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A nonlinear theory for the development and persistence of cellular two-dimensional patterns behind the shock front in
self-sustained detonations is developed. A recent, significantly simplified and carefully-validated, detonation model1 is
used as the basis for the analysis.

In the spirit of earlier investigations of a variety of hydrodynamic and hydromagnetic instabilities, crossed-field
microwave sources, tokamak edge plasmas, and other areas, our first approach here replaces the actual numerically
computed equilibrium profiles by box-shaped ones having a jump discontinuity. The results for both the shapes and
dimensions of the persistent two-dimensional cells picked out by our nonlinear analysis agree well with those in1 for
the same sets of parameters. The only significant discrepancy is in the wavelength of the cellular patterns along the
reaction channel.

Approximations of actual equilibrium profiles by step discontinuities, as done here, are most accurate for long-
wavelength regimes where the waves essentially do not register the actual spatial profiles. Future work towards rem-
edying the above discrepancy will be based on refined versions of the normal forms here, with coefficients which are
integrals over the actual spatial equilibrium profiles.

I. INTRODUCTION

Detonations are supersonic combustion waves which in-
volve complex interactions between chemical kinetics, turbu-
lence, and compressibility. A brief, but quite comprehensive
history of the identification of the phenomenon as a super-
sonic wave propagating at speeds several orders of magnitude
higher than ordinary flames is given in1. This includes early
analyses of Mikhelson, Chapman and Jonguet, and of Zel-
dovich, von Neumann and Doering2,3 elucidating the require-
ment of having a shock wave that can compress the reacting
gas to high enough temperatures to ignite chemical reactions
behind the shock. The sonic waves created by the resulting
heat release support both shock propagation and acceleration
of the flow relative to the shock. Self-sustained detonations
result if sufficiently large acceleration causes the flow rela-
tive to the shock to reach sonic conditions, with the sonic
point behind the shock isolating the flow between that point
and the shock from the influence of conditions further down-
stream of the shock. This isolated ‘reaction zone’ allows a
self-sustained wave, which is seen in most detonations.

In the work of Zel’dovich, von Neumann and Doering2,
which also pertained to the blast waves accompanying atomic
bomb explosions4 and is nowadays universally referred to as
ZND theory, one-dimensional, steady state detonations were
analyzed. However, early experiments2,3 already revealed the
unsteady and complex dynamics and multidimensional nature
of the phenomenon. An early review of the literature on sta-
bility analyses of the steady ZND solutions to explain such
complex dynamics may be found in5. Stability analysis for
the full model was found to be complicated, and notably in-
cludes the work in6 which used weakly nonlinear analysis
based on an integrodifferential model to explain the forma-
tion of diamond-shaped cells in the reaction zone behind the
shock, as well as summaries of earlier analyses using matched
asymptotic expansions. Many years later, Lee and Stewart7

re-investigated the problem for an idealized model using the
standard method of normal modes8.

As with many classical hydrodynamics instabilities8, appli-
cations of linear stability theory to the detonation problem9-
14 include detailed analyses of the eigenfunctions, the lin-
ear neutral curve, and analytical multimode solutions in
the weakly unstable regime corresponding to the most
unstable wavenumber(s)15,16for steady detonations. Such
standard weakly nonlinear analyses17,18 have also been
employed12,1319−24 to treat a variety of phenomena, including
further bifurcations to pulsating modes via limit cycle creation
through Hopf bifurcation, possible combinations of fast and
slow modes as the activation energy increases, mode selec-
tion, diamond-shaped cell formation behind the shock at the
most linear unstable wavenumber, the spacing of such cells,
and other related features.

Other treatments using sophisticated matched asymptotic
expansions or boundary layer theory41 on simplified models
include those of Rosales and Majda25 and Majda26.

Many of the above studies treated known features of
gaseous detonation, such as unsteady oscillations in the lead
shock velocity, formation of triple points behind the shock
where additional transversely-propagating shocks in the very
non-uniform flow there intersect with the lead shock, as well
as the formation of fish-scale cellular structures2,3,27. Theo-
retical prediction of the origin and structure of cellular two-
dimensional detonation has proved more difficult, with lim-
ited progress resulting from the use of simplified models in
various asymptotic regimes as reviewed in1.

Given the above, Faria et al1 developed a simplified asymp-
totic theory using a sophisticated asymptotic weakly nonlin-
ear analysis. Their aim was to capture the complex bifurca-
tion sequences seen in one-dimensional detonations, as well
as the fish-scale cells observed in two-dimensional detona-
tions. They built on the theory developed earlier in25,28 which,
as with26, were known to lack the necessary complexity in
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their reaction kinetics to reproduce the dynamics of real det-
onations. In particular, they carefully tested this simplified
model against the corresponding results from the full reactive
Euler model of detonations. For their simplified model and
the full reactive Euler system, they compared: a. the linear
stability spectrum of traveling wave solutions, b. numerical
solutions and bifurcation sequences in the nonlinear regime
of one-dimensional detonations, and c. numerical formation
of cellular structures in two-dimensional detonations. Good
agreement was found on all qualitative features, including
fairly close quantitative agreement in many instances as well
in the small heat release, large activation energy, and Newto-
nian limit in which they developed their simplified model.

In this paper, we will develop a weakly nonlinear
analysis of cellular pattern formation and persistence in
two-dimensional detonations based on this simplified and
carefully-validated model in1. In particular, our treatment re-
veals the persistence of weakly-nonlinear pulsating fish-scale
patterns whose location, shape, and spatial extent agree well
with the numerically obtained cells in1 for the corresponding
parameter values. In our treatment, for this first detailed ap-
proach to this problem, we bring in additional simplifications
to the equilibrium profiles using ideas employed earlier in
classical hydrodynamics stability analysis8,29, tokamak edge
plasmas30, and the operational theory of high-power crossed-
field microwave sources31−34. Our results will be seen to
agree with those obtained from numerical simulations in most
aspects. The main discrepancy between our asymptotic treat-
ment of cell formation and the numerical cells presented in1

is in the cell wavenumber in the direction along the reaction
channel or zone. Hence, at the very end, we also mention pro-
posed future work in refining the results of this paper. That
would require re-deriving the normal forms or nonlinear secu-
larity conditions on which the results in this paper are based to
more complex ones whose coefficients would involve integra-
tion over the exact equilibrium profiles35-38 along the reaction
channel.

The remainder of this paper is organized as follows. In
Section II, we briefly recapitulate the simplified model devel-
oped using a sophisticated asymptotic analysis in1. Section
IIIA briefly reviews the exact equilibrium profiles in1, while
Section IIIB presents a simplified box-shaped model of these
equilibrium profiles involving step discontinuities, as well as
the motivation for using them and their possible regimes of
validity. Section IV develops a multiple scales expansion of
the variables in our model for the purposes of the nonlinear
stability analysis, while Section V presents the linear stability
analysis of the box equilibrium solutions. The analysis of the
second-order solutions is contained in Section VI, while Sec-
tion VII derives the third-order secularity conditions or nor-
mal form for the validity or uniformity of the original mul-
tiple scales expansion of our variables in Section IV. Section
VIII presents an analysis of this normal form for three-mode
solutions, including both phase-modulated and amplitude-
modulated solutions, while Section IX repeats that analysis
for two-mode solutions and shows that such two mode solu-
tions may indeed be stable (for various parameter sets cor-
responding to numerically derived cell patterns in1) and cor-

respond to persistent pulsating fish-scale patterns which are
compared to those in1. Finally Section X discusses our results,
and possible future refinements. Some of the longer interme-
diate results in the derivations are contained in Appendices A
and B.

II. GOVERNING EQUATIONS

In this sub-section, we introduce the simplified governing
model for self-sustained detonations. Its derivation from the
two-dimensional reactive Euler equations using a simplified
one-step Arrhenius kinetics, together with detailed numerical
comparisons to the full starting model, may be found in1. The
final asymptotic model for weakly nonlinear detonations de-
rived in1 consists of the forced set of transonic equations

∂u
∂ t

+u
∂u
∂x

+
∂v
∂y

=− ∂λ

2∂x
+ν

∂ 2u
∂x2

(1)

∂v
∂x

=
∂u
∂y

, (2)

∂λ

∂x
=−k(1−λ )exp[θ(

√
qu)]. (3)

In these equations, p, u, v, ρ , and e denote pressure, hori-
zontal velocity, vertical velocity, density, and energy per unit
mass, respectively. We use λ as the reaction progress variable
that takes values in the range 0 ≤ λ ≤ 1 as the reactants (λ
= 1) progress to the products (λ = 0). The other parameters1

ν ,k,θ and q represent the rescaled dimensionless viscosity,
pre-exponential factor, activation energy, and heat release re-
spectively.

For the inviscid case, these are supplemented by the
Rankine-Hugoniot (RH) conditions across the shock where
the detonation occurs. For a flame propagating in the x-
direction, defining the shock locus by φ(x,y, t) = x− s(y, t),
and denoting the jump in any variable z by [z], the RH condi-
tions simplify to1:

sτ − [u2]/2+ sy[v] = 0 (4)

sy[u]+ [v] = 0 (5)

[λ ] = 0 (6)

III. EQUILIBRIUM SOLUTIONS

Considering traveling wave solutions ū = ū(x − D̄t)
launched uniformly across the cross-section of the channel,
and propagating along the length of the channel at speed D̄,
with the overbar denoting steady state values of all variables,
yields

ū = D̄+
√

D̄2− λ̄ (7)
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FIG. 1. Steady Profiles satisfying the correct boundary conditions
for D̄ = 1. Dashed lines represent λ̄ , while ū is in solid lines.

with

λ̄ζ =−k(1− λ̄ )exp[θ(
√

qū+qλ̄ )] (8)

and the traveling wave variable ζ = (x− D̄t). The require-
ment that the solution for ū be real at the end of the reaction
zone where λ̄ takes its maximum value of unity leads to the
restriction D̄≥ 1, with the actual value of D̄ determined by the
degree of overdrive. As in1, our main focus in this paper will
be on the important case of a self-sustained detonation setting
in, where the steady state has a sonic point or shock at the end
of the reaction zone located at x = −∞ (the reaction zone is
located behind the shock, i.e. x≤ 0).

Just behind the leading shock at x = 0 the reaction is com-
plete and hence

λ̄ (0) = 0, ū(0) = 2D̄, (9)

with the second equation following from (7). At the opposite
extremeity of the reaction zone, the end of the reaction zone,
we have only reactants, and hence

λ̄ (−∞) = 1, ū(−∞) = D̄+
√

D̄2−1, (10)

Note that D̄ = 1 for self-sustained detonations with a sonic
point at the end of the reaction zone at x = −∞, and thus
ū(−∞) = D̄ for this case. This is the case investigated in this
paper.

Plugging (7) into (8) and integrating the resulting first-order
differential equation starting with the boundary conditions (9)
yields the spatially inhomogeneous x-dependent profiles for
λ̄ (it is easiest to define a new variable z = −ζ and integrate
forward in z. The boundary conditions (10) at the other end
ζ = −∞ are automatically satisfied as (7) has already been
incorporated into our differential equation.The corresponding
profile for ū is then obtained from (7).

For the sake of completeness, we reproduce one such steady
state profile for D̄ = 1 in Figure 1.

Note also that steady-state profiles such as these obtained
from the simplified asymptotic model equations(1)-(3) have
been quantitatively tested against ZND solutions of the reac-
tive Euler equations in1. They are generally found to agree
well, to within five percentage deviation from the ZND pro-
files for realistic parameter values.
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FIG. 2. Box Profiles satisfying the correct boundary conditions.
Dashed lines represent λ̄ , while ū is in solid lines (for D̄ = 1) and
dotted lines (for D̄ = 1.2).

A. Box Equlibrium Profiles

As mentioned in Section 1, our primary focus in this paper
will be the weakly nonlinear evolution and nonlinear stabil-
ity analysis to derive the saturated states resulting behind the
shock. The linear stability analysis which has been detailed
in1 involves Weyl-type radiation boundary conditions at the
end of the reaction zone as x→ −∞ (see also29 for further
details on the treatment of such boundary conditions).

While nonlinear stability analysis of the spatially exact non-
uniform equilibrium solutions derived above is analytically
possible33−35,37, we include a more analytically tractable ap-
proximate equilibrium in this subsection for our first approach
to this problem in this paper. In this, we follow the practice of
using simplified or mock-up equilibria in earlier work in many
areas such as classical hydrodynamics stability analysis8,29,
tokamak edge plasmas30, and the operational theory of high-
power crossed-field microwave sources31−34.

The linear eigenspectrum obtained using these approximate
box profiles will be discussed subsequently, and found to
agree quite well with the exact eigenvalues using the correct
inhomogeneous steady state profile derived in the previous
subsection. Note that similar approximate equilibrium profiles
have shown good agreement in the nonlinear analysis of var-
ious hydrodynamic and magnetohydrodynamic instabilities
in long-wavelength regimes29 or crossed-field amplifiers34

where the waves are longer than the spatial scale of the ex-
act equilibrium profiles. In a similar spirit, we introduce the
box equilibrium profiles for ū and λ̄ shown in Figure 2. They
are defined by the step function profiles:

ū =

{
D̄, x <−xstep
2D̄, −xstep < x≤ 0

}
(11)

λ̄ =

{
D̄2, x <−xstep
0, −xstep < x≤ 0

}
, (12)

and satisfy the correct boundary conditions (9) and (10) at the
two ends of the reaction zone.

Note that we have left the location −xstep of the step jumps
in these box-shaped profiles arbitrary. We consider this fur-
ther later in the paper, as well as the required jump condi-
tions across this discontinuity. In particular, we shall find that,
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while the discontinuity ensures the correct values of the equi-
librium variables at both ends of the reaction zone, it’s actual
location will not affect the nonlinear cell formation which will
be our primary focus in this paper.

IV. MULTIPLE SCALES EXPANSION FOR NONLINEAR
STABILITY ANALYSIS

In this section, we begin the stability analysis of the equil-
bria ū(x) and λ̄ (x) derived in the previous section. Note that
the linear stability analysis using the exact equilibria in Fig-
ure 1 has been detailed in1. We will briefly summarize that
analysis in the next section, and compare it to the results ob-
tained using the approximate box-shaped profiles of Figure 2
before proceeding to the nonlinear analysis in the subsequent
sections.

The expansions around the equilibria take the form:

u = ū(x)+ εu1(x,y,T0,T1,T2)+ ε
2u2(x,y,T0,T1,T2)

+ε
3u3(x,y,T0,T1,T2)

v = v̄(x)+ εv1(x,y,T0,T1,T2)+ ε
2v2(x,y,T0,T1,T2)

+ε
3v3(x,y,T0,T1,T2)

(13)

λ = λ̄ (x)+ ελ1(x,y,T0,T1,T2)+ ε
2
λ2(x,y,T0,T1,T2)

+ε
3
λ3(x,y,T0,T1,T2)

Introducing slow time scales Ti in the standard way

T1 = εt

T2 = ε
2t

T3 = ε
3t

utilizing the chain rule, the temporal derivatives become:

∂

∂ t
= ∂t + ε∂T1 + ε

2
∂T2 + ε

3
∂T3 + ... (14)

Using Eqns. (13) - (15) in Eqn. (1)-(3) yields equations at
O(ε), O(ε2), O(ε3), which are contained in Appendix A.

Using the relation among Ū , V̄ , λ̄ the structure of the equa-
tions (A.1)-(A.3)(will change) at O(ε i)may be written in the
form:

−Si1(x,y,T0,T1,T2)+ui(x,y,T0,T1,T2)ū′(x)

+
∂ui

∂T2
(x,y,T0,T1,T2)+

∂vi

∂T0
(x,y,T0,T1,T2)

+
1
2

∂λi

∂T0
(x,y,T0,T1,T2)− D̄

∂ui

∂T0
(x,y,T0,T1,T2)

+ ū(x)
∂ui

∂T0
(x,y,T0,T1,T2) (15)

−Si2(x,y,T0,T1,T2)+
∂ui

∂T1
(x,y,T0,T1,T2)

− ∂vi

∂T0
(x,y,T0,T1,T2) (16)

− eθ(qλ̄ (x)+
√

qū(x)kλi(x,y,T0,T1,T2)−Si3(x,y,T0,T1,T2)

+ eθ(qλ̄ (x)+
√

qū(x)kθ(1− ¯λ (x)(qλi(x,y,T0,T1,T2)

+
√

qui(x,y,T0,T1,T2)+
∂λi

∂T0
(x,y,T0,T1,T2) (17)

where the sources Si j at O(ε i) in the j− th equation are given
in Appendix A. By solving (9) for ui and plugging the result
in (8), the resulting equation can be solved for vi. Solving
(15) for vi,y and enforcing vi,xy = vi,yx yields the generalized
composite L operator and composite source Γi satisfying the
equation:

L(λi) = Γi, (18)

where

L(λi)= 2ek1
√

qθ+k2qθ k(1+(−1+k2)qθ)
∂ 2λi

∂y2 +2ek1
√

qθ+k2qθ k
∂ 2λi

∂x∂T0
−2ek1

√
qθ+k2qθ kqθ

∂ 2λi

∂x∂T0
+2ek1

√
qθ+k2qθ kk2qθ

∂ 2λi

∂x∂T0
−

2
∂ 3λi

∂x∂y2 −2D̄ek1
√

qθ+k2qθ k
∂ 2λi

∂x2 +2ek1
√

qθ+k2qθ kk1
∂ 2λi

∂x2 + ek1
√

qθ+k2qθ k
√

qθ
∂ 2λi

∂x2 − ek1
√

qθ+k2qθ kk2
√

qθ
∂ 2λi

∂x2

+2D̄ek1
√

qθ+k2qθ kqθ
∂ 2λi

∂x2 −2ek1
√

qθ+k2qθ kk1qθ
∂ 2λi

∂x2 −2D̄ek1
√

qθ+k2qθ kk2qθ
∂ 2λi

∂x2 +2ek1
√

qθ+k2qθ kk1k2qθ
∂ 2λi

∂x2

−2
∂ 3λi

∂x2∂T0
+2D̄

∂ 3λi

∂x3 −2k1
∂ 3λi

∂x3 , (19)

with λi a function of (x,y,T0,T1,T2), and
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Γi =−2
(

ek1
√

qθ+k2qθ k(−1+ k2)
√

qθ
∂Si2

∂y
+

∂ 2Si3

∂y2 − ek1
√

qθ+k2qθ k
√

gθ
∂Si1

∂y
+

ek1
√

qθ+k2qθ kk2
√

qθ
∂Si1

∂y
+

∂ 2Si3

∂x∂T0
− D̄

∂ 2Si3

∂x2 + k1
∂ 2Si3

∂x2

)
(20)

V. LINEAR STABILITY ANALYSIS

In this section, we consider the stability analysis for the
linear or O(ε) perturbation or field variables.

A. Linear solutions for Exact Equilibria

In the first subsection, we briefly recapitulate the results of
the linear stability analysis of1 in our notation. As is standard
in the method of normal modes8, Faria et al1 considered one
arbitrary Fourier mode or wavenumber ky in the y-direction,
and subsequently focused on the most unstable mode which
first undergoes linear instability. Hence, assuming linear vari-
ables of the form

u1 (x,y,T0,T1,T2) = u1 (x,T1,T2)eσT0+iky+

u10*(x,T1,T2)eσT0−ikyy (21)

v1 (x,y,T0,T1,T2) = v10 (x,T1,T2)eσT0+ikyy+

v10*(x,T1,T2)eσT0−ikyy (22)

λ1 (x,y,T0,T1,T2) = λ1 (x,T1,T2)eσT0+iky+

λ10*(x,T1,T2)eσT0−ikyy (23)

where the ∗ denotes a complex conjugate. Using these in (1)-
(3) yields the equations for the linear field variables:

(ū− D̄)u′1 =−(σ + ū′)u1 +σ ū′

− ikyv1− [g(x)u1 +h(x)λ1]/2 (24)

v′1 = ikyu1− ikyū′, (25)

λ
′
1 = g(x)u1 +h(x)λ1 (26)

where

g(x) =−kθq1/2(1− λ̄ )exp
[
θ(q1/2ū+qλ̄

]
, (27)

and

h(x) =−k
[
θq(1− λ̄ )−1

]
exp
[
θ(q1/2ū+qλ̄

]
. (28)

These are the explicit version of the O(ε) equations in Ap-
pendix A after substituting the linear fields (21)-(23).

Using (24)-(26), the composite equation (18) at O(ε) sim-
plifies to[

(ū− D̄)

(
λ ′1−λ1h(x)

g(x)

)′
+
(
σ + ū′+g(x)/2)

)(λ ′1−λ1h(x)
g(x)

)
− ū′+h(x)λ1/2′ =

k2
y

σ

[
σ

(
λ ′1−λ1h(x)

g(x)

)
− ū

′
]

(29)

Also, using (24)-(26) in the Rankine-Hugoniot conditions
(4)-(6), the boundary conditions1 on the linear fields at the
shock location x = 0 are:

u1(0) = 2σ ,v1(0) =−2ikyD̄,λ1(0) = 0 (30)

Using these in (24)-(26), as well as in the x-derivative of (26)
yields the corresponding boundary conditions for the compos-
ite third-order equation (??) for the first-order variable λ1

λ1(0) = 0,λ ′1(0) = 2σg(0), (31)

λ
′′
1 (0) = 2σg′(0)+g(0)

[
−2σ

2−σ ū′(0)−2k2
y D̄

−σg(0)+2σh(0)D̄. (32)

For self-sustained detonations, since (ū−D̄→ 0 at the other
end of the reaction region, x→−∞, the right-hand side of (24)
must also vanish there as well. Using the fact that ū′→ 0 and
g(x)→ 0 as x→−∞, we obtain the ’radiation’ or Weyl-type
boundary condition at the end of the reaction region

− σu1 − ikyv1 − h(x)λ1/2 → 0, x → −∞ (33)

Faria et al1 have detailed the solutions of the system (24)-
(27) with boundary conditions (30) and (33) for the correct
equilibrium profiles in Figure 1. In the next sub-section we
introduce solutions of the same system for the box-shaped
equilibrium profiles of Figure 2, compare them to the solu-
tions in1, and then proceed to the weakly nonlinear analysis
and saturated states or cells resulting from the long-time or
slow evolution of these linear solutions.

B. Linear solutions for Box Profile Equilibria

Next, we re-do the preceding linear stability analysis us-
ing the approximate box-shaped equilibrium profiles (11) and
(12), and compare our results to those of the previous subsec-
tion. Henceforth, we will refer to the regions to the right(left)
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of the discontinuity in (??) and (??) as the +(−) regions re-
spectively, and attach +(−) subscripts to the solutions in each
region.

As is standard in the method of normal modes8, we con-
sider one arbitrary Fourier mode or wavenumber ky in the
y-direction, and subsequently focus on the most unstable ky
mode which first undergoes linear instability. For the box-
profiles of Figure 2, since all the equlibrium variables are con-
stant on each side of the discontinuity, we may thus use a sin-
gle normal or Fourier mode in x in each region. We therefore
assume linear fields of the form

u1 (x,y,T0,T1,T2) = u10 (T1,T2)eσT0+ikxx+ikyy+

u10*(T1,T2)eσT0−ikxx−ikyy (34)

v1 (x,y,T0,T1,T2) = v10 (T1,T2)eσT0+ikxx+ikyy+

v10*(T1,T2)eσT0−ikxx−ikyy (35)

λ1 (x,y,T0,T1,T2) = λ1 (T1,T2)eσT0+ikxx+ikyy+

λ10*(T1,T2)eσT0−ikxx−ikyy (36)

where the ∗ denotes a complex conjugate.

1. Solutions Behind the Shock

Using these, the O(ε), equations (A1) yield the linear dis-
persion relation to the right of the discontinuity in the equilib-
rium profiles, including just behind the shock at x = 0−:

kx
(
ik2

y + kxσ
)
+ D̄k2

x

(
ikx + e2D̄q1/2θ k(−1+qθ)

)
+1/2e2D̄q1/2θ k

[
2k2

y(−1+qθ)− kx(kxq1/2
θ

+2iσ(−1+qθ)) = 0. (37)

On the ’neutral curve’1,8 where the temporal growth rate σ is
zero, the x and y-wavenumbers kx and ky satisfy

kx
(
ik2

y + kxσ
)
+ D̄k2

x

(
ikx + e2D̄q1/2θ k(−1+qθ)

)
+1/2e2D̄q1/2θ k

[
2k2

y(−1+qθ)− kx(kxq1/2
θ)
]
= 0. (38)

Since some coefficients of this cubic for the x-wavenumber kx
are imaginary, it is clear that we have two linear modes with
complex x-wavenumbers which we denote as kx1+ and kx2+
for each value of the y-wavenumber ky. In the context of hy-
drodynamic or hydromagnetic stability, this would be the set-
ting of possible ’convective’ instability, as opposed to ’tempo-
ral’ instability where the growth rate σ has an imaginary part.
Thus, adjacent to the neutral curve, weakly growing solutions

with σ = 0+atx=0− just behind the shock take the form

λ1+ (x,y,T0,T1,T2) = λ10 (T1,T2)eσT0+ikx1++iky+

λ10*(T1,T2)eσT0−ikx1+x−ikyy +λ20 (T1,T2)eσT0+ikx2++iky+

λ20*(T1,T2)eσT0−ikx2+x−ikyy +λ30 (T1,T2)eσT0+ikx3++iky+

λ30*(T1,T2)eσT0−ikx3+x−ikyy, (39)

with analogous expressions for the other linear fields u1 and
v1.

Note that kx, the spatial wavenumber along the reaction
channel being complex as noted above potentially allows for
spatial growth of the linear modes, or so-called ’convective’
instability39. Since the linear modes in (34)-(36) are confined
to the finite domain between x = 0 and x =−xstep, no blow-up
of these linear fields occurs. We consider this later for specific
parameter sets.

2. Solutions near the end of the Reaction Zone

To the left of the discontinuity or x <−xstep, the composite
equation needs to be separately derived since λ = 0 and ū = D̄
on that side. Using the first two O(ε) equations (A.1) yields
the simpler composite equation

(D̄2−1)1/2u1”+σu′1− k2
yu1 = 0 (40)

whose solutions may analogously be expressly as

λ1− (x,y,T0,T1,T2) = λ40 (T1,T2)eσT0+ikx1−x+ikyy+

λ40*(T1,T2)eσT0−ikx1−x−ikyy +λ50 (T1,T2)eσT0+ikx2−x+ikyy+

λ50*(T1,T2)eσT0−ikx2−x−ikyy, (41)

where

kx1−/kx2− =+/− iky/(D̄2−1)1/4 (42)

in the weakly nonlinear domain near the neutral curve σ = 0.
Note that one of our three wavenumbers is lost in our solu-

tion here due to the step discontinuity transition. It is straight-
forward to refine this by inserting a narrow boundary or inner
solution in place of the step jump40. However, as discussed
below, our main focus will be nonlinear evolution of the so-
lutions just behind the shock as considered in the previous
subsection, and so we do not consider this here.

For each set of parameters k, D̄,q,θ and ky, the solution (39)
and (41) on each side of the discontinuity may be directly de-
rived. The boundary conditions (30) are then imposed on (39),
and then this is matched to (41) by imposing the jump condi-
tion at the discontinuity obtained by integrating (29) across
the discontinuity, i.e from x = −x−step to x = −x+step. And fi-
nally the boundary condition (33) needs to be imposed on the
solutions (41) to the left of the discontinuity.

Since our main focus will be on the nonlinear evolution of
the linear solutions (39) and (41), we do not dwell too much
on the details of this standard and straightforward procedure
for step profiles in many areas of science41-42. However, for
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the purposes of the nonlinear analysis in the following sec-
tions, as well as comparisons to the numerics on the nonlinear
evolution of solutions in1, we include below some typical lin-
ear solutions for parameter sets employed in the simulations
in that paper.

In particular, we will find that the solutions (39) will be of
primary interest to us in the formation and persistence of non-
linear cellular patterns just behind the shock. Further behind
the shock these cells decay away rapidly in space, and so one
may position the discontinuity x = −xstep appropriately and
impose the discontinuity jump condition on the solutions (41)
to the left of−xstep. The final step of enforcing the left bound-
ary conditions (33) on the solutions (41) clearly requires the
suppression of the unbounded kx1− mode in (42).

However, as mentioned in the previous paragraph, we omit
the details of this standard procedure for jump discontinu-
ities, and focus primarily on the solutions (39) right behind
the shock, and its nonlinear evolution. To this end, and for
later reference in the results for the weakly nonlinear evolu-
tion, we list the wavenumbers in the solutions (39) for various
parameter sets1. For the first parameter set

D̄ = 1.05,q = 1.7,θ = 1.65,ky = π/5, (43)

the wavenumbers in (39) are

kx1+/kx2+ =+/−0.484354+0.748685i,kx3+ =−0.782113i.
(44)

For the second parameter set

D̄ = 1.05,q = 1.7,θ = 1.65,ky = 2π/13, (45)

the wavenumbers in (39) are

kx1+/kx2+ =+/−0.392967+0.6656i,kx3+ =−0.615927i.
(46)

For the third parameter set

D̄ = 1.05,q = 1.8,θ = 1.65,ky = 2π/13, (47)

the wavenumbers in (39) are

kx1+/kx2+ =+/−0.3559+0.7859i,kx3+ =−0.6151i. (48)

And finally, for the fourth parameter set

D̄ = 1.05,q = 2.4,θ = 1.389,ky = 2π/15, (49)

the wavenumbers in (39) are

kx1+/kx2+ =+/−0.1809+0.3503i,kx3+ =−0.4604i. (50)

VI. SECOND ORDER ANALYSIS

Having considered the linear perturbation equations, we
proceed to the O(ε2) composite equation (18)-(20) for i = 2,
which is

L(λ2) = Γ2 (51)

Since Γ2 contains nearly two thousand terms, we evalu-
ate it numerically for specific parameter sets using the in-
dividual second-order sources S21,S22 and S23 in Appendix
A. Suppressing the secular eσT0+ikx1 x+ikyy,eσT0+ikx2 x+ikyy and
eσT0+ikx3 x+ikyy terms in Γ2 requires

∂λi0

∂T1
= 0, i = 1,2,3 (52)

Hence, as is often the case18, all the amplitudes in the linear
solution (39) turn out to be unmodulated or constant on the
first slow or long T1 timescale.

Next, the second order particular solution of (51) may be
computed using the method of undetermined coefficients as is
standard (see18 for instance). Since it is exceptionally long,
we display the typical harmonics in Appendix B, but omit the
general coefficients which are extremely lengthy.

For any of our parameter sets (43)-(49) for instance, the
second-order particular solution obtained by the classical
method of undetermined coefficients simplifies after consid-
erable computer algebra to lengthy expressions for λ2 which
are omitted for reasons of brevity. The particular solutions
for the other two second-order fields u2 and v2 then follow
from their expressions in terms of λ2 in the paragraph preced-
ing the composite equation (18) (used in the derivation of the
equation).

These second-order solutions for the variables then feed
into the third-order analysis which we consider next.

VII. THIRD-ORDER ANALYSIS AND NORMAL FORM

Finally, evaluating the third-order composite source Γ3
from (10) for i = 3, and suppressing the secular terms as done
at second order yields our final slow flow or normal form for
the long(or slow)-time modulation of the amplitudes of the
linear solutions or cells on the second slow T2 timescale. Once
again, the coefficients in these equations are too long to in-
clude in general and will only be presented for our various
parameter sets. However, the general structure of these third-
order slow flow or normal form equations is:

dλ10

dT2
= λ10(T2) [c1 + c2λ10(T2)λ

∗
10(T2)

+ c3λ20(T2)λ
∗
20(T2)+ c4λ30(T2)λ

∗
30(T2),

dλ20

dT2
= λ10(T2) [c∗1 + c∗2λ20(T2)λ

∗
20(T2)

+ c∗3λ10(T2)λ
∗
10(T2)+ c∗4λ30(T2)λ

∗
30(T2),

dλ30

dT2
= λ30(T2) [d1 +d2λ10(T2)λ

∗
10(T2)

+d3λ20(T2)λ
∗
20(T2)+d4λ30(T2)λ

∗
30(T2). (53)

with coefficients for two of our three chosen parameter sets
given in Appendix C.
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VIII. ANALYSIS OF NORMAL FORM: THREE MODE
SOLUTIONS

Writing the amplitudes and constants in the normal form
(53) in polar form as

λi0 = aiExp[ipi], i = 1,2,3 (54)

ci = ciExp[iti] = βi + iγi, i = 1,2,3,4 (55)

di = diExp[iri] = δi + iεi, i = 1,2,3,4 (56)

and denoting the derivative with respect to T2 by a prime, the
normal form (53) equations separate into real and imaginary
parts as:

a
′
1 = a3

1β2 +a1β1 +a1a2
2β3 +a1a2

3β4 (57)

a
′
2 = a3

2β2 +a2β1 +a2
1a2β3 +a2a2

3β4 (58)

a
′
3 = a2

1a3δ2 +a3δ1 +a2
2a3δ3 +a3

3δ4 (59)

and

p
′
1 = a2

1γ2 + γ1 +a2
2γ3 +a3

2γ4 (60)

p
′
2 =−a2

2γ2− γ1−a2
1γ3−a2

3γ4 (61)

p
′
3 = a2

1ε2 +a3ε1 +a2
2ε3 +a3

2ε4 (62)

The evolution of the amplitudes and phases of the linear
solutions (39) on the second-order slow or long T2 timescale
is governed by equations (57)-(59), and (60)-(62) respectively.
Considering the stable fixed points or equilibria of (57)-(59)
OR (60)-(62) gives the possible asymptotic states to which
the linear solutions (39) may settle. In the former case, the
amplitudes ai, i = 1, ..3 settle to constants while the phases
φi, i = 1, ..3 are slowly modulated in the long-time solutions.
In the latter case, the situation is exactly reversed, and slowly
amplitude-modulated solutions result as asymptotic states.

A. Phase-Modulated Solutions

The non-trivial fixed points of (57)-(59) are given by linear
equations for zi = a2

i , i = 1, ..3 which may be easily obtained
using Cramer’s Rule. The characteristic equation for the Ja-
cobian matrix at this fixed point is given by

λ
3 +b1λ

2 +b2λ +b3 = 0, (63)

where

b1 =−2β2−δ4,

b2 = β
2
2 −β

2
3 −β4δ2−β5δ3 +2β2δ4,

b3 = β2β4δ2−β3β5δ2−β3β4δ3

+β2β5δ3−β
2
2 δ4 +β

2
3 δ4 (64)

The non-trivial fixed point zi = a2
i , i = 1, ..,3 of (57)-(59) is

stable if the Routh-Hurwitz conditions

b1 > 0,b3 > 0,b1b2−b3 > 0 (65)

are satisfied.
For the coefficients in (C1) for the parameters in (43), the

fixed point zi = a2
i , i = 1, ..,3 of (57)-(59) is

z1 = 32.2607k4,z2 = 29.1465k4,z3 =−14.6542k4 (66)

with the stability conditions (65) simplifying to b1 =
5.12877> 0, b3 =−11.224< 0, and b1b2−b3 = 20.4042> 0.
Hence, there is no real fixed point corresponding to zi = a2

i >
0, i = 1, ..,3 for any k4 value, and thus no three-mode solution
corresponding to a stable fixed point of (57)-(59) to which the
linear solutions (39) can settle for this parameter set.

For the coefficients in (C2) for the parameters in (49), the
fixed point zi = a2

i , i = 1, ..,3 of (57)-(59) is

z1 = 35.2903k4,z2 = 35.2903k4,z3 =−6.11268k4 (67)

with the stability conditions (65) simplifying to b1 =
7.23104> 0, b3 =−219.647< 0, and b1b2−b3 =−7.8368<
0. Once again, there is no real fixed point corresponding to
zi = a2

i > 0, i= 1, ..,3 for any k4 value, and thus no three-mode
solution corresponding to a stable fixed point of (57)-(59) to
which the linear solutions (39) can settle for this parameter
set.

Hence, we turn next to briefly consider the theoretical anal-
ysis of amplitude-modulated solutions. although these will
correspond to amplitudes growing linearly on the slow time,
and so would not be relevant to the study of the numerically-
observed spatial cells in1.

B. Amplitude-Modulated Solutions

The non-trivial fixed points of (60)-(62) are also given by
linear equations for zi = a2

i , i = 1, ..3, and may be easily ob-
tained using Cramer’s Rule. The characteristic equation for
the Jacobian matrix at this fixed point is given by

λ
3 +b

′
1λ

2 + c
′
2λ + c

′
3 = 0, (68)

where

b
′
1 =−2γ2− ε4,

b
′
2 = γ

2
2 − γ

2
3 − γ4ε2− γ5ε3 +2γ2ε4,

b
′
3 = γ2γ4ε2− γ3γ5ε2− γ3γ4ε3

+ γ2γ5γ3− γ
2
2 ε4 + γ

2
3 ε4 (69)

The non-trivial fixed point zi = a2
i , i = 1, ..,3 of (60)-(62) is

stable if the Routh-Hurwitz conditions

b
′
1 > 0,b

′
3 > 0,b

′
1b
′
2−b

′
3 > 0 (70)

are satisfied.
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Once again, as in the last subsection, it is straightforward
to check that (60)-(62) have no real non-trivial fixed point for
any of the sets of normal form coefficients (C1)-(C2) corre-
sponding to the parameters in (43)-(49). Hence, there is no
stable three-mode fixed point of (60)-(62) to which the linear
solutions (39) can settle for any of our typical parameter sets.

In the next section, we consider two-mode solutions of the
normal form, including real fixed points to which the linear
field (39) may settle as a persistent cellular pattern behind the
shock.

IX. ANALYSIS OF NORMAL FORM: TWO MODE
SOLUTIONS

A. Phase-Modulated Solutions

The non-trivial fixed points of (57)-(59) corresponding to
two non-trivial modes with λ30 = 0 are given by linear equa-
tions for zi = a2

i , i = 1,2 with solutions

z1 =−(β1/(β2 +β3)),z2 =−(β1/(β2 +t 3)) (71)

The characteristic equation for the Jacobian matrix at this
fixed point is given by

β
2
2 −β

2
3 −2β2r+ r2 = 0 (72)

Hence, it is stable for

β2 < 0. (73)

For the coefficients in (C1) corresponding to the parameters
in (43), the two-mode fixed point zi = a2

i , i = 1, ..,3 of (57)-
(59) is

z1 = a2
1 = 36.2568k4,z2 = a2

2 = 36.2568k4,z3 = 0, (74)

and it satisfies the stability condition (73). These may now
be substituted into the right-hand sides of (60)-(62), which
may then directly be integrated with respect to T2 to obtain
the phases p1 and p2 of the two modes.

Hence, the nonlinear evolution will lead to a two-mode so-
lution corresponding to this stable fixed point of (57)-(59) to
which the linear solutions (39) can settle for this parameter
set. The resulting cellular patterns (39) are shown in Figures
2 and 3 at t = 0 and t = 1 to illustrate the very slow phase-
modulation effect with time on the second T2 timescale.

For the coefficients in (C2) (corresponding to parameters in
(49)), the two-mode fixed point zi = a2

i , i = 1, ..,3 of (57)-(59)
is

z1 = a2
1 = 402.731k4,z2 = a2

2402.731k4,z3 = 0 (75)

and it is also stable via condition (73). As before, these may
now be substituted into the right-hand sides of (60)-(61), and
these may then directly be integrated with respect to T2 to ob-
tain the phases p1 and p2 of the two modes.

The resulting cellular patterns are shown in Figures 5 and
6.
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FIG. 3. Detonation cells behind the shock at x = 0 for the parameters
in (43) at t = 0.
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FIG. 4. Detonation cells behind the shock at x = 0 for the parameters
in (43) at t = 1.

Comparing the stable persistent cellular patterns picked out
in Figures 3 and 4 for the parameters in (43) to the numerical
cells shown in Figure 5.5(c) of1, or in Figures 5 and 6 for pa-
rameters (49) with Figure 5.7(b) of1, the agreement is quite
good. In particular, note that the cell shapes in Figures 5.5(c)
and 5.7(b) of1 are quite different for the two sets of parame-
ters, and the shapes of the persistent patterns picked out by our
nonlinear analysis in Figures 3/4 and 5/6 agree quite well with
those numerically obtained cells. This includes cells which
have vertical symmetry about the mid-point in both our Fig-
ures 3 and 4, as well as in the corresponding numerical cells
computed in Figure 5.5(c) of1. Similar agreement is seen be-
tween the vertically asymmetric, elongated and slightly bent
cell shapes for the parameter set (49) in our Figures 5 and
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FIG. 5. Detonation cells behind the shock at x = 0 for the parameters
in (49) at t = 0.
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FIG. 6. Detonation cells behind the shock at x = 0 for the parameters
in (49) at t = 1.

6, and Figure 5.7(b) of1. The same is true of the cell loca-
tion. For (43), both the cells in our Figures 3 and 4, and in
Figure 5.5(c) of1 form right behind the shock. By contrast,
for parameters (49), the cells form slightly behind the shock
location.

The main discrepancy between our analytically predicted
cells based on the simplified box-shaped equilibrium profiles
and the corresponding numerical ones presented in1 is in their
spatial wavelength kx in the x-direction along the reaction
channel. For parameters (43), the x-wavelength of the numer-
ically computed cells in Figure 5.5(c) of1 is roughly kx = 0.7,
while our corresponding analytically derived cells in Figures
3 and 4 have kx = 2.15. Similarly, for parameters (49), the x-
wavelength of the numerically computed cells in Figure 5.5(c)

of1 is roughly kx = 1.05, while our corresponding analytically
derived cells in Figures 3 and 4 have approximate wavenum-
ber kx = 1.65.

B. Amplitude Modulated Solutions

Stable two-mode amplitude modulated solutions with a3 =
0 may also be directly obtained in a similar manner for all our
parameter sets. However, these stable fixed points of (60)-
(61), when substituted into (57)-(58) would result in mode
amplitudes a1 and a2 which would grow linearly on the slow
T2 timescale, and thus not correspond to any stable patterns.
Hence, we do not detail them here.

X. DISCUSSION AND CONCLUSIONS

In this paper, we have developed a nonlinear theory for
the development and persistence of cellular patterns behind
the shock front in self-sustained detonations using the signif-
icantly simplified detonation model developed in1, where the
analytical linear stability and numerical nonlinear results from
that model were also extensively compared and found to have
good agreement with those from the full reactive Euler equa-
tions.

For the purpose of analytical development of the nonlin-
ear theory, we proceeded in the spirit of earlier investigations
of a variety of hydrodynamic and hydromagnetic instabili-
ties, such as the use of the so-called tangential discontinu-
ity or vortex sheet step jumps in Kelvin-Helmholtz instabili-
ties, or a box-shaped density profile in the analysis of crossed-
field microwave sources. In that spirit, the actual numerically
computed equilibrium profiles were replaced by box-shaped
ones having a jump discontinuity. The discontinuity ensures
transition to the correct values of the equilibrium variables at
x→−∞, as well as allowing satisfaction of the boundary con-
ditions (33) to give the correct linear eigenfunctions. How-
ever, its actual location does not affect our analysis of nonlin-
ear two-dimensional cell formation behind that step jump.

As noted in the discussion following Figures 3 through 6,
the agreement with the numerically-obtained results in1 for
the full nonlinear evolution is surprisingly good. In particular,
both the shapes and dimensions of the persistent cells picked
out by our nonlinear analysis agree quite well with those in1

for the same set of parameters. The only significant difference
or discrepancy from those numerical results is in the dimen-
sion or wavelength of the resulting cellular patterns in the x
direction along the reaction channel.

As proved for instance for the compressible Kelvin-
Helmholtz instability29, the strongly nonlinear theory de-
veloped for the operating regimes of crossed-field magnetic
devices31,32, or edge density-related instabilities in tokamak
plasmas30, approximations of actual equilibrium profiles by
step jump discontinuities, as done in this paper, work well for
long-wavelength regimes. This is because the waves essen-
tially do not register the spatial profile of the actual equilibria
which occur on much shorter spatial scales. In regimes of
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shorter wave operation, use of the accurate equilibrium pro-
files becomes much more important29,33,34. Future work on
this problem will be in that direction. In particular, it will in-
volve the derivation of refined normal forms with coefficients
which are integrals over the actual spatial equilibrium profiles
(see35 for example).

Appendix A: Source Terms

The second-order sources are:

S1 =
(
−1+ D̄2)(−eD̄

√
qθ+D̄2qθ kkx1

∂λ10

∂T1
− k2

x1
∂λ10

∂T1

+iD̄2kkx1eD̄
√

qθ+D̄2qθ ∂λ10

∂T1
+D̄2k2

x1
∂λ10

∂T1

+ ieD̄
√

qθ+D̄2qθ kkx1qθ
∂λ10

∂T1

−2iD̄2eD̄
√

qθ+D̄2qθ kkx1qθ
∂λ10

∂T1
+ iD̄4eD̄

√
qθ+D̄2qθ kkx1qθ

∂λ10

∂T1

)
(A1)

S2 =
(
−1+ D̄2)(−eD̄

√
qθ+D̄2qθ kkx2

∂λ20

∂T1
− k2

x2
∂λ20

∂T1

+iD̄2kkx2eD̄
√

qθ+D̄2qθ ∂λ20

∂T1
+ D̄2k2

x2
∂λ20

∂T1

+ieD̄
√

qθ+D̄2qθ kkx2qθ
∂λ20

∂T1
−2iD̄2eD̄

√
qθ+D̄2qθ kkx2qθ

∂λ20

∂T1

+iD̄4eD̄
√

qθ+D̄2qθ kkx2qθ
∂λ20

∂T1

)
(A2)

Appendix B: Second Order Particular Solutions

The second-order particular solutions of (51), after sup-
pressing the secularities, take the following form in applying
the method of undetermined coefficients:

λ2(x,y,To,T1,T2)= λ2,1e2σTo+(D̄
√

q+D̄2q)θ+2ikx1x+2ikyy+λ
∗
2,1e2σTo+(D̄

√
q+D̄2q)θ+2ik∗x1x+2ikyy+λ2,2e2σTo+(D̄

√
q+D̄2q)θ+ikx1x+ikx2x+2ikyy+

λ
∗
2,2e2σTo+(D̄

√
q+D̄2q)θ+ik∗x1x+ik∗x2x+2ikyy +λ2,3e2σTo+(D̄

√
q+D̄2q)θ+ikx1x+ikx2x +λ

∗
2,3e2σTo+(D̄

√
q+D̄2q)θ+ik∗x1x+ik∗x2x+

λ2,4e2σTo+(D̄
√

q+D̄2q)θ+2ikx2x+2ikyy +λ
∗
2,4e2σTo+(D̄

√
q+D̄2q)θ+2ik∗x2x+2ikyy +λ2,5e2σTo+(D̄

√
q+D̄2q)θ+ikx1x+2ikyy+

λ
∗
2,5e2σTo+(D̄

√
q+D̄2q)θ+ik∗x1x+2ikyy +λ2,6e2σTo+(D̄

√
q+D̄2q)θ+ikx1x +λ

∗
2,6e2σTo+(D̄

√
q+D̄2q)θ+ik∗x1x+

λ2,7e2σTo+(D̄
√

q+D̄2q)θ+ikx2x+2ikyy +λ
∗
2,7e2σTo+(D̄

√
q+D̄2q)θ+ik∗x2x+2ikyy +λ2,8e2σTo+(D̄

√
q+D̄2q)θ+ikx2x+

λ
∗
2,8e2σTo+(D̄

√
q+D̄2q)θ+ik∗x2x +λ2,9e2σTo+(D̄

√
q+D̄2q)θ+i(kx1x−k∗x1x)+λ

∗
2,9e2σTo+(D̄

√
q+D̄2q)θ+i(k∗x1x−kx1x)+

λ2,10e2σTo+(D̄
√

q+D̄2q)θ+i(2k∗x1x+2kyy)+λ
∗
2,10e2σTo+(D̄

√
q+D̄2q)θ+i(2kx1x+2kyy)+λ2,11e2σTo+(D̄

√
q+D̄2q)θ−i(k∗x1x−kx2x+

λ
∗
2,11e2σTo+(D̄

√
q+D̄2q)θ−i(kx1x−k∗x2x +λ2,12e2σTo+(D̄

√
q+D̄2q)θ−ik∗x2x +λ

∗
2,12e2σTo+(D̄

√
q+D̄2q)θ+ikx2x+

λ2,13e2σTo+(D̄
√

q+D̄2q)θ−i(−kx2x+k∗x2x)+λ
∗
2,13e2σTo+(D̄

√
q+D̄2q)θ+i(−kx2x+k∗x2x)+λ2,14e2σTo+(D̄

√
q+D̄2q)θ−i(kx2x−k∗x2x)+

λ
∗
2,14e2σTo+(D̄

√
q+D̄2q)θ+i(kx2x−k∗x2x) (B1)

u2(x,y,To,T1,T2) =
e−qθλ (x)−√qθ ū(x)(−e−qθλ (x)+

√
qθ ū(x)k(1−qθ +qθλ̄ (x)λ2−S23 +

∂λ2
∂x ))

k
√

qθ(−1+ λ̄ (x))
(B2)

v2(x,y,To,T1,T2) =
e−qθλ (x)−√qθ ū(x)(−e−qθλ (x)+

√
qθ ū(x)k(1−qθ +qθλ̄ (x) ∂λ2

∂x ))−
dS23
dy + ∂ 2λ2

∂x∂y

k
√

qθ(−1+ λ̄ (x))
(B3)
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Appendix C: Coefficients in Third-Ordel Normal Form (53)

For the parameter set (43), the coefficients in (53) are:

c1 = (−34.800907975220554−22.514089248191294i)k4;
c2 =−(1.434565794129719+0.4371525972368321i);
c3 = (2.394424823144173+1.7845660726810215i);
c4 =−(0.7705499260252−1.0341564399245513i);

c5 = (0.043149805544178466−1.1704946669355656);
d1 = 36.3547447468111k4;

d2 =−(1.36965135601604+0.9444635725621632i);
d3 =−(0.8674105661050214−1.0425095547332015i);

d4 =−2.2596338819071344 (C1)

For the parameter set (49), the corresponding coefficients
in (53) are:

c1 = (−81.39585230240318+42.03399851985379i)k4;
c2 =−(2.5215942414582306−3.6436687871361806i);

c3 = (2.723675951041575−6.8362228067403485i);
c4 =−(12.149223339495418+2.1519318977487902i);
c5 =−(12.149223339495418−2.1519318977487902i);

d1 = 106.97873365694113k4;
d2 =−(1.7051758449371195−1.5899717098177628i);
d3 =−(1.7051758449371195+1.5899717098177628i);

d4 =−2.187853835938873 (C2)
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