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Abstract8

Population structure has been known to substantially affect evolutionary dynamics. Net-9

works that promote the spreading of fitter mutants are called amplifiers of selection, and those10

that suppress the spreading of fitter mutants are called suppressors of selection. Research in the11

past two decades has found various families of amplifiers while suppressors still remain some-12

what elusive. It has also been discovered that most networks are amplifiers of selection under13

the birth-death updating combined with uniform initialization, which is a standard condition14

assumed widely in the literature. In the present study, we extend the birth-death processes15

to temporal (i.e., time-varying) networks. For the sake of tractability, we restrict ourselves16

to switching temporal networks, in which the network structure deterministically alternates17

between two static networks at constant time intervals. We show that, in a majority of cases,18

switching networks are less amplifying than both of the two static networks constituting the19

switching networks. Furthermore, most small switching networks, i.e., networks on six nodes20

or less, are suppressors, which contrasts to the case of static networks.21

1 Introduction22

Evolutionary dynamics models enable us to study how populations change over time under natural23

selection and neutral random drift among other factors. Over the past two decades, the population24

structure, particularly those represented by networks (i.e., graphs), has been shown to significantly25

alter the spread of mutant types [1–5]. Mutants may have a fitness that is different from the fitness26

of a resident type, which makes the mutants either more or less likely to produce offsprings. The27

fitness of each type may vary depending on the type of the neighboring individuals’ types as in the28

case of evolutionary games on networks. On the other hand, the simplest assumption on the fitness29

is to assume that the fitness of each type is constant over time. This latter case, which we refer30

to as constant selection, has also been studied as biased voter models, modeling stochastic opinion31

formation in networks (and well-mixed populations) [6–9].32

Networks on which real-world dynamical processes approximated by evolutionary dynamics33

occur may be time-varying. Temporal (i.e., time-varying) networks and dynamical processes on34

them have been extensively studied [10–16]. Evolutionary game dynamics on time-varying networks35
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are no exception. It has been shown that temporal networks enhance the evolution of cooperation as36

compared to static networks [17–21]. It has also been known for a longer time that coevolutionary37

dynamics of a social dilemma game and network structure, in which the dynamics of the network38

structure depend on the state of the nodes (e.g., cooperator or defector), enhance overall cooperation39

if players tend to avoid creating or maintaining edges connecting to defectors [5, 22–25].40

In this study, we investigate constant-selection evolutionary dynamics on temporal networks41

to clarify how the time dependence of the network structure impacts evolutionary processes. In42

particular, a key question in studies of constant-selection evolutionary dynamics on networks is the43

fixation probability, defined as the probability that a single mutant type introduced to a node in44

the network eventually fixates, i.e., occupies all the nodes of the network. The fixation probability45

depends on the fitness of the mutant type relative to the fitness of the resident type, denoted by r.46

A network is called an amplifier of selection if it has a higher fixation probability than the complete47

graph, which corresponds to the Moran process, when r > 1 and a lower fixation probability when48

r < 1; conversely, a network is called a suppressor of selection if the fixation probability is smaller49

than for the Moran process on r > 1 and larger for r < 1 [1, 26]. In Fig. 1, we show hypothetical50

examples of the fixation probability as a function of r for three networks: the complete graph (i.e.,51

Moran process), an amplifier, and a suppressor. Under the so-called birth-death updating rule and52

uniform initialization, most static networks are amplifiers of selection [27,28]. In fact, there is only53

one suppressing static network with six nodes among the 112 connected six-node networks [29].54

Furthermore, various families of amplifiers of selection have been found [30–34], whereas sup-55

pressors of selection still remain elusive [29, 35]. On these grounds, we ask the following two main56

questions in the present study. First, as in the case of static networks, are many temporal networks57

comprised of sequences of unweighted networks amplifiers of selection under the same condition58

(i.e., birth-death updating rule and uniform initialization)? Second, if we combine amplifying static59

networks, G1 and G2, into a temporal network, can the obtained temporal network be a suppressor60

of selection or a less amplifying temporal network than both G1 and G2?61

2 Model62

Let G be a static weighted network with N nodes. We assume undirected networks for simplicity63

although extending the following evolutionary dynamics to the case of directed networks is straight-64

forward. We assume that each node takes either the resident or mutant type at any discrete time.65

The resident and mutant have fitness 1 and r, respectively. The fitness represents the propensity66

with which each type is selected for reproduction in each time step. The mutant type initially67

occupies just one node, which is selected uniformly at random among the N nodes. The other68

N − 1 nodes are occupied by the resident type. We then run the birth-death process, which is a69

generalization of the Moran process to networks [1, 3–5, 36, 37]. Specifically, in every discrete time70

step, we select a node v to reproduce with the probability proportional to its fitness value. Next,71

we select a neighbor of v, denoted by v′, with the probability proportional to the weight of the72

undirected edge (v, v′). Then, the type at v (i.e., either resident or mutant) replaces that at v′. We73

repeat this process until the entire population is of a single type, either resident or mutant, which74

we call the fixation.75

In this study, we extend this birth-death process to temporal networks in which two static76

networks G1 and G2, both having N nodes, alternate with constant intervals τ . We call this77

temporal network model the switching network and denote it by (G1, G2, τ). Switching networks78

have been used for studying various dynamics on temporal networks including synchronization79
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Figure 1: Concept of amplifier and suppressor of selection. The fitness of the resident and mutant
type is equal to 1 and r, respectively. A value of r > 1 indicates that a mutant node is more
likely to be selected for reproduction than a resident node. A value of r < 1 indicates vice versa.
The fixation probability of a single mutant type for an amplifier is smaller than that for the Moran
process when r < 1 and larger than that for the Moran process when r > 1. Conversely, the fixation
probability for a suppressor is larger than that for the Moran process when r < 1 and smaller than
that for the Moran process when r > 1. The Moran process, amplifier, and suppressor have the
same fixation probability at r = 1, which is equal to 1/N . In the figure, the fixation probabilities
for the Moran process are given by Eq. (24) with N = 5, and those for the amplifier and suppressor
are hypothetical ones for expository purposes.

[37–43], random walk [44–46], epidemic processing [47–50], network control [51], and reaction-80

diffusion systems [52]. Specifically, we first run the birth-death process on G1 for τ time steps.81

Then, we switch to G2 and run the same birth-death process on G2 for τ time steps. Then, we82

switch back to G1. We keep flipping between G1 and G2 every τ time steps until the fixation of83

either type occurs.84

3 Computation and theoretical properties of the fixation85

probability in switching networks86

In this section, we describe the methods for calculating the fixation probability of a single mutant,87

i.e., the probability that the mutant type of fitness r fixates when there is initially just one node of88

the mutant type that is selected uniformly at random. We extend the methods for static networks89

[53] to our model. We also state some mathematical properties of the fixation probability in90

switching networks.91
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3.1 Fixation probability in static networks92

We first explain the known procedure for calculating the fixation probability of the mutant type,93

which we simply refer to as the fixation probability in the following text, in any static weighted94

network using Markov chains [1, 53]. We describe the state of the evolutionary dynamics by an95

N -dimensional binary vector s = (s1, . . . , sN ), where si ∈ {0, 1}, ∀i ∈ {1, . . . , N}. For each i, let96

si = 0 or si = 1 indicate that node i is occupied by a resident or a mutant, respectively. Let S be97

the set of all states. Note that S has cardinality 2N , that is, there are 2N states and that there98

are
(
N
m

)
states with m mutants. We label the states by a bijective map, denoted by f , from S to99

{1, . . . , 2N}. The transition probability matrix of the Markov chain, denoted by T = (Tij), is a100

2N × 2N matrix. Its entry Tf(s),f(s′) represents the probability that the state changes from s to s′101

in one time step. It should be noted that Tf(s),f(s′) can be non-zero if and only if vectors s and s′102

differ in at most one entry. Therefore, each row of T has at most N + 1 non-zero entries.103

Let s be a state with m mutants, si = 1 for i ∈ {g(1), . . . , g(m)}, and si = 0 for i ∈ {g(m +104

1), . . . , g(N)}, where g is a permutation on {1, . . . , N}. Let s′ be the state with m+ 1 mutants in105

which s′i = 1 for i ∈ {g(1), . . . , g(m), g(m+ 1)} and s′i = 0 for i ∈ {g(m+ 2), . . . , g(N)}. Note that106

s and s′ differ only at the g(m+1)th node, where s has a resident and s′ has a mutant. We obtain107

Tf(s),f(s′) =
r

rm+N −m

m∑
m′=1

Ag(m′),g(m+1)

w(g(m′))
, (1)108

where A denotes the weighted adjacency matrix of the network, i.e., Aij is the weight of edge (i, j),109

and w(i) ≡
∑N

j=1 Aij represents the weighted degree of the ith node, also called the strength of110

the node. Next, consider a state s′′ with m− 1 mutants such that s′′i = 1 for i ∈ {g(1), . . . , g(m̃−111

1), g(m̃ + 1), . . . , g(m)} and s′′i = 0 for i ∈ {g(m̃), g(m + 1), g(m + 2), . . . , g(N)}, where m̃ ∈112

{1, . . . ,m}. We obtain113

Tf(s),f(s′′) =
1

rm+N −m

N∑
m′=m+1

Ag(m′),g(m̃)

w(g(m′))
. (2)114

The probability that the state does not change after one time step is given by115

Tf(s),f(s) = 1− r

rm+N −m

N∑
ℓ=m+1

m∑
m′=1

Ag(m′),g(ℓ)

w(g(m′))
− 1

rm+N −m

m∑
m̃=1

N∑
m′=m+1

Ag(m′),g(m̃)

w(g(m′))
. (3)116

Let xf(s) denote the probability that the mutant fixates when the evolutionary dynamics start from117

state s. Because118

xf(s) =
∑
s′∈S

Tf(s),f(s′)xf(s′), (4)119

we obtain Tx = x, where x = (x1, . . . , x2N )
⊤
, and ⊤ represents the transposition. Because120

xf((0,...,0)) = 0 and xf((1,...,1)) = 1, we need to solve the set of 2N − 2 linear equations to ob-121

tain the fixation probabilities starting from an arbitrary initial state.122

3.2 Fixation probability in switching networks123

We now consider the same birth-death process on switching network (G1, G2, τ). To calculate the124

fixation probability in (G1, G2, τ), we denote by T (1) and T (2) the transition probability matrices125
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for the birth-death process on static network G1 and G2, respectively. Let xi(t) be the fixation126

probability when the evolutionary dynamics start from the ith state (with i ∈ {1, . . . , 2N}) at time127

t. We obtain128

x(t) =

{
T (1)x(t+ 1) if 2nτ ≤ t < (2n+ 1) τ,

T (2)x(t+ 1) if (2n+ 1)τ ≤ t < (2n+ 2) τ,
(5)129

where x(t) = (x1(t), . . . , x2N (t))
⊤

and n ∈ {0, 1, . . .}. We recursively use Eq. (5) to obtain130

x (0) =T (1)x (1) = · · · =
(
T (1)

)τ

x (τ) =
(
T (1)

)τ (
T (2)

)
x (τ + 1) = · · ·131

=
(
T (1)

)τ (
T (2)

)τ

x (2τ) . (6)132

Because of the periodicity of the switching network, we obtain x (0) = x (2τ). Therefore, the133

fixation probability is given as the solution of134

x∗ =
(
T (1)

)τ (
T (2)

)τ

x∗. (7)135

Let S̃(1) be the set of the N states with just one mutant. Then, the fixation probability when there136

is initially a single mutant located on a node that is selected uniformly at random is given by137

ρ ≡ 1

N

∑
s∈S̃(1)

x∗
f(s). (8)138

Note that ρ is a function of r and depends on the network structure. Because
(
T (1)

)τ (
T (2)

)τ
is a139

stochastic matrix with two absorbing states, it has a unique solution [54,55].140

The birth-death process on switching networks has the following property.141

Theorem 1. (Neutral drift) If r = 1, then ρ = 1
N for arbitrary G1, G2, and τ ∈ N.142

Proof. We imitate the proof given in [56]. Assume a switching network (G1, G2, τ) on N nodes and143

that each node is initially occupied by a mutant of distinct type, i.e., node i is occupied by a mutant144

of type Ai. We also assume that each mutant has fitness 1. We denote the probability that mutant145

Ai fixates by qi. Note that
∑N

i=1 qi = 1. Now we reconsider our original evolutionary dynamics146

with r = 1, in which there are only equally strong two types, i.e., resident type and mutant type,147

with the initial condition in which the mutant type occupies the ith node and the resident type148

occupies all the other N − 1 nodes. Then, the fixation probability of the mutant is equal to qi149

because this model is equivalent to the previous model if we identify Ai with the mutant type and150

the other N − 1 types with the resident type. Therefore, the fixation probability for the original151

model with r = 1 and the uniform initialization is given by
∑N

i=1 qi/N = 1/N .152

Remark 1. We acknowledge that a recent study proved a more general version of this theorem and153

provided extensive discussion on neutral drift [21].154

Remark 2. The theorem holds true even if we switch among more than two static networks or if the155

switching intervals, τ , deterministically change from one switching interval to another. The proof156

remains unchanged.157

158
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3.3 Initialization at random time159

In this section, we discuss the case in which the initial mutant arises in the switching network160

(G1, G2, τ) at a time selected uniformly at random. Without loss of generality, we assume that the161

initial mutant arises at time t0, where t0 ∈ {0, 1, . . . , 2τ − 1}. If the initial mutant appears at time162

t ≥ 2N , then we can set t0 = t mod r. Similar to Eq. (5), we obtain163

x(t0) =

{
T (1)x(t0 + 1) if 0 ≤ t0 < τ,

T (2)x(t0 + 1) if τ ≤ t0 < 2τ.
(9)164

We use Eq. (9) to obtain165

x (t0) =T (1)x (t0 + 1) = · · ·166

=
(
T (1)

)τ−t0
x (τ)167

=
(
T (1)

)τ−t0 (
T (2)

)
x (τ + 1) = · · ·168

=
(
T (1)

)τ−t0 (
T (2)

)τ

x (2τ)169

=
(
T (1)

)τ−t0 (
T (2)

)τ (
T (1)

)t0
x (2τ + t0) (10)170

when 0 ≤ t0 < τ and171

x (t0) =T (2)x (t0 + 1) = · · ·172

=
(
T (2)

)2τ−t0 (
T (1)

)τ (
T (2)

)t0−τ

x (2τ + t0) (11)173

when τ ≤ t0 < 2τ . Because of the periodicity of the switching network, we obtain x (t0) =174

x (2τ + t0). Therefore, the fixation probability, which depends on t0 in the present case, is given as175

the solution of176

x∗(t0) =

{(
T (1)

)τ−t0 (
T (2)

)τ (
T (1)

)t0
x∗(t0) if 0 ≤ t0 < τ,(

T (2)
)2τ−t0 (

T (1)
)τ (

T (2)
)t0−τ

x∗(t0) if τ ≤ t0 < 2τ.
(12)177

Equation (12) yields178

y∗ ≡T (1)x∗ (t0)179

=
(
T (1)

)τ−t0+1 (
T (2)

)τ (
T (1)

)t0−1

T (1)x∗ (t0)180

=
(
T (1)

)τ−(t0−1) (
T (2)

)τ (
T (1)

)t0−1

y∗.181

(13)182

Therefore, we obtain y∗ = x∗ (t0 − 1) when 1 ≤ t0 < τ . Using this relationship recursively, we183

obtain184

x∗ (τ − 1− k) =
(
T (1)

)k

x∗ (τ − 1)185

(14)186
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for 0 ≤ k < τ − 1. Similarly, we obtain187

x∗ (2τ − 1− k) =
(
T (2)

)k

x∗ (2τ − 1)188

(15)189

for 0 ≤ k < τ − 1. By combining Eqs. (14) and (15), we obtain190

x∗ =
1

2τ

{[
τ−1∑
k=0

(
T (1)

)k
]
x∗ (τ − 1) +

[
τ−1∑
k=0

(
T (2)

)k
]
x∗ (2τ − 1)

}
, (16)191

where x∗ is the fixation probability vector when the initial mutant appears at a uniformly randomly192

drawn time.193

As in Eq. (8), let S̃(1) be the set of the N states with just one mutant. Then, the fixation194

probability for a single mutant when the initial mutant appears at a uniformly randomly drawn195

time is given by196

ρ =
1

N

∑
s∈S̃(1)

x∗
f(s). (17)197

198

199

3.4 Stochastic switching200

In this section, we formulate the fixation probability for stochastic switching networks. We201

adapt the methods proposed for epidemic spreading [57,58] and evolutionary games [21] to the case202

of constant-selection dynamics. We assume that the network switches with probability p at every203

time step. In other words, if the network is G1 at time t, then it switches to G2 at time t + 1204

with probability p and remains G1 with probability 1 − p. Likewise, if the network is G2 at time205

t, then it switches to G1 at time t + 1 with probability p and remains G2 with probability 1 − p.206

The duration of G1 and that of G2 before switching to the other network, τ , obeys the geometric207

distribution with Pr(τ) = (1− p)τ−1p, where Pr denotes the probability.208

We can write the state of the dynamics at any time t as (s, Gi), where s is one of the 2N209

states (i.e., s ∈ S) as in the deterministic switching case, and i ∈ {1, 2}. Let x(s,Gi) (t) denote the210

probability that the dynamics attains fixation when starting in state s at time t. We obtain211

x(s,Gi) (t) =
∑
s′∈S

T
(i)
s→s′

[
p · x(s′,Gi′ )

(t+ 1) + (1− p) · x(s′,Gi) (t+ 1)
]
, (18)212

where i′ = 2 if i = 1 and i′ = 1 if i = 2. Let T̃ be the
(
2N × 2

)
×

(
2N × 2

)
transition probability213

matrix defined by T̃((s,Gi),(s′,Gi′ ))
= pT

(i)
s→s′ and T̃((s,Gi),(s′,Gi)) = (1− p)T

(i)
s→s′ for i ∈ {1, 2}.214

Matrix T̃ is the following block matrix:215

T̃ =

[
pT (1) (1− p)T (1)

pT (2) (1− p)T (2)

]
. (19)216

Using T̃ , we rewrite Eq. (18) as217

x (t) = T̃x (t+ 1) , (20)218
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where219

x (t) ≡



x((0,...,0),G1) (t)
...

x((1,...,1),G1) (t)
x((0,...,0),G2) (t)

...
x((1,...,1),G2) (t)


. (21)220

In fact, x (t) does not depend on t. Therefore, to find the fixation probability, we need to solve221

x∗ = T̃x∗. (22)222

Similar to the derivation of Eq. (8), we find that the fixation probability when there is initially just223

one mutant on a node selected uniformly at random and the initial network is selected uniformly224

at random is given by225

ρ =
1

2N

2∑
i=1

∑
s∈S̃(1)

x(s,Gi). (23)226

3.5 Identifying amplifiers and suppressors of selection227

We operationally define amplifiers and suppressors of selection as follows; similar definitions were228

used in the literature [1, 59]. For a given switching or static network, we computed the fixation229

probability for several values of r. We say that the network is amplifier of selection if the fixation230

probability is larger than for that for the complete graph with the same number of nodes, or231

equivalently, the Moran process, at six values of r > 1, i.e., r ∈ {1.1, 1.2, 1.3, 1.4, 1.6, 1.8} and a232

smaller than that for the Moran process at three values of r < 1, i.e., r ∈ {0.7, 0.8, 0.9}. Note that233

the fixation probability for the Moran process with N individuals is given by (see e.g. [2])234

ρ =
1− 1

r

1− 1
rN

. (24)235

Similarly, we say that a network is suppressor of selection if the fixation probability is smaller than236

for the Moran process at the same six values of r larger than 1 and larger than for the Moran237

process at the three values of r smaller than 1. It is known that some static networks are neither238

amplifier nor suppressor of selection [35].239

We note that the Moran process is equivalent to the switching network in which both G1 and240

G2 are the complete graph. In this manner, one can regard that the comparison between a general241

switching network and the Moran process is that between two temporal networks instead of that242

between a temporal network and a static network.243

3.6 Isothermal theorem244

A network is called isothermal if its fixation probability is the same as that for the Moran process,245

i.e., if Eq. (24) holds true [1]. A static undirected network, which may be weighted, is isothermal246

if and only if all the nodes have the same (weighted) degree [1, 60, 61]. One can easily construct247

isothermal switching networks as follows.248

8



Theorem 2. If G1 and G2 are isothermal networks, then the switching network (G1, G2, τ) is an249

isothermal network.250

Proof. The proof is exactly the same as in the static network case as shown in [1, 2]. We denote251

by pm,m−1 the probability that the state of the network moves from a state with m mutants to a252

state with m − 1 mutants in one time step. Similarly, we denote by pm,m+1 the probability that253

the state moves from one with m mutants to one with m+1 mutants in one time step. We observe254

that pm,m−1/pm,m+1 = 1/r at every time step t because the static network at any t, which is either255

G1 or G2, is isothermal. Therefore, the fixation probability for (G1, G2, τ) is given by Eq. (24).256

Remark 3. The theorem including the present proof holds true both when we initially use G1 for257

time τ and when the mutant arises at a time selected uniformly at random.258

4 Fixation probability in various switching networks259

In this section, we analyze the fixation probability in three types of switching networks, i.e., networks260

with six nodes, larger switching networks in which G1 and G2 have symmetry (i.e., complete graph,261

star graph, and bipartite networks), and empirical networks.262

4.1 Six-node networks263

We first analyzed the fixation probability in switching networks that are composed of two undi-264

rected and unweighted connected networks with 6 nodes. There are 112 non-isomorphic undirected265

connected networks on 6 nodes. We switched between any ordered pair of different networks, giving266

us a total of 112 × 111 = 12432 switching networks. It should be noted that swapping the order267

of G1 and G2 generally yields different fixation probabilities. We randomly permuted the node268

labels in G2. We did not consider all possible labeling of nodes because there would be at most269

112 ·111 ·6! = 8951040 switching networks on 6 nodes if we allow shuffling of node labeling, although270

the symmetry reduces this number.271

In Fig. 2(a), we show two arbitrarily chosen static networks on six nodes, G1 and G2, which are272

amplifiers of selection as static networks. In Fig. 2(b), we plot the fixation probability as a function273

of the fitness of the mutant, r, for the switching network (G1, G2, τ = 1), the static networks G1274

and G2, the aggregate weighted static network generated from G1 and G2, and the Moran process275

(i.e., complete graph on six nodes). The aggregated weighted static network is the superposition of276

G1 and G2 such that the weight of the edge is either 1 or 2. It is equivalent to the average of G1 and277

G2 over time. All these static and switching networks yield ρ = 1/N = 1/6 at r = 1, as expected278

(see Theorem 1). In addition, there exist differences in ρ between the different networks and the279

Moran process although the difference is small. In fact, G1 and G2 are amplifiers of selection, with280

their fixation probability being larger than that for the Moran process when r > 1 and vice versa281

when r < 1, confirming the known result [27, 29]. Figure 2(b) also indicates that the aggregate282

network is an amplifier of selection. However, the switching network is suppressor of selection.283

We reconfirm these results in Fig. 2(c), in which we show the difference in the fixation probability284

between a given static or switching network and the Moran process. If the difference is negative for285

r < 1 and positive for r > 1, then the network is an amplifier of selection. If the difference is positive286

for r < 1 and negative for r > 1, then the network is a suppressor of selection. Figure 2(c) shows that287

G1 is a stronger amplifier than G2 and that G2 is a stronger amplifier than the aggregate network.288
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In contrast, the switching network (G1, G2, 1) is a suppressor of selection, while (G1, G2, 10) and289

(G1, G2, 50) are amplifiers of selection. The result for (G1, G2, 50) is close to that for static network290

G1, which is because the evolutionary dynamics on (G1, G2, τ) is equivalent to that on G1 in the291

limit τ → ∞. In practice, fixation for networks on six nodes occurs within 50 time steps in many292

cases, which renders (G1, G2, 50) close to G1. However, we have included the results for τ = 50293

because fixation does not occur within 50 time steps in many other cases. When the number of294

nodes, N , is large, (G1, G2, τ) is a genuine switching network because the fixation times are typically295

much longer than N [53]. We conclude that switching networks composed of two amplifiers can296

be a suppressor, in particular when τ is small. We emphasize that this counterintuitive result is297

not due to the property of the aggregate network because the aggregate network, which is the time298

average of G1 and G2, is also an amplifier.299

We show the results for the switching network with the order of G1 and G2 reversed and those for300

random initialization time in Appendix A. We find that both (G2, G1, 1) and the switching network301

with τ = 1 and random initialization time are suppressors of selection. The fixation probability302

for the switching network with τ = 1 and random initialization time is the average of that for303

(G1, G2, 1) and (G2, G1, 1). Therefore, the fixation probability for the former lies between that304

for (G1, G2, 1) and (G2, G1, 1) at each value of r. Switching networks (G2, G1, τ) and those with305

random initialization time are amplifiers of selection when τ is larger (i.e., τ ∈ {10, 50}); this result306

is qualitatively the same as that for (G1, G2, τ).307

To investigate the generality of this finding to other six-node networks, we calculated the fixation308

probability for the switching networks derived from all possible pairs of six-node networks. Table 1309

shows the number of switching networks on six nodes that are amplifiers of selection, that of310

suppressors of selection, and that of networks that are neither amplifier or suppressor, for four311

values of τ . The table indicates that a majority of the six-node switching networks investigated312

are suppressors of selection when τ = 1 and τ = 3. This result is in stark contrast to the fact that313

there is only 1 suppressor of selection among 112 six-node static unweighted networks under the314

birth-death process [27, 29]. Out of the 111 static networks that are not suppressor, 100 networks315

are amplifiers, five are isothermal, and the other six networks are neither amplifier, suppressor,316

nor isothermal [35, 62]. Most switching networks are amplifiers when τ = 50, which is presumably317

because most static networks are amplifiers and the birth-death process on (G1, G2, τ) converges318

to that on G1 in the limit τ → ∞, as we discussed above.319

We also examined the fixation probability for six-node stochastic switching networks introduced320

in section 3.4. As in the case with deterministic switching, we considered 112×111 ordered pairs of321

networks and permuted the node labels of G2 uniformly at random. We show in Table 2 the number322

of amplifier of selection, suppressor of selection, and neither type, assuming random initialization323

time, for p ∈ {0.3, 0.5, 0.8}. We find that a substantial fraction of these stochastic switching324

networks is suppressors of selection for each of the three p values (i.e., 36.5% for p = 0.3; 47.3%325

for p = 0.5; 24.3% for p = 0.8). These results suggest that the abundance of suppressing switching326

networks among six-node switching networks is not due to the periodic switching nature of our327

switching network model.328

4.2 Larger symmetric switching networks329

In this section, we assume symmetry in G1 and G2 to calculate the fixation probability for larger330

switching networks. Specifically, we set G1 to be the star graph and G2 to be either the complete331

graph or complete bipartite graph.332
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Figure 2: A suppressing switching network composed of two amplifying static networks on six
nodes. (a) A switching network composed of six nodes. Both G1 and G2 are amplifiers of selection.
(b) Fixation probability in the static and switching networks as a function of r. Moran refers to
the Moran process. Note that G1, G2, the aggregate network, and the Moran process represent
static networks. (c) Difference between the fixation probability for the given network and that for
the Moran process.
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Table 1: Number of amplifiers and suppressors of selection among 112 · 111 = 12432 periodically
switching networks on six nodes.

τ Amplifier Suppressor Neither
1 3636 8177 619
3 5190 6347 895
10 11102 629 701
50 12038 262 132

Table 2: Number of amplifiers and suppressors of selection among 112 · 111 = 12432 stochastically
switching networks on six nodes.

p Amplifier Suppressor Neither
0.3 7346 4536 550
0.5 5979 5880 573
0.8 8881 3023 528

4.2.1 Combination of the star graph and the complete graph333

Consider switching networks in which G1 is the star graph and G2 is the complete graph. For this334

switching network, we can reduce the dimension of the transition probability matrix from 2N × 2N335

to 2N × 2N by exploiting the symmetry in G1 and G2. Therefore, one can reduce the number of336

equations from 2N − 2 to 2N − 2. Specifically, one can uniquely describe the state of the network337

by (i, j), where i ∈ {0, 1} and j ∈ {0, . . . , N − 1}. We set i = 0 and i = 1 when the hub node of338

G1 is occupied by a resident or mutant, respectively. We set j ∈ {0, 1, . . . , N − 1} to the number of339

mutants in the other N − 1 nodes, which we refer to as the leaves. Tuple (i, j) is a valid expression340

of the state of the network because the N − 1 leaves are structurally equivalent to each other in341

both G1 and G2. Tuples (0, 0) and (1, N − 1) correspond to the fixation of the resident and mutant342

type, respectively.343

The transition probability from state (i, j) to state (i′, j′) in a single time step of the birth-344

death process is nonzero if and only if (i′, j′) = (i, j + 1) and i = 1, (i′, j′) = (i, j − 1) and i = 0,345

(i′, j′) = (1− i, j), or (i′, j′) = (i, j). Let T (1) denote the transition probability matrix for the star346

graph. We obtain347

T
(1)
(i,j)→(i′,j′) =



rj
C1

if i = 0 and i′ = 1,

N−1−j
C2

if i = 1 and i′ = 0,

1
C1

· j
N−1 if i′ = i = 0 and j′ = j − 1,

r
C2

· N−1−j
N−1 if i′ = i = 1 and j′ = j + 1,

1−
∑

(i′′,j′′)̸=
(i,j)

T
(1)
(i,j)→(i′′,j′′) if (i′, j′) = (i, j),

0 otherwise,

(25)348

where C1 = rj + N − j and C2 = r(j + 1) + N − (j + 1) [1]. The first line of Eq. (25) represents349

the probability that the type of the hub changes from the resident to mutant. For this event to350
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occur, one of the j leaf nodes occupied by the mutant must be chosen as parent, which occurs with351

probability rj/ (rj +N − j). Because every leaf node is only adjacent to the hub node, the hub352

node is always selected for death if a leaf node is selected as parent. Therefore, the probability of i353

changing from 0 to 1 is equal to rj/ (rj +N − j), which is shown in the first line of Eq. (25). As354

another example, consider state (1, j), in which the hub has a mutant, j leaf nodes have mutants,355

and the other N−1−j leaf nodes have residents. For the state to change from (1, j) to (1, j + 1), the356

hub node must be selected as parent with probability r/ [r (j + 1) +N − (j + 1)], and a leaf node357

of the resident type must be selected for death, which occurs with probability (N − 1− j)/(N − 1).358

The fourth line of Eq. (25) is equal to the product of these two probabilities. One can similarly359

derive the other lines of Eq. (25).360

The transition probability matrix for G2, which is the complete graph, is given by361

T
(2)
(i,j)→(i′,j′) =



rj
C1

· 1
N−1 if i = 0 and i′ = 1,

N−1−j
C2

· 1
N−1 if i = 1 and i′ = 0,

N−j
C1

· j
N−1 if i′ = i = 0 and j′ = j − 1,

rj
C1

· N−1−j
N−1 if i′ = i = 0 and j′ = j + 1,

N−1−j
C2

· j
N−1 if i′ = i = 1 and j′ = j − 1,

r(j+1)
C2

· N−1−j
N−1 if i′ = i = 1 and j′ = j + 1,

1−
∑

(i′′,j′′)̸=
(i,j)

T
(1)
(i,j)→(i′′,j′′) if (i′, j′) = (i, j),

0 otherwise.

(26)362

For example, for the transition from state (0, j) to (1, j) to occur, one of the j mutant leaf nodes363

must be first selected as parent, which occurs with probability rj/ (rj +N − j). Then, the hub364

node must be selected for death, which occurs with probability 1/ (N − 1). The first line of Eq. (26)365

is equal to the product of these two probabilities. As another example, for the state to change from366

(1, j) to (1, j + 1), one of the mutant nodes, which may be the hub or a leaf, must be first selected367

as parent, which occurs with probability r (j + 1) / [r (j + 1) +N − (j + 1)]. Then, a leaf node of368

the resident type must be selected for death, which occurs with probability (N − 1− j) / (N − 1).369

The right-hand side on the sixth line of Eq. (26) is equal to the product of these two probabilities.370

One can similarly derive the other lines of Eq. (26). It should be noted that single-step moves from371

(1, j) to (1, j − 1) and those from (0, j) to (0, j + 1) are possible in G2, whereas they do not occur372

in G1.373

In Fig. 3(a), we plot the fixation probability as a function of r for switching network (G1, G2, τ)374

in which G1 is the star graph and G2 is the complete graph on four nodes. In this figure, we375

compare (G1, G2, τ) with τ = 1, 10, and 50, the static star graph, the aggregate network, and the376

Moran process. Figure 3(a) indicates that (G1, G2, 10) and (G1, G2, 50) are amplifiers of selection377

and that (G1, G2, 1) is a suppressor. We plot the difference in the fixation probability between the378

switching networks and the Moran process in Fig. 3(b). When τ = 1, the difference is positive379

for r < 1 and negative for r > 1, which verifies that (G1, G2, 1) is a suppressor. This result is380

surprising because G1 is an amplifier of selection and G2 is equivalent to the Moran process and381

therefore not a suppressor of selection. In contrast, when τ = 10 and τ = 50, the difference from382

the Moran process is negative for r < 1 and positive for r > 1, which verifies that (G1, G2, 10) and383

(G1, G2, 50) are amplifiers of selection. The result for τ = 50 is close to that for the star graph.384
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This is presumably because the first τ = 50 steps with G1 are sufficient to induce fixation with a385

high probability given the small network size (i.e., N = 4).386

Figures 3(a) and 3(b) also indicate that the aggregate network is a weak suppressor of selection.387

However, the aggregate network is a considerably weaker suppressor of selection than (G1, G2, 1).388

Therefore, we conclude that the suppressing effect of the switching network mainly originates from389

the time-varying nature of the network rather than the structure of the weighted aggregate network.390

We show in Figs. 3(c) and 3(d) the fixation probability and its difference from the case of the391

Moran process, respectively, as a function of r for N = 50. We observe that the switching network392

is an amplifier of selection for all the values of τ that we considered, i.e., τ = 1, 10, and 50. In393

contrast, the aggregate network is a suppressor of selection albeit an extremely weak one. The394

amplifying effect of the switching network is stronger for a larger value of τ . Unlike in the case of395

four nodes (see Figs. 3(a) and 3(b)), the switching networks with 50 nodes are far less amplifying396

than the star graph even with τ = 50. This phenomenon is expected because fixation in a static397

network with 50 nodes usually needs much more than 50 steps.398

These results for the switching networks with N = 4 and N = 50 nodes remain similar for399

(G2, G1, τ), i.e., when we swap the order of G1 and G2 (see Figs. 6(a) and 6(b)).400

The present switching network is a suppressor of selection when N = 4 and τ = 1 and an401

amplifier of selection when N = 50 or τ ∈ {10, 50}. To examine the generality of these results with402

respect to the number of nodes, N , we show in Figs. 3(e) and 3(f) the fixation probability relative403

to that for the Moran process at τ = 1 and τ = 50, respectively, as a function of N . In both figures,404

we show the fixation probabilities at r = 0.9 and r = 1.1. Figure 3(e) indicates that the switching405

network is a suppressor of selection for N ≤ 4 and an amplifier of selection for N ≥ 5 when τ = 1.406

We have confirmed that this switching network with N = 3 nodes is a suppressor of selection by407

calculating the fixation probability across a range of r values in (see Fig. 7(a) in Appendix B).408

Figure 3(f) indicates that (G1, G2, 50) is an amplifier of selection for any N .409

4.2.2 Combination of the star graph and the complete bipartite graph410

In this section, we analyze the switching network in which G1 is the star graph and G2 is the411

complete bipartite graph KN1,N2
. By definition, KN1,N2

has two disjoint subsets of nodes V1 and412

V2, and V1 and V2 contain N1 and N2 nodes, respectively. Every node in V1 is adjacent to every413

node in V2 by an edge. Therefore, every node in V2 is adjacent to every node in V1. Without loss414

of generality, we assume that the hub node in G1 is one of the N1 nodes in V1.415

Because of the symmetry, we do not need to distinguish among the N1 − 1 nodes that are leaf416

nodes in G1 and belong to V1 in G2, or among the N2 nodes that belong to V2 in G2. Therefore,417

one can specify the state of this switching network by a tuple (i, j, k), where i ∈ {0, 1} represents418

whether the hub is occupied by a resident, corresponding to i = 0, or mutant, corresponding to419

i = 1; variable j ∈ {0, . . . , N1 − 1} represents the number of mutants among the N1 − 1 nodes420

that are leaves in G1 and belong to V1 in G2; variable k ∈ {0, . . . , N2} represents the number of421

mutants among the N2 nodes in V2. Tuples (0, 0, 0) and (1, N1 − 1, N2) correspond to the fixation422

of the resident and mutant type, respectively. Using this representation of the states, we reduce423

the 2N × 2N transition probability matrix to a 2N1 (N2 + 1)× 2N1 (N2 + 1) transition probability424

matrix. We show the transition probabalities T (1) and T (2) in Appendix C.425

426

(27)427

428
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Figure 3: Fixation probability for switching networks in which G1 is the star graph and G2 is the
complete graph. (a) Fixation probability for N = 4. (b) Difference in the fixation probability from
the case of the Moran process for N = 4. (c) Fixation probability for N = 50. (d) Difference
in fixation probability from the case of the Moran process for N = 50. In (a)–(d), we also show
the results for G1 (i.e., star graph) and the aggregate network, and the vertical lines at r = 1 are
a guide to the eyes. The insets magnify selected ranges of r < 1. (e) and (f): Difference in the
fixation probability for the switching network relative to the Moran process as a function of N at
r = 0.9 and 1.1. We set τ = 1 in (e) and τ = 50 in (f). In (e) and (f), the smallest value of N is
three.
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429

(28)430

431

In Figs. 4(a) and 4(b), we show the fixation probability and its difference from the case of the432

Moran process, respectively, for the switching network in which G1 is the star on N = 4 nodes and433

G2 is the complete bipartite graph KN1,N2
with N1 = N2 = 2. We set τ = 1, 10, and 50, and varied434

r. We also show the results for G1, G2, and the aggregate network in these figures for comparison.435

We find that (G1, G2, 1) is a suppressor of selection. In contrast, G1 is an amplifier of selection, and436

G2 is neutral (i.e., equivalent to the Moran process). In fact, no static unweighted network with437

five nodes or less is a suppressor of selection [29]. Because the aggregate network is an amplifier of438

selection, albeit a weak one, the suppressing effect of (G1, G2, 1) owes to the time-varying nature439

of the switching network. Similar to the case in which G2 is the complete graph shown in Fig. 3,440

(G1, G2, 10) and (G1, G2, 50) are amplifiers of selection, and the behavior of (G1, G2, 50) is close to441

that for G1, i.e., the star graph.442

In Figs. 4(c) and 4(d), we show the fixation probability and its difference from the case of the443

Moran process, respectively, for N1 = N2 = 20. We have set N = N1+N2 = 40 as opposed to N =444

50, which we used for the switching network analyzed in section 4.2.1, because of the computational445

cost. In contrast to the case of N1 = N2 = 2, the switching network with N1 = N2 = 20 is an446

amplifier of selection for the three values of τ . Furthermore, in contrast to when N1 = N2 = 2, the447

fixation probabilities for the switching networks are closer to those for the Moran process than to448

those for the star graph. To explore the case N1 ̸= N2, we show the results for (N1, N2) = (4, 2)449

and (N1, N2) = (30, 10) in Appendix D. The switching network with (N1, N2) = (4, 2) is neither450

amplifier or suppressor of selection. However, its fixation probabilities are close to those for the451

Moran process than to those for the star or bipartite complete graph. The switching network with452

(N1, N2) = (30, 10) is an amplifier of selection and behaves similarly to the switching network with453

(N1, N2) = (20, 20).454

These results for the switching networks with N = 4 and N = 40 nodes remain similar for455

switching networks (G2, G1, τ), as we show in Figs. 6(c) and 6(d).456

To examine the dependence of the fixation probability on the number of nodes, we show in457

Fig. 4(e) the difference between the fixation probability for the present switching network and that458

for the Moran process as we vary N . We set τ = 1 and N1 = N2 = N/2 ≥ 2, and compute the459

fixation probability at r = 0.9 and r = 1.1. Figure 4(e) indicates that the switching network is460

a suppressor of selection only when N1 = N2 = 2 (i.e., N = 4) and amplifier of selection for any461

larger N . When we allow N1 ̸= N2, we found just one additional suppressor of selection apart from462

(N1, N2) = (2, 2) under the constraints τ = 1 and 2 ≤ N1, N2 ≤ 10, which is (N1, N2) = (3, 2) (see463

Fig. 7(b) in Appendix B). With τ = 50, this switching network is amplifier of selection for any N464

(see Fig. 4(f)).465

4.3 Empirical temporal networks466

4.3.1 Construction of switching networks467

Finally, we numerically simulate the birth-death process on four switching networks informed by468

empirical temporal network data. We split each of the temporal network data set into two static469

networks (V1, E1) and (V2, E2), where (V1, E1) contains the first half of the time-stamped edges in470

terms of the time, (V2, E2) containing the second half of the time-stamped edges, V1 and V2 are471
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Figure 4: Fixation probability for switching networks in which G1 is the star graph and G2 is the
complete bipartite graph. (a) Fixation probability for N1 = N2 = 2. (b) Difference in the fixation
probability from the case of to the Moran process for N1 = N2 = 2. (c) Fixation probability for
N1 = N2 = 20. (d) Difference in the fixation probability from the case of the Moran process for
N1 = N2 = 20. (e) and (f): Difference in the fixation probability for the switching network relative
to the Moran process as a function of N at r = 0.9 and 1.1. We set τ = 1 in (e) and τ = 50 in (f).
In (e) and (f), the smallest value of N is four.
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sets of nodes, and E1 and E2 are sets of edges. For simplicity, we regard (V1, E1) and (V2, E2)472

as unweighted networks. We note that the purpose of studying these empirical networks is not to473

examine how fixation occurs in real contact sequences but to explore the generality of the results474

obtained in the previous sections in asymmetric and large switching networks.475

For two of the four empirical switching networks, both V1 and V2 contain all nodes. In this476

case, we switch between G1 ≡ (V1, E1) and G2 ≡ (V2, E2). For the other two empirical switching477

networks, either V1 or V2 misses some nodes in the original temporal network. In this case, we478

construct switching networks in the following two manners. With the first method, we only use479

the nodes in V1 ∩ V2 and the edges that exist between pairs of nodes in V1 ∩ V2 as G1 and G2.480

For each of the two empirical data sets for which V1 or V2 misses some nodes, we have confirmed481

that the first and second halves of the static networks induced on V1 ∩V2 created with this method482

are connected networks. With the second method, we use all nodes for both G1 and G2. In other483

words, we set G1 = (V1 ∪ V2, E1) and G2 = (V1 ∪ V2, E2). Therefore, if v ∈ V1 and v /∈ V2, for484

example, then v is an isolated node in G2. Except with special initial conditions, the fixation of485

either type never occurs in a static network with isolated nodes. However, the fixation does occur486

in the switching network if the aggregate network is connected, which we have confirmed to be the487

case for all our empirical data sets.488

4.3.2 Simulation procedure489

As the initial condition, we place a mutant on one node selected uniformly at random and all the490

other N − 1 nodes are of the resident type. Then, we run the birth-death process until all nodes491

were of the same type. We carried out 2 × 105 such runs in parallel on 56 cores, giving us a total492

of 112 × 105 runs, for each network and each value of r. We numerically calculated the fixation493

probability as the fraction of runs in which the mutant fixates. We simulated the switching networks494

with τ ∈ {1, 10, 50} and r ∈ {0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7} for all the networks except495

the hospital network of 75 nodes. For the hospital network, we omitted r = 1.6 and 1.7 due to high496

computational cost.497

4.3.3 Data498

The ants’ colony data, which we abbreviate as ant [63], has 39 nodes and 330 time-stamped edges.499

Each node represents an ant in a colony. An edge represents a trophallaxis event, which was500

recorded when the two ants were engaged in mandible-to-mandible contact for greater than one501

second. The first and second halves of the data have 34 nodes each.502

The second data is the contacts between members of five households in the Matsangoni sub-503

location within the Kilifi Health and Demographic Surveillance Site (KHDSS) in coastal Kenya [64].504

A household was defined as the group of individuals who ate from the same kitchen [64]. Each505

participant in the study had a wearable sensor that detected the presence of another sensor within506

approximately 1.5 meters. Each node is an individual in a household. An edge represents a time-507

stamped contact between two individuals. There were 47 nodes. There were 219 time-stamped508

edges representing contacts between pairs of individuals in different households and 32, 426 time-509

stamped edges between individuals of the same households. Both the first and second halves contain510

all the 47 nodes and are connected networks as static network owing to the relatively large number511

of time-stamped edges.512

The third data is a mammalian temporal network based on interaction between raccoons [65].513

A node represents a wild raccoon. The time-stamped events were recorded whenever two raccoons514
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came within approximately 1 to 1.5 meters for more than one second, using proximity logging515

collars that were placed on raccoons. The recording was made in Ned Brown Forest Preserve in516

suburban Cook County, Illinois, USA, from July 2004 to July 2005. There are 24 nodes and 2, 000517

time-stamped edges. Both the first and second halves of the data contain all the 24 nodes and are518

connected networks as static network.519

The fourth data is a contact network in a hospital [66]. The data were recorded in a geriatric520

unit of a university hospital in Lyon, France, from December 6, 2010 at 1 pm to December 10,521

2010 at 2 pm. The unit contained 19 out of the 1, 000 beds in the hospital. During the recording522

period, 50 professionals worked in the unit, and 31 patients were admitted. Fourty-six among the 50523

professionals and 29 among the 31 patients participated in the study. Therefore, the network had 75524

nodes in total. The professionals comprised of 27 nurses or nurses’ aides, 11 medical doctors, and 8525

administrative staff members. An edge represents a time-stamped contact between two individuals;526

there are 32, 424 time-stamped edges. The first and second halves of the data contain 50 nodes527

each.528

We obtained the ant, raccoon, and hospital data from https://networkrepository.com/ [67].529

We obtained the Kilifi data from http://www.sociopatterns.org/.530

4.3.4 Numerical results531

We investigate the fixation probability on the switching networks with τ = 1, 10, and 50, static532

networks G1 and G2, and the aggregate network. We remind that the aggregate network is a static533

weighted network, whereas G1 and G2 are unweighted networks. For the ant and hospital data, the534

switching networks constructed with the second method are different from those constructed with535

the first method. For these two data sets, fixation does not occur on G1 and G2 because they miss536

some nodes. Therefore, we do not analyze the fixation probability on G1 and G2 for these data537

sets.538

We show in Figs. 5(a) and 5(b) the fixation probability on the ant switching networks constructed539

with the first and second methods, respectively. Because we are interested in whether the switching540

networks are amplifiers or suppressors of selection, we only show the difference between the fixation541

probability on the given network and that for the Moran process in Fig. 5. Figure 5(a) indicates that542

the switching networks are amplifiers of selection but less amplifying than each of its constituent543

static networks, G1 and G2. Another observation is that the fixation probability on the static544

aggregate network is close to that on the switching networks. In this sense, the switching networks545

do not yield surprising results. The switching networks are more strongly amplifying when τ is546

larger. Moreover, the fixation probability on the switching network is closer to that on G1 when547

τ is larger. This result is expected because the evolutionary dynamics is the same between the548

switching networks and G1 in the first τ time steps. For the switching networks constructed with549

the second method, Fig. 5(b) shows that the switching networks are amplifiers and more amplifying550

than the static aggregate network. This result is qualitatively different from that for the switching551

networks constructed with the first method shown in Fig. 5(a).552

We show the results for the Kilifi networks in Fig. 5(c). Because the first and second methods553

yield the same G1 and G2 for the Kilifi data, we only present the results for the first method for this554

data set and also for the next one (i.e., racoon networks). The figure indicates that the switching555

networks are amplifiers but less amplifying than G1 and G2 and similarly amplifying compared to556

the aggregate network. These results are similar to those for the ant networks shown in Fig. 5(a).557

We show the results for the raccoon networks in Fig. 5(d). We find that the switching networks558
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are amplifiers but less amplifying than G1 and G2, similar to the case of the ant and Kilifi networks.559

We also find that the switching networks are more amplifying than the aggregate network.560

We show the results for the hospital switching networks in Figs. 5(e) and 5(f). The results561

for the switching networks constructed with the first method (see Fig. 5(e)) are similar to those562

for the raccoon networks shown in Fig. 5(d). The switching networks constructed with the second563

method (see Fig. 5(f)) are more amplifying than the aggregate network, similar to the case of the564

ant networks generated by the same method (see Fig. 5(b)).565

In sum, for these empirical temporal networks, we did not find a surprising result that the566

fixation probability for the switching networks is not an interpolation of those for the two static567

networks G1 andG2. However, the fixation probability for the empirical switching networks depends568

on the τ value and deviates from the prediction from the aggregate network in multiple ways.569

5 Discussion570

We have shown that, under the birth-death updating rule and uniform initialization, a majority of571

the switching networks on six nodes are suppressors of selection. This result contrasts with the572

case of static networks, for which there exists only one suppressor of selection on six nodes [29].573

We also found that switching networks alternating between the star graph and the complete graph574

and those alternating between the star graph and the complete bipartite graph are suppressors of575

selection when the number of nodes, N , is small. When N is larger, the same switching networks576

are amplifiers of selection but less amplifying than the star graph. Among the empirical networks577

that we analyzed, we did not find any suppressors. However, these switching networks were notably578

less amplifying than the constituent static networks G1 and G2. In fact, the less amplifying nature579

of switching networks is largely explained by the aggregate weighted network, or the static network580

obtained by the superposition of G1 and G2. Therefore, our results for the empirical switching581

networks are not surprising. The result that the switching network composed of two amplifying582

static networks can be suppressor is our main finding. Because all the instances that we have found583

are small networks, searching suppressing switching networks with larger N including systematically584

constructing such instances remains future work.585

Our choices of the larger networks are primarily driven by computational feasibility. The com-586

plete graph, star graph, and complete bipartite graph are convenient families of networks owing587

to their highly symmetric nature, which drastically reduces the number of the unknowns to be588

determined. Similarly, all the empirical networks that we used had at most 75 nodes due to compu-589

tational cost. Additionally, we avoided disconnected and sparse networks because fixation requires590

a network to be connected, and splitting a sparse network into two networks often resulted in591

disconnected components. Nevertheless, by studying small networks, larger symmetric networks,592

and the empirical examples, we tried to provide a broader picture of the evolutionary dynamics on593

switching networks. However, there remains ample room for future work. For instance, faster al-594

gorithms for approximate computation for larger switching networks, such as those assuming weak595

selection [28], remain to be explored. We could also attempt to reduce simulation times. In [68],596

instead of sampling every time step of the evolutionary dynamics, only ‘effective’ steps are sampled.597

Effective steps are defined as those in which the network state changes. The steps in which a resi-598

dent replaces a resident or a mutant replaces a mutant are deemed as ineffective steps, which one599

does not sample in their algorithm, hence accelerating the overall simulation time. Additionally,600

we studied switching networks with only two snapshots. It is straightforward to extend the present601

computational framework to the case of switching networks with more than two snapshots. Last,602
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Figure 5: Fixation probability on empirical switching networks. In each panel, we show the dif-
ference in the fixation probability from the case of the Moran process as a function of r. (a) Ant
networks constructed with the first method. (b) Ant networks constructed with the second method.
(c) Kilifi switching networks. (d) Raccoon networks. (e) Hospital networks constructed with the
first method. (f) Hospital networks constructed with the second method. We compared the fixation
probability on switching networks with τ ∈ {1, 10, 50}, G1, G2, and the aggregate network in each
panel.
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many temporal network data are provided as a list of time-stamped events between pairs of nodes.603

Evolutionary dynamics driven by such event-based temporal network data is also worth studying.604

We considered exogenous changes of the network over time in this study. Another opportunity of605

research is to assume that the change of the network structure over time is driven by the state of the606

system, which is referred to as adaptive networks [69,70]. The recent modeling framework inspired607

by biological examples in which the residents and mutants use different static networks defined608

on the same node set [71, 72] can be interpreted as an example of fixation dynamics on adaptive609

networks. Allowing nodes to stochastically sever and create edges they own as the node’s type flips610

from the resident to mutant and vice versa may lead to new phenomena in fixation dynamics. Such611

models have been extensively studied for evolutionary games on dynamic networks [17–20,22–24].612

We recently found that most hypergraphs are suppressors of selection under the combination613

of a birth-death process and uniform initialization, which are the conditions under which most of614

conventional networks are amplifiers of selection [56]. It has been longer known that most undirected615

networks are suppressors of selection under the death-birth process [27], and in directed networks616

under various imitation rules including birth-death processes [73]. The degree of amplification and617

suppression also depends on the initialization [26,33]. For example, non-uniform initializations can618

make the star, which is a strong amplifier of selection under the birth-death process and uniform619

initialization, a suppressor of selection [26]. Furthermore, it has been shown that the amplifiers620

of selection are transient and bounded [74]. Our results suggest that small temporal networks621

are another major case in which suppressors of selection are common. These results altogether622

encourage us to explore different variants of network models and evolutionary processes to clarify623

how common amplifiers of selection are. This task warrants future research.624
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Appendices629

A. Switching networks with the order of the static networks reversed and630

with random initialization time.631

In this section, we consider switching networks in which G2 rather than G1 appear first and those632

with uniformly random initialization time.633

In Fig. 6(a), we show the results for the six-node switching networks in which G1 and G2634

are given in Fig. 2(a). We find that (G2, G1, 1) and the switching network with τ = 1 and the635

random initialization time are both suppressors of selection. These variants of switching networks636

are amplifiers of selection when τ = 10 and τ = 50. These results are qualitatively the same as637

those for (G1, G2, τ).638

Next, we consider switching networks (G2, G1, τ) in which G1 is the star graph and G2 is the639

complete graph. We show the difference in the fixation probability from the case of the Moran640

process for the switching networks with N = 4 and N = 50 in Figs. 6(b) and 6(c), respectively. With641

N = 4, we find that (G2, G1, 10) and (G2, G1, 50) are amplifiers of selection and that (G2, G1, 1) is642
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a suppressor of selection (see Fig. 6(b). The aggregate network is a weak suppressor of selection.643

With N = 50, we find that (G2, G1, τ) for all the three τ values (i.e., τ ∈ {1, 10, 50}) are amplifiers644

of selection and that the aggregate network is a weak suppressor of selection (see Fig. 6(c)). These645

results are qualitatively the same as those for (G1, G2, τ) shown in Fig. 3. A main difference is646

that, when τ = 50, the fixation probability is reasonably close to that for the Moran process in647

the case of the present switching network because the initially used static network, i.e., G2, is a648

regular graph and therefore equivalent to the Moran process. In contrast, in Fig. 3, the switching649

network is much more amplifying because the initially used static network is the star graph, which650

is a strong amplifier of selection. As expected, the results in the case of the random initialization651

time are between those for (G1, G2, τ) and those for (G2, G1, τ).652

We show in Figs. 6(d) and 6(e) the results for (G2, G1, τ) with N = 4 and N = 40, respectively,653

in which G1 is the star graph and G2 is the complete bipartite graph. With N = 4, we find that654

(G1, G1, 1) is a suppressor of selection, (G2, G1, 10) and (G2, G1, 50) are amplifiers of selection ,655

and the aggregate network is a weak amplifier of selection (see Fig. 6(d)). With N = 40, we find656

that (G2, G1, τ) with τ ∈ {1, 10, 50} is an amplifier of selection and that the aggregate network657

is a weak amplifier of selection (see Fig. 6(e)). These results are similar to those for (G1, G2, τ)658

shown in Figs. 4(a) and 4(b). Similar to Figs. 6(b) and 6(c), with τ = 50, the present switching659

networks are close in behavior to the Moran process because the initially used static network, i.e.,660

G2, is a regular network. This result contrasts to the corresponding result for (G1, G2, 50) , which661

is a relatively strong amplifier of selection because the initially used static network is the star662

graph (see Figs. 4(a) and 4(b)). Again, the results in the case of the random initialization time are663

between those for (G1, G2, τ) and those for (G2, G1, τ).664

665

B. Further examples of small switching networks in which G1 is the star666

graph667

In Fig. 7(a), we show the difference in the fixation probability from the case of the Moran process668

for the switching networks in which G1 is the star graph and G2 is the complete graph on N = 3669

nodes. We also plot the results for G1, G2, and the aggregate network. It is known that G1 is an670

amplifier of selection [1] and that G2 is equivalent to the Moran process. In contrast, the switching671

network with τ = 1 and the aggregate network are suppressors of selection. The aggregate network672

is much less suppressing than the switching network. The switching networks with τ ∈ {10, 50} are673

amplifiers of selection.674

In Fig. 7(b), we show the results for the switching networks in which G1 is the star graph and675

G2 is the complete bipartite graph, K(3,2), on N = 5 nodes. Note that both G1 (i.e., star) [1]676

and G2 (i.e., complete bipartite graph K(3,2)) [75] are amplifiers of selection. In contrast, as in677

Fig. 7(a), the switching network with τ = 1 (but not with τ ∈ {10, 50}) and the aggregate network678

are suppressors of selection, and the aggregate network is only weakly suppressing.679
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Figure 6: Fixation probability for switching networks with the order of G1 and G2 being swapped
and with random initialization time. In each panel, we show the difference in the fixation probability
from the case of the Moran process. (a) G1 and G2 given in Fig. 2(a). In (b) and (c), G1 is the
star graph, and G2 is the complete graph. (b) N = 4. (c) N = 50. In (d) and (e), G1 is the
star graph, and G2 is the complete bipartite graph. (d) N1 = N2 = 2. (e) N1 = N2 = 20. In
(a), the results for all the three switching networks with τ = 1, shown by the blue lines, heavily
overlap with each other, and those for (G1, G2, 10), shown by the gray solid line, and those for the
random initialization with τ = 10, shown by the gray dashed line, heavily overlap on top of each
other. In (b)–(e), G2 is equivalent to the Moran process. Therefore, the results for G2, shown by
the magenta solid line, completely overlap with the horizontal axis. Similarly, in (b) and (d), the
results for (G2, G1, 50), shown by the green dotted lines, heavily overlap with the horizontal axis
and are almost hidden behind the magenta solid lines. In addition, in (b), (c), and (e), the results
for the aggregate network, shown by the red solid lines, almost completely overlap with or are very
close to the horizontal axis.
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Figure 7: Fixation probability as a function of r for two small switching networks. (a) Switching
network with N = 3 in which G1 is the star graph and G2 is the complete graph. (b) Switching
network with N = 5 in which G1 is the star graph and G2 is the complete bipartite graph K(3,2).
In (a), because G2 is the complete graph, its plot is exactly on the horizontal axis.

C. Transition probabilities for the combination of the star graph and the680

complete bipartite graph681

The transition probability matrix for the star graph is given by682

T
(1)
(i,j,k)→(i′,j′,k′) =



r(j+k)
C3

if i = 0 and i′ = 1,

N−1−j−k
C4

if i = 1 and i′ = 0,

1
C3

· j
N−1 if i = 0 and j′ = j − 1,

1
C3

· k
N−1 if i = 0 and k′ = k − 1,

r
C4

· N1−1−j
N−1 if i = 1 and j′ = j + 1,

r
C4

· N2−j
N−1 if i = 1 and k′ = k + 1,

1−
∑

(i′′,j′′,k′′) ̸=
(i,j,k)

T
(1)
(i,j,k)→(i′′,j′′,k′′) if (i′, j′, k′) = (i, j, k),

0 otherwise,

(29)683

where684

C3 = r(j + k) + (N − j − k) (30)685

and686

C4 = r (j + k + 1) + (N − j − k − 1) . (31)687

The first line of Eq. (29) represents the probability that the type of the hub changes from the688

resident to mutant. For this event to occur, one of the j + k leaf nodes occupied by the mutant689

must be chosen as parent, which occurs with probability r(j + k)/C3. Then, because any leaf690

node is only adjacent to the hub node, the hub node is always selected for death. Therefore, the691
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probability of i changing from 0 to 1 is equal to r(j + k)/C3. As another example, consider state692

(1, j, k). For the state to change from (1, j, k) to (1, j + 1, k), the hub node, which the mutant693

type currently inhabits, must be selected as parent with probability r/C4. Then, one of the j694

leaf nodes of the resident type in V1 must be selected for death, which occurs with probability695

[(N1 − 1)− j] / (N − 1). The fifth line of Eq. (29) is equal to the product of these two probabilities.696

One can similarly derive the other lines of Eq. (29).697

The transition probability matrix for the complete bipartite graph is given by698

T
(2)
(i,j,k)→(i′,j′,k′) =



rk
C3

· 1
N1

if i = 0 and i′ = 1,

N2−k
C4

· 1
N1

if i = 1 and i′ = 0,

N2−k
C3

· j
N1

if i = 0 and j′ = j − 1,

rk
C3

· N1−1−j
N1

if i = 0 and j′ = j + 1,

N1−j
C3

· k
N2

if i = 0 and k′ = k − 1,

rj
C3

· N2−k
N2

if i = 0 and k′ = k + 1,

N2−k
C4

· j
N1

if i = 1 and j′ = j − 1,

rk
C4

· N1−1−j
N1

if i = 1 and j′ = j + 1,

N1−1−j
C4

· k
N2

if i = 1 and k′ = k − 1,
r(j+1)

C4
· N2−k

N2
if i = 1 and k′ = k + 1,

1−
∑

(i′′,j′′,k′′) ̸=
(i,j,k)

T
(2)
(i,j,k)→(i′′,j′′,k′′) if (i′, j′, k′) = (i, j, k).

0 otherwise.

(32)699

The first line of Eq. (32) represents the probability that the type of the hub changes from the700

resident to mutant. For this event to occur, one of the k mutant nodes in V2 must be selected as701

parent with probability rk/C3. Then, the hub node must be selected for death with probability702

1/N1 because each node in V2 is only adjacent to all the N1 nodes in V1. Therefore, the probability703

of i changing from 0 to 1 is equal to (rk/C3) ·(1/N1). As another example, consider state (1, j, k), in704

which there are j+k+1 mutants in total. For the state to change from (1, j, k) to (1, j + 1, k), one705

of the k mutant nodes in V2 must first be selected as parent with probability rk/C4. Then, one of706

the j leaf nodes in V1 of the resident type must be selected for death, which occurs with probability707

(N1− 1− j)/N1. The eighth line of Eq. (32) is equal to the product of these two probabilities. One708

can similarly derive the other lines of Eq. (32).709

D. Examples in which G1 is the star graph, G2 is the complete bipartite710

graph, and N1 ̸= N2711

In this section we consider switching networks when G1 is the star graph and G2 is the complete712

bipartite graph. In Fig. 4, we have shown the results for N1 = N2. The complete bipartite graph713

K(N1,N2) is isothermal when N1 = N2, whereas it is an amplifier of selection when N1 ̸= N2 [75].714

Therefore, the fixation probability for (G1, G2, τ) may be qualitatively different between the cases715

N1 = N2 and N1 ̸= N2. In this section, we examine two switching networks when N1 ̸= N2.716
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In Fig. 8(a), we show the difference in the fixation probability from the case of the Moran process717

for the switching networks in which G1 is the star graph on N = 6 nodes and G2 is the complete718

bipartite graph K(4,2). We also plot the fixation probability for G1, G2, and the aggregate network.719

Although G1 and G2 are both amplifiers of selection [1, 75], (G1, G2, 1) is neither an amplifier720

nor a suppressor of selection. It transitions approximately at r = 2.062 as r increases, similar to721

static networks analyzed before [35]. Specifically, (G1, G2, 1) is amplifying when r is approximately722

smaller than 2.062 and suppressing when r is approximately greater than 2.062. The switching723

networks with τ ∈ {10, 50} as well as the aggregate network are amplifiers of selection.724

In Fig. 8(b), we show the results for (G1, G2, τ) in which G1 is the star graph on N = 40 nodes725

and G2 is the complete bipartite graph K(30,10). We note that both G1 and G2 are amplifiers of726

selection. In this case, all the switching networks and the static networks are amplifiers of selection,727

which is qualitatively the same result as that for N1 = N2 = 20 (see Figs. 4(c) and (d)).728
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Figure 8: Fixation probability as a function of r when G1 is the star graph, G2 is the complete
graph, and N1 ̸= N2. (a) (N1, N2) = (4, 2). (b) (N1, N2) =(30, 10).
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