

The High-Temperature Polymorph of LiBF₄

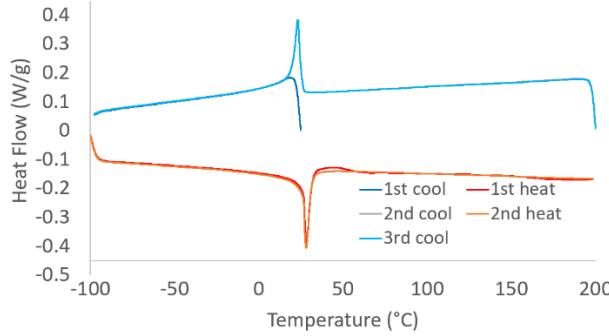
Laura A. Sonnenberg, Shujit Chandra Paul, Stephanie L. Wunder,* Michael J. Zdilla*

Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA 19122

Phase transition, salts, single-crystal X-ray diffraction, thermal analysis, differential scanning calorimetry

ABSTRACT: The single-crystal-to-single-crystal phase transition is determined using X-ray crystallography on LiBF₄, resolving a longstanding ambiguity in the existence of a high-temperature polymorph of LiBF₄. LiBF₄ possesses an endothermic phase change at 28.2 °C with $\Delta H = 1180 \text{ J mol}^{-1}$ and $\Delta S = 3.92 \text{ J mol}^{-1}\text{K}^{-1}$ based on DSC. Single-crystal X-ray diffraction shows that the low temperature phase collected at 200K is a twinned trigonal P system with a twin law indicating reflection through the 110 plane. The same crystal collected above the phase transition temperature at 313 K is a C-centered orthorhombic system describable as the superposition of the two low-temperature twin geometries undergoing interconversion. The geometries of the high- and low-temperature phases are consistent with the calorimetry experiments, and with previous NMR findings indicating BF₄ geometric reorientations above 300 K.

Among the most ubiquitous polyatomic, weakly coordinating anions is tetrafluoroborate, BF₄⁻. As a common spectator anion in organic and inorganic syntheses, numerous salts of this important anion are available as inexpensive commercial chemicals. Structures of many alkali and alkaline earth metal salts of BF₄⁻ have been determined using single-crystal X-ray diffraction, SC-XRD, beginning in the 1930's by Finbak and Hassel, and including more recent examples as well.¹ Early structures included salts of Na, K, Rb, Cs, and NH₄⁺.² One of the interesting properties of this category of tetrafluoroborate salts is that each of these has been shown to undergo a solid-to-solid phase transformation to an alternative polymorph, characterized by via SC-XRD, in each case transforming from an orthorhombic phase at low temperature to a cubic phase at higher temperature.³ Conspicuously absent from the alkali metal series is LiBF₄, though a phase transition for this salt has been proposed, but has been controversial. There has been significant debate on the existence of the phase transition of LiBF₄, or lack thereof, for this species spanning decades, as summarized below.


In 1969, Cantor and coworkers reported no observation of a solid transition for LiBF₄ using a metal dilatometer to determine density and expansivity of the molten salt.⁴ However, in March 1970, Shuster and Marano determined and reported the transitional phase of LiBF₄ to occur between 108-110 °C using differential thermal analysis.⁵ Later findings from Dworkin in 1972 did not seem to corroborate this result; these authors

reported no evidence of this phase transition using copper block drop calorimetry.⁶

In 1984, Reynhardt and Lourens discovered a change in magnetic moment of the fluorine nucleus by ¹⁹F NMR of LiBF₄ at 300.1 K.⁷ They hypothesized that this apparent change in magnetic moment was triggered by a change in local symmetry around the fluorine atom resulting from a structural change in the LiBF₄ lattice. In 1993, Gorbunov et al. reported a phase transition in LiBF₄ using adiabatic calorimetry at 300.7 K,⁸ a temperature similar to that observed by Lourens for the magnetic phase transition of the ¹⁹F nucleus. In 1997, Plakhotnik and coworkers reported a similar result using differential scanning calorimetry (DSC) at 300.7 K,⁹ and this result was corroborated again by Henderson in 2011.¹⁰ In 2006 the first single crystal of anhydrous LiBF₄ was reported at 200 K by Žemva and coworkers,¹¹ but up to the present, no crystallographic evidence of a phase transition for LiBF₄ has been reported. We report here a redetermination of the low-temperature SC-XRD structure of LiBF₄ and the structure of the high-temperature polymorph. The corresponding structural changes are described in context of previous literature.

To reassess the existence of thermodynamic evidence of a phase change, differential scanning calorimetry (DSC) data was collected for the pure LiBF₄ salt, shown in Figure 1. It contains a sharp melting endotherm at 28.2 °C (301.4 K), consistent with the findings of Gorbunov, Lourens, Plakhotnik, and

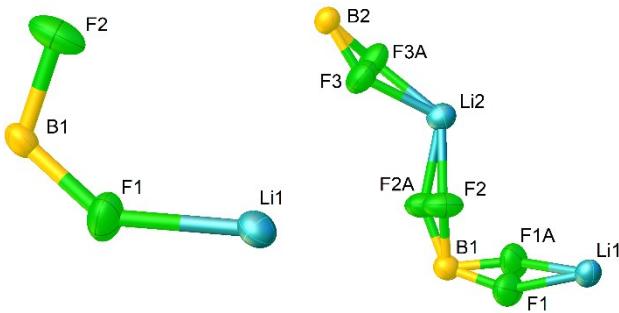

Henderson.⁷⁻¹⁰ The enthalpy and entropy for the formation of the high-temperature phase were calculated from the heating trace, giving $\Delta H = 1180 \text{ J mol}^{-1}$ and $\Delta S = 3.92 \text{ J mol}^{-1}\text{K}^{-1}$. These values differ from the thermodynamic values of the phase transition reported by Gorbunov et al., of $\Delta H = 3010 \text{ J/mol}$ and $\Delta S = 12.0 \pm 0.3 \text{ J mol}^{-1}\text{K}^{-1}$. This might be due to contamination of Gorbunov's sample by the trihydrate, which also melts at approximately room temperature,⁸ and would increase the observed exotherm since heats of fusion are rather larger than heats of polymorphic transitions.

Figure 1. DSC thermogram of LiBF_4 with melt peaks at $28.2 \text{ }^\circ\text{C}$.

Based on our DSC measurement, anhydrous LiBF_4 melts at $309.2 \text{ }^\circ\text{C}$ (see Supporting Information), a value consistent with that reported by Dworkin of $310 \text{ }^\circ\text{C}$ using copper block drop calorimetry.⁶ ΔH_{fus} and ΔH_{fus} computed from the integral of the DSC are 11.5 kJ/mol and $19.7 \text{ J/mol}\cdot\text{K}$ respectively, about 20% lower than those reported by Dworkin.⁶

To examine the structural difference attributed to the thermal signals in the DSC, SC-XRD utilized. A single crystal of LiBF_4 was taken directly from commercially available bulk LiBF_4 powder without recrystallization. The crystal was then heated to 313 K under temperature-controlled nitrogen gas, and SC-XRD data was collected at that temperature. The same crystal was then cooled to 200 K at a rate of 6 K per minute, and recollected at that temperature to capture the single-crystal-to-single-crystal phase transition. The asymmetric unit structures are shown in Figure 2.

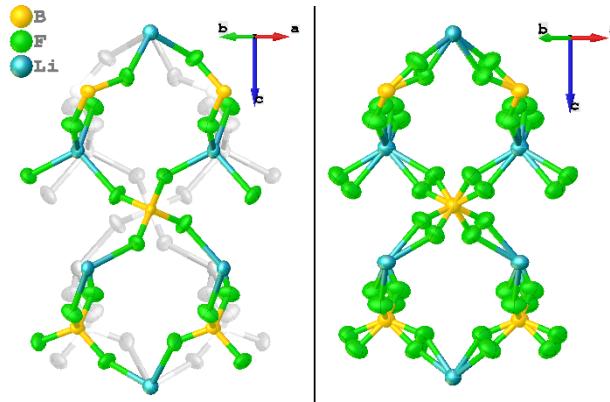


Figure 2. Thermal ellipsoid plots of the asymmetric unit of LiBF_4 . Left: Structure at 200 K in the $P3_21$ space group. Ellipsoids set at 50% probability level. Right: Structure at 313 K in the $C222$ space group. Ellipsoids set at 30% probability level.

The space group for the 200 K structure collected in this work is assigned as $P3_21$, identical to the reflection of previously reported $P3_121$ space group reported by Žemva.¹¹ The structure nevertheless exists as a twinned structure described by a reflection through the 110 crystallographic plane as evidenced by twin refinement, which improves R_{f} from 22.9% to 3.66% , with

the minor (reflected) twin component representing $44.2(4)\%$ of the crystal based on twin refinement. Figure 3 (left) shows an overlay of the major structure and the twin component, showing that the twin component can be described by a rotation of the BF_4 anion with respect to its lithium neighbors. The slight canting of the BF_4 ions as viewed down the $[110]$ direction in Figure 3 (left) illustrates the lack of two-fold or reflection symmetry about c . This twinning behavior can be attributed to the twin components representing degenerate, opposite-handed chiral space groups, each of which is obtained due to random chance during crystal nucleation.

In Figure 3-right, the 313 K structure is shown, viewed down the same axis (the $[110]$ direction is equivalent in the trigonal P and orthorhombic C settings). One can see from this diagram that the arrangement of atoms is quite similar, except that the imposed permanent cant of the BF_4 anion is disrupted at higher temperature, and the anion takes on a two-component disorder. In Figure 3-right, we can see that the high temperature phase effectively represents a rapid interconversion of the geometries of the two twin components of the low-temperature phase.

Figure 3. Thermal ellipsoid plots showing equivalent selection of packed atoms for each polymorph viewed along the $[110]$ direction (equivalent view for both space groups). Left: atoms from the $P3_21/P3_121$ polymorph. The reflection twin component is shown overlaid in gray. $T = 200 \text{ K}$. Ellipsoids set at 50% probability level. Right: atoms from the $C222$ space group. $T = 313 \text{ K}$. Ellipsoids set at 30% probability level.

The appearance of both orientations together at 313 K imparts new two-fold symmetry about the c axis not present in the trigonal structure (Figure 3). The disorder however disrupts the right-handed helices of the vertical $[\text{Li}-\text{F}-\text{B}-\text{F}]_\infty$ chains shown in Figure 3-left such that the 3_2 screw axis symmetry is lost at high temperature. The appearance of crystallographic disorder at high temperature, as well as the reduction in crystallographic symmetry from the trigonal to the orthorhombic settings are consistent with the increase in entropy observed from DSC, Figure 1. Further, the disruption of permanent short F-Li contacts at higher temperature is consistent with the endothermic conversion to the high-temperature phase due to the requirement for bond disruption. The geometric descriptions from the single-crystal X-ray data are consistent with the findings of Reynhardt et al., who observed a decrease in the magnetic second moment of the ^{19}F nucleus above the phase transition temperature, which they attributed to molecular reorientations of the molecular components⁷ (i.e., the BF_4 anion), entirely consistent with the picture shown in Figure 3.

In conclusion, DSC confirms the existence of a phase transition for LiBF₄, and single crystal x-ray diffraction has been used to visualize the single-crystal-to-single-crystal phase transition from a trigonal to orthorhombic lattice. The geometric arrangements of the atoms in the low- and high-temperature polymorphs show that a two-component reflection twin overcomes local strong F-Li contacts at about 300K, and that the geometries of the two twin components begin interconverting in the high-temperature phase, changing the overall symmetry. The observed geometries are consistent with the positive ΔH and ΔS values from DSC, and with previous findings from ¹⁹F NMR indicating orientational averaging above 300 K.⁷ The findings put to rest a decades-long debate on the elusive second polymorph for LiBF₄, and completing the periodic series polymorphic alkali tetrafluoroborate salts.

ASSOCIATED CONTENT

Crystallographic information files (CIF), also available from CCDC under deposition # 2299467-2299468), experimental protocols, powder X-ray diffraction patterns and crystallographic tables. This material is available free of charge via the Internet at <http://pubs.acs.org>. Additional references are cited in the supporting information.

AUTHOR INFORMATION

Corresponding Author

* Michael J. Zdilla – mzdilla@temple.edu
* Stephanie L. Wunder – slwunder@temple.edu

Author Contributions

The manuscript was written through contributions of all authors.

Funding Sources

NSF-DMR- 2138432

ACKNOWLEDGMENT

Support for this work by the National Science Foundation under award DMR-2138432, and is gratefully acknowledged.

ABBREVIATIONS

SC-XRD, single-crystal X-ray diffraction; DSC, differential scanning calorimetry; NMR, nuclear magnetic resonance.

REFERENCES

- 1) Goreshnik, E.; Mazej, Z. X-ray single crystal structure and vibrational spectra of AgBF₄. *Solid State Sciences* **2005**, *7* (10), 1225-1229. DOI: <https://doi.org/10.1016/j.solidstatesciences.2005.06.007>. Finbak, C.; Hassel, O. Rotation von Anionenpolyedern in kubischen Kristallgittern. II. Die Borfluoride. *Z. Phys. Chem.* **1936**, *32B* (1), 433-438. DOI: doi:10.1515/zpch-1936-3237 (accessed 2023-07-24).
- 2) Caron, A. P.; Huettner, D. J.; Ragle, J. L.; Sherk, L.; Stengle, T. R. Ion Motion in Tetrafluoroborate Salts. I. NH₄BF₄ and ND₄BF₄. *The Journal of Chemical Physics* **1967**, *47* (8), 2577-2583. DOI: 10.1063/1.1712272 (accessed 7/24/2023). Hoard, J. L.; Blair, V. The Crystal Structures of Rubidium and Ammonium Fluoroborates. *J. Am. Chem. Soc.* **1935**, *57* (10), 1985-1988. DOI: 10.1021/ja01313a067.
- 3) Clark, M. J. R.; Lynton, H. Crystal structures of potassium, ammonium, rubidium, and cesium tetrafluoroborates. *Can. J. Chem.* **1969**, *47* (14), 2579-2586. DOI: 10.1139/v69-426 (accessed 2023/07/24).
- 4) Cantor, S.; McDermott, D. P.; Gilpatrick, L. O. Volumetric Properties of Molten and Crystalline Alkali Fluoroborates. *The Journal of Chemical Physics* **1970**, *52* (9), 4600-4604. DOI: 10.1063/1.1673691 (accessed 7/24/2023). Cantor, S. Metal Dilatometer for Determining Density and Expansivity of Volatile Liquids at Elevated Temperature. *Rev. Sci. Instrum.* **1969**, *40* (7), 967-968. DOI: 10.1063/1.1684132 (accessed 7/24/2023).
- 5) Marano, R. T.; Shuster, E. R. Determination of the rhombic to cubic transition temperature of the alkali metal tetrafluoroborates using differential thermal analysis. *Thermochim. Acta* **1970**, *1* (6), 521-527. DOI: [https://doi.org/10.1016/0040-6031\(70\)80003-X](https://doi.org/10.1016/0040-6031(70)80003-X).
- 6) Dworkin, A. S. Enthalpy of lithium fluoroborate from 298-700.deg.K. Enthalpy and entropy of fusion. *Journal of Chemical & Engineering Data* **1972**, *17* (3), 284-285. DOI: 10.1021/je60054a038.
- 7) Reynhardt, E. C.; Lourens, J. A. J. An NMR study of molecular reorientations and diffusion in solid LiBF₄. *The Journal of Chemical Physics* **1984**, *80* (12), 6240-6244. DOI: 10.1063/1.446726 (accessed 7/24/2023).
- 8) Gorbunov, V. E.; Gavrichev, K. S.; Totrova, G. A.; Golushina, L. N.; Plakhotnik, V. N.; Tul'chinskij, V. B.; Kovtun, Y. V. Phase transition and thermodynamic properties of lithium borofluoride in low temperature range 10340 K. *Zhurnal Neorganicheskoy Khimii* **1993**, *38* (2), 217-219.
- 9) Sharpataya, G. A.; Gavrichev, K.; Plakhotnik, V. N. Calorimetric Investigation of Lithium Tetrafluoroborate and Its Hydrates at Elevated Temperatures. *Russian Journal of Inorganic Chemistry* **1997**, *42*, 575-579.
- 10) Allen, J. L.; Han, S.-D.; Boyle, P. D.; Henderson, W. A. Crystal structure and physical properties of lithium difluoro(oxalato)borate (LiDFOB or LiBF₂Ox). *J. Power Sources* **2011**, *196* (22), 9737-9742. DOI: <https://doi.org/10.1016/j.jpowsour.2011.07.065>.
- 11) Matsumoto, K.; Hagiwara, R.; Mazej, Z.; Goreshnik, E.; Žemva, B. Anomalously Large Formula Unit Volume and Its Effect on the Thermal Behavior of LiBF₄. *The Journal of Physical Chemistry B* **2006**, *110* (5), 2138-2141. DOI: 10.1021/jp0564795.