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Abstract

Manga, Japanese comics, has been popular on a global scale. Social networks
among characters, which are often called character networks, may be a significant
contributor to their popularity. We collected data from 162 popular manga that
span over 70 years and analyzed their character networks. First, we found that
many of static and temporal properties of the character networks are similar
to those of real human social networks. Second, the character networks of most
manga are protagonist-centered such that a single protagonist interacts with the
majority of other characters. Third, the character networks for manga mainly
targeting boys have shifted to denser and less protagonist-centered networks and
with fewer characters over decades. Manga mainly targeting girls showed the
opposite trend except for the downward trend in the number of characters. The
present study, which relies on manga data sampled on an unprecedented scale,
paves the way for further population studies of character networks and other
aspects of comics.

Keywords: manga, character networks, temporal networks
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1 Introduction

The global comic market has been rapidly growing. The market size was valued at
USD 14.7 billion in 2021 and is expected to expand at a compound annual growth
rate of 4.8% from 2022 to 2029 [1]. A driving force underlying the rapid expansion of
the market is the widespread availability of e-books, which enables us to easily access
comics around the world. The COVID-19 pandemic also helped the growth of the comic
market because the lockdown in many countries increased the demand for comics.
Manga, Japanese comics, has been especially popular on a global scale. Many manga
have been translated into different languages. For example, over 510 million copies of
One Piece have circulated worldwide; One Piece is recorded in the Guinness Book of
Records as the best-selling comic in the history [2]. The history of the development
of manga culture in Japan, its social background, and its global prevalence have been
studied [3-5].

Our social networks are complex but characterized by common properties such
as heterogeneity and community structure [6, 7]. Because literally all storylines of
manga rely on interactions among characters, social networks among characters, which
are often called character networks, may provide a backbone of the story of manga
and influence its popularity. More generally, character networks have been analyzed
for quantitatively characterizing fiction works [8, 9]. A number of problems can be
addressed through analyses of character networks, such as summarization [10, 11],
classification [12, 13], and role detection [14, 15]. Character networks have been studied
for a variety of fiction such as novels [13, 16-20], plays [21-24], movies [15, 25-27], and
TV series [11, 25, 28-30]. However, character networks for comics have been rarely
explored except for Marvel comics [31, 32], a graphic novel [33], and a few manga
titles [34]. One possible reason for this is the difficulty of automating data collection
for comics [8].

In the present study, we analyze character networks of 162 popular Japanese manga
that span decades and test the following two hypotheses. First, we expect that pop-
ular manga tend to produce realistic social networks. Therefore, we hypothesize that
structural and temporal properties of the character networks of manga are similar to
those of human social networks. Second, our data enables us to investigate how trends
of manga have changed over approximately 70 years. Therefore, we hypothesize that
character networks of modern manga and old ones are systematically different. We
also examine differences in the network structure between manga mainly targeting
boys versus girls.

2 Results

2.1 Similarities to empirical social networks

Our original data are equivalent to a temporal bipartite graph in which the two types
of nodes are characters and pages, and the edges connect characters to the pages in
which they appear. The pages are ordered in time. We show the degree distribution
for the character nodes for One Piece and the Poisson distribution with the same
mean in Fig. 1A. The coefficient of variation (CV), which is defined as the standard
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deviation divided by the average, of the original degree distribution is 1.66. This value
is approximately 11.1 times larger than that of the Poisson distribution. Therefore,
similar to human social networks [6, 7], the characters in manga have heterogeneous
numbers of connections, and there are a small number of characters that appear dis-
proportionately frequently on various pages. We obtained similar results for the other
manga (see SI file).

In contrast, the CV of the degree distribution for the page nodes is 0.478 for One
Piece. The CV for the Poisson distribution with the same mean is 0.592. Therefore,
we argue that the characters do not appear uniformly randomly over the pages. As
we show in Fig. 1B, there are typically two or three characters on a page in One
Piece, and pages containing none or just one character are relatively rare. We obtained
similar results for the other manga (see SI file). These results suggest that the high
heterogeneity of the characters in terms of the frequency of appearance on pages and
the tendency of a page typically containing two or three characters are two common
properties of manga. Therefore, in the following analyses, we consider the bipartite
configuration model, in which the degrees of all character and page nodes are preserved
and the edges are otherwise randomly placed, as a null model. Then, we examine
properties of character networks that we can explain by the null model versus those
we cannot.

We show the weighted character network, which is the projection of the bipartite
graph onto the space of character nodes, for One Piece in Fig. 2 (see SI Fig. S1 for
the networks for all 162 manga). By definition, the edge weight is equal to the number
of pages in which the two characters simultaneously appear. The character networks
vary widely in size from manga to manga. Specifically, the number of nodes, IV, ranges
from 8 to 124, with mean +standard deviation = 32.6 +16.6. The number of edges, M,
ranges from 19 to 950, with mean + standard deviation = 156.1 +128.9. We define the
protagonist as the node with the largest node strength (i.e., weighted degree) in the
character network. The protagonist is the character that appears in the largest number
of pages for most manga (97.5%). In fact, the protagonist for One Piece, indicated by

A B
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Fig. 1 Degree distribution for the (A) character and (B) page nodes in the bipartite graph for One
Piece. We also show the Poisson distributions with the same mean.
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an arrow in Fig 2, is Monkey D. Luffy, who is generally known as the most central
character in One Piece.

We compared various properties of character networks between the empirical char-
acter networks and their randomization obtained by the one-mode projection of the
bipartite network generated by the bipartite configuration model. We first compare
three strength-related indices, i.e., the average strength, (s), the CV of the strength,
scv, and the strength of the protagonist, sp, of the character networks for all 162
manga between the original and randomized networks in Figs. 3A-C. These figures
suggest that randomized character networks well explain the strength-related indices
of the original character networks.

Figure 4A shows the strength distribution for One Piece. We find that the strength
obeys a heavy-tailed distribution over some scale. This result is consistent with Fig. 3B,
which shows that the CV of the strength for most manga is substantially larger than
1; the CV for One Piece is 1.48. Note that the exponential distribution, which lacks a
heavy tail, yields CV = 1. The heavy-tailed strength distributions shown in Fig. 4A
for One Piece and implied in Fig. 3B for a majority of manga are consistent with those
for empirical social networks [35, 36].

In contrast to the strength-related indices, the randomized character networks do
not explain the degree-related indices of the original character networks. The random-
ized networks tend to overestimate the average degree, (k), of the original character
networks (see Fig. 3D). This result suggests that characters tend to repeat inter-
acting with relatively few characters. The CV of the degree, kgy, for the original
networks tends to be larger than that for the randomized networks (see Fig. 3E). The
fraction of the other characters that the protagonist is adjacent to, kp/(N — 1), is
0.900 £ 0.103 (mean + standard deviation based on the 162 manga) and 0.971 £0.0413

Fig. 2 Character network for One Piece. The thickness of an edge is proportional to the weight of
the edge. The node with an arrow represents the protagonist, Monkey D. Luffy.
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Fig. 3 Comparison between the original and randomized character networks for 162 manga. For the
randomized networks, we show the mean and standard deviation on the basis of 1,000 realizations
by the circle and error bar, respectively. (A) (s): average node strength. (B) scy: CV of the node
strength. (C) sp: strength of the protagonist. (D) (k): average degree. (E) kcv: CV of the degree. (F)
kp/(N —1): normalized degree of the protagonist. (G) a: coefficient in the relationships between the
degree and strength, i.e., s; o< k§. (H) r: degree assortativity coefficient. (I) C: clustering coefficient.

(J) 7834€: CV of IETSs on nodes. (K) Tgi,ge: CV of IETs on edges. (L) N1/N: final epidemic size (i.e.,
fraction of infected nodes at the last time step).

for the original and randomized character networks, respectively (see Fig. 3F). There-
fore, the protagonist is adjacent to most of the other characters in both original and
randomized networks. Based on these results, we conclude that the character net-
works are strongly protagonist-centered, in which the protagonist interacts with most
of the other characters, while other characters tend to interact only with fewer charac-
ters than expected for the randomized networks, but including the protagonist. This
interpretation is consistent with the aforementioned observation that (k) and kcy are
smaller and larger for the original than randomized networks, respectively.

We show the degree distribution for One Piece in Fig. 4B. The CV of the degree,
kcv, for One Piece is 0.77. Figure 3E shows that the CV of the degree for most of the
manga is smaller than 1. In fact, this result is consistent with that for empirical social
networks with similar number of nodes [37, 38|, while large empirical social networks
tend to have heavy-tailed degree distributions implying a large CV [39, 40].
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We found that the strength is super-linearly scaled with the degree, i.e., s; o< k'
with a > 1, in the character networks, where o indicates “proportional to”. Note that
the absence of correlation between the strength and degree would yield o = 1 [35].
Specifically, in Fig. 4C, we show the relationship between k; and s; for One Piece.
We obtained o = 1.94 with the coefficient of determination R? = 0.847. We obtained
similar results for the other manga (see Fig. 3G). These results are consistent with
power-law relationships between the strength and degree with « > 1, which has been
observed in empirical social networks [35, 41]. Note that the randomized character
networks also yield @ > 1 and that « for the original and randomized networks are
highly correlated with a small number of exceptions.

The character networks are disassortative. The degree assortativity coefficient,
denoted by r, of the character network is —0.345 on average. In fact, the values of r
for all but two manga are negative (see Fig. 3H). This result is in stark contrast with
various observations that social networks are more often than not assortative with pos-
itive r [42, 43]. We argue that the character networks are disassortative because they
are strongly protagonist-centered. In fact, star graphs are disassortative with large
negative values of r [44, 45]. The degree disassortativity is also observed for empirical
egocentric social networks [46, 47]. Figure 3H indicates that r is also negative for the
randomized character networks although the correlation between r for the original and
randomized networks is low. Therefore, we conclude that the degree disassortativity
in our character networks is a consequence of the protagonist-centered nature of the
original character-page bipartite network.

The character networks are highly clustered. The clustering coefficient, denoted by
C, over the different manga is 0.790 with the minimum value of 0.598 (see Fig. 3I).
This result is consistent with the observations that empirical social networks have
high clustering coefficients [48, 49]. In fact, randomized character networks also have
similarly large C' although the spread is large between the empirical and randomized
networks. Therefore, we conclude that a high clustering coefficient is a consequence of
one-mode projection of the bipartite graph, which is known [50, 51].

We found that heavy-tailed distributions of interevent times (IETS) are simulta-
neously present for nodes and edges in the character networks. Copresence of two
characters on a page defines a time-stamped event on the edge, where we identify the

P(si)
P(k;)

107t 107t

10! 102 10 10! 1.0 15 20 25 3.0 35
Strength s; Degree k; log k;

Fig. 4 Strength and degree distributions for the characters in One Piece. (A) Strength distribution.
(B) Degree distribution. (C) The relationship between the degree and strength. Each circle represents
a character. The coefficient « is determined by the linear regression logs; = «alogk; + b, where b

is an intercept; the solid line shows the linear regression. Variable R? represents the coefficient of
determination.
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page number as discrete time. A time-stamped event for a given node is the presence
of the character on a page. We show the survival functions of the IETs (i.e., probabil-
ity that the IET, denoted by 7, is larger than the specified value) for individual nodes
and edges in One Piece in Figs. 5A and 5B, respectively. The relatively slow decay in
Fig. 5 suggests heavy-tailed distributions for both nodes and edges across some scales
of 7. The CV values for IETs on nodes and edges for One Piece are 1.72 4+ 0.697 and
1.92+0.535, respectively. We obtained similar results for the other manga, as we show
in Figs. 3J and 3K. These figures also indicate that the randomization of the bipartite
network does not preserve this feature, yielding CV values close to 1 regardless of the
CV value for the original temporal character networks. It should be noted that a Pois-
son process produces an exponential IET distribution, which yields CV = 1. These
results support that IETs for nodes and edges in the original character networks are
non-Poissonian and heterogeneously distributed, which is consistent with properties
of empirical social networks [52].

Related to heavy-tailed IET distributions, we found that epidemic spreading occurs
more slowly in the temporal character networks than in randomized counterparts.
We ran the susceptible-infectious (SI) model. By assumption, an infectious character
independently infects each susceptible character coappearing on the same page with
probability 8 = 0.2. We ran the SI dynamics N times, with the ith character being
the only initially infectious one in the ith run. For One Piece, we show in Fig. 6
the time course of the fraction of the infectious characters averaged over the N runs.
We also show the corresponding averaged time courses for each of the 1,000 random-
ized temporal networks by the blue lines. Figure 6 indicates that the infection occurs
more slowly in the original temporal network than in the randomized temporal net-
works. We obtained similar results for the other manga (see Fig. 3L). These results
are qualitatively the same as those observed for empirical social temporal networks
[53, 54].
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2.2 Trends of network structure over decades

The 162 manga span nearly 70 years, from Astro Boy with the first volume being
published in 1952 to Jujutsu Kaisen in 2018 (see SI file for detailed information on
the 162 manga). The trend of the structure of manga character networks may have
changed over the ~ 70 years, reflecting the transitions of Japanese society including
in economics and fashion. In this section, we explore possible existence of such trends.

We first calculated the Pearson correlation coefficient between the year of publi-
cation of the first volume, denoted by y, and various indices of network structure on
the basis of all 162 manga. We show the correlation coefficients and their 95% con-
fidence intervals (CIs) in Fig. 7A. We find that the number of characters, N, tends
to decrease over decades (i.e., negative correlation between N and y). The CV of the
node degree, kcv, and that of the node strength, scv, are negatively correlated with y
with moderate effect sizes. In general, these and other network indices may be affected
by the number of nodes, N [55]. Therefore, we also examined the partial correlation
coefficient between y and each index by partialing out the effect of N. The results of
the partial correlation coefficient for kcy and sgyv, shown by the lines with squares in
Fig. TA, are consistent with those of the Pearson correlation coefficient, although the
partial correlation is closer to 0 than the Pearson correlation. We also find that the
average degree, (k), is positively correlated with y in terms of the partial correlation.
These results suggest that more recent manga tend to be denser and more homoge-
neous in the node’s connectivity, such that various characters, not just the protagonist,
tend to have more connections in more recent manga.

How the trend of the character network changes over time may depend on genres
of manga. A most major categorization of Japanese manga is the one based on the
gender of their main readership [57, 58]. Therefore, we classify the 162 manga into 124
boys’ and 38 girls’ manga based on the genre section on their Wikipedia pages (see
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SI file for the genre of each manga), while their classification is necessarily subjective.
We show the Pearson and partial correlation coefficients between each index and y,
separately for the boys’ and girls’ manga in Figs. 7B and 7C, respectively.

We find that there tend to be less characters for more recent manga for both boys’
and girls’ manga. The boy’s and girls’ manga are different in the following aspects
in terms of the partial correlation coefficients, i.e., when we control for the number
of characters. The trends that we identified for all the 162 manga are even more
pronounced in the boys’ manga. The effect sizes of the partial correlation for (k), kcv,
and sgy for the boys’ manga are larger than those for the 162 manga. In addition, the
degree assortativity coeflicient, r, is positively correlated with y. Because r is negative
for most manga, this result implies that r tends to be closer to 0 for more recent boys’
manga. On the other hand, the two protagonist-related indices, i.e., kp /(N —1) and sp,
are not correlated with y. These results suggest that the character networks in more
recent boys’ manga tend to be less protagonist-centered, in which non-protagonist
characters have more connections among them.

The trend for the girls’ manga is opposite to that for the boys’ manga except
that the downward trend in the number of characters is common. The two indices for
which the partial correlation was negative for the boys’ manga, i.e., kcy and scv, are
positively correlated with y for the girls’ manga in terms of the partial correlation.
On the other hand, the two indices for which the partial correlation was positive for
the boys’ manga, i.e., (k) and r, are negatively correlated with y for the girls’ manga.
Furthermore, the normalized degree of the protagonist, kp /(N — 1), for which we did
not confirm a correlation for the boys’ manga, is positively correlated with y. Overall,
these results indicate that the character networks in the girls’ manga have shifted
toward more protagonist-centered networks.
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Fig. 7 Correlation between the year of publication of the first volume, y, and indices of network
structure. For the partial correlation coefficient, we partial out the influence of the number of nodes.
According to a standard, the effect size is said to be large, moderate, or small when the correlation
coefficient is > 0.5, > 0.3, or > 0.1, respectively [56]. The horizontal lines indicate 95% confidence
intervals. N: number of nodes, (k): average degree, kcv: CV of the degree, kp /(N — 1): normalized
degree of the protagonist, (s): average strength, scv: CV of strength, sp: strength of the protagonist,
r: degree assortativity coefficient, C: clustering coefficient, and O: temporal correlation coefficient.
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3 Discussion

We found that the empirical character networks have various features consistent with
empirical social networks. The bipartite configuration model, which is a standard
random bipartite graph, has been shown to be reasonably accurate at explaining some
features of the empirical character networks including statistics of the node’s strength,
« values, disassortativity, and the high clustering coefficients. In contrast, there are
other features of the empirical character networks that deviate from the expectation
from the bipartite configuration graph. Such features include statistics of the degree,
the IET distributions, and speeds of epidemic spreading. We suggested that part
of these differences originates from the protagonist-centered nature of the character
networks. In other words, the protagonist interacts with most characters, while non-
protagonist characters tend to interact only with the protagonist and a smaller number
of other characters than expected by the configuration model. There are positive
support of protagonist-centered social networks in the real world when the network is
egocentric [46, 47].

Similarities between character networks and human social networks have been
investigated for some fictions such as Marvel comics [31, 32|, a graphic novel [33],
Shakespeare’s plays [22], and myths [59]. Our results of the high clustering coefficient
and the heavy-tailed distribution of the strength in the character networks are consis-
tent with these previous studies. However, we ascribe the high clustering coefficient to
the effect of one-mode projection rather than to similarity to empirical social networks
because the randomized character networks also have high clustering. Our results of
the disassortativity is also consistent with the results for Marvel comics [32], a graphic
novel [33], and myths [59]. Therefore, we infer that the heavy-tailed distribution of the
strength and disassortativity in the character networks are common properties for var-
ious types of fictions. Although the aforementioned previous studies investigated only
the static properties of the character networks, we further revealed temporal proper-
ties of the character networks, such as the long-tailed IET distributions, which are in
fact consistent with empirical social networks [52-54].

We also found that the trend of the manga character networks has shifted over
decades. Specifically, more modern manga tend to have fewer characters, denser and be
less protagonist-centered for the boys’ manga, which may reflect a modern change in
the society that places more emphasis on diversity and teamwork [60, 61]. In contrast,
the character networks in the girls’ manga have shifted toward more protagonist-
centered, although the downward trend in the number of characters is common. In
general, girls’ manga in Japan tend to revolve around issues of love and friendship
with a focus on inner feelings of the protagonist [58, 62]. Our results suggest that more
recent girls’ manga may describe the relationships between the protagonist and a few
other characters in depth.

There are many future directions of investigation. First, we focused on 162 manga
with high circulations. By analyzing manga with low circulation as well, we may be
able to discover static and temporal properties of character networks that readers
favor, contributing to understanding why some manga are more popular than others.
Second, we analyzed only the first three volumes of each manga. Examining all vol-
umes would allow us to understand the narrative structure, which have been analyzed

10
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for novels [20], movies [15], and TV series [25]. For this purpose, a wide variety of time
series and temporal network analysis tools, such as change-point detection, temporal
centrality, and temporal community structure, may be useful [63-65]. Third, charac-
ter networks are probably signed in most cases, connecting characters by positive or
negative ties. It is worth to deploy sentiment analysis based on text [19] and facial
expressions [66] to construct and analyze signed networks of characters in manga.
Temporal network analysis of signed character networks may also reveal complicated
dynamics of relationships among characters (e.g., an enemy later becomes an ally).
Fourth, manga in different genres such as action, adventure, sports, and comedy, may
have different structures of character networks. In addition, we have only analyzed the
manga that have been published in the paperback pocket edition, which is the most
common for the boys’ and girls’ manga in Japan. Analyzing manga of other sizes may
help us understand variation of character networks over a wider range of genres. Fifth,
studying character networks in comics in countries other than Japan warrants future
work. For example, character networks may reflect societal differences from country
to country.

In conclusion, to the best of our knowledge, the present study of character networks
for 162 manga titles is unprecedented in scale in quantitative studies of comics and has
enabled us to discover their general features. We also introduced new tools and views
to the analysis of fiction character network data, such as the bipartite configuration
model, the concept of protagonist-centeredness, and temporal network analysis. We
hope that this study triggers further quantitative studies of character networks in
manga and other types of fictions.

4 Methods

4.1 Data collection

We focus on manga of which more than 10 million copies have been published in Japan
as of January 2021 [67]. Since the physical size of the manga may affect the number of
panels per page and we adopted the page as the unit of analysis, we excluded the manga
that had not been published in the paperback pocket edition (112 mm x 174 mm). Note
that the paperback pocket edition is the most common for the boys’ and girls’ manga
in Japan. As a result, we included 162 manga (see SI file for the list of the 162 manga).

We prepared a data table of time-stamped copresence of characters for each manga
as follows. For each manga, we manually examined volumes one through three. All
the selected 162 manga had at least three volumes. Then, we first extracted all the
characters whose name, blood relation to a named character, or job title that uniquely
identifies the character, is known. To ensure the reproducibility of this work, we
avoided to use any other information sources (e.g., other volumes of the same manga,
the Internet, or anime) to attempt to identify more characters. In practice, such addi-
tional information sources would not contribute to identifying many more characters.
Second, we recorded the copresence of characters on each page as interaction between
the characters. Note that the copresence is the most common definition of interac-
tion in constructing character networks in fictional works [8]. We used copresence on
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a page rather than in a single panel within a page because it is common that charac-
ters appearing in different panels on the same page have some interactions (e.g., two
characters talk to each other by using alternately occupying successive panels).

4.2 Bipartite configuration model

The original data from which we construct the temporal and static character networks
are equivalent to a temporal bipartite graph in which the two types of nodes are
characters and pages, and an edge connects a character and a page in which the
character appears. To generate a randomized bipartite network, we choose a pair of
edges in this bipartite graph uniformly at random, denoted by (¢, p) and (¢/, p), where
c and ¢ are characters and p and p’ are pages. If ¢ and ¢’ are the same or p and p’ are
the same, we discard the pairs and redraw them. Then, we rewire the two original edges
to (¢,p') and (¢/,p). We repeat this procedure 1,000 times excluding the discarded
edge pairs to generate a randomized temporal bipartite network. We construct a static
randomized character network from the generated randomized bipartite graph by one-
mode projection. In other words, we connect two characters by an edge whose weight
is the number of pages on which the two characters are copresent.

4.3 SI model

We use the SI model [68] to numerically investigate contagion. We assume that just
one character is initially infectious and that the other NV —1 characters are initially sus-
ceptible. If a susceptible character co-appears with an infectious character on a page,
the susceptible character becomes infectious with probability (. Different infectious
characters appearing on the same page independently attempt to infect each suscep-
tible character on the page. Once a character contracts infection, it stays infectious
forever. We run the SI dynamics with each of the N characters as the sole character
that is initially infectious.

4.4 Temporal correlation coefficient

We quantify the persistence of edges over time by the temporal correlation coefficient
[69, 70]. First, we calculate the topological overlap for node ¢ at time ¢ by

N t At+1
O: — Zj:l Aiinj
it — )
N t N t+1
\/Zj:l Aij Zj:l Az‘j

(1)

where Aﬁj is the adjacency matrix of an unweighted network at time step ¢. In other
words, Aﬁj = 1 if characters ¢ and j are copresent on page t, and Aﬁj = 0 otherwise.
We then define the average topological overlap for node 7 by

1 T-1
Oi = 7 ; Oit (2)
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where T is the number of pages. The temporal correlation coefficient for the entire
temporal network is given by

1 N
C):::jv:;§;()i. (3)
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