomials) and unipartite networks to test our ideas. These modeling assumptions499

are reasonable for investigating, for example, climate and vegetation cover transitions [38, 39].500

In contrast, various ecological systems are better modeled by bipartite networks, in which the501

two layers of nodes typically represent pollinators (or seed dispersers) and plants [12, 40]. In502

fact, ecological dynamics on bipartite networks also show multistage transitions [12]. Despite the503

seminal work based on network control theory [14], discussed above, further work is desirable for504

identifying informative sentinel nodes in ecological dynamics on bipartite networks. Other types of505
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dynamics such as reactive and synchronization dynamics on networks should also be investigated.506

Additionally, although saddle-node bifurcations have been frequently studied, natural systems may507

also show other types of bifurcations. Early warning signals for transcritical, Hopf, and other508

bifurcations are beyond the scope of this work, but anticipating such transitions is important in509

several fields, including the epidemiology [41] and ecology [12]. Finally, although we have shown510

that a careful choice of sentinel nodes can dramatically reduce the amount of data needed without511

sacrificing the quality of early warning signals, we are ignorant of the amount of the data needed512

from each node in this study. Shortening the length of temporal data required will be an important513

next step, given that sampling can be expensive and invasive in various applications such as ecology514

and medicine. Spatial correlations such as Moran’s I have been used to provide early warning515

signals on square lattices [42], and their extensions to the case of complex networks may help516

reduce the required amount of temporal sampling.517

In addition to sampling limitations, the specificity of early warning signals is a known challenge518

[43–46]. Suppose that an early warning signal tends to increase as a control parameter gradually519

increases towards a tipping point. It is difficult in general, however, to suggest a particular range of520

values of the early warning signal that indicates an impending transition. In fact, the Kendall’s τ ,521

which is deemed to be a standard performance measure, may be large for several reasons, including522

when the early warning signal monotonically increases as the control parameter increases regardless523

of tipping points [44]. This lack of specificity is also present in our results (see Fig. 1). Developing524

methods, such as maximum likelihood [44] or algorithmic classification [45] techniques, to improve525

the specificity of early warning signals is an important area of further research. With all these tasks526

saved for future work, by combining information about the network structure and dynamics, the527

present study takes a significant step towards accurately and cost-efficiently anticipating different528

types of tipping points in complex dynamical systems.529
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Annette BG Janssen, Peeter Nõges, Philip C Reid, Daniel E Schindler, Ellen Van Donk, et al. Evaluating652

early-warning indicators of critical transitions in natural aquatic ecosystems. Proceedings of the National653

Academy of Sciences of the United States of America, 113(50):E8089–E8095, 2016.654

[44] Carl Boettiger and Alan Hastings. Quantifying limits to detection of early warning for critical transi-655

tions. Journal of the Royal Society Interface, 9(75):2527–2539, 2012.656

[45] Thomas M Bury, RI Sujith, Induja Pavithran, Marten Scheffer, Timothy M Lenton, Madhur Anand,657

and Chris T Bauch. Deep learning for early warning signals of tipping points. Proceedings of the658

National Academy of Sciences of the United States of America, 118(39):e2106140118, 2021.659
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