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A B S T R A C T   

Nonlinear micro-electro-mechanical systems (MEMS) resonators open new opportunities in sensing and signal manipulation compared to their 
linear counterparts by enabling frequency tuning and increased bandwidth. Here, we design, fabricate and study drumhead resonators exhibiting 
strongly nonlinear dynamics and develop a reduced order model (ROM) to capture their response accurately. The resonators undergo 
electrostatically-mediated thermoelastic buckling, which tunes their natural frequency from 4.7 to 11.3 MHz, a factor of 2.4× tunability. Moreover, 
the imposed buckling switches the nonlinearity of the resonators between purely stiffening, purely softening, and even softening-to-stiffening. 
Accessing these exotic dynamics requires precise control of the temperature and the DC electrostatic forces near the resonator’s critical-buckling 
point. To explain the observed tunability, we develop a one-dimensional physics-based ROM that predicts the linear and nonlinear response of 
the fundamental bending mode of these drumhead resonators. The ROM captures the dynamic effects of the internal stresses resulting from three 
sources: The residual stresses from the fabrication process, the mismatch in thermal expansion between the constituent layers, and lastly, the applied 
electrostatic forces. The novel ROM developed in this article not only replicates the observed tunability of linear (within 5.5 % error) and nonlinear 
responses even near the states of critical buckling but also provides insightful intuition on the interplay among the softening and stiffening, which is 
invaluable for the precise design of similar devices. This remarkable nonlinear and large tunability of the natural frequency are valuable features for 
on-chip acoustic devices in broad applications such as signal manipulation, filtering, and MEMS waveguides.   

1. Introduction 

Currently, micro-electro-mechanical systems (MEMS) resonators are indispensable for radio-frequency (RF) signal processing and 
filtering [1,2], energy harvesting [3–5], and sensing and actuating [6,7]. In the near future, MEMS resonators could enable megahertz 
to gigahertz acoustic signals that can couple to photonic [8,9] and electric devices [10,11]. Such coupling is promising for future 
applications like photonic-phononic memory [12,13], quantum information control [14,15], and integrated circuitry [16,17]. For 
instance, acoustic waves offer an advantage over optical waves in inducing nonlinear interactions over a large space compared to the 
optical wavelength [18,19], which enables nonreciprocal behaviors [20,21] even in passive settings [22–24]. 

Buckled MEMS resonators result from the interplay between compressive stresses and the multi-physics arising at small scales, such 
as thermoelastic and electromechanical effects. While buckling presents a drawback in traditional structural design, a new paradigm 
exploits buckling to enable new applications in acoustic metamaterials [25]. 

For example, electrostatic and electrothermal buckling tunes the natural frequency [26–32] and the geometric nonlinearity 
[33–41] in micro/nano-resonators. Moreover, buckling amplifies the weak thickness variabilities (<5%) among the unit cells of 
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phononic waveguides until eventually breaking the stiffness-periodicity of the waveguides, which switches off the acoustic trans
mission [42]. 

In this work, we study the effect of buckling on MEMS drumhead plate resonators under different electrostatic and thermal con
ditions (section II). Such drumhead resonators sustain megahertz-to-gigahertz mechanical vibrations with high quality-factors (high 
Qs) and optical finesse, two valuable features in mechanical, electrical, and optical applications [43–45]. Moreover, the drumhead 
resonators offer a larger surface area than beams and cantilevers, facilitating optomechanical interactions [44–46]. Ultimately, the 
drumhead resonators are conveniently manufacturable via bulk micro/nanofabrication techniques [44,45], while allowing for in-situ 
structural tunability and actuation via piezoelectric [16,46], electrostatic [38], and thermal control [42]. Therefore, we find the 
drumhead resonators applied in tunable optical cavities [47] and low-loss nonlinear optomechanical couplers [48]. 

In this work, we experimentally report that electrostatic control of buckling tunes the natural frequency of micro-drumhead res
onators by a factor > 2.40× from 4.7 to 11.3 MHz (section III). Table 1 and Fig. 1 compare this linear-frequency tunability to the tuning 
capabilities of micro- and nano-resonators reported in the literature. Table 1 and Fig. 1 demonstrate that this work tuning (of > 2.40 × ) 
surpasses the tuning reported in the literature of drumhead 2D-membranes (i.e., sustaining stretching solely) and drumhead plates (i. 
e., sustaining stretching and bending). Moreover, this work tuning exceeds the tuning observed in all the clamped–clamped beam 
works of Table 1, except for those in [33,34]. We conjecture that this work attained this “ultra-tuning” because we exploit the elec
trostatic tunability by controlling the temperature, which adjusts the interplay between the thermal expansion and fabrication-residual 
stresses. 

As for the nonlinear response, we switch the nonlinearity in the resonator’s dynamics from softening to stiffening by 

Table 1 
Literature overview of tuning mechanical micro- and nano-resonators. Considered tuning methods do not include material and geometric design 
tuning. We only consider the fundamental modes, the reported experimental results, and frequencies above 10s kHz.  

Resonator type Tuning method Linear frequency 
tuning 

Nonlinearity tuning/switching Date, 
[Reference] 

Clamped-clamped 
beam 

Electrostatic ~8.25 to ~ 8.8 MHz  

(1.07 × ) 

Detuning of the stiffening nonlinearity 2006, [33] 

~49 to ~ 60 MHz  

(1.22 × ) 

Switching between softening, softening-to-stiffening, and 
stiffening 

2018, [34] 

~112.5 to ~ 118.3 
MHz  

(1.05 × ) 

Detuning of the stiffening nonlinearity 2019, [35] 

Joule heating 3.3 to 15.5 kHz  

(4.70 × ) 

– 2017, [26] 

260 to 410 kHz  

(1.58 × ) 

Switching from stiffening to softening 2017, [36] 

Electrostatic and Joule 
heating 

~20 to ~ 90 kHz  

(4.50 × ) 

– 2016, [27]  

Drumhead  

2D-membrane  

Electrostatic ~75 to ~ 90 MHz  

(1.20 × ) 

– 2014, [28] 

~5 to ~ 8 MHz  

(1.60 × ) 

Detuning of the stiffening nonlinearity 2018, [37] 

Piezoelectric ~8.75 to ~ 9.2 MHz  

(1.05 × ) 

– 2015, [29]  

Drumhead plate  

in a waveguide 

Electrostatic ~14.9 to ~ 16.85 
MHz  

(1.13 × ) 

Detuning of the stiffening nonlinearity 2018, [38] 

Thermal ~11 to ~ 13.25 MHz  

(1.20 × ) 

– 2021, [42]  

Drumhead plate  

(single resonator) 

Air pressure ~0 to ~ 200 kHz – 2009, [30] 
Electrostatic  

and thermal 

4.7 to 11.3 MHz  

(2.4 × ) 

Switching between softening, softening-to-stiffening, and 
stiffening 

2023,  

[This work]  

A. Kanj et al.                                                                                                                                                                                                           



Mechanical Systems and Signal Processing 196 (2023) 110331

3

electrothermally setting the resonators near the critical buckling, which is the state of minimum natural frequency (section IV). The 
realized stiffening near-critical buckling covers a broad band of frequencies, thus allowing for a wider operational range [49,50]. The 
resonators switch from purely softening to purely stiffening by transitioning through a phase of softening-to-stiffening nonlinearity. To 
the authors’ knowledge, this work is the first to report this type of nonlinearity switching in a micro- or nano-drumhead resonator, as 
illustrated in Table 1. Other drumhead literature accounts for tuning of the stiffening nonlinearity, whereas the nonlinearity switching 
was only observed in clamped–clamped beams (cf. Table 1). 

To explain the observed tunability, we develop a one-dimensional reduced-order model (ROM) that captures the essential 
mechanisms responsible for buckling in the resonators (section II). The proposed ROM lumps the resonator into a discrete mass. The 
mass translates along the direction of the bending motion while being subjected to the resonator’s bending, stretching, thermal 
expansion, residual stresses, and the applied voltage on the resonator, which provokes buckling [27,34]. These multi-physical effects 
are incorporated into the ROM by a discrete electrostatic force and two structural springs. These springs account for the resonator’s 
bending and stretching by assuming an orthogonal configuration that mimics the von Mises truss model of buckling [51]. The free 
lengths of these springs are temperature-dependent to model the resonator’s thermal and fabrication-residual stresses. Therefore, these 

Fig. 1. Graphical representation of the linear frequency tuning achieved in the literature reviewed by Table 1. The left column indicates the 
resonator type, and each horizontal bar demonstrates the tuning range of the resonators’ natural (i.e., linear) frequency on a log scale according to 
the specified reference to the right of the bar, matching the first and third columns of Table 1, respectively. 

Fig. 2. Design and geometry of the micro-drumhead resonator. (a) Optical microscopic picture of the top view of the drumhead resonator at room 
temperature with VDC = 0 V. The picture shows interferometric coloring (darker orange) at the center of the resonator due to the out-of-plane 
deflection resulting from buckling. (b) Schematic illustration of the resonator’s cross-section passing through the centerline with the gold termi
nals. The schematic depicts the layered materials, the cryostat temperature control mechanism, the electrostatic actuation, and the optical detection 
apparatus. (c) Schematic of the reduced-order model (ROM) developed in this work to capture the electrothermal buckling effects on the dynamics 
of the resonator. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

A. Kanj et al.                                                                                                                                                                                                           



Mechanical Systems and Signal Processing 196 (2023) 110331

4

temperature-dependent springs and the discrete electrostatic force induce compressive effects that buckle the ROM. Remarkably, 
although relatively simple, the derived discrete ROM predicts very accurately (within 5.5 % error) the experimental tuning in natural 
frequency for the measured temperatures and electric voltages (section III). The ROM also captures the softening/stiffening switching 
in the nonlinearity of the response with an accuracy depending on the electrothermal conditions (section IV). 

2. Experimental system and reduced-order model 

Fig. 2 describes the micro-drumhead resonators and reduced order model we used to study the effect of electrothermal buckling on 
the dynamics of resonators. Fig. 2a-b show an optical image and schematic of the fabricated micro-drumhead resonators. Each 
resonator is formed of a ~ 60 nm thick circular silicon nitride (SiNx) layer of ~ 10.1μ m diameter with a central hole of ~ 1.3μm 
diameter over a vacuum gap of 150 nm. Patterned 60 nm thick gold electrodes on top of the SiNx layer allow electrostatic actuation. 
The underlying silicon is degenerately n++ doped to be conductive and serves as a global electrostatic gate. The SiNx is initially grown 
on top of a 150 nm Silicon Dioxide (SiO2) sacrificial support layer. The SiNx layer is then released using hydrofluoric (HF) acid, where 
the central hole allows the HF to access and selectively etch the underlying sacrificial oxide. (cf. supplemental material section S1.a for 
additional information regarding the fabrication process). 

Fig. 2b schematically shows the experimental measurement and tunable electrostatic and thermal controls. The samples are 
measured inside an optical cryostat, which allows electrical and optical inputs and thermal control. All measurements are performed in 
a vacuum, with pressure < 2 × 10-6 mBar. We electrostatically actuate the resonators by applying the radio frequency RF voltage 
VRF(t) = Vampsin(Ωt) to the electrodes and a DC voltage VDC to the underlying silicon back gate, leading to a static out-of-plane force FDC 

(cf. (14)) which tunes the resonator’s internal stresses and an RF force FRF (cf. (15)) which drives the resonator to resonate, discussed 
later as part of the reduced order model. To detect the motion, we focus a laser near the center of the resonator and measure the time- 
varying reflected light using a photodiode attached to a network analyzer. The resonator is partially transparent, so the light reflecting 
from the back-gate and the resonator’s surface interferes due to Fabry-Perot Interferometry. As a result, the change in reflected light 
intensity is proportional to the amplitude of motion. 

To unravel the relative contributions from electrostatic tuning and the resonator’s internal stress, we independently control the 
internal stress by adjusting the temperature in the optical cryostat. This temperature-change tunes the internal stress in the resonator 
by the thermal expansions/contractions induced within the structural constraints. As shown in Supplementary Figure S1, when under 
compression, induced thermal stresses cause the resonator to buckle and deflect out of the plane, creating interferometry fringes 
depending on their buckled profile. We should note that the interplay between these thermoelastic effects and the fabrication-induced 
residual stresses define the internal stress (both tensile and compressive) for each temperature. Since the residual stresses are fixed in 
our experiments, we control the temperature to vary the internal stress. 

Before discussing experimental results, we illustrate each of these multi-physics phenomena (i.e., electrostatic force, thermal 
stresses, and fabrication-induced residual stresses) using the reduced-order model (ROM). Fig. 2c shows the ROM along with the 
relations of all its constitutive elements. The proposed ROM lumps the drumhead resonator into a discrete mass m. As shown by the 
rollers in Fig. 2c, the mass m translates with a displacement coordinate u in the z-direction along which the flexural vibrations of the 
resonator occur while being subjected to the resonator’s bending, stretching, thermal expansion, residual stresses, and the applied 
voltage on the resonator, which provokes buckling [52,34,27,42]. Our ROM captures all these multi-physics effects in the form of 
discrete springs and forces connected and applied to the translating mass. The configuration of the springs in the ROM is inspired by the 
von Mises truss model of bistable buckling phenomena [51] by attaching a stretching spring orthogonally to the bending direction. 

In addition, the ROM considers the thermal and fabrication-residual stresses by imposing temperature-dependent compressions in 
the assumed springs. Specifically, the ROM lumps the effective inertia of the resonator into a rigid mass. Therefore, the mass m 
represents the effective mass of the resonator during its fundamental mode of vibrations, which constitutes the mode of interest for this 
ROM. The ROM captures the bending and stretching of the resonator by the springs of stiffnesses, kB and kT , respectively. The bending 
spring kB aligns with the z-direction whereas the stretching spring kT elongates diagonally with the translation of m. For example, in 
the absence of all forces and springs in the ROM other than the stretching spring, the zero-equilibrium position (i.e., u = 0 m) will be 
unstable if the stretching spring kT is compressed to fit within the distance dT . In this case, m snaps from this unstable zero-equilibrium 
position to another stable equilibrium position whose location depends on the amount of precompression in the stretching spring kT . 
Hence, it is important to quantify the value of precompression in the stretching spring, which we do in the ROM by defining the 
parameter δT as, 

δT =

def
LT − dT

dT
, (1)  

where LT is the free length of the stretching spring that is confined within the distance dT. Under the single effect of the stretching force 

(cf. supplemental material section S3), the mass m attains the stable equilibrium uEQM approximated to O
[(

uEQM
dT

)3
2

]

by: 

⎧
⎪⎨

⎪⎩

uEQM = 0 for δT ≤ 0 (i.e., spring kT is under pretension)

uEQM = ±dT

̅̅̅̅̅̅̅̅̅̅̅̅̅
2δT

1 + δT

√

for δT > 0
(

i.e., spring kT is under precompression
)

. (2) 
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Equation (2) shows that δT determines the stable equilibrium of mass m, which represents the in-plane strains in the resonator as 
defined in (1). These in-plane strains result during the fabrication process and by thermoelastic deformation of the resonator; therefore, 
δT depends on the fabrication-residual strains and the resonator’s temperature. However, the fabrication and thermal strains do not 
only affect the in-plane strains in the resonator but also lead to mismatches in deformations/strains between the different material 
layers that anchor and form the resonator (cf. Fig. 2b). These strain mismatches, especially between the layers of material around the 
anchoring boundary of the resonator, induce moments that bend the resonator in the transverse z-direction of Fig. 2. 

To account for the bending effect of the strain mismatches, we characterize the bending spring kB in the ROM with the parameter, 

δB=

def
LB − dB

dB
, (3)  

where LB corresponds to its free-length and dB corresponds to the distance confining the bending spring when u = 0 m as shown in 
Fig. 2c. Like δT, δB depends on the fabrication-residual strains and the temperature T of the resonator. We determine these temperature 
dependences of δT(T) and δB(T) using experimental measurements that we run at different temperatures controlled by the cryostat 
depicted in Fig. 2b. Based on these experiments (cf. supplemental material section S4.a and Fig. S14a-b) and literature models [53], we 
find that δT and δB scale with temperature T as, 

δT (T) = θ0 + θ1T, (4a)  

Fig. 3. Electrostatic and thermoelastic tunability of the resonator’s linear dynamic response. Experimentally measured frequency response of the 
resonator at a temperature of (a) 340 K, (b) 320 K, and (c) 295 K for increasing VDC whose values label the respective respoonse. For each tem
perature in Fig. 3a-c, the increase in VDC provokes two tunability-regimes where the natural frequency either decreases or increases as shown in (i) 
and (ii), respectively. The voltage VMeas measured by the optical detection apparatus is proportional to the steady-state displacement of the reso
nator. The plots only show the response in a forward (increasing) sweep of the frequency Ω = 2πfext of the applied VRF(t) = Vampcos

(
2πfext t

)
. The 

voltage unit Vp denotes that the RF voltages are reported using their peak (amplitude) values. All the displayed responses are recorded for Vamp =

3.16 mVp, except for VDC = 5 V in Fig. 3a,c where Vamp = 10 mVp. 
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δB(T) = β0 + β1T + β2T2, (4b)  

where the coefficients θ0, θ1, β0, β1, and β2 are independent of temperature and voltage. These coefficients are dictated by the 
structural properties of the resonator (e.g., geometry and material) and the fabrication-residual stresses. 

To account for the electrostatic force, we assume that m in the ROM experiences a voltage drop V(t) = VDC −VRF(t) between the gold 
terminals and the Si ground (cf. Fig. 2b). As further detailed in supplemental material section S3, the nondimensional resultant force 
exerted on m writes 

Fext(u; T, V) = −

{

u − δB(T) + κT u

[

1 − dT
1 + δT (T)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

dT
2

+ u2
√

]

+
γ0 + γ1u

(dE + u)
2V2

}

, (5)  

where u=

def

u
dB

, dT=

def

dT
dB

, κT=

def

kT
kB

, dE=

def

dE
dB

, and {γ0, γ1} are constants related to electrostatic force (cf. supplemental material section 
S3). Note that the nondimensionalization in (5) reduces the number of involved parameters in the ROM by two, namely, the reference 
distance dB and stiffness kB. 

Recall that in the experiments, we impose the temperature T of the resonator and the DC voltage VDC, and then we study the effect 
of these conditions on the vibration of the resonator as depicted in Fig. 3. Alternatively in the ROM, we can identify the effect of T and 
VDC using (5) by computing the equilibrium normalized displacement uEQM(T, VDC) that sets Fext to zero when V = VDC (i.e., imposing 
Newton’s first law). We study the vibrations about uEQM(T, VDC) by perturbing the DC equilibrium via a weak RF voltage such that 
VRF

2 ≪ 2VRFVDC, which is consistent with our measurements, where the maximum RF voltage is 0.316 Vp (peak value) the smallest DC 
voltage is 5 V. 

With w(t; T, VDC +VRF(t) )=

def

u(t; T, VDC +VRF(t) ) −uEQM(T, VDC) and w=

def

w
dB

, we approximate the dynamics to the order O
(
w5)

by 

d2w
dτ2 + κ1w + κ2w2 +

(
κ3 + κB

3

)
w3 + κ4w4 + κ5w5 = −2

γ0 + γ1uEQM

(dE + uEQM)
2VDCVampsin

(
Ω
ωB

τ
)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
FRF (t)

(6) 

according to the detailed derivation in supplemental material section S3. In (6), τ=

def

ωBt is the nondimensional time coordinate 

where t is the dimensional time coordinate, and ωB=

def ̅̅̅̅
kB
m

√

. In (6), κn for n ∈ {1, 2, 3, 4, 5} are deduced by Taylor series expansion of 

FDC(u)=

def

−Fext(u; T, VDC), leading to κn=

def

1
n!

dnFDC
dun

⃒
⃒
⃒
u=uEQM

. κB
3 in (6) represents the geometric nonlinearity of the bending response. 

Equation (6) assumes the RF voltage to be of the form VRF(t) = Vampsin(Ωt) with frequency and amplitude Ω Vamp
2 ≪ 2VampVDC. Note 

that (6) does not incorporate damping because we focus on the detuning and the nonlinearity of the (natural) frequency response of the 
resonator. 

To this end, the frequency detuning along the backbone curve of the forced response is expressed as, 

σ
ωB

=
3

8 ̅̅̅̅̅κ1
√

⎛

⎜
⎜
⎜
⎝

κB
3 + κ3 −

10
9

κ2
2

κ1⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟
κT+E

3

⎞

⎟
⎟
⎟
⎠

w2
amp +

(

−
7
8

κ2κ4
̅̅̅̅̅
κ3

1

√ +
5
16

κ5
̅̅̅̅̅κ1

√

)

w4
amp, (7)  

where we denote by σ=

def

ωPeak −
̅̅̅̅̅κ1

√ the shift in peak-frequency between the nonlinear and the linear systems, by wamp the amplitude 
of steady-state oscillations, and by κT+E

3 the effective cubic nonlinearity resulting from the stretching and the electrostatic effects in the 
ROM of Fig. 2c. Thus, for a stiffening-to-softening behavior (exhibited in Fig. 5e and 5b), the coefficient of wamp

2 in (7) must be positive 
to stiffen the response at moderate amplitudes, and the coefficient of wamp

4 must be negative to soften the response at strong am
plitudes, whence the decision to approximate to the quintic order of w (i.e., O

(
w5)

) [34]. 

3. Electrostatic frequency tuning mediated by thermoelastic buckling 

In Fig. 3, we explore the relative contributions of temperature and electrostatic forces on the tuning of the linear response of the 
drumhead resonators. Fig. 3a, 2b, and 2c show the linear frequency response for low drive amplitudes VRF gathered from the same 
resonator for increasing values of VDC at 340 K, 320 K, and 295 K, respectively. In Fig. 3, the recorded VMeas corresponds to the peak 
value of the amplitude of RF voltage measured by the photodetector depicted in Fig. 2b. The VMeas is proportional to the steady-state 
amplitude of oscillation wamp of the resonator via a constant labeled α (i.e., wamp = αVMeas) based the employed Fabry-Pérot inter
ferometry detection scheme (cf. supplemental material section S1.b). We note that α sensitively depends on the interferometric gap size 
and will be different for different values of temperature and VDC. 
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The measurements in Fig. 3 reveal that the temperatures and DC voltage drastically affect the natural frequency of the resonator. 
For instance, at all temperatures of Fig. 3, the natural frequency presents two regimes of tunability with increasing VDC. In the first 
regime of increasing VDC, subfigures (i) at each temperature, the natural frequency of the resonator decreases, whereas in the second 
regime of increasing VDC, in the subfigures (ii), the natural frequency increases. 

To further highlight and observe the tunability, Fig. 4a plots the natural frequency of the resonator versus VDC at 370 K, 360 K, 340 
K, 320 K, and 295 K. The experimentally measured values are represented as points, while the lines indicate the trends predicted by the 
proposed ROM. The natural frequency at all these temperatures exhibits the two mentioned regimes of tunability with VDC, which 
manifest in an experimental local minimum for each temperature value except for 370 K. However, this tunability with VDC becomes 
stronger at smaller temperatures for the measured resonator, as demonstrated by the sharp minimum frequency cusp. We observe that 
the natural frequency exhibits an increase from 7.2 MHz for VDC = 2.5 V to 9.9 MHz for VDC = 15 V at 370 K (~1.3 × increase) versus 
an increase from 4.7 MHz for VDC = 17.5 V to 11.3 MHz for VDC = 5 V at 295 K (~2.4 × increase). This large tunability observed at 
smaller temperatures (e.g., at 295 K and 320 K in Fig. 4a) is repeatable and observed in additional resonators fabricated as shown in the 
supplemental material section S2 and Fig. S2-S13. 

The large tunability of natural frequency is known to be caused by buckling of the drumhead resonator [52,34,27]. To validate this 
conjecture, we compare the experimental results of Fig. 4a with the predictions of the buckling ROM in Fig. 2c. Therefore, we assign 
the ROM parameters the values listed in Table 2 from the system-identification algorithm explained in the supplemental material 
section S4. The solid lines in Fig. 4a show the natural frequencies estimated from the ROM for different values of (T, VDC). By inspecting 
Fig. 4a, we conclude that the ROM accurately captures the tunability of the natural frequency as a function of (T, VDC) with a relative 
total error<5.5 % (cf. supplemental material section S4 for the error definition). We emphasize that these good predictions result from 
the ROM with parameters independent of the applied temperature and DC voltage (cf. Table 2). Therefore, the proposed ROM is 
universal to the applied (temperature, voltage) conditions for the investigated resonator. 

For instance, the parameters of the ROM (cf. Table 2) depend on the geometry/material of the resonator and the residual stresses 
from fabrication. These effects lead to larger compressive strains at cooler temperatures as shown by the coefficients of δT and δB in 
Table 2. In essence, δT and δB monotonically increase (from 0.40 and 0.046 to 0.72 and 0.73, respectively) with the decrease in 
temperature from 370 K to 295 K (cf. supplemental material Fig. S14a-b). Hence, the ROM indicates that the strong compression in the 
zero-Volts-state enables the large frequency 2.4× tunability with VDC exhibited in Fig. 4a. Starting from the equilibrium induced by the 
compressions in the zero-Volts-state, the applied decreases the effective stiffness of the resonator, thus the natural frequency, up to a 
local minimum (e.g., the decrease in frequency when VDC goes from 4 V to ~ 17.4 V at 295 K in Fig. 4a). This point of minimum 
frequency is referred to as the point of critical buckling where the structure presents the lowest stiffness due to weak stability [54]. Past 
the critical buckling value, the applied VDC starts to stretch the resonator, which stabilizes and stiffens the resonator (e.g., the increase 
in frequency for VDC > 17.4V at 295 K in Fig. 4a). 

Remarkably, the smaller temperatures in Fig. 4a not only soften the resonator but also increase its sensitivity to DC voltage. The 
amplified sensitivity manifests in the abrupt frequency transition around critical buckling at 295 K (i.e., discontinuous slopes). Such 
abrupt frequency transitions are typically observed in structures with symmetric cross-sections, which are perfectly compliant (i.e., 
zero natural frequency) at the critical buckling value [54,36,29]. Nonetheless, the resonators in this work do not possess symmetric 
cross-sections (cf. Fig. 2b) and still display the non-smooth frequency-detuning with buckling (cf. Fig. 4a and supplemental material 
Fig. S2), which enhances the tunability. Therefore, the experiments and the model prove that non-smooth critical buckling can be 
achieved even in asymmetric structures, resulting in large tunability of the natural frequency. 

To highlight the high sensitivity of the dynamics to the resonator’s geometry as function of the critical buckling, we use the ROM to 

Fig. 4. Large electro-thermoelastic tunability of the resonator’s natural frequency. (a) The natural frequency of the resonator as a function of the 
applied VDC for five different temperatures. The round scatters correspond to the experimental values deduced from the linear frequency responses 
at Vamp = 3.16 mVp, like in Fig. 3; the curves correspond to the natural frequency values reconstructed using the ROM with the identified parameters 
of TABLE II (solid curves) and the parameters of a hypothetical resonator with 5 % thinner resonator (dashed curves). (b) Relative change in the 
natural frequency predicted by the ROM due to the 5 % thickness reduction as a function of VDC for the five different temperatures. (c) Natural 
frequency predicted by the ROM for VDC = 0 V of the identified resonator of TABLE II (solid black curve) and the hypothetical 5 % thinner resonator 
(black dashed curve) as a function of temperature (left y-axis). Relative change in the natural frequency predicted by the ROM due to the 5 % 
thickness reduction as a function of temperature for VDC = 0 V (right y-axis). 

A. Kanj et al.                                                                                                                                                                                                           



Mechanical Systems and Signal Processing 196 (2023) 110331

8

examine the effect of a 5 % reduction in the thickness of the resonator. By referring to the thickness of the identified resonator in 
Table 2 as hID, we express a 5 % reduced thickness as h = 0.95hID. We assume that the thickness h affects only the mass m, the 
stiffnesses kB and kT in the ROM of Fig. 2c according to the relationships found in the literature [55,34,56] (cf. supplemental material 
section S5.c for a detailed explanation). These relationships affect the normalized parameters of the ROM listed in Table 2 as follows, 

ωB

ωB,ID
=

h
hID

(8a)  

κT

κT,ID
=

(
h

hID

)−2

(8b) 

Fig. 5. Electrostatic and thermoelastic tunability of the resonator’s nonlinear dynamic response. Experimentally measured frequency response of 
the resonator at a temperature of (a) 340 K, (b) 320 K, and (c) 295 K for increasing values of VDC (from (i) to (iv)) and VRF (from 1 mVp to 316 mVp 
amplitudes – cf. legend in 2a-i). The voltage VMeas measured by the optical detection apparatus is proportional to the steady-state displacement of the 
resonator. The plots only show the response in a forward (increasing) sweep of the frequency fext of the applied VRF(t) = Vampcos

(
2πfext t

)
. The 

voltage unit Vp denotes that the RF voltages are reported using their peak (amplitude) values. The vertical upward arrows point to the linear- 
resonance frequency at Vamp = 3.16 mVp, representing the resonator’s natural frequency plotted in Fig. 4a. The encircled label in the corner of 
each subfigure indicates the type of nonlinearity observed at the respective (T, VDC) where we refer by “−” a softening nonlinearity, “ + ” a stiffening 
nonlinearity, and “ −→ + ” a softening-to-stiffening nonlinearity. 

Table 2 
Identified parameters of the ROM in Fig. 2c to fit the experimental results in Fig. 4a for all temperatures and DC voltages with κT = 1, dT = 1, and 
dE = 10. Refer to (1)-(5) for the definition of the ROM nondimensional parameters. Refer to the supplemental material section S4 for details about the 
identification algorithm.  

ωB

2π[MHz] δT δB Electrostatic 
θ0 θ1[K−1] β0 β1[K−1] β2[K−2] γ0[V−2] γ1[V−2]  

9.40  1.9 −4.07E-3  7.65 −3.47E-2 3.81E-5 2.42E-1 −4.76E-2  
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where the “ID” subscript denotes the parameter of the identified resonator of thickness hID, and the parameters ωB and κT characterize 
the resonator with varied thickness h. 

In Fig. 4a, we overlay the estimated frequencies for the case h = 0.95 hID, using the scaling of eq.(8). By comparing the solid line 
(ID) to the dashed line (0.95 ID), we observe that the effect of the thickness variation on the natural frequency is highly dependent on 
the temperature and voltage of the resonator. This dependence is better visualized in Fig. 4b where we plot the deviation in natural 
frequency Δ Freq relative to the natural frequency of the identified resonators FreqID. Fig. 4b demonstrates that the magnitude of 
frequency-deviations diverges close to the critical buckling of each temperature and is larger for the temperatures where the strongest 
frequency-tunability can be realized. For example, we see a maximum deviation in frequency of −8.5 % at 370 K vs + 28.4 % at 295 K 
for the same 5 % thickness variation. Hence, a small deviation in parameters of the resonator (like thickness) can strongly affect the 
vibrations when operating close to the critical buckling. This effect was experimentally and numerically observed in [42] where 
buckling transition amplifies very small deviations (≤ 5 %) between the unit-resonators in nano-phononic waveguides to the extent of 
breaking the periodicity of the waveguides and eliminating the acoustic transmission. Note that the scaling (8) ignores the effect of 
thickness on the residual strain parameters (δT and δB) and their temperature-related coefficients (i.e., θ0, θ1, β0, β1, and β2). Due to this 
assumption, the critical buckling occurs around the same VDC for each temperature in the ROM resonators with both thicknesses hID 
and 0.95 hID as depicted in Fig. 4a. Though, if thickness affects the temperature-related coefficients then the thickness-variations might 
induce shifts in the value VDC of critical buckling in Fig. 4a, which results in larger frequency-deviations in Fig. 4b. 

From the experimental data in Fig. 4a (and the supplemental material Fig. S2), we conclude that achieving the ultra-tunability (e.g., 
at 320 K and 295 K) requires a buckling state that is determined by a combination of temperature and voltage effects. For instance, 
varying the temperature without applying a DC voltage (i.e., VDC = 0 V) does not induce a sharp frequency transition as can be 
predicted by the low VDC data for each temperature value in Fig. 4a. To clarify this behavior, we use the ROM to estimate the frequency 
of the resonators with thicknesses hID and 0.95 hID as a function of temperature in the absence of DC voltage as shown in Fig. 4c. Indeed, 
the frequency of the resonators in Fig. 4c tunes smoothly with temperature for VDC = 0 V exhibiting a maximum increase of 1.53 × and 
1.60 × for the resonators with hID and 0.95 hID, respectively, between 295 K and 370 K. This smooth frequency-tunability realizes a 
maximum frequency-deviation of −8.2 % between the two resonators for the temperature range in Fig. 4c. 

Fig. 6. Electrostatic tunability of the nonlinear response. Experimental frequency response of the resonator at 295 K for VDC of (a) 5 V, (b) 10 V, (c) 
16 V, (d) 17.5 V, and (e) 20 V and increasing values of Vamp (from 1 mVp to 1000 mVp amplitudes – cf. legend in 4a). Black round scatters correspond 

to the backbone-curve experimental datapoints used to identify κB
3 and α=

def
wamp
VMeas 

to reconstruct based on (7) the nonlinear backbone-curves depicted 
by the solid black lines. The same assumptions and protocols stated in Fig. 3 apply to Fig. 5a-e. The encircled labels in the corner of Fig. 5a-e indicate 
the type of nonlinearity where we refer by “−” a softening nonlinearity, “ + ” a stiffening nonlinearity, and “ −→ + ” a softening-to-stiffening 
nonlinearity. (f) Cubic nonlinear stiffness normalized terms κ3 identified in the ROM by the resonator stretching and the electrostatic force κT+E

3 

(red squares), by the resonator bending κB
3 (green diamonds), and by all the effects κT+E+B

3 = κT+E
3 +κB

3 (black triangles) as a function of the applied 
VDC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4. Switching nonlinearity with buckling 

Fig. 5a-c show the nonlinear frequency response of the resonator at 340 K, 320 K, and 295 K, respectively. We note that the voltage 
and temperature not only vary the resonator’s natural frequency but also switch the type of nonlinearity in the response. In Fig. 5a at 
370 K, for larger oscillation amplitudes, the nonlinear response exhibits stiffening for VDC = 5, 10, and 11 V in Fig. 5a(i)-(iii), 
respectively, but a softening-to-stiffening behavior for VDC = 15 V in Fig. 5a(iv). We also observe a switch in nonlinear behavior with 
VDC at 320 K and 295 K in Fig. 5b-c, where the frequency response shows softening in Fig. 5b(i) and 4c(i) for small VDC, stiffening in 
Fig. 5b(ii)-(iii) and 4c(ii)-(iii) for VDC around the critical buckling transition (cf. Fig. 4a), and finally softening in Fig. 5b(iv) and 4c(iv) 
for strong VDC. 

By comparing this switching of nonlinear response in Fig. 5 with the frequency-detuning in Fig. 4a at 370 K, 320 K, and 295 K, we 
conclude that the nonlinearity is stiffening close to the critical buckling point where the resonator exhibits its softest dynamics due to 
the applied VDC at the respective temperature. We also observe that the nonlinearity is of softening type far from the critical buckling 
conditions. This switching trend is clear at 295 K and 320 K where we observe sharp critical buckling points in Fig. 4a, and for 370 K 
where the natural frequency increases rapidly for VDC > 11 V. To summarize, the thermoelastic and electrostatic loads induce stiff
ening nonlinearity when the resonator is soft (i.e., close to the critical buckling point), and softening nonlinearity when the resonator is stiff (i. 
e., away from critical buckling). Moreover, the electrostatic-mediated thermoelastic loads result in a softening-to-stiffening nonlin
earity when the resonator is not very far away from critical buckling as seen at 370 K for VDC = 15 V in Fig. 5a(iv). We observe this same 
nonlinearity switching around critical buckling for different resonators at different temperatures and DC voltages as illustrated in the 
supplemental material Fig. S2-S13 and later in Fig. 6 at 295 K. 

To explain the physics governing the switching in nonlinearity, we study in Fig. 6 the nonlinear response at 295 K using the ROM of 
Fig. 2c. We apply (7) to estimate the backbone-curve of the nonlinear frequency response with the parameters of the identified 
resonator listed in Table 2. These parameters compute every coefficient in (7) except for the nonlinear bending-term, and the pro
portionality α relating wamp = αVMeas at each temperature T and DC voltage VDC. Thus, we identify κB

3 and α for each VDC at 295 K by 
fitting (7) with wamp = αVMeas to the experimental backbone-curve points depicted in Fig. 6a-e. We select these backbone-curve points 
by choosing the datapoints with maximum amplitude in the continuous responses (i.e., linear responses) and the datapoints at jumps 
(sudden transitions) in the discontinuous responses (i.e., nonlinear responses). 

We plot in Fig. 6f the identified values of κB
3, which reconstructs according to (7) the nonlinear backbone-curves depicted as solid- 

black lines in Fig. 6a-e. We see that the model captures, (i) the softening nonlinearity away from critical-buckling for VDC = 5 V in 
Fig. 6a, (ii) the softening-to-stiffening nonlinearity around critical-buckling for VDC = 10 V, 16 V, and 20 V in Fig. 6b, 5c, and 5e, 
respectively, and lastly (iii) the stiffening nonlinearity very-close to critical-buckling for VDC = 17.5 V in Fig. 6d (cf. Fig. 4a to locate 
critical-buckling as a function of VDC at 295 K). It is interesting that the model (7) captures this switching in nonlinearity not only 
qualitatively but also quantitatively by estimating very well the nonlinear frequency-detuning as depicted in Fig. 6a-e (except for 
VDC = 10 V in Fig. 6b where we see some deviation between the experiments and the modeled backbone-curve). Therefore, the ROM in 
Fig. 2c with the introduced bending nonlinearity κB

3 can accurately model and predict the nonlinear response of the resonator under 
thermo-electric buckling. 

To explain the physical mechanism of the switching in nonlinearity, we plot in Fig. 6f the effective cubic nonlinear coefficient κT+E
3 

induced by stretching and electrostatic effects in addition to κB
3 induced by the bending geometric effect. We investigate the effective 

cubic nonlinear coefficients (i.e., quadratic, and cubic coefficients) since they govern the nonlinear response for small to moderate 
amplitudes as dictated by (7). We observe in Fig. 6f that for all the measured values of VDC at 295 K, κT+E

3 is negative whereas κB
3 is 

positive. Hence, the stretching and electrostatic effects induce softening nonlinearity, but the bending geometric effect induces stiffening 
nonlinearity. 

Finding κB
3 to be positive aligns with its definition of representing the geometric stiffening of bending. The negative κT+E

3 indicates 
that the softening nonlinearity results from the electrostatic and stretching effects. An electrostatic softening effect conforms with the 
nature of the capacitive force in (5). As for the softening effect of the stretching force, we emphasize that the stretching spring is 
compressed at equilibrium given that δT > 0, as shown by (4), Table 2, and supplement figure S14. Due this compression, the stretching 
of the resonator can induce softening effects. For example, in the case of an equilibrium at uEQM = 0, the displacements elongate the 
stretching spring until fully relaxed at a deformed length 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
dT

2
+ u2

√
equal to the spring free length LT (cf. Fig. 2c). In this scenario, the 

force in the stretching spring decreased until vanishing with the increased displacement, thus the softening nonlinearity. For the other 
cases of δT > 0 where uEQM ∕= 0 (i.e., uEQM > 0 because also δB > 0), similar relaxation of the stretching spring occurs with displace
ments increasing in one direction (i.e., in the positive direction of uEQM) but not the other, leading to softening (asymmetric) 
nonlinearity. These nonlinear effects explained at the ROM level can be translated to the physical resonator thanks to the physics-based 
approach adopted in the ROM derivation. 

Moreover, Fig. 6f demonstrates that the stretching and electrostatic effects dominate the total effective cubic nonlinearity κT+E+B
3 

away from critical buckling (for VDC ≤ 17.25 V and VDC ≥ 18.5 V) while the bending geometric effect dominates κT+E+B
3 close to critical 

buckling (for VDC ∈ [17.5 V, 18 V]). Therefore, the dominance of bending geometric effects at critical buckling drives the switching in 
nonlinearity from softening to stiffening as the resonator becomes closer to critical buckling in the experiments of Fig. 5, 6a-e, and the 
supplemental material, cf. Figs. S3-S13. From Fig. 6f, we can also conclude that the stiffening nonlinearity around the critical buckling 
is (~2 times) stronger than the softening nonlinearity away from the critical buckling. This increase in nonlinearity around critical 
buckling explains the strong nonlinear frequency-detuning demonstrated by the stiffening response in Fig. 5b(ii)-(iii), c(ii)-(iii), and 
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Fig. 6d. 

5. Discussion of the ROM 

This ROM serves in modeling the investigated resonators due to its geometry agnosticism. In other words, to apply the ROM, we 
don’t need to know the geometry of the different constituents in the resonators. This property is highly needed for the investigated 
resonators because they are formed of multiple layers with nonuniform cross-sections [42]. Thanks to this ROM, this work is the first, 
up to the authors’ knowledge, to study buckling in irregular MEMS/NEMS structures. For instance, existing studies treat buckled 
microresonators by continuum modeling that applies to beams [26,27,31,34,40,41,36] and plates of perfectly rectangular [53,57] and 
circular [32,55] shapes. 

However, the continuum modeling allows computing the stresses in the material [27,34,36,53,55], which our developed ROM 
can’t estimate. Nonetheless, we anticipate that this ROM will find important utility in assisting current analytical [55,58], numerical 
[59,60,52], and empirical [53,61] methods that predict the behavior of MEMS structures. In particular, this ROM reduces the degrees 
of freedom while capturing the essential governing dynamic mechanisms, thus accelerating the design and prototyping processes [59]. 

6. Conclusions 

In this work, we experimentally study the electrostatically-mediated thermoelastic tunability of micro-drumhead resonators. We 
show that these drumhead resonators with high compressive strains – introduced by cooling – present large tunability of their natural 
frequency with DC voltage. We also find that DC voltage switches the nonlinear response of the resonator by regulating its state of 
buckling. For instance, the resonators show stiffening nonlinearity, with stronger nonlinear frequency-detuning, close to the critical 
buckling, while the nonlinearity is of softening type as the resonator moves away from the critical buckling point. We formulated and 
identified the parameters of a reduced order model (ROM) that captures the experimental linear and nonlinear dynamics for different 
temperatures and DC voltages. The developed reduced order model is based on lumped mass-springs representations, which is valuable 
in designing and studying buckled metamaterials and phononic waveguides. Thanks to this ROM, we demonstrate that the geometric 
bending effect induces stiffening nonlinearity, whereas the electrostatic and softening effects induce softening nonlinearity. Moreover, 
the ROM highlights the importance of compression to achieve softening nonlinearity. 

Indeed, buckling can be exploited to enable new and unusual capabilities in tuning and designing resonators in MEMS. Moreover, 
the buckling effect can be regulated via electric voltage, which is easily integrated in devices and systems. In this study, optimal 
buckling performance also required thermal control, which cannot be deployed easily in standalone systems. In the future, additional 
work should be conducted to design the resonators such that the electric control of buckling leads to ultra-fine tunability at the desired 
temperature of operation, such as room temperature. Such work requires unraveling the relationship between the structure’s me
chanics, the strains (e.g., δT and δB), temperature, and fabrication-residual stresses. Hence, additional experimental, numerical, and 
analytical work should be conducted to benefit from buckling for vibrations in NEMS. 
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