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Abstract

In this review article, a comprehensive meta-analysis based on available literature information has been undertaken to make
a relative comparison of total arsenic in rice grain. This involves analyzing the findings of various peer-reviewed studies
that examined arsenic-contaminated Asian regions. Also, this article highlights the regional-level human health risks caused
by the consumption of arsenic-contaminated rice in the three regions of Asia. Deriving such information at the continental
level is of major importance in view of the need for proper monitoring and alleviating serious and continually emerging
human health issues in arsenic-contaminated areas. One aim of this paper is to highlight the potential of a viable modeling
approach for appraising the danger posed by arsenic in soil-plant-human system. There is an urgent need to fix the safe limit
of bioavailable arsenic in soil because total arsenic in soil is not a good index of the arsenic hazard. Our hypothesis is finding
out whether the modeling approach can be used in establishing a safe limit of bioavailable arsenic in soils with reference to
human health. To achieve the above-mentioned objectives, we have selected reported rice grain arsenic content data from
Asian countries following the PRISMA guidelines. Carcinogenic and non-carcinogenic risk was calculated following the
US EPA’s guidelines. It emerged that adults in Asian countries are prone to a high risk of cancer due to their consumption of
arsenic-contaminated rice. South Asia (SA), South East Asia (SEA), and East Asia (EA) exceeded the US EPA-prescribed
safe limit for cancer risk with ~ 100 times higher probability of cancer due to rice consumption. The hazard quotient for the
ingestion of arsenic containing rice was 4.526 +5.118 for SA, 2.599 +0.801 for SEA, and 2.954 +2.088 for EA. These figures
are all above the permissible limit of HQ of 1. The solubility free ion activity model can predict arsenic transfer from soil to
rice grain based on easily measurable soil properties and be used to fix the safe limit of bioavailable arsenic in paddy soils.
The methods and findings of this review are expected to be useful for regional-level policymaking and mobilizing resources
to alleviate public health issues caused by arsenic.
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Introduction

Arsenic (As), infamously referred to as the “king of poi-
son,” is a colorless, tasteless, and odorless trace element
found throughout the natural environment. It is a carcino-
genic metalloid reported to be present in the lithosphere
at concentrations as high as 5 mg kg™! [1]. High levels of
arsenic in groundwater can be attributed to geo-biochemical
processes that dislodge arsenic from arsenic-bearing min-
erals. The process is further accelerated by the indiscrimi-
nate withdrawal of groundwater [2, 3]. Apart from geogenic
sources, groundwater may also be contaminated with arse-
nic through various anthropogenic activities including the
disposal of various industrial wastes, mining operations,
and dumping of sewage sludge and wastewater [4e]. Several
arsenic-based pesticides have been applied to agricultural
fields and continued to be used in many countries despite
their known harmful effects [5, 6]. Although arsenic con-
tamination of drinking water has been documented in sev-
eral South Asian countries and the Americas, the severity
of contamination in India and Bangladesh is unparalleled
[7]. Approximately 85 million people in Bangladesh [8] and
90 million in India [7, 9, 10e] are exposed to arsenic levels
higher than the World Health Organization (WHO) thresh-
old limit of 10 pg As L™! in drinking water. Globally, more
than 230 million people are in danger of arsenic poisoning
due to constant drinking of water [7e].

Human exposure to arsenic-contaminated groundwa-
ter, mainly drawn through tube wells, has been identi-
fied as a serious public health problem in many coun-
tries including Bangladesh [11, 12]. Apart from drinking
water, arsenic finds its way into the human food chain
through the consumption of food crops grown in soils
regularly irrigated with arsenic-polluted groundwater
[13, 14ee]. It has been estimated that more than 50%
of the world’s population consumes rice, with global
production of rice amounting to approximately 503.27
million tons in 2022-2023. Most importantly, rice is the
staple food throughout South East Asia and is the rea-
son behind the rise in arsenic-related health problems
in humans due to the regular consumption of rice grains
(in addition to drinking water) grown in contaminated
soils [15]. Sustained intake of arsenic-contaminated food
increases arsenic body burden in humans and may lead to
arsenicosis, black foot disease, and diseases of the heart
and lungs [14, 16]. Occupational exposure can occur dur-
ing industrial processes such as mining and production/
processing as well as during the use of wood and leather
preservatives, pharmaceuticals, glass, alloys, pigments
and antifouling paints, poison baits, pesticides, and
microelectronic and optical products. Arsenic present in
tobacco is known to seriously affect smokers [17].

The traumatic impact of continued ingestion of arsenic
on human health has been well documented. The most
conspicuous effect of chronic arsenic intake is on the skin.
Carcinoma (mainly, intra-epithelial carcinoma or Bowen’s
disease, squamous cell, and basal cell carcinoma) is the
most pernicious effect of arsenic poisoning on human skin
[18]. Skin cancers caused by arsenic have a relatively short
latency period of roughly 10 years resulting in lethal con-
sequences in a relatively short period of time [19]. The
severity of the impacts of arsenic on human health is gov-
erned not only by the length of arsenic exposure but also
by many environmental factors like sun exposure, fertilizer
use, pesticide use, and smoking habit [20]. For instance,
people with smoking habits and those exposed to an envi-
ronment with high fertilizer application are more likely to
show early signs of arsenic poisoning [20]. Many studies
have reported lung malignancies due to arsenic exposure
[21, 22]. Again, poor nutritional status may increase an
individual’s susceptibility to chronic arsenic toxicity,
or alternatively that arsenicosis may contribute to poor
nutritional status [23]. For example, participants with poor
nutrition were reported from West Bengal, India, as having
an overall 1.6-fold increase (for males=1.5, females=2.1)
in the prevalence of keratoses [24]. Apart from this, vari-
ous neurological disorders and gastrointestinal effects are
reported due to chronic As exposure [25], suggesting that
malnutrition may increase the susceptibility to arsenic
poisoning [24].

With public health issues in mind, monitoring and assess-
ment of arsenic hazards to humans should be prioritized.
The upper critical limit set by WHO (1 mg kg™") for arsenic
in rice grain has now been considered obsolete and unsafe.
The new permissible limit which is widely followed is
0.3 mg kg~! for brown rice and 0.2 mg kg~! for polished
white rice [26]. In August 2020, the US Food and Drug
Administration (FDA) reissued guidelines for arsenic in
infant rice cereal limiting it to 100 pg kg~ [27]. Apart from
providing good quality drinking water, monitoring of food
materials like rice grain is also required to safeguard pub-
lic health. However, given the wide-ranging human dietary
habits throughout the world, establishing a generalized
limit for arsenic in various food products, including rice, is
unwise. Nonetheless, the prescription of a safe limit of plant-
available (bioavailable) arsenic in soil is essential for, firstly,
assessing the suitability of arable lands for crop production
and, secondly, devising suitable management strategies for
remediation of arsenic-contaminated soil. Taking into con-
sideration the ever-increasing food demands, it will be very
challenging to exclude the arsenic-polluted land which is
otherwise fertile and productive. However, changing the per-
missible limits to higher values will be detrimental to human
and animal health.
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Despite the many published studies done to assess the con-
centration of arsenic in rice grain, no study has yet been done
as a systematic review or meta-analysis on arsenic’s involve-
ment in cancer risk among people living in Asian countries.
We used the existing data on arsenic in rice grain to calculate
important parameters like carcinogenic and non-carcinogenic
risk. We have also discussed the advantage of the mechanistic
model to predict the arsenic transfer from soil to rice crop
based on easily measurable soil properties like pH, organic
carbon, and extractable arsenic. We have hypothesized that
modeled plant arsenic data can serve to fix the safe limit
of bioavailable arsenic in soil in relation to human health.
The novelty of this review is its use of a protocol for risk
assessment of arsenic-contaminated soils and fixing the safe
limit of bioavailable arsenic in soil. This protocol certainly
helps to better protect the human food chain from arsenic
contamination. Under this approach, if one knows extract-
able arsenic, pH, and organic carbon content of soil, suit-
ability of agricultural land can be easily assessed. Hence, this
strategy can easily be adopted for routine risk assessment of
contaminated soil. In this review article, we have reviewed
the (i) distribution of arsenic levels in rice (both at the field
level and in market-sold rice) from Asian regions; (ii) health
risks, both non-carcinogenic and carcinogenic, due to rice
consumption; and (iii) prediction of the amount of arsenic in
rice grain using a modeling approach. In the first section of
this review, the mechanism of arsenic poisoning in humans
has been discussed to reveal various health implications,
which will help to create awareness among people living in
arsenic-contaminated regions of the world. The meta-anal-
ysis of available literature documents the impact of regional
variability on total arsenic content in rice grain. This review
article synthesized grain arsenic data to assess carcinogenic
and non-carcinogenic risks. Based on such information, risk
assessment should be carried out in regions of high impor-
tance before cultivating rice crops so that human health is
protected. In last section, we have discussed the appraisal of
arsenic menace in soil-plant-human continuum and use of
modeling approach for routine risk assessment.

Mechanism of Arsenic Poisoning in Humans

Manifestation of humans to arsenic exposure and its effect
on their health may be acute or chronic. Acute arsenic tox-
icity leads to vomiting and diarrhea within hours of inges-
tion, direct myocardial dysfunction, acute encephalopathy,
and severe kidney and lung injury [28]. Low-dose chronic
exposure can lead to deleterious effects like malignant and
non-malignant skin changes, hypertension, diabetes, periph-
eral vascular disease, and malignancies of the lung, blad-
der, and liver [18, 28]. Non-malignant lung disease, gastro-
enteritis, portal hypertension, and black foot disease have

@ Springer

been reported in people consuming arsenic-contaminated
drinking water [29]. The association of arsenic with vari-
ous human malignancies has made this metalloid a class
1 human carcinogen [30]. The most common malignancy
associated with arsenic is that of the skin (e.g., squamous
cell carcinoma, basal cell carcinoma, Bowen’s disease, and
Merckel cell carcinoma) [31], while the severe ones are
associated with the lungs (e.g., squamous cell carcinoma of
the lungs) [32]. Several mechanisms underlying arsenic car-
cinogenicity have been studied, and three pathophysiologic
factors are identified as arsenic methylation, oxidative stress,
and epigenetic changes induced by arsenic (Fig. 1).

Arsenic is metabolized in the human body through redox
reactions, of which methylation is essential. Oxidative meth-
ylation of arsenic produces methylated trivalent and pentava-
lent arsenic compounds using S-adenosyl methionine (SAM)
[33]. These methylated arsenic compounds are carcinogenic
to skin keratinocytes [34]. In the above-mentioned methyla-
tion process, reactive oxygen species (ROS) are generated.
Directly or indirectly, arsenic-induced oxidative stress trig-
gers DNA damage. Both in mouse and human skins, arsenic
can induce oxidative damage in cellular DNA and generate
8-hydroxyl 2-deoxy guanosine (8-OHdG) oxidative DNA
adducts [35, 36]. Clinical studies in arsenic-induced Bowen’s
disease (As-BD) indicate that the increased 8-OHdG levels
are positively correlated to the lesional arsenic concentra-
tion. Suggested here is the involvement of oxidative stress
in arsenical skin carcinogenesis [35, 36]. Elevated 8-OHdG
has also been found to be implicated in breast cancer [37].

Modifications of gene transcription of WNT/B-catenin and
calcium signaling pathways are reported and implicated in the
development of many cancers [38]. WNT signaling is a regula-
tory pathway that orchestrates skin development, homeostasis,
and stem cell activation. Aberrant regulation of WNT signaling
cascades not only gives rise to tumor initiation, progression,
and invasion but also maintains cancer stem cells which con-
tribute to tumor recurrence [39]. In a systematic review and
meta-analysis, it was discovered that arsenic causes dysregula-
tion of WNTa and fp-catenin levels, leading to neoplastic pro-
liferation [40]. The arsenic-induced ROS has also been shown
to dysregulate the epidermal growth factor receptor (EGFR),
nuclear factor-xf} (NF-«kf), mitogen-activated protein (MAP)
kinase, and matrix-metalloproteinases (MMPs) that help in
neoplastic proliferation [41].

The process of arsenic metabolism in the human body
utilizes SAM, the cell’s methyl group donor, and that leads
to the depletion of SAM and resulting epigenetic changes
like aberrant DNA methylation, histone modification, and
microRNA (miRNA) expression [18]. For tumor suppres-
sor genes, aberrant DNA promoter hypermethylation is
greatly associated with transcriptional gene silence [42].
Abnormal DNA methylation has been found to be associ-
ated with lung and bladder cancers due to the inhibition
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Fig. 1 Mechanisms of carcinogenic toxicity of arsenic in humans. Three pathophysiological effects on human body, viz., arsenic methylation,
oxidative stress, and epigenetic changes, are induced by sustained arsenic intake by human body

of the transcription of tumor suppressor genes (like p53,
pl6INK4A, RASSF1A, and PRSS3) [43]. Through the
addition of acetyl groups (via histone acetyltransferases)
or the removal of acetyl groups (via histone deacety-
lases), histone-modifying enzymes catalyze the addition
or removal of these modifications to generally induce or
maintain an open euchromatic state, or a closed or het-
erochromatic state, on specific histone residues. Conse-
quently, euchromatin or heterochromatin development is
correlated with the transcriptional activity of linked genes
[44]. Arsenic metabolites have been shown to modify the
methylation of normal histones (like H3K4, H3K9, and
H3K27) leading to the malignant transformation of lung
tissue [45]. Arsenic compounds were also shown to induce
malignant transformation of human nontumorigenic cell
lines through changes to histone H3 acetylation, DNA
promoter methylation, and decreased expression of the
DBCI1, FAMS3A, ZSCAN12, and C1QTNF6 genes. For
each of these under-expressed genes, DNA methylation
is inversely correlated with the histone acetylation levels
for their respective promoter regions, leading scientists to
conclude that changes in histone H3 acetylation occur dur-
ing arsenic-induced malignant transformation [46].

Small non-coding RNAs called miRNAs control the
translation of genes involved in numerous important aspects
of cell life by inhibiting the translation of the mRNAs they
target [47]. miRNA can interfere with the production of sev-
eral, and occasionally even hundreds of, target genes because
it binds to the 3’-untranslated region of mRNAs through
incorrect base pairing. For this reason, miRNA dysregula-
tion is linked to a number of human illnesses and cancer is
no exception [48]. Exposure to arsenic has also been shown
to induce epithelial-to-mesenchymal transition (malignant
transformation) by reducing the miRNA-200 family in bron-
chial epithelial cells [49]. Arsenic also induces angiogenesis
by diminishing the miRNA-9 family [50].

Methodology

In Asian countries, rice is the major staple food, and it is cul-
tivated in at least two seasons to cater for huge demand [51].
Rice is a very water-demanding crop [52]. As a result, there
is the excessive withdrawal of groundwater for irrigating
the paddy fields during the dry season resulting in elevated
levels of arsenic in soils irrigated with arsenic-contaminated
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groundwater. As much as 83,000 pg kg™' of arsenic has
been found in paddy soils subjected to constant irrigation in
Bangladesh [53]. Increased levels of arsenic in rice grains
are reported from paddy fields irrigated with contaminated
irrigation water [54, 55]. In this study, we have collected
literature-reported rice grain arsenic content data from Asian
countries. The possible lifetime cancer risk due to the con-
sumption of arsenic-contaminated rice was evaluated.

Search Strategy

To find the numerous research articles published on this
topic, a systematic search was conducted in the publicly
available databases/search engines like ISI Web of Science,
Google Scholar, ScienceDirect, Scopus, and PubMed for
the years between January 2000 and February 2023. We
used Boolean operators (e.g., “OR” and “AND”) to develop
search terms from the keywords such as “arsenic,” “Oryza
sativa,” “rice,” “grain,” “Asia,” “survey,” “farmer field,” and

99 ¢

“market.” A full list of keywords is provided in Table S1.
The reference lists of articles were checked to find other
relevant papers. As shown in Fig. 2, literature search and
retrieving articles were done according to the PRISMA (Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analysis) guidelines [56].

Study Selection

Following a first screening, the potentially eligible articles
were downloaded as full texts. Then, the inclusion criteria
for article selection were critically assessed. Contradictions
between any reported evidence and different researchers’
discussion, in the different publications, were addressed and
tentatively solved through an open debate and agreement
jointly among the authors of this review. Inclusion criteria
were full-text availability, published full or abstract text in
the English language, detected concentration of arsenic in
rice grain, either field or market survey studies, reported

Fig.2 a Preferred Reporting
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standard deviation or standard error, and papers published
between 2000 and 2023. Articles that did not meet all of the
above criteria above were excluded.

Definition and Data Extraction

The data were extracted and assessed. Data from each study
included first author, year of study and year of publication,
total sample size, region study, and average or range of con-
centration of arsenic. Whenever a standard error of mean
(SEM) was reported instead of standard deviation (SD) and
sample data were available, we calculated SD from [57].

Statistical Analyses and Meta-analysis

To estimate the heterogeneity rate among different studies,
an I statistic was applied. The I statistic describes the per-
centage of variation across studies that is due to heteroge-
neity rather than chance [58]. When the Q value proved to
be significant (p < 0.05), this meant that the studies were
heterogeneous. As heterogeneity was considered for val-
ues > 50%, the random effect model was deployed [59].
Forest plot was created to summarize the information on
individual studies in the meta-analysis which also provides
a visual indication of the degree of heterogeneities. The
lack of difference between the study group and marginal
level, commonly known as no effect or zero effect, has been
presented by a vertical line in the center of the plot. It was
considered that at this point, the mean difference is zero. The
subsequent squares depicted the mean difference values for
each study, and the size of the squares represents the effect
of the estimate and the weight of the studies. Each hori-
zontal segment’s succeeding endpoints exhibited 95% con-
fidence intervals (CI) that were symmetrical about the mean.
The diamond in the plot represents the point estimate and
confidence intervals when all studies were combined and
averaged. The metafor package (version 3.8—-1) in R-Studio
(version 1.3.10932.3.1) served to execute the data analysis.

Assessment of Cancer Risk

The inorganic arsenic (iAs) was used to assess the carcino-
genic risk for people consuming rice grown in SA, SEA,
and EA regions. For this, the chronic daily dose (CDD) was
calculated (Eq. 1).

C x IR x ED X EF x CF

CDD =
BW x AT M

where C is the iAs (mg kg™!) in rice grain, IR denotes the
ingestion rate (0.4 kg day~! or 4x 10° mg day~! [14]), ED is
the exposure duration (30 years for an adult [60]), EF stands
for exposure frequency (365 days year™"), CF is conversion
factor (1 x 107 kg mg™"), BW represents the average body

weight (70 kg for an adult), and AT is the average time for
carcinogen (70 x 365 days for As) [61]. For the calculation
of CDD in children, IR is assumed to be 0.2 kg day_1 [62e],
ED is 6 years, and BW is 20 kg [60].

The carcinogenic risk (CR) to an adult human who has
consumed arsenic-contaminated rice was calculated based
on the CDD value and the slope factor for arsenic (Eq. 2).

CR = CDD X SF )

where SF is the slope factor (SF=1.5 mg kg~! day™' for
arsenic). As per the US EPA guidelines [63], CR val-
ues < 1078 are safe while values > 10™* are harmful to human
health.

Risk Thermometer

A risk thermometer is a new holistic protocol on risk char-
acterization [64, 65e¢], and this gives us a comparison of
risks. The risk thermometer for arsenic estimates the sever-
ity-adjusted margin of exposure (SAMOE) based on Toler-
able Daily Intake (TDI, 3.0 pg kg (body weight)~! day~! for
arsenic) and ingestion of arsenic present in food (rice). The
human dietary exposure to arsenic through rice consumption
can be calculated using the equation (Eq. 3) proposed by
Chowdhury et al. (2020) [66].

SAMOE = TDI/(AFgy X AF x SF X E) 3)

where TDI is 3.0 pg kg (bodyweight)~! day~! for arsenic,
AFg\r is the non-linear relation in dose range (1/10; BMR-
benchmark response), AF (assessment factors) is a factor of
10 (conservative assessment), SF (severity factor) is 100 (for
cancer, the most severe category), and E is the exposure fac-
tor (1As concentration in rice). Based on the SAMOE value,
the risk classes in the risk thermometer are designated as
class 1 (no risk, > 10), class 2 (no to low risk, 1-10), class 3
(low risk, 0.1-1), class 4 (moderate to high risk, 0.01-0.1),
and class 5 (high risk, <0.01) [64].

Assessment of Non-cancer Risk

The hazard quotient (HQ) is the deterministic means for
assessing the chronic non-carcinogenic hazard associated
with metalloid (Eq. 4) [67]:
ADD

HO=%D €

This is a relationship between the average daily dose
(ADD; mg kg~! d™!) of arsenic by a population and the
toxicological endpoint (reference dose (RfD) mg kg=! d=1).
It is in fact an estimate of the limit of daily exposure to the
population (including sensitive subpopulations) where there
are no deleterious lifetime health effects. For arsenic, the
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RfD value is 0.0003 mg arsenic (kg body weight)~! day™!
[68]. The cumulative risk from various non-carcinogens and/
or the different ways of exposure (dermal and ingestion) are
obtained by summing up the HQ values to get a hazard index
(HI). If the concentrations of arsenic in the ingested media
(soil, water, and food) are known, the ADD via oral intake
can be calculated (Eq. 5) [14, 69].

N Cix CRi

ADD =Y, W ®

where N is the number of exposure routes to arsenic (e.g.,
N is 2 if routes of exposure are food and drinking water),
C, is the concentration of inorganic arsenic (mg kg™') in
ith route, and CR; is the consumption rate (kg day™") of the
subscripted ingested material.

In the present review, exposure to arsenic in humans
based solely on rice grain consumption. Therefore, the aver-
age daily dose was computed based on the following assump-
tions: C=concentration of inorganic arsenic in rice grain in
regions of Asia, CR=0.4 kg day~" or 4 x 10° mg day~"! [14],
and BW =70 kg for adults [61]. An HQ value less than or
equal to 1 is deemed to be safe [67]. However, because other
dietary items may potentially be the sources of arsenic enter-
ing the human body, the HQ limit has been adjusted and
regarded safe at HQ <0.5 [70e].

Results and Discussion
Study Characteristics

From > 1600 published articles, we excluded papers based on
the conditions provided in the PRISMA flowchart (Fig. 2).
In total, 88 papers were chosen to establish the risk asso-
ciated with the consumption of rice grain in the chosen
Asian regions. The Asian continent was subdivided into five
regions, viz., South Asia (SA), South East Asia (SEA), East
Asia (EA), West Asia (WA), and Central Asia (CA). Raw
data (1 work common between SA and EA) on grain arsenic
content as collected from SA (42 papers from Bangladesh,
India, Iran, Nepal, Pakistan, and Sri Lanka), SEA (11 papers
from Cambodia, Singapore, Thailand, and Vietnam), and EA
(35 papers from China, Japan, Taiwan, and South Korea)
were pooled and analyzed. For risk assessment, the total
grain arsenic (tAs) content was converted to inorganic arse-
nic (iAs) by considering iAs to be 75% of tAs in husked rice
(farm field grains) and 80% in polished rice (market avail-
able grains) [71ee]. The papers from CA (n=1) and WA
(n=>5) regions were discarded because they did not meet the
minimum criteria of n > 10 for carrying out further analysis.
Conversely, a total of 60 papers (28 from SA covering Bang-
ladesh, India, Iran, Nepal, Pakistan, and Sri Lanka; 9 from
SEA covering Cambodia, Thailand, and Vietnam; 23 from

@ Springer

EA covering China, Japan, Taiwan, and South Korea) were
selected to report the relative comparison of total arsenic in
rice grain between peer-reviewed studies in these regions.
For this purpose, we compiled the data quantitative set of the
above individual studies through the meta-analysis method.

Concentration of Arsenic in Rice Grain

A number of studies have been published on the concentra-
tion of total arsenic in rice grain grown in a wide range of
contexts, including market-based surveys in different parts
of Asia (Table 1). Evidence suggests that arsenic content in
rice is likely to vary according to the country of origin as
well as different production sites. Our studies showed that
the maximum concentration of total arsenic was observed
in SA countries like Bangladesh (e.g., 780—-6050 pg kg~!
[72]) and India (e.g., 900-1510 pg kg~! [73]). Conversely,
a minimum level of arsenic in raw rice grain was reported
in the SEA and EA countries. For example, a study from
Thailand which is in the SEA region reported that the level
of arsenic in rice samples ranged from 160 to 240 ug kg™
(n=55) [74]. In the EA region, the minimum level of arsenic
in rice grain as reported in China was BDL-100 pg kg™!
[75]. In countries like Bangladesh and India, the source of
arsenic is geogenic in nature [14]. Large variability in soil
arsenic level caused by the excessive uptake of irrigation
water during rice cultivation naturally leads to elevated grain
arsenic in the rice fields of Bangladesh and India [15]. In
contrast, anthropogenic activities like mining, discharge of
municipal and industrial wastewater to rivers and soils, and
improper use of fertilizer and chemical pesticides may lead
to substantial arsenic accumulation in rice grain grown in
the SEA and EA regions. Other reasons for the differences
in the concentration of arsenic throughout Asia can be due
to the various rice species, which bioaccumulate arsenic in
their own ways [76]. Our review of the literature showed that
the total amount of arsenic in rice grain was mostly reported
across the Asian regions. Other arsenic species like inor-
ganic and organic forms are rarely reported due to the lack of
a standardized protocol or advanced instruments. One study
compared the presence of inorganic arsenic in rice grain
among Asian, US, and European countries [77]. They found
that 80% of mean inorganic arsenic was detected in rice
from Bangladesh and India, whereas relatively lower mean
inorganic arsenic content of 64% and 42% was recorded in
European and US rice grain, respectively. American rice was
found to be enriched with dimethylarsinic acid (DMA) in
particular. This signifies the importance of undertaking fur-
ther risk assessment work on rice grain grown in the Asian
regions. The objective of the meta-analysis is to compare the
findings of peer-reviewed studies and what they concluded.

The forest plot for SA shows the list of input studies with
their effect sizes (Fig. 3). From the random effect model, the
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Table 1 Main characteristics of

C. : . Country Total arsenic mean (range) Study type Other info Reference
studies included in our review (ng kg—l), n

South Asian (SA) region

Bangladesh 153.8 (104-362), 144 Field trial Aman [109]
293.6 (157-454), 173 Field trial Boro [109]
320 (140-430), 30 Market survey [110]
110.5 (5-805), 100 Field survey [111]
141 (18-601), 337 Market survey [112]
224 (17-733), 143 Field survey [112]
136 (40-270), 10 Field survey [97]
183 (108-331), 78 Field survey Boro [113]
117 (72-170), 82 Field survey Aman [113]
296 (182-436), 56 Field survey [114]
89.1 (25-287), 6 Field survey Aman [115]
150.5 (31-453), 6 Field survey Boro [115]
1870 (720-6050), 56 Field survey [79]
2150 (780-6050), 10 Field survey [72]
410 (160-740), 72 Field trial [116]
170 (70-280), 76 Field trial [116]
143 (2-557), 214 Field survey* [117]
153 (74-301), 14 Field survey* [118]
84.8 (40-130), 9 Field survey [119]
735 (410-980), 4 Field survey [120]

India 451 (190-780), 21 Field survey Boro [121]
174 (2-1260), 60 Market and Field survey [14]
334 (60-600), 18 Field survey Aman [121]
342 (230-540), 63 Field survey Boro [122]
284 (160-580), 63 Field survey Aman [122]
410 (150-740), 6 Field survey [123]
510 (410-690), 240 Field survey Boro [124]
562 (420-780), 260 Field survey Boro [124]
160.3 (121-197), 9 Market survey [125]
58.1 (3-254), 15 Field survey [126]
932.5 (630-1090), 4 Field survey [127]
273.9 (18-446), 10 Field survey [128]
1090 (900-1510), 50 Field survey [73]
180 (30-333), 12 Field survey [129]
150 (40-450), 44 Market survey [130]
51 (30-80), 11 Market survey [77]

Iran 87 (BDL-210), 60 Field survey [131]
65 (30-90), 15 Market survey [132]
121 (50.6-222), 15 Field survey [133]
101.4 (10-252), 20 Market survey [134]
82 (35-130), 17 Market survey [132]
280 (BDL-670), 15 Market survey [135]
390 (115-800), 20 Field survey [135]
161.7 (48-314), 10 Market survey [136]

Nepal 180 (60-330), 75 Field survey [137]

Sri Lanka 47.2 (2.48-213), 699 Field survey [138]
77 (19-217), 165 Market survey [139]

Pakistan 98.9 (BDL-225.4), 54 Field survey [140]
36.9 (BDL-178.1), 14 Field survey [141]
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Table 1 (continued)

Country Total arsenic mean (range) Study type Other info Reference
(hgkg ™. n

South East Asian (SEA) region

Thailand 204 (<0.1-412.6), 159 Field survey [142]
205 (84-489), 97 Market survey [143]
175 (160-240), 55 Field survey [74]
176.5 (77.2-343.1), 113 Market survey [144]

Cambodia 185 (47-771), 131 Field survey [145]
118.3 (12-578), 30 Field survey [146]
115 (52-328), 70 Field survey [147]
243 (63-528), 45 Field survey [148]

Singapore 136.1 (60.5-361.1), 15 Market survey [149]

Vietnam 180 (80-556), 78 Field survey [150]
220 (110-340), 24 Field survey [151]

East Asian (EA) region

China 87 (11-186), 160 Market survey [152]
480 (230-930), 34 Field survey [153]
92 (5-309), 282 Field survey [154]
42 (BDL-100), 16 Market survey [75]
199 (BDL-587), 155 Field survey [155]
340 (125-1840), 220 Field survey [156]
196.9 (33-739), 892 Field survey [157]
50 (BDL-310), 92 Field survey [158]
116.5 (41-210), 36 Field survey [159]
116.5 (BDL-665.2), 1653 Field survey [160]
90 (30-192), 32 Field survey [161]
260 (170-390) Field survey [162]
154.9 (106.7-246.7), 353 Field survey [163]
114.4 (65.3-274.2), 21 Field survey [164]
119 (1.35-254), 258 Field survey [165]
564 (152-1094), 33 Field survey [166]
360 (30-1040), 73 Field survey [167]
188 (32-533), 205 Field survey [168]
243, (127-431), 29 Field survey [169]
129.4 (50.2-253), 43.4 Field survey [170]
172.9 (65-277), 27 Field survey [171]
125 (20-326), 113 Field survey [172]
119 (BDL-490), 712 Field survey [173]
820 (460-1180), 2 Field survey [120]
196 (54-795), 446 Field survey [174]
191.7 (9-624), 195 Field survey [175]
111.2 (15-586), 240 Market survey [175]

Japan 137 (107-166), 10 Field survey [176]

South Korea 200 (120-280), 3 Field survey [177]
180 (60-390), 100 Field survey [178]
146 (40-380), 82 Field survey [179]
247 (104-774), 40 Field survey [180]
410 (240-720), 5 Field survey [181]
124, (31-282), 485 Market survey [182]

Taiwan 474 (290-660), 11 Field survey [183]

“Household survey—rice grown in own fields

@ Springer
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Fig.3 Forest plot showing the weighted mean difference of total arsenic concentration in rice grain between study level and marginal level with
their respective confidence intervals and weight in the meta-analysis together with the heterogeneity statistics in South Asia (SA)
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overall summary weighted mean value of 218.43 pg kg™!
(95% Confidence Interval: 157.55 to 279.31) of arsenic in
rice grain was statistically significant (p <0.001). In fact, it
is marginally above the permissible limit of 0.2 mg kg~'[26].
An inconsistency index of 100% indicated significant hetero-
geneity in the data set which is due to the geographical dis-
tribution of paddy-growing areas in the different countries
of the SA region. Non-overlapping of the effect sizes with
the zero effect line of the majority of rice samples of Bang-
ladesh, India, Nepal, Iran, and Pakistan was observed. At
some locations, contamination might be due to the extensive
use of arsenic-contaminated water from shallow tube wells
for irrigation of paddy rice [78e], and some areas might
have been contaminated by mining and industrial activities

[79]. In contrast, the 95% confidence interval crosses the
line of no effect in the case of samples from Sri Lanka. Fig-
ures 4 and 5 reveal that the overall summary weighted mean
for arsenic in rice grain of SEA (118.61 ug kg™!, 95% CI:
95.79 to 141.43) and EA (128.01 ug kg™!, 95% CI: 77.44 to
178.58) is statistically significant (p <0.001). It is lower than
the permissible limit as prescribed by WHO [26]. Similarly,
significant heterogeneity in data was observed at 99.55% and
99.93% for SEA and EA, respectively.

Carcinogenic Risk

A carcinogenic risk assessment for adults and children
consuming rice in the SA, SEA, and EA regions was

Gilbert et al. 2015, Cambodia - 3.25% 160.00 [ 95.56, 224.44]
Gilbert et al. 2015, Cambodia P 2.51% 137.00[42.96, 231.04]
Gilbert et al. 2015, Cambodia o 3.68% 137.00[89.47, 184.53]
Gilbert et al. 2015, Cambodia R 2 4.22% 121.00[99.32, 142.68]
Phan et al. 2013, Cambodia [ 2.67% 196.00[108.61, 283.39]
Phan et al. 2013, Cambodia i 4.07% 15.00 [-15.37, 45.37]
Phan et al. 2013, Cambodia [ | 4.36% -36.00 [-43.44, -28.56]
Kukusamude et al. 2020, Thailand - 4.07% 100.00 [ 69.64, 130.36]
Kukusamude et al. 2020, Thailand [ 3.40% 130.00[71.20, 188.80]
Kukusamude et al. 2020, Thailand HH 4.27% 50.00[32.47, 67.53]
Kukusamude et al. 2020, Thailand HH 4.25% 180.00 [160.78, 199.22]
Hensawang et al. 2017, Thailand [ | 4.38% 145.00 [143.40, 146.60]
Chanpiwat and Kim 2019, Thailand | 4.34% 152.10 [141.12, 163.08]
Chanpiwat and Kim 2019, Thailand | 4.26% 136.00[117.18, 154.82]
Nookabkaew et al. 2013, Thailand n 4.38% 101.07[96.92, 105.22]
Nookabkaew et al. 2013, Thailand n 4.37% 167.89[162.58, 173.20]
Nookabkaew et al. 2013, Thailand w 4.38% 82.23[77.65, 86.81]
Nookabkaew et al. 2013, Thailand 3 4.33% 187.40 [175.06, 199.74]
Nookabkaew et al. 2013, Thailand [ ] 4.38% 47.76[44.42, 51.10]
Nookabkaew et al. 2013, Thailand - 4.24% 155.16 [135.03, 175.29]
Nookabkaew et al. 2013, Thailand | 4.35% 91.86[82.55, 101.17]
Nookabkaew et al. 2013, Thailand . 3.58% 99.14[47.31, 150.97]
Reid et al. 2020,Vietnam = 3.98% 183.00[148.23, 217.77]
Nguyen et al. 2019, Vietnam = 4.04% 160.00 [127.99, 192.01]
Nguyen et al. 2020, Vietnam | 4.24% 120.00 [100.03, 139.97]
RE Model 12 = 99.55%, p < 0.001 <> 100.00% 118.61[95.79, 141.43]
I T T T |
-100 0 100 200 300
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Fig.4 Forest plot showing the weighted mean difference of total arsenic concentration in rice grain between study level and marginal level with
their respective confidence intervals and weight in the meta-analysis together with the heterogeneity statistics in South East Asia (SEA)
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Kim et al. 2018, S. Korea ‘m
Kwon et al. 2016, S.Korea i |
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4.02% 125.50[90.98, 160.02]
4.09% 47.00[35.41, 58.59]
4.09% 90.00[76.28, 103.72]
4.01% 157.00[119.81, 194.19]

Lee et al. 2008, S.Korea . 2.89% 320.00[158.72, 481.28]
Lee et al. 2018, S.Korea m 410% -2.00[-4.15, 0.15]
Lee et al. 2018, S.Korea ‘- 4.09% 70.00[62.39, 77.61]
Li et al. 2014, China . 4.07% 170.00 [147.78, 192.22]
Liu et al. 2010, China ! Rz 3.66% 474.00[387.68, 560.32]
Liu et al. 2015, China L 3.83% 270.00[203.47, 336.53]
Liu et al. 2022, China g | 4.08% 98.00[79.33, 116.67]
Lu et al. 2010, China ‘| 4.07% 101.00[81.03, 120.97]
Lu et al. 2010, China | 3.97% 205.00[160.87, 249.13]
Ma et al. 2016, China - 4.09% 39.40[25.59, 53.21]
Ma et al. 2017, China ‘" 4.06% 82.90[58.46, 107.34]
Mu et al. 2019, China n 4.06% 35.00[ 9.67, 60.33]
Sun et al. 2008, China + { 0.46% 730.00[24.57, 1435.43]
Cui et al. 2022, China : i 3 3.89% 390.00[332.86, 447.14]
Fu et al. 2015, China n 4.08% -48.00 [-65.64, -30.36]
Hang et al. 2009, China ' 4.08% 109.00[91.05, 126.95]
Hao et al. 2022, China n 4.05% 250.00 [223.57, 276.43]
Hu et al. 2014, China | 4.10% -40.00 [-42.05, -37.95]
Huang et al. 2015, China [ ] 410% 26.50[24.47, 28.53]
Huang et al. 2018, China L 3.88% 260.00[201.10, 318.90]
Kong et al. 2018, China l 4.09% 0.00[-8.15, 8.15]
RE Model 1a2 =99.93%, p <0.001 X 100.00% 128.01[77.44, 178.58]
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Fig.5 Forest plot showing the weighted mean difference of total arsenic concentration in rice grain between study level and marginal level with
their respective confidence intervals and weight in the meta-analysis together with the heterogeneity statistics in East Asia (EA)

executed (Table S2). Like inorganic arsenic content in
rice grain, heterogeneous distribution of the CR value
for adults was observed from the box plot with data dis-
tribution curve (Fig. 6). The average CR value has been
found to be 8 x 10™* (range: 1 x 107 to 5x 1073) for SA,
5%107* (1x107* to 7x 107*) for SEA, and 6 x 107*
(range: 1x 107* to 2x 107%) for EA. These values mark-
edly exceeded the prescribed safe limit of 1x 107 and
indicated that the grain produced and sold in these three
regions of Asia poses a severe cancer risk to adults. Data
on cancer risk for children also exceeded the critical limit
of 1x 107° (Fig. 7). The mean CR value in these regions
has been observed as 3x 107 (range: 3x 107 to 2x 107%)
for SA, 1x10™* (2x 107 to 2% 107°) for SEA, and

1x107* (range: 4x 107> to 7x 10~*) for EA. The SAMOE
value for arsenic toxicity due to rice consumption in SA,
SEA, and EA showed the risk levels of class 4 (moder-
ate to high) or class 3 (low risk) depending on the rice
arsenic concentration (Fig. 8). The mean SAMOE value
was 0.282 +0.254 for SA, 0.284 +0.278 for SEA, and
0.280 +0.172 for EA. It is well established that rice is the
largest source of inorganic arsenic in the human diet. Esti-
mates showed that about 200 million people have elevated
amounts of inorganic arsenic in their water, while half the
world consumes rice as a dietary staple [80]. Compared to
the countries of Europe and the USA, Bangladesh, India,
and China have documented both elevated arsenic levels
in rice and populations who eat large amounts of rice.
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In American rice samples, the median total arsenic was
0.25 mg kg™!, but inorganic arsenic varied only between
0.05 and 0.15 mg kg™'. In Chinese rice, the median total
arsenic was lower, 0.14 mg kg™, but inorganic arsenic
showed greater variation, reaching larger levels, between
0.07 and 0.38 mg kg~!. Cancer rates among people were
earlier predicted as 1 per 10,000 people in Italy and the
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USA, 7 per 10,000 in India, 15 per 10,000 in China, and
22 per 10,000 in Bangladesh due to inorganic arsenic
being consumed through rice [81]. Several researchers
discretely calculated the carcinogenic risk due to the con-
sumption of rice grain mainly in India and Bangladesh
[60-62, 78, 82, 83]. In the present study, such large-scale
regions were considered to calculate the carcinogenic risk,
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which is unique. The CR value between 107% and 10~*
also may be acceptable according to the US EPA criteria,
although this range is ambiguous and may require a case-
specific judgment regarding the acceptability of a particu-
lar risk [84]. To judge the acceptability of this cancer risk,
it would have been prudent to compare the risk with back-
ground cancer risks in the three regions, but that may not
be possible. The average cancer risk in rice grain grown
and sold in the South Asian region is the highest followed
by South East and East Asian regions. In this review arti-
cle, rice grain data were analyzed from South Asian coun-
tries like Iran, Nepal, Pakistan, Sri Lanka, Bangladesh,
and India. The transfer of arsenic in rice grain is well
established in Bangladesh and India [14, 85]. At the same
time, there are also alarmingly large amounts of arsenic
rice grain in East and South East Asian countries like
Cambodia, Indonesia, Thailand, Vietnam, South Korea,
North Korea, China, and Japan. This analysis indicates
that new management options should be implemented in
rice-growing soils of these regions to restrict the transfer
of arsenic from soil to plant and, thus, to the human body.
The assessment of human health using cancer risk as a
measure is a better way to convince policymakers, funding
agencies, and the general public for necessary actions in
these Asian regions. Although the first report of poison-
ing food materials with arsenic was published four or five
decades ago, an effective solution to this burning human
health problem remains elusive. Researchers have already

L]
SEA EA
Asian Region

published several papers on the management and remedia-
tion aspects of arsenic-contaminated soils. The time has
come to think about fixing the critical limit of bioavailable
arsenic in the soil for the safe cultivation of crops (rice)
to ensure human health is safe. Our analysis has shown
that the upper critical limit set by CODEX for arsenic in
rice grain is not adequate to protect people’s health. While
comparing the effectiveness of the CODEX limit with that
assessed in terms of CR, it is clear that in most of the rice
grain samples, the critical value of CR (> 107%) exceeded
for arsenic, whereas the CODEX value in those rice grain
samples was within the safe limit, i.e., <0.2 mg kg™'.

Non-carcinogenic Risk

The HQs for human rice consumption in these three
regions were calculated (Fig. 9). The HQ was 4.526 +5.118
for SA, 2.599 +0.801 for SEA, and 2.954 +2.088 for the
EA region, and they are far above the safe limit of HQ
of 1 or 0.5. It is evident that the hazard quotient value
for rice grain was highest in the SA region followed by
the SEA and EA regions. Assessment of non-carcinogenic
risks as computed here is not complete because arsenic
input to humans may also originate from other routes like
consumption of food materials other than rice and direct
ingestion of soil. The cumulative HQ will be far above the
critical limit of 1 if other routes of entry of arsenic into the
human body are considered.
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Appraisal of Arsenic Menace in the Soil-
Plant-Human Continuum

Modeling for Prediction of Arsenic Content in
Crop Plants

The phytoavailability of arsenic is governed by several fac-
tors including physical, chemical, and biological properties
of soil, plant type and variety, and environmental conditions.
The mobility and uptake of arsenic from soil to plant are gov-
erned by the interactions occurring in the rhizospheric soil
environment and the roots. Arsenic transfer from soil to plant
is affected by the presence of iron, manganese, aluminum,
organic matter, clay, and phosphate in soil and the soil pH
[14, 86—-88]. Given the complexity of the processes govern-
ing arsenic uptake by plants, it is challenging to develop a
model which can accurately predict the arsenic uptake and
arsenic content in plants. Two types of models (mechanistic
and transport models) can be used to predict arsenic uptake
and content in plants. The mechanistic model considers the
complex interactions taking place between the soil environ-
ment and plant root system. The sorption isotherm and sorp-
tion kinetic models are the most commonly used mechanistic
variants employed to predict arsenic uptake by plants. The
biosorption of arsenic by Hydrilla verticillata (a submerged
aquatic plant) was reported by Nigam et al. (2013) [89], and
they used the Langmuir isotherm and pseudo-second-order
kinetic models to represent arsenic adsorption/removal from
water, indicating the dominance of the chemisorption process

@ Springer

and strong bonding of arsenic with the plant biomass. These
models are very useful in assessing the performance of vari-
ous phyto-remediating plants for arsenic removal from water.
However, the complexity of modeling increases when soil
comes into the context as multicomponent reactions need to
be considered at the same time. Therefore, solubility specia-
tion models are widely employed to consider the effect of solid
phase interaction with soil solution.

An integrated solubility free ion activity model (FIAM) has
been used to predict the uptake of arsenic by rice crop based on
predicted free ion activity in soil solution [14, 88]. The model
suggests that the uptake of arsenic is controlled by free ion
activity in the soil pore water. Soil properties like pH, organic
carbon, and extractable arsenic have served as input parameters
to run this model [14, 88]. A transfer factor (TF) is defined as
the ratio of arsenic concentration in the plant [Mp,,,] to arsenic
ion activity in soil pore water (M"™) (Eq. 6) [90].

F = [MP]ain] (6)
(MN-)

The M"~ can be predicted from a pH-dependent Freundlich
equation [70]. Arsenic uptake by plant can be calculated by
combining Eq. 6 with M"~ as follows (details in supplementary
information, section A1):

log [Mpjyn] = C + BypH + B, log[M,] (7

where C, 8, and f3, are coefficients associated with arsenic
and plants. Microsoft Excel Solver was used to parameterize
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Eq. 7 through non-linear error minimization [14]. For the
calculation of the error sum of squares, numerical data on
plant metalloid content were used rather than logarithmic
data [14, 88]. As high as 78% variation in arsenic content
in rice grain could be explained by the solubility-FIAM
model for samples collected from the arsenic-affected region
in Malda, West Bengal [14]. The model parameters were
reported as C=-2.30, ; =—-0.03, and $,=0.80 (Figure
S1). In another study, solubility-FIAM was also tested in
soil subjected to long-term sewage irrigation to predict the
transfer of arsenic from soil to rice crop [88]. In this study,
as much as 36% variation in arsenic content in rice grain
could be explained by the solubility-FIAM model where
model parameters were reported as C=-4.15, ,=0.28,
and f,=0.68. Such prediction has been considered very
good for routine risk assessment of arsenic-contaminated
soil based on important soil chemical properties like pH,
extractable arsenic, and organic carbon. Datta and Young
(2005) reported that parameterization of solubility, based
on actual free ion activity, would improve the predictability
of the model [91]. Literature has reported both positive and
negative effects of pH on solubility and mobility of arsenic
as seen from the model parameter 3, value. On the other
hand, model parameter f, is negatively related with the solu-
bility of arsenic in soil. Consequently, mobility of arsenic is
generally reduced with an increase in organic matter content
in soil through organo-arsenic chelation [92]. In addition to
rice crop, the efficacy of different models such as regression
model (linear and multiple), logarithmic model, and solu-
bility-FIAM was compared for predicting arsenic content in
wheat grains and the risk involved when humans consume
them [93]. The solubility-FIAM model has been found to
offer a better prediction (R*=0.97) of the arsenic content
in grains and associated human health risks. The variability
in arsenic uptake by wheat grain was explained by multiple
regression, linear regression, and logarithmic regression
model to the extent of 86%, 76%, and 70%, respectively
[93e]. Logarithmic transformation of data reduced the pre-
dictability of the regression model by 6%, which indicates
that the relationship between extractable arsenic in soil and
arsenic content in wheat grain is linear in nature within
the observed range of extractable arsenic in experimental
soil. Based on these models, it is clear that the arsenic con-
tent in wheat grain is mainly affected by Olsen extractable
arsenic in soil; inclusion of other soil properties like pH
and organic C in multiple regression model enhanced the
predictability up to 86%. Apart from the higher prediction
coefficient, the solubility free ion activity model had an
edge over empirical regression models because the former
is not purely empirical. Instead, it is semi-mechanistic in
nature, where the assumption had been made that extract-
able arsenic is adsorbed on oxidizable organic C. For rice,
the solubility-FIAM model was validated with the arsenic

data set collected from Nadia (West Bengal, India). In the
future, other important soil parameters like clay content and
available Fe, Al, Mn, and phosphate content should be incor-
porated as model parameters to enhance the model’s perfor-
mance. Currently, total arsenic in soil (10 to 20 mg kg™')
has been used as a simple index of arsenic hazard globally
[94]. However, a poor correlation between total arsenic in
soil and plant arsenic was noted. This is because total arsenic
in the soil does not consider how its availability is changed
by soil properties. For example, arsenic uptake by plants
(and, hence, its accumulation in grains) is affected by soil
properties like pH, redox potential, organic matter content,
and the presence of other ions in the soil pore water [14].
An attempt has been made to prescribe a safe limit of bio-
available arsenic in soil based on (i) solubility of arsenic
in soil (controlled by soil chemical properties); (ii) arsenic
content in rice grain; and (iii) human health hazard (con-
sumption of food) [14, 88, 91, 95, 96¢]. Given that people’s
food habits vary based on geographical location, environ-
mental circumstances, and culture, a common (global) per-
missible limit of arsenic in rice grain will not have much
practical significance. However, prescribing a safe limit
of plant-available arsenic in the soil will be of importance
for appraising the suitability of agricultural land for food
crop cultivation and managing arsenic-contaminated soil
[14]. For fixing the safe limit of bioavailable arsenic in soil
at particular pH and organic carbon content, the critical
value of HQ is taken as 0.5. Hence, a ready reckoner can be
developed to compute the permissible limit of bioavailable
arsenic in soils based on pH and organic carbon content.
These permissible limits are based on the predicted HQ by
solubility-FIAM. In the arsenic-contaminated area of Malda
(West Bengal, India), the safe limit of bioavailable arsenic in
soil would be 0.43 mg kg™! for rice cultivation if the soil pH
and organic carbon levels are 7.5 and 0.50%, respectively.
However, the permissible limit of bioavailable arsenic in
soil would be 0.54 mg kg~! if soil pH is 8.5 and organic
carbon is 0.75% [14] (Figure S2). In another study involving
long-term sewage irrigated soils, the permissible limit of
bioavailable arsenic would be 0.27 mg kg™~! for cultivation
of rice crop, assuming that pH and organic carbon content
are 6.0 and 0.25%, respectively. In contrast, the critical limit
of bioavailable of arsenic would be 3.62 mg kg™, if pH and
organic carbon are 8.0 and 0.5%, respectively [88]. For this
reason, the ready reckoner can serve to fix the safe limit of
bioavailable arsenic based on model parameters. Safe limit
of bioavailable arsenic in soil varied widely with changes in
organic matter content, whereas such variation was not seen
with pH [14]. The probable reason for no effect of pH might
be the initial pH of the study area. Most studies were con-
ducted in areas having a narrow soil pH range, i.e., alkaline
soil. This finding strengthens the argument that total arsenic
in soil is not a good index of arsenic hazard. Moreover, this
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emphasizes the importance of fixing a safe limit of bioavail-
able arsenic in soil.

Future Outlook/Perspectives

Growing rice in the arsenic-contaminated soil is a major
route of human arsenic exposure, and that may lead to major
public health issues. So, production of rice with arsenic in
it is vital for food security. It is imperative to categorize the
possible factors affecting bioavailability of arsenic from soil
and water in the rice-growing regions in the world. This is
critical so that proper prevention, remediation, and manage-
ment plans can be devised and implemented.

Risk Mapping

Regional-level arsenic risk mapping throughout the world
is urgently required for successful policy intervention and
resource allocation to alleviate the problem and help the
affected population and communities. While there are other
contaminants which are ingested with food, arsenic in sta-
ple food rice is of major concern. This study specifically
discussed the risks due to arsenic present in rice. However,
it is now known that other crops (e.g., wheat, red spinach
leaf, arum leaf, coriander leaf, potato, radish, beans, brin-
jal, turnip, cauliflower, and carrot) which are part of the
human diet also accumulate arsenic [78, 97-100]. Wheat
samples collected from the arsenic-contaminated areas of
Nadia district (West Bengal, India) contained 59.2 ug arse-
nic kg~! (range 3-285 pg kg~!; n=55) [78]. Leafy vegeta-
bles in Bangladesh were reported to contain arsenic in the
130-790 ug kg~ range [100], and one report recorded a very
range of 0.1-3.99 mg kg~! [97]. The range of arsenic in leafy
vegetables (spinach, coriander, and peppermint) collected in
Pakistan was 0.90—1.20 mg kg~! [98]. Wheat flour samples
collected from arsenic-exposed Bihar state of India revealed
very large amounts of arsenic (mean 49.8 ug kg~!, range
3.59-448 ug kg=!, n=>58) [99]. It will be important that the
health risks from arsenic in rice and other food items are
combined with the risks from arsenic-contaminated drinking
water. Such risks should not only be evaluated and mapped
for the human population but also for the socio-economically
important animals, for instance, cattle, horse, goat, chicken,
duck, and fish.

Connecting Risks to Ground Realities

The macro- and micro-level risk calculations should be
validated with ground data from affected areas. It may be
difficult to pinpoint the occurrences of cancer and other
health issues in a particular population to arsenic in food
and drinking water alone; nevertheless, documentation of
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actual cancer and other disease prevalence in arsenic-con-
taminated areas is vital. For example, 212 (4.35%) cases
of skin cancer and 38 (0.78%) cases of internal cancers
were detected among 4865 cases of arsenicosis studied in
arsenic-affected villages of West Bengal (India) [101]. In
another study, 80 (43.96%) cases out of 182 participants
showed typical arsenicosis features characterized by pig-
mentation and keratosis including skin cancer (Table S3)
[14]. In a macro-level study, out of 10,469 people exam-
ined, the prevalence rate of arsenicosis was in fact 15.43%
[102]. In the same investigation, chronic lung disease was
detected in 207 (12.81%) cases while peripheral neuropathy
was reported in 257 (15.9%) cases. It will be important to
use similar data to validate models used for risk assessment
for the same population.

Risk Assessment of Arsenic

The assessment of health risk associated with any toxicant
entails multiple steps that include (1) identifying the sources
and receptors of risks, (2) exposure assessment, (3) toxicity
analysis, and (4) risk characterization [63]. The assessment of
health risks can be deterministic or probabilistic. It would be
prudent to discuss the two methods and evaluate the relative
suitability of either of the methods for arsenic risk assessment.

The deterministic method yields a maximum exposure
estimate based on the level of contaminant, which is then
compared to reference values for health impacts and is used
in location-specific risk assessments. There are, however,
considerable uncertainties in exposure pathways for health
risk assessment [103]. For example, arsenic in the environ-
ment can be introduced to the human body via oral inges-
tion, cutaneous contact, and inhalation, and there are multi-
ple media for exposure including water, foods, air, and soil.
Moreover, many site- or chemical-specific characteristics go
into calculating arsenic exposure frequency and durations
in the sensitive population. The deterministic methods may
underestimate or overestimate the threats [103].

The probabilistic risk assessment (PRA) or uncertainty
analysis incorporates more of the available data, and thus,
probabilistic analyses address the primary limitations of deter-
ministic (point) estimates. The probabilistic approaches deal
with uncertainty and variability rationally and scientifically.
The single most important aspect influencing the outcomes of
a PRA is the choice of probability distributions for input data
[104, 105]. The PRA process helps in establishing risk distribu-
tions and assessing the impact of each exposure route or input
parameter on the total risks. Based on the collective variation
of model inputs, probabilistic analysis determines the variation
or uncertainty in an output function. Unlike the deterministic
“point” approach, the probabilistic approach determines the dis-
tribution of essential variables (e.g., chemical concentrations,
frequency, and body weight) to indicate their uncertainty. The
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output function’s variability is determined by the variability of
the model inputs and is represented as a probability distribution.

Researchers have used both deterministic and probabilis-
tic methods for human health risk prediction due to arsenic
present in our food and water [103, 106—108]. The authors
advocate the use of the probabilistic method given its inclu-
siveness of the available data and recognition of the con-
tribution of each parameter to the final output. Saha et al.
(2017) reported that deterministically estimated total cancer
risk (TCR) via water exceeded the safe limit of 1 x 107 for
adult and children [85]. However, probabilistically estimated
mean TCR values were less than 1 x 1076 [107]. The deter-
ministic and probabilistic approaches for assessing risks
from arsenic from contaminated drinking water have been
compared, and results showed an overestimation of risks
when deploying the deterministic method [108].

Conclusions

Arsenic contamination in the groundwater-soil-plant contin-
uum is a cause of major concern in rice-consuming countries
because it greatly affects human health. While the major path-
way of humans’ exposure to arsenic is arsenic-contaminated
drinking water, consumption of staple foods (particularly rice)
grown on arsenic-contaminated soil is often ignored. Arsenic-
contaminated groundwater is often used as irrigation water,
and arsenic finds its way to the food grains. The relative dis-
tribution of total arsenic level in rice grain grown and sold
in the South Asian region is the highest followed by South
East and East Asian region. The human health risks due to
rice consumption in three Asian regions are investigated in
this study, and the findings on the potential carcinogenic and
non-carcinogenic risks based on literature available data were
calculated. The cancer risk in the Asian region was found to
be in the range 7 X 107 to 5x 1073, which is well above the
acceptable probability level of 1x 10°°. Meanwhile, the non-
carcinogenic risk measured as hazard quotient (HQ) ranged
from 0.34 to 30.7 while the acceptable HQ is < 1. The authors
would like to emphasize that plant uptake depends on bio-
availability of arsenic, and assessing its bioavailability in the
soil-plant system for predicting human health risk due to food
chain contamination requires elaborate experimentation. Also,
this study reviewed the usage of a modeling approach involv-
ing free ion activity of arsenic in soil pore water, in order to
estimate the amount of arsenic in rice grain. In the future,
such model prediction will help in routine risk assessments of
arsenic-contaminated soils, and protocols can be successfully
devised and implemented to fix the safe limit of bioavailable
arsenic to grow rice.
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