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Abstract
In this review article, a comprehensive meta-analysis based on available literature information has been undertaken to make 
a relative comparison of total arsenic in rice grain. This involves analyzing the findings of various peer-reviewed studies 
that examined arsenic-contaminated Asian regions. Also, this article highlights the regional-level human health risks caused 
by the consumption of arsenic-contaminated rice in the three regions of Asia. Deriving such information at the continental 
level is of major importance in view of the need for proper monitoring and alleviating serious and continually emerging 
human health issues in arsenic-contaminated areas. One aim of this paper is to highlight the potential of a viable modeling 
approach for appraising the danger posed by arsenic in soil-plant-human system. There is an urgent need to fix the safe limit 
of bioavailable arsenic in soil because total arsenic in soil is not a good index of the arsenic hazard. Our hypothesis is finding 
out whether the modeling approach can be used in establishing a safe limit of bioavailable arsenic in soils with reference to 
human health. To achieve the above-mentioned objectives, we have selected reported rice grain arsenic content data from 
Asian countries following the PRISMA guidelines. Carcinogenic and non-carcinogenic risk was calculated following the 
US EPA’s guidelines. It emerged that adults in Asian countries are prone to a high risk of cancer due to their consumption of 
arsenic-contaminated rice. South Asia (SA), South East Asia (SEA), and East Asia (EA) exceeded the US EPA-prescribed 
safe limit for cancer risk with ~ 100 times higher probability of cancer due to rice consumption. The hazard quotient for the 
ingestion of arsenic containing rice was 4.526 ± 5.118 for SA, 2.599 ± 0.801 for SEA, and 2.954 ± 2.088 for EA. These figures 
are all above the permissible limit of HQ of 1. The solubility free ion activity model can predict arsenic transfer from soil to 
rice grain based on easily measurable soil properties and be used to fix the safe limit of bioavailable arsenic in paddy soils. 
The methods and findings of this review are expected to be useful for regional-level policymaking and mobilizing resources 
to alleviate public health issues caused by arsenic.
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Introduction

Arsenic (As), infamously referred to as the “king of poi-
son,” is a colorless, tasteless, and odorless trace element 
found throughout the natural environment. It is a carcino-
genic metalloid reported to be present in the lithosphere 
at concentrations as high as 5 mg kg−1 [1]. High levels of 
arsenic in groundwater can be attributed to geo-biochemical 
processes that dislodge arsenic from arsenic-bearing min-
erals. The process is further accelerated by the indiscrimi-
nate withdrawal of groundwater [2, 3]. Apart from geogenic 
sources, groundwater may also be contaminated with arse-
nic through various anthropogenic activities including the 
disposal of various industrial wastes, mining operations, 
and dumping of sewage sludge and wastewater [4•]. Several 
arsenic-based pesticides have been applied to agricultural 
fields and continued to be used in many countries despite 
their known harmful effects [5, 6]. Although arsenic con-
tamination of drinking water has been documented in sev-
eral South Asian countries and the Americas, the severity 
of contamination in India and Bangladesh is unparalleled 
[7]. Approximately 85 million people in Bangladesh [8] and 
90 million in India [7, 9, 10•] are exposed to arsenic levels 
higher than the World Health Organization (WHO) thresh-
old limit of 10 µg As L−1 in drinking water. Globally, more 
than 230 million people are in danger of arsenic poisoning 
due to constant drinking of water [7•].

Human exposure to arsenic-contaminated groundwa-
ter, mainly drawn through tube wells, has been identi-
fied as a serious public health problem in many coun-
tries including Bangladesh [11, 12]. Apart from drinking 
water, arsenic finds its way into the human food chain 
through the consumption of food crops grown in soils 
regularly irrigated with arsenic-polluted groundwater 
[13, 14••]. It has been estimated that more than 50% 
of the world’s population consumes rice, with global 
production of rice amounting to approximately 503.27 
million tons in 2022–2023. Most importantly, rice is the 
staple food throughout South East Asia and is the rea-
son behind the rise in arsenic-related health problems 
in humans due to the regular consumption of rice grains 
(in addition to drinking water) grown in contaminated 
soils [15]. Sustained intake of arsenic-contaminated food 
increases arsenic body burden in humans and may lead to 
arsenicosis, black foot disease, and diseases of the heart 
and lungs [14, 16]. Occupational exposure can occur dur-
ing industrial processes such as mining and production/
processing as well as during the use of wood and leather 
preservatives, pharmaceuticals, glass, alloys, pigments 
and antifouling paints, poison baits, pesticides, and 
microelectronic and optical products. Arsenic present in 
tobacco is known to seriously affect smokers [17].

The traumatic impact of continued ingestion of arsenic 
on human health has been well documented. The most 
conspicuous effect of chronic arsenic intake is on the skin. 
Carcinoma (mainly, intra-epithelial carcinoma or Bowen’s 
disease, squamous cell, and basal cell carcinoma) is the 
most pernicious effect of arsenic poisoning on human skin 
[18]. Skin cancers caused by arsenic have a relatively short 
latency period of roughly 10 years resulting in lethal con-
sequences in a relatively short period of time [19]. The 
severity of the impacts of arsenic on human health is gov-
erned not only by the length of arsenic exposure but also 
by many environmental factors like sun exposure, fertilizer 
use, pesticide use, and smoking habit [20]. For instance, 
people with smoking habits and those exposed to an envi-
ronment with high fertilizer application are more likely to 
show early signs of arsenic poisoning [20]. Many studies 
have reported lung malignancies due to arsenic exposure 
[21, 22]. Again, poor nutritional status may increase an 
individual’s susceptibility to chronic arsenic toxicity, 
or alternatively that arsenicosis may contribute to poor 
nutritional status [23]. For example, participants with poor 
nutrition were reported from West Bengal, India, as having 
an overall 1.6-fold increase (for males = 1.5, females = 2.1) 
in the prevalence of keratoses [24]. Apart from this, vari-
ous neurological disorders and gastrointestinal effects are 
reported due to chronic As exposure [25], suggesting that 
malnutrition may increase the susceptibility to arsenic 
poisoning [24].

With public health issues in mind, monitoring and assess-
ment of arsenic hazards to humans should be prioritized. 
The upper critical limit set by WHO (1 mg kg−1) for arsenic 
in rice grain has now been considered obsolete and unsafe. 
The new permissible limit which is widely followed is 
0.3 mg kg−1 for brown rice and 0.2 mg kg−1 for polished 
white rice [26]. In August 2020, the US Food and Drug 
Administration (FDA) reissued guidelines for arsenic in 
infant rice cereal limiting it to 100 µg kg−1 [27]. Apart from 
providing good quality drinking water, monitoring of food 
materials like rice grain is also required to safeguard pub-
lic health. However, given the wide-ranging human dietary 
habits throughout the world, establishing a generalized 
limit for arsenic in various food products, including rice, is 
unwise. Nonetheless, the prescription of a safe limit of plant-
available (bioavailable) arsenic in soil is essential for, firstly, 
assessing the suitability of arable lands for crop production 
and, secondly, devising suitable management strategies for 
remediation of arsenic-contaminated soil. Taking into con-
sideration the ever-increasing food demands, it will be very 
challenging to exclude the arsenic-polluted land which is 
otherwise fertile and productive. However, changing the per-
missible limits to higher values will be detrimental to human 
and animal health.
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Despite the many published studies done to assess the con-
centration of arsenic in rice grain, no study has yet been done 
as a systematic review or meta-analysis on arsenic’s involve-
ment in cancer risk among people living in Asian countries. 
We used the existing data on arsenic in rice grain to calculate 
important parameters like carcinogenic and non-carcinogenic 
risk. We have also discussed the advantage of the mechanistic 
model to predict the arsenic transfer from soil to rice crop 
based on easily measurable soil properties like pH, organic 
carbon, and extractable arsenic. We have hypothesized that 
modeled plant arsenic data can serve to fix the safe limit 
of bioavailable arsenic in soil in relation to human health. 
The novelty of this review is its use of a protocol for risk 
assessment of arsenic-contaminated soils and fixing the safe 
limit of bioavailable arsenic in soil. This protocol certainly 
helps to better protect the human food chain from arsenic 
contamination. Under this approach, if one knows extract-
able arsenic, pH, and organic carbon content of soil, suit-
ability of agricultural land can be easily assessed. Hence, this 
strategy can easily be adopted for routine risk assessment of 
contaminated soil. In this review article, we have reviewed 
the (i) distribution of arsenic levels in rice (both at the field 
level and in market-sold rice) from Asian regions; (ii) health 
risks, both non-carcinogenic and carcinogenic, due to rice 
consumption; and (iii) prediction of the amount of arsenic in 
rice grain using a modeling approach. In the first section of 
this review, the mechanism of arsenic poisoning in humans 
has been discussed to reveal various health implications, 
which will help to create awareness among people living in 
arsenic-contaminated regions of the world. The meta-anal-
ysis of available literature documents the impact of regional 
variability on total arsenic content in rice grain. This review 
article synthesized grain arsenic data to assess carcinogenic 
and non-carcinogenic risks. Based on such information, risk 
assessment should be carried out in regions of high impor-
tance before cultivating rice crops so that human health is 
protected. In last section, we have discussed the appraisal of 
arsenic menace in soil-plant-human continuum and use of 
modeling approach for routine risk assessment.

Mechanism of Arsenic Poisoning in Humans

Manifestation of humans to arsenic exposure and its effect 
on their health may be acute or chronic. Acute arsenic tox-
icity leads to vomiting and diarrhea within hours of inges-
tion, direct myocardial dysfunction, acute encephalopathy, 
and severe kidney and lung injury [28]. Low-dose chronic 
exposure can lead to deleterious effects like malignant and 
non-malignant skin changes, hypertension, diabetes, periph-
eral vascular disease, and malignancies of the lung, blad-
der, and liver [18, 28]. Non-malignant lung disease, gastro-
enteritis, portal hypertension, and black foot disease have 

been reported in people consuming arsenic-contaminated 
drinking water [29]. The association of arsenic with vari-
ous human malignancies has made this metalloid a class 
1 human carcinogen [30]. The most common malignancy 
associated with arsenic is that of the skin (e.g., squamous 
cell carcinoma, basal cell carcinoma, Bowen’s disease, and 
Merckel cell carcinoma) [31], while the severe ones are 
associated with the lungs (e.g., squamous cell carcinoma of 
the lungs) [32]. Several mechanisms underlying arsenic car-
cinogenicity have been studied, and three pathophysiologic 
factors are identified as arsenic methylation, oxidative stress, 
and epigenetic changes induced by arsenic (Fig. 1).

Arsenic is metabolized in the human body through redox 
reactions, of which methylation is essential. Oxidative meth-
ylation of arsenic produces methylated trivalent and pentava-
lent arsenic compounds using S-adenosyl methionine (SAM) 
[33]. These methylated arsenic compounds are carcinogenic 
to skin keratinocytes [34]. In the above-mentioned methyla-
tion process, reactive oxygen species (ROS) are generated. 
Directly or indirectly, arsenic-induced oxidative stress trig-
gers DNA damage. Both in mouse and human skins, arsenic 
can induce oxidative damage in cellular DNA and generate 
8-hydroxyl 2-deoxy guanosine (8-OHdG) oxidative DNA 
adducts [35, 36]. Clinical studies in arsenic-induced Bowen’s 
disease (As-BD) indicate that the increased 8-OHdG levels 
are positively correlated to the lesional arsenic concentra-
tion. Suggested here is the involvement of oxidative stress 
in arsenical skin carcinogenesis [35, 36]. Elevated 8-OHdG 
has also been found to be implicated in breast cancer [37].

Modifications of gene transcription of WNT/β-catenin and 
calcium signaling pathways are reported and implicated in the 
development of many cancers [38]. WNT signaling is a regula-
tory pathway that orchestrates skin development, homeostasis, 
and stem cell activation. Aberrant regulation of WNT signaling 
cascades not only gives rise to tumor initiation, progression, 
and invasion but also maintains cancer stem cells which con-
tribute to tumor recurrence [39]. In a systematic review and 
meta-analysis, it was discovered that arsenic causes dysregula-
tion of WNTa and β-catenin levels, leading to neoplastic pro-
liferation [40]. The arsenic-induced ROS has also been shown 
to dysregulate the epidermal growth factor receptor (EGFR), 
nuclear factor-κβ (NF-κβ), mitogen-activated protein (MAP) 
kinase, and matrix-metalloproteinases (MMPs) that help in 
neoplastic proliferation [41].

The process of arsenic metabolism in the human body 
utilizes SAM, the cell’s methyl group donor, and that leads 
to the depletion of SAM and resulting epigenetic changes 
like aberrant DNA methylation, histone modification, and 
microRNA (miRNA) expression [18]. For tumor suppres-
sor genes, aberrant DNA promoter hypermethylation is 
greatly associated with transcriptional gene silence [42]. 
Abnormal DNA methylation has been found to be associ-
ated with lung and bladder cancers due to the inhibition 
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of the transcription of tumor suppressor genes (like p53, 
p16INK4A, RASSF1A, and PRSS3) [43]. Through the 
addition of acetyl groups (via histone acetyltransferases) 
or the removal of acetyl groups (via histone deacety-
lases), histone-modifying enzymes catalyze the addition 
or removal of these modifications to generally induce or 
maintain an open euchromatic state, or a closed or het-
erochromatic state, on specific histone residues. Conse-
quently, euchromatin or heterochromatin development is 
correlated with the transcriptional activity of linked genes 
[44]. Arsenic metabolites have been shown to modify the 
methylation of normal histones (like H3K4, H3K9, and 
H3K27) leading to the malignant transformation of lung 
tissue [45]. Arsenic compounds were also shown to induce 
malignant transformation of human nontumorigenic cell 
lines through changes to histone H3 acetylation, DNA 
promoter methylation, and decreased expression of the 
DBC1, FAM83A, ZSCAN12, and C1QTNF6 genes. For 
each of these under-expressed genes, DNA methylation 
is inversely correlated with the histone acetylation levels 
for their respective promoter regions, leading scientists to 
conclude that changes in histone H3 acetylation occur dur-
ing arsenic-induced malignant transformation [46].

Small non-coding RNAs called miRNAs control the 
translation of genes involved in numerous important aspects 
of cell life by inhibiting the translation of the mRNAs they 
target [47]. miRNA can interfere with the production of sev-
eral, and occasionally even hundreds of, target genes because 
it binds to the 3′-untranslated region of mRNAs through 
incorrect base pairing. For this reason, miRNA dysregula-
tion is linked to a number of human illnesses and cancer is 
no exception [48]. Exposure to arsenic has also been shown 
to induce epithelial-to-mesenchymal transition (malignant 
transformation) by reducing the miRNA-200 family in bron-
chial epithelial cells [49]. Arsenic also induces angiogenesis 
by diminishing the miRNA-9 family [50].

Methodology

In Asian countries, rice is the major staple food, and it is cul-
tivated in at least two seasons to cater for huge demand [51]. 
Rice is a very water-demanding crop [52]. As a result, there 
is the excessive withdrawal of groundwater for irrigating 
the paddy fields during the dry season resulting in elevated 
levels of arsenic in soils irrigated with arsenic-contaminated 

Fig. 1   Mechanisms of carcinogenic toxicity of arsenic in humans. Three pathophysiological effects on human body, viz., arsenic methylation, 
oxidative stress, and epigenetic changes, are induced by sustained arsenic intake by human body
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groundwater. As much as 83,000 µg kg−1 of arsenic has 
been found in paddy soils subjected to constant irrigation in 
Bangladesh [53]. Increased levels of arsenic in rice grains 
are reported from paddy fields irrigated with contaminated 
irrigation water [54, 55]. In this study, we have collected 
literature-reported rice grain arsenic content data from Asian 
countries. The possible lifetime cancer risk due to the con-
sumption of arsenic-contaminated rice was evaluated.

Search Strategy

To find the numerous research articles published on this 
topic, a systematic search was conducted in the publicly 
available databases/search engines like ISI Web of Science, 
Google Scholar, ScienceDirect, Scopus, and PubMed for 
the years between January 2000 and February 2023. We 
used Boolean operators (e.g., “OR” and “AND”) to develop 
search terms from the keywords such as “arsenic,” “Oryza 
sativa,” “rice,” “grain,” “Asia,” “survey,” “farmer field,” and 

“market.” A full list of keywords is provided in Table S1. 
The reference lists of articles were checked to find other 
relevant papers. As shown in Fig. 2, literature search and 
retrieving articles were done according to the PRISMA (Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analysis) guidelines [56].

Study Selection

Following a first screening, the potentially eligible articles 
were downloaded as full texts. Then, the inclusion criteria 
for article selection were critically assessed. Contradictions 
between any reported evidence and different researchers’ 
discussion, in the different publications, were addressed and 
tentatively solved through an open debate and agreement 
jointly among the authors of this review. Inclusion criteria 
were full-text availability, published full or abstract text in 
the English language, detected concentration of arsenic in 
rice grain, either field or market survey studies, reported 

Fig. 2   a Preferred Reporting 
Items for Systematic Reviews 
and Meta-Analysis (PRISMA) 
diagram for risk assessment. 
b Preferred Reporting Items 
for Systematic Reviews and 
Meta-Analysis (PRISMA) for 
developing forest plot. *Stud-
ies from Western Asia (n = 5) 
and Central Asia (n = 1) did 
not meet the minimum criteria 
of n > 10 to be considered for 
further analysis
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standard deviation or standard error, and papers published 
between 2000 and 2023. Articles that did not meet all of the 
above criteria above were excluded.

Definition and Data Extraction

The data were extracted and assessed. Data from each study 
included first author, year of study and year of publication, 
total sample size, region study, and average or range of con-
centration of arsenic. Whenever a standard error of mean 
(SEM) was reported instead of standard deviation (SD) and 
sample data were available, we calculated SD from [57].

Statistical Analyses and Meta‑analysis

To estimate the heterogeneity rate among different studies, 
an I2 statistic was applied. The I2 statistic describes the per-
centage of variation across studies that is due to heteroge-
neity rather than chance [58]. When the Q value proved to 
be significant (p < 0.05), this meant that the studies were 
heterogeneous. As heterogeneity was considered for val-
ues > 50%, the random effect model was deployed [59]. 
Forest plot was created to summarize the information on 
individual studies in the meta-analysis which also provides 
a visual indication of the degree of heterogeneities. The 
lack of difference between the study group and marginal 
level, commonly known as no effect or zero effect, has been 
presented by a vertical line in the center of the plot. It was 
considered that at this point, the mean difference is zero. The 
subsequent squares depicted the mean difference values for 
each study, and the size of the squares represents the effect 
of the estimate and the weight of the studies. Each hori-
zontal segment’s succeeding endpoints exhibited 95% con-
fidence intervals (CI) that were symmetrical about the mean. 
The diamond in the plot represents the point estimate and 
confidence intervals when all studies were combined and 
averaged. The metafor package (version 3.8–1) in R-Studio 
(version 1.3.10932.3.1) served to execute the data analysis.

Assessment of Cancer Risk

The inorganic arsenic (iAs) was used to assess the carcino-
genic risk for people consuming rice grown in SA, SEA, 
and EA regions. For this, the chronic daily dose (CDD) was 
calculated (Eq. 1).

where C is the iAs (mg kg−1) in rice grain, IR denotes the 
ingestion rate (0.4 kg day−1 or 4 × 105 mg day−1 [14]), ED is 
the exposure duration (30 years for an adult [60]), EF stands 
for exposure frequency (365 days year−1), CF is conversion 
factor (1 × 10−6 kg mg−1), BW represents the average body 

(1)CDD =
C × IR × ED × EF × CF

BW × AT

weight (70 kg for an adult), and AT is the average time for 
carcinogen (70 × 365 days for As) [61]. For the calculation 
of CDD in children, IR is assumed to be 0.2 kg day−1 [62•], 
ED is 6 years, and BW is 20 kg [60].

The carcinogenic risk (CR) to an adult human who has 
consumed arsenic-contaminated rice was calculated based 
on the CDD value and the slope factor for arsenic (Eq. 2).

where SF is the slope factor (SF = 1.5 mg kg−1 day−1 for 
arsenic). As per the US EPA guidelines [63], CR val-
ues < 10−6 are safe while values > 10−4 are harmful to human 
health.

Risk Thermometer

A risk thermometer is a new holistic protocol on risk char-
acterization [64, 65••], and this gives us a comparison of 
risks. The risk thermometer for arsenic estimates the sever-
ity-adjusted margin of exposure (SAMOE) based on Toler-
able Daily Intake (TDI, 3.0 μg kg (body weight)−1 day−1 for 
arsenic) and ingestion of arsenic present in food (rice). The 
human dietary exposure to arsenic through rice consumption 
can be calculated using the equation (Eq. 3) proposed by 
Chowdhury et al. (2020) [66].

where TDI is 3.0 μg kg (bodyweight)−1 day−1 for arsenic, 
AFBMR is the non-linear relation in dose range (1/10; BMR-
benchmark response), AF (assessment factors) is a factor of 
10 (conservative assessment), SF (severity factor) is 100 (for 
cancer, the most severe category), and E is the exposure fac-
tor (iAs concentration in rice). Based on the SAMOE value, 
the risk classes in the risk thermometer are designated as 
class 1 (no risk, > 10), class 2 (no to low risk, 1–10), class 3 
(low risk, 0.1–1), class 4 (moderate to high risk, 0.01–0.1), 
and class 5 (high risk, < 0.01) [64].

Assessment of Non‑cancer Risk

The hazard quotient (HQ) is the deterministic means for 
assessing the chronic non-carcinogenic hazard associated 
with metalloid (Eq. 4) [67]:

This is a relationship between the average daily dose 
(ADD; mg kg−1 d−1) of arsenic by a population and the 
toxicological endpoint (reference dose (RfD) mg kg−1 d−1). 
It is in fact an estimate of the limit of daily exposure to the 
population (including sensitive subpopulations) where there 
are no deleterious lifetime health effects. For arsenic, the 

(2)CR = CDD × SF

(3)SAMOE = TDI∕(AFBMR × AF × SF × E)

(4)HQ =

ADD

Rf D
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RfD value is 0.0003 mg arsenic (kg body weight)−1 day−1 
[68]. The cumulative risk from various non-carcinogens and/
or the different ways of exposure (dermal and ingestion) are 
obtained by summing up the HQ values to get a hazard index 
(HI). If the concentrations of arsenic in the ingested media 
(soil, water, and food) are known, the ADD via oral intake 
can be calculated (Eq. 5) [14, 69].

where N is the number of exposure routes to arsenic (e.g., 
N is 2 if routes of exposure are food and drinking water), 
Ci is the concentration of inorganic arsenic (mg kg−1) in 
ith route, and CRi is the consumption rate (kg day−1) of the 
subscripted ingested material.

In the present review, exposure to arsenic in humans 
based solely on rice grain consumption. Therefore, the aver-
age daily dose was computed based on the following assump-
tions: C = concentration of inorganic arsenic in rice grain in 
regions of Asia, CR = 0.4 kg day−1 or 4 × 105 mg day−1 [14], 
and BW = 70 kg for adults [61]. An HQ value less than or 
equal to 1 is deemed to be safe [67]. However, because other 
dietary items may potentially be the sources of arsenic enter-
ing the human body, the HQ limit has been adjusted and 
regarded safe at HQ ≤ 0.5 [70•].

Results and Discussion

Study Characteristics

From > 1600 published articles, we excluded papers based on 
the conditions provided in the PRISMA flowchart (Fig. 2). 
In total, 88 papers were chosen to establish the risk asso-
ciated with the consumption of rice grain in the chosen 
Asian regions. The Asian continent was subdivided into five 
regions, viz., South Asia (SA), South East Asia (SEA), East 
Asia (EA), West Asia (WA), and Central Asia (CA). Raw 
data (1 work common between SA and EA) on grain arsenic 
content as collected from SA (42 papers from Bangladesh, 
India, Iran, Nepal, Pakistan, and Sri Lanka), SEA (11 papers 
from Cambodia, Singapore, Thailand, and Vietnam), and EA 
(35 papers from China, Japan, Taiwan, and South Korea) 
were pooled and analyzed. For risk assessment, the total 
grain arsenic (tAs) content was converted to inorganic arse-
nic (iAs) by considering iAs to be 75% of tAs in husked rice 
(farm field grains) and 80% in polished rice (market avail-
able grains) [71••]. The papers from CA (n = 1) and WA 
(n = 5) regions were discarded because they did not meet the 
minimum criteria of n > 10 for carrying out further analysis. 
Conversely, a total of 60 papers (28 from SA covering Bang-
ladesh, India, Iran, Nepal, Pakistan, and Sri Lanka; 9 from 
SEA covering Cambodia, Thailand, and Vietnam; 23 from 

(5)ADD =
∑N

i=l

Ci × CRi

BW

EA covering China, Japan, Taiwan, and South Korea) were 
selected to report the relative comparison of total arsenic in 
rice grain between peer-reviewed studies in these regions. 
For this purpose, we compiled the data quantitative set of the 
above individual studies through the meta-analysis method.

Concentration of Arsenic in Rice Grain

A number of studies have been published on the concentra-
tion of total arsenic in rice grain grown in a wide range of 
contexts, including market-based surveys in different parts 
of Asia (Table 1). Evidence suggests that arsenic content in 
rice is likely to vary according to the country of origin as 
well as different production sites. Our studies showed that 
the maximum concentration of total arsenic was observed 
in SA countries like Bangladesh (e.g., 780–6050 µg kg−1 
[72]) and India (e.g., 900–1510 µg kg−1 [73]). Conversely, 
a minimum level of arsenic in raw rice grain was reported 
in the SEA and EA countries. For example, a study from 
Thailand which is in the SEA region reported that the level 
of arsenic in rice samples ranged from 160 to 240 µg kg−1 
(n = 55) [74]. In the EA region, the minimum level of arsenic 
in rice grain as reported in China was BDL–100 µg kg−1 
[75]. In countries like Bangladesh and India, the source of 
arsenic is geogenic in nature [14]. Large variability in soil 
arsenic level caused by the excessive uptake of irrigation 
water during rice cultivation naturally leads to elevated grain 
arsenic in the rice fields of Bangladesh and India [15]. In 
contrast, anthropogenic activities like mining, discharge of 
municipal and industrial wastewater to rivers and soils, and 
improper use of fertilizer and chemical pesticides may lead 
to substantial arsenic accumulation in rice grain grown in 
the SEA and EA regions. Other reasons for the differences 
in the concentration of arsenic throughout Asia can be due 
to the various rice species, which bioaccumulate arsenic in 
their own ways [76]. Our review of the literature showed that 
the total amount of arsenic in rice grain was mostly reported 
across the Asian regions. Other arsenic species like inor-
ganic and organic forms are rarely reported due to the lack of 
a standardized protocol or advanced instruments. One study 
compared the presence of inorganic arsenic in rice grain 
among Asian, US, and European countries [77]. They found 
that 80% of mean inorganic arsenic was detected in rice 
from Bangladesh and India, whereas relatively lower mean 
inorganic arsenic content of 64% and 42% was recorded in 
European and US rice grain, respectively. American rice was 
found to be enriched with dimethylarsinic acid (DMA) in 
particular. This signifies the importance of undertaking fur-
ther risk assessment work on rice grain grown in the Asian 
regions. The objective of the meta-analysis is to compare the 
findings of peer-reviewed studies and what they concluded.

The forest plot for SA shows the list of input studies with 
their effect sizes (Fig. 3). From the random effect model, the 
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Table 1   Main characteristics of 
studies included in our review

Country Total arsenic mean (range) 
(μg kg−1), n

Study type Other info Reference

South Asian (SA) region
Bangladesh 153.8 (104–362), 144 Field trial Aman [109]

293.6 (157–454), 173 Field trial Boro [109]
320 (140–430), 30 Market survey [110]
110.5 (5–805), 100 Field survey [111]
141 (18–601), 337 Market survey [112]
224 (17–733), 143 Field survey [112]
136 (40–270), 10 Field survey [97]
183 (108–331), 78 Field survey Boro [113]
117 (72–170), 82 Field survey Aman [113]
296 (182–436), 56 Field survey [114]
89.1 (25–287), 6 Field survey Aman [115]
150.5 (31–453), 6 Field survey Boro [115]
1870 (720–6050), 56 Field survey [79]
2150 (780–6050), 10 Field survey [72]
410 (160–740), 72 Field trial [116]
170 (70–280), 76 Field trial [116]
143 (2–557), 214 Field survey* [117]
153 (74–301), 14 Field survey* [118]
84.8 (40–130), 9 Field survey [119]
735 (410–980), 4 Field survey [120]

India 451 (190–780), 21 Field survey Boro [121]
174 (2–1260), 60 Market and Field survey [14]
334 (60–600), 18 Field survey Aman [121]
342 (230–540), 63 Field survey Boro [122]
284 (160–580), 63 Field survey Aman [122]
410 (150–740), 6 Field survey [123]
510 (410–690), 240 Field survey Boro [124]
562 (420–780), 260 Field survey Boro [124]
160.3 (121–197), 9 Market survey [125]
58.1 (3–254), 15 Field survey [126]
932.5 (630–1090), 4 Field survey [127]
273.9 (18–446), 10 Field survey [128]
1090 (900–1510), 50 Field survey [73]
180 (30–333), 12 Field survey [129]
150 (40–450), 44 Market survey [130]
51 (30–80), 11 Market survey [77]

Iran 87 (BDL–210), 60 Field survey [131]
65 (30–90), 15 Market survey [132]
121 (50.6–222), 15 Field survey [133]
101.4 (10–252), 20 Market survey [134]
82 (35–130), 17 Market survey [132]
280 (BDL–670), 15 Market survey [135]
390 (115–800), 20 Field survey [135]
161.7 (48–314), 10 Market survey [136]

Nepal 180 (60–330), 75 Field survey [137]
Sri Lanka 47.2 (2.48–213), 699 Field survey [138]

77 (19–217), 165 Market survey [139]
Pakistan 98.9 (BDL–225.4), 54 Field survey [140]

36.9 (BDL–178.1), 14 Field survey [141]
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* Household survey—rice grown in own fields

Table 1   (continued) Country Total arsenic mean (range) 
(μg kg−1), n

Study type Other info Reference

South East Asian (SEA) region
Thailand 204 (< 0.1–412.6), 159 Field survey [142]

205 (84–489), 97 Market survey [143]
175 (160–240), 55 Field survey [74]
176.5 (77.2–343.1), 113 Market survey [144]

Cambodia 185 (47–771), 131 Field survey [145]
118.3 (12–578), 30 Field survey [146]
115 (52–328), 70 Field survey [147]
243 (63–528), 45 Field survey [148]

Singapore 136.1 (60.5–361.1), 15 Market survey [149]
Vietnam 180 (80–556), 78 Field survey [150]

220 (110–340), 24 Field survey [151]
East Asian (EA) region
China 87 (11–186), 160 Market survey [152]

480 (230–930), 34 Field survey [153]
92 (5–309), 282 Field survey [154]
42 (BDL–100), 16 Market survey [75]
199 (BDL–587), 155 Field survey [155]
340 (125–1840), 220 Field survey [156]
196.9 (33–739), 892 Field survey [157]
50 (BDL–310), 92 Field survey [158]
116.5 (41–210), 36 Field survey [159]
116.5 (BDL–665.2), 1653 Field survey [160]
90 (30–192), 32 Field survey [161]
260 (170–390) Field survey [162]
154.9 (106.7–246.7), 353 Field survey [163]
114.4 (65.3–274.2), 21 Field survey [164]
119 (1.35–254), 258 Field survey [165]
564 (152–1094), 33 Field survey [166]
360 (30–1040), 73 Field survey [167]
188 (32–533), 205 Field survey [168]
243, (127–431), 29 Field survey [169]
129.4 (50.2–253), 43.4 Field survey [170]
172.9 (65–277), 27 Field survey [171]
125 (20–326), 113 Field survey [172]
119 (BDL–490), 712 Field survey [173]
820 (460–1180), 2 Field survey [120]
196 (54–795), 446 Field survey [174]
191.7 (9–624), 195 Field survey [175]
111.2 (15–586), 240 Market survey [175]

Japan 137 (107–166), 10 Field survey [176]
South Korea 200 (120–280), 3 Field survey [177]

180 (60–390), 100 Field survey [178]
146 (40–380), 82 Field survey [179]
247 (104–774), 40 Field survey [180]
410 (240–720), 5 Field survey [181]
124, (31–282), 485 Market survey [182]

Taiwan 474 (290–660), 11 Field survey [183]
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Fig. 3   Forest plot showing the weighted mean difference of total arsenic concentration in rice grain between study level and marginal level with 
their respective confidence intervals and weight in the meta-analysis together with the heterogeneity statistics in South Asia (SA)
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overall summary weighted mean value of 218.43 µg kg−1 
(95% Confidence Interval: 157.55 to 279.31) of arsenic in 
rice grain was statistically significant (p < 0.001). In fact, it 
is marginally above the permissible limit of 0.2 mg kg−1[26]. 
An inconsistency index of 100% indicated significant hetero-
geneity in the data set which is due to the geographical dis-
tribution of paddy-growing areas in the different countries 
of the SA region. Non-overlapping of the effect sizes with 
the zero effect line of the majority of rice samples of Bang-
ladesh, India, Nepal, Iran, and Pakistan was observed. At 
some locations, contamination might be due to the extensive 
use of arsenic-contaminated water from shallow tube wells 
for irrigation of paddy rice [78•], and some areas might 
have been contaminated by mining and industrial activities 

[79]. In contrast, the 95% confidence interval crosses the 
line of no effect in the case of samples from Sri Lanka. Fig-
ures 4 and 5 reveal that the overall summary weighted mean 
for arsenic in rice grain of SEA (118.61 µg kg−1, 95% CI: 
95.79 to 141.43) and EA (128.01 µg kg−1, 95% CI: 77.44 to 
178.58) is statistically significant (p < 0.001). It is lower than 
the permissible limit as prescribed by WHO [26]. Similarly, 
significant heterogeneity in data was observed at 99.55% and 
99.93% for SEA and EA, respectively.

Carcinogenic Risk

A carcinogenic risk assessment for adults and children 
consuming rice in the SA, SEA, and EA regions was 

Fig. 4   Forest plot showing the weighted mean difference of total arsenic concentration in rice grain between study level and marginal level with 
their respective confidence intervals and weight in the meta-analysis together with the heterogeneity statistics in South East Asia (SEA)
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executed (Table S2). Like inorganic arsenic content in 
rice grain, heterogeneous distribution of the CR value 
for adults was observed from the box plot with data dis-
tribution curve (Fig. 6). The average CR value has been 
found to be 8 × 10−4 (range: 1 × 10−4 to 5 × 10−3) for SA, 
5 × 10−4 (1 × 10−4 to 7 × 10−4) for SEA, and 6 × 10−4 
(range: 1 × 10−4 to 2 × 10−3) for EA. These values mark-
edly exceeded the prescribed safe limit of 1 × 10−6 and 
indicated that the grain produced and sold in these three 
regions of Asia poses a severe cancer risk to adults. Data 
on cancer risk for children also exceeded the critical limit 
of 1 × 10−6 (Fig. 7). The mean CR value in these regions 
has been observed as 3 × 10−4 (range: 3 × 10−5 to 2 × 10−3) 
for SA, 1 × 10−4 (2 × 10−5 to 2 × 10−5) for SEA, and 

1 × 10−4 (range: 4 × 10−5 to 7 × 10−4) for EA. The SAMOE 
value for arsenic toxicity due to rice consumption in SA, 
SEA, and EA showed the risk levels of class 4 (moder-
ate to high) or class 3 (low risk) depending on the rice 
arsenic concentration (Fig. 8). The mean SAMOE value 
was 0.282 ± 0.254 for SA, 0.284 ± 0.278 for SEA, and 
0.280 ± 0.172 for EA. It is well established that rice is the 
largest source of inorganic arsenic in the human diet. Esti-
mates showed that about 200 million people have elevated 
amounts of inorganic arsenic in their water, while half the 
world consumes rice as a dietary staple [80]. Compared to 
the countries of Europe and the USA, Bangladesh, India, 
and China have documented both elevated arsenic levels 
in rice and populations who eat large amounts of rice. 

Fig. 5   Forest plot showing the weighted mean difference of total arsenic concentration in rice grain between study level and marginal level with 
their respective confidence intervals and weight in the meta-analysis together with the heterogeneity statistics in East Asia (EA)
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In American rice samples, the median total arsenic was 
0.25 mg kg−1, but inorganic arsenic varied only between 
0.05 and 0.15 mg kg−1. In Chinese rice, the median total 
arsenic was lower, 0.14 mg kg−1, but inorganic arsenic 
showed greater variation, reaching larger levels, between 
0.07 and 0.38 mg kg−1. Cancer rates among people were 
earlier predicted as 1 per 10,000 people in Italy and the 

USA, 7 per 10,000 in India, 15 per 10,000 in China, and 
22 per 10,000 in Bangladesh due to inorganic arsenic 
being consumed through rice [81]. Several researchers 
discretely calculated the carcinogenic risk due to the con-
sumption of rice grain mainly in India and Bangladesh 
[60–62, 78, 82, 83]. In the present study, such large-scale 
regions were considered to calculate the carcinogenic risk, 

Fig. 6   Box plot with data 
distribution curve showing the 
comparative distribution of pos-
sible carcinogenic risk in adults 
due to consumption of arsenic-
contaminated rice grains in 
South Asia (SA), South East 
Asia (SEA), and East Asia (EA) 
regions. The US EPA suggests 
a safe limit of 10–6 for human 
health

Fig. 7   Box plot with data 
distribution curve showing the 
comparative distribution of 
possible carcinogenic risk in 
children due to consumption of 
arsenic-contaminated rice grains 
in South Asia (SA), South East 
Asia (SEA), and East Asia (EA) 
regions. The US EPA suggests 
a safe limit of 10–6 for human 
health
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which is unique. The CR value between 10−6 and 10−4 
also may be acceptable according to the US EPA criteria, 
although this range is ambiguous and may require a case-
specific judgment regarding the acceptability of a particu-
lar risk [84]. To judge the acceptability of this cancer risk, 
it would have been prudent to compare the risk with back-
ground cancer risks in the three regions, but that may not 
be possible. The average cancer risk in rice grain grown 
and sold in the South Asian region is the highest followed 
by South East and East Asian regions. In this review arti-
cle, rice grain data were analyzed from South Asian coun-
tries like Iran, Nepal, Pakistan, Sri Lanka, Bangladesh, 
and India. The transfer of arsenic in rice grain is well 
established in Bangladesh and India [14, 85]. At the same 
time, there are also alarmingly large amounts of arsenic 
rice grain in East and South East Asian countries like 
Cambodia, Indonesia, Thailand, Vietnam, South Korea, 
North Korea, China, and Japan. This analysis indicates 
that new management options should be implemented in 
rice-growing soils of these regions to restrict the transfer 
of arsenic from soil to plant and, thus, to the human body. 
The assessment of human health using cancer risk as a 
measure is a better way to convince policymakers, funding 
agencies, and the general public for necessary actions in 
these Asian regions. Although the first report of poison-
ing food materials with arsenic was published four or five 
decades ago, an effective solution to this burning human 
health problem remains elusive. Researchers have already 

published several papers on the management and remedia-
tion aspects of arsenic-contaminated soils. The time has 
come to think about fixing the critical limit of bioavailable 
arsenic in the soil for the safe cultivation of crops (rice) 
to ensure human health is safe. Our analysis has shown 
that the upper critical limit set by CODEX for arsenic in 
rice grain is not adequate to protect people’s health. While 
comparing the effectiveness of the CODEX limit with that 
assessed in terms of CR, it is clear that in most of the rice 
grain samples, the critical value of CR (> 10−6) exceeded 
for arsenic, whereas the CODEX value in those rice grain 
samples was within the safe limit, i.e., < 0.2 mg kg−1.

Non‑carcinogenic Risk

The HQs for human rice consumption in these three 
regions were calculated (Fig. 9). The HQ was 4.526 ± 5.118 
for SA, 2.599 ± 0.801 for SEA, and 2.954 ± 2.088 for the 
EA region, and they are far above the safe limit of HQ 
of 1 or 0.5. It is evident that the hazard quotient value 
for rice grain was highest in the SA region followed by 
the SEA and EA regions. Assessment of non-carcinogenic 
risks as computed here is not complete because arsenic 
input to humans may also originate from other routes like 
consumption of food materials other than rice and direct 
ingestion of soil. The cumulative HQ will be far above the 
critical limit of 1 if other routes of entry of arsenic into the 
human body are considered.

Fig. 8   Box plot with data 
distribution curve showing com-
parative distribution of SAMOE 
in adults due to consumption of 
arsenic-contaminated rice grains 
in South Asia (SA), South East 
Asia (SEA), and East Asia (EA) 
regions
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Appraisal of Arsenic Menace in the Soil–
Plant‑Human Continuum

Modeling for Prediction of Arsenic Content in  
Crop Plants

The phytoavailability of arsenic is governed by several fac-
tors including physical, chemical, and biological properties 
of soil, plant type and variety, and environmental conditions. 
The mobility and uptake of arsenic from soil to plant are gov-
erned by the interactions occurring in the rhizospheric soil 
environment and the roots. Arsenic transfer from soil to plant 
is affected by the presence of iron, manganese, aluminum, 
organic matter, clay, and phosphate in soil and the soil pH 
[14, 86–88]. Given the complexity of the processes govern-
ing arsenic uptake by plants, it is challenging to develop a 
model which can accurately predict the arsenic uptake and 
arsenic content in plants. Two types of models (mechanistic 
and transport models) can be used to predict arsenic uptake 
and content in plants. The mechanistic model considers the 
complex interactions taking place between the soil environ-
ment and plant root system. The sorption isotherm and sorp-
tion kinetic models are the most commonly used mechanistic 
variants employed to predict arsenic uptake by plants. The 
biosorption of arsenic by Hydrilla verticillata (a submerged 
aquatic plant) was reported by Nigam et al. (2013) [89], and 
they used the Langmuir isotherm and pseudo-second-order 
kinetic models to represent arsenic adsorption/removal from 
water, indicating the dominance of the chemisorption process 

and strong bonding of arsenic with the plant biomass. These 
models are very useful in assessing the performance of vari-
ous phyto-remediating plants for arsenic removal from water. 
However, the complexity of modeling increases when soil 
comes into the context as multicomponent reactions need to 
be considered at the same time. Therefore, solubility specia-
tion models are widely employed to consider the effect of solid 
phase interaction with soil solution.

An integrated solubility free ion activity model (FIAM) has 
been used to predict the uptake of arsenic by rice crop based on 
predicted free ion activity in soil solution [14, 88]. The model 
suggests that the uptake of arsenic is controlled by free ion 
activity in the soil pore water. Soil properties like pH, organic 
carbon, and extractable arsenic have served as input parameters 
to run this model [14, 88]. A transfer factor (TF) is defined as 
the ratio of arsenic concentration in the plant [MPlant] to arsenic 
ion activity in soil pore water (Mn−) (Eq. 6) [90].

The Mn− can be predicted from a pH-dependent Freundlich 
equation [70]. Arsenic uptake by plant can be calculated by 
combining Eq. 6 with Mn− as follows (details in supplementary 
information, section A1):

where C, β1, and β2 are coefficients associated with arsenic 
and plants. Microsoft Excel Solver was used to parameterize 

(6)TF =
[MPlant ]

(MN−)

(7)log [Mplant ] = C + β1pH + β2 log[Mc]

Fig. 9   Box plot with data 
distribution curve showing com-
parative distribution of possible 
hazard quotient in adults due to 
consumption of arsenic-contam-
inated rice grains in South Asia 
(SA), South East Asia (SEA), 
and East Asia (EA) regions. The 
US EPA suggests a safe limit of 
1 for human health
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Eq. 7 through non-linear error minimization [14]. For the 
calculation of the error sum of squares, numerical data on 
plant metalloid content were used rather than logarithmic 
data [14, 88]. As high as 78% variation in arsenic content 
in rice grain could be explained by the solubility-FIAM 
model for samples collected from the arsenic-affected region 
in Malda, West Bengal [14]. The model parameters were 
reported as C = −2.30, β1 = −0.03, and β2 = 0.80 (Figure 
S1). In another study, solubility-FIAM was also tested in 
soil subjected to long-term sewage irrigation to predict the 
transfer of arsenic from soil to rice crop [88]. In this study, 
as much as 36% variation in arsenic content in rice grain 
could be explained by the solubility-FIAM model where 
model parameters were reported as C = −4.15, β1 = 0.28, 
and β2 = 0.68. Such prediction has been considered very 
good for routine risk assessment of arsenic-contaminated 
soil based on important soil chemical properties like pH, 
extractable arsenic, and organic carbon. Datta and Young 
(2005) reported that parameterization of solubility, based 
on actual free ion activity, would improve the predictability 
of the model [91]. Literature has reported both positive and 
negative effects of pH on solubility and mobility of arsenic 
as seen from the model parameter β1 value. On the other 
hand, model parameter β2 is negatively related with the solu-
bility of arsenic in soil. Consequently, mobility of arsenic is 
generally reduced with an increase in organic matter content 
in soil through organo-arsenic chelation [92]. In addition to 
rice crop, the efficacy of different models such as regression 
model (linear and multiple), logarithmic model, and solu-
bility-FIAM was compared for predicting arsenic content in 
wheat grains and the risk involved when humans consume 
them [93]. The solubility-FIAM model has been found to 
offer a better prediction (R2 = 0.97) of the arsenic content 
in grains and associated human health risks. The variability 
in arsenic uptake by wheat grain was explained by multiple 
regression, linear regression, and logarithmic regression 
model to the extent of 86%, 76%, and 70%, respectively 
[93•]. Logarithmic transformation of data reduced the pre-
dictability of the regression model by 6%, which indicates 
that the relationship between extractable arsenic in soil and 
arsenic content in wheat grain is linear in nature within 
the observed range of extractable arsenic in experimental 
soil. Based on these models, it is clear that the arsenic con-
tent in wheat grain is mainly affected by Olsen extractable 
arsenic in soil; inclusion of other soil properties like pH 
and organic C in multiple regression model enhanced the 
predictability up to 86%. Apart from the higher prediction 
coefficient, the solubility free ion activity model had an 
edge over empirical regression models because the former 
is not purely empirical. Instead, it is semi-mechanistic in 
nature, where the assumption had been made that extract-
able arsenic is adsorbed on oxidizable organic C. For rice, 
the solubility-FIAM model was validated with the arsenic 

data set collected from Nadia (West Bengal, India). In the 
future, other important soil parameters like clay content and 
available Fe, Al, Mn, and phosphate content should be incor-
porated as model parameters to enhance the model’s perfor-
mance. Currently, total arsenic in soil (10 to 20 mg kg−1) 
has been used as a simple index of arsenic hazard globally 
[94]. However, a poor correlation between total arsenic in 
soil and plant arsenic was noted. This is because total arsenic 
in the soil does not consider how its availability is changed 
by soil properties. For example, arsenic uptake by plants 
(and, hence, its accumulation in grains) is affected by soil 
properties like pH, redox potential, organic matter content, 
and the presence of other ions in the soil pore water [14]. 
An attempt has been made to prescribe a safe limit of bio-
available arsenic in soil based on (i) solubility of arsenic 
in soil (controlled by soil chemical properties); (ii) arsenic 
content in rice grain; and (iii) human health hazard (con-
sumption of food) [14, 88, 91, 95, 96•]. Given that people’s 
food habits vary based on geographical location, environ-
mental circumstances, and culture, a common (global) per-
missible limit of arsenic in rice grain will not have much 
practical significance. However, prescribing a safe limit 
of plant-available arsenic in the soil will be of importance 
for appraising the suitability of agricultural land for food 
crop cultivation and managing arsenic-contaminated soil 
[14]. For fixing the safe limit of bioavailable arsenic in soil 
at particular pH and organic carbon content, the critical 
value of HQ is taken as 0.5. Hence, a ready reckoner can be 
developed to compute the permissible limit of bioavailable 
arsenic in soils based on pH and organic carbon content. 
These permissible limits are based on the predicted HQ by 
solubility-FIAM. In the arsenic-contaminated area of Malda 
(West Bengal, India), the safe limit of bioavailable arsenic in 
soil would be 0.43 mg kg−1 for rice cultivation if the soil pH 
and organic carbon levels are 7.5 and 0.50%, respectively. 
However, the permissible limit of bioavailable arsenic in 
soil would be 0.54 mg kg−1 if soil pH is 8.5 and organic 
carbon is 0.75% [14] (Figure S2). In another study involving 
long-term sewage irrigated soils, the permissible limit of 
bioavailable arsenic would be 0.27 mg kg−1 for cultivation 
of rice crop, assuming that pH and organic carbon content 
are 6.0 and 0.25%, respectively. In contrast, the critical limit 
of bioavailable of arsenic would be 3.62 mg kg−1, if pH and 
organic carbon are 8.0 and 0.5%, respectively [88]. For this 
reason, the ready reckoner can serve to fix the safe limit of 
bioavailable arsenic based on model parameters. Safe limit 
of bioavailable arsenic in soil varied widely with changes in 
organic matter content, whereas such variation was not seen 
with pH [14]. The probable reason for no effect of pH might 
be the initial pH of the study area. Most studies were con-
ducted in areas having a narrow soil pH range, i.e., alkaline 
soil. This finding strengthens the argument that total arsenic 
in soil is not a good index of arsenic hazard. Moreover, this 
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emphasizes the importance of fixing a safe limit of bioavail-
able arsenic in soil.

Future Outlook/Perspectives

Growing rice in the arsenic-contaminated soil is a major 
route of human arsenic exposure, and that may lead to major 
public health issues. So, production of rice with arsenic in 
it is vital for food security. It is imperative to categorize the 
possible factors affecting bioavailability of arsenic from soil 
and water in the rice-growing regions in the world. This is 
critical so that proper prevention, remediation, and manage-
ment plans can be devised and implemented.

Risk Mapping

Regional-level arsenic risk mapping throughout the world 
is urgently required for successful policy intervention and 
resource allocation to alleviate the problem and help the 
affected population and communities. While there are other 
contaminants which are ingested with food, arsenic in sta-
ple food rice is of major concern. This study specifically 
discussed the risks due to arsenic present in rice. However, 
it is now known that other crops (e.g., wheat, red spinach 
leaf, arum leaf, coriander leaf, potato, radish, beans, brin-
jal, turnip, cauliflower, and carrot) which are part of the 
human diet also accumulate arsenic [78, 97–100]. Wheat 
samples collected from the arsenic-contaminated areas of 
Nadia district (West Bengal, India) contained 59.2 µg arse-
nic kg−1 (range 3–285 µg kg−1; n = 55) [78]. Leafy vegeta-
bles in Bangladesh were reported to contain arsenic in the 
130–790 µg kg−1 range [100], and one report recorded a very 
range of 0.1–3.99 mg kg−1 [97]. The range of arsenic in leafy 
vegetables (spinach, coriander, and peppermint) collected in 
Pakistan was 0.90–1.20 mg kg−1 [98]. Wheat flour samples 
collected from arsenic-exposed Bihar state of India revealed 
very large amounts of arsenic (mean 49.8 µg kg−1, range 
3.59–448 µg kg−1, n = 58) [99]. It will be important that the 
health risks from arsenic in rice and other food items are 
combined with the risks from arsenic-contaminated drinking 
water. Such risks should not only be evaluated and mapped 
for the human population but also for the socio-economically 
important animals, for instance, cattle, horse, goat, chicken, 
duck, and fish.

Connecting Risks to Ground Realities

The macro- and micro-level risk calculations should be 
validated with ground data from affected areas. It may be 
difficult to pinpoint the occurrences of cancer and other 
health issues in a particular population to arsenic in food 
and drinking water alone; nevertheless, documentation of 

actual cancer and other disease prevalence in arsenic-con-
taminated areas is vital. For example, 212 (4.35%) cases 
of skin cancer and 38 (0.78%) cases of internal cancers 
were detected among 4865 cases of arsenicosis studied in 
arsenic-affected villages of West Bengal (India) [101]. In 
another study, 80 (43.96%) cases out of 182 participants 
showed typical arsenicosis features characterized by pig-
mentation and keratosis including skin cancer (Table S3) 
[14]. In a macro-level study, out of 10,469 people exam-
ined, the prevalence rate of arsenicosis was in fact 15.43% 
[102]. In the same investigation, chronic lung disease was 
detected in 207 (12.81%) cases while peripheral neuropathy 
was reported in 257 (15.9%) cases. It will be important to 
use similar data to validate models used for risk assessment 
for the same population.

Risk Assessment of Arsenic

The assessment of health risk associated with any toxicant 
entails multiple steps that include (1) identifying the sources 
and receptors of risks, (2) exposure assessment, (3) toxicity 
analysis, and (4) risk characterization [63]. The assessment of 
health risks can be deterministic or probabilistic. It would be 
prudent to discuss the two methods and evaluate the relative 
suitability of either of the methods for arsenic risk assessment.

The deterministic method yields a maximum exposure 
estimate based on the level of contaminant, which is then 
compared to reference values for health impacts and is used 
in location-specific risk assessments. There are, however, 
considerable uncertainties in exposure pathways for health 
risk assessment [103]. For example, arsenic in the environ-
ment can be introduced to the human body via oral inges-
tion, cutaneous contact, and inhalation, and there are multi-
ple media for exposure including water, foods, air, and soil. 
Moreover, many site- or chemical-specific characteristics go 
into calculating arsenic exposure frequency and durations 
in the sensitive population. The deterministic methods may 
underestimate or overestimate the threats [103].

The probabilistic risk assessment (PRA) or uncertainty 
analysis incorporates more of the available data, and thus, 
probabilistic analyses address the primary limitations of deter-
ministic (point) estimates. The probabilistic approaches deal 
with uncertainty and variability rationally and scientifically. 
The single most important aspect influencing the outcomes of 
a PRA is the choice of probability distributions for input data 
[104, 105]. The PRA process helps in establishing risk distribu-
tions and assessing the impact of each exposure route or input 
parameter on the total risks. Based on the collective variation 
of model inputs, probabilistic analysis determines the variation 
or uncertainty in an output function. Unlike the deterministic 
“point” approach, the probabilistic approach determines the dis-
tribution of essential variables (e.g., chemical concentrations, 
frequency, and body weight) to indicate their uncertainty. The 
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output function’s variability is determined by the variability of 
the model inputs and is represented as a probability distribution.

Researchers have used both deterministic and probabilis-
tic methods for human health risk prediction due to arsenic 
present in our food and water [103, 106–108]. The authors 
advocate the use of the probabilistic method given its inclu-
siveness of the available data and recognition of the con-
tribution of each parameter to the final output. Saha et al. 
(2017) reported that deterministically estimated total cancer 
risk (TCR) via water exceeded the safe limit of 1 × 10−6 for 
adult and children [85]. However, probabilistically estimated 
mean TCR values were less than 1 × 10−6 [107]. The deter-
ministic and probabilistic approaches for assessing risks 
from arsenic from contaminated drinking water have been 
compared, and results showed an overestimation of risks 
when deploying the deterministic method [108].

Conclusions

Arsenic contamination in the groundwater-soil-plant contin-
uum is a cause of major concern in rice-consuming countries 
because it greatly affects human health. While the major path-
way of humans’ exposure to arsenic is arsenic-contaminated 
drinking water, consumption of staple foods (particularly rice) 
grown on arsenic-contaminated soil is often ignored. Arsenic-
contaminated groundwater is often used as irrigation water, 
and arsenic finds its way to the food grains. The relative dis-
tribution of total arsenic level in rice grain grown and sold 
in the South Asian region is the highest followed by South 
East and East Asian region. The human health risks due to 
rice consumption in three Asian regions are investigated in 
this study, and the findings on the potential carcinogenic and 
non-carcinogenic risks based on literature available data were 
calculated. The cancer risk in the Asian region was found to 
be in the range 7 × 10−4 to 5 × 10−3, which is well above the 
acceptable probability level of 1 × 10-6. Meanwhile, the non-
carcinogenic risk measured as hazard quotient (HQ) ranged 
from 0.34 to 30.7 while the acceptable HQ is < 1. The authors 
would like to emphasize that plant uptake depends on bio-
availability of arsenic, and assessing its bioavailability in the 
soil–plant system for predicting human health risk due to food 
chain contamination requires elaborate experimentation. Also, 
this study reviewed the usage of a modeling approach involv-
ing free ion activity of arsenic in soil pore water, in order to 
estimate the amount of arsenic in rice grain. In the future, 
such model prediction will help in routine risk assessments of 
arsenic-contaminated soils, and protocols can be successfully 
devised and implemented to fix the safe limit of bioavailable 
arsenic to grow rice.
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