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A FULLY IMPLICIT METHOD USING NODAL RADIAL BASIS

FUNCTIONS TO SOLVE THE LINEAR ADVECTION EQUATION

P.-A. GOURDAIN, M. B. ADAMS, M. EVANS, H. R. HASSON, J. R. YOUNG, I.
WEST-ABDALLAH

Abstract. Radial basis functions are typically used when discretization sche-

mes require inhomogeneous node distributions. While spawning from a desire

to interpolate functions on a random set of nodes, they have found success-

ful applications in solving many types of differential equations. However, the

weights of the interpolated solution, used in the linear superposition of basis

functions to interpolate the solution, and the actual value of the solution are

completely different. In fact, these weights mix the value of the solution with

the geometrical location of the nodes used to discretize the equation. In this pa-

per, we used nodal radial basis functions, which are interpolants of the impulse

function at each node inside the domain. This transformation allows to solve a

linear hyperbolic partial differential equation using series expansion rather than

the explicit computation of a matrix inverse. This transformation effectively

yields an implicit solver which only requires the multiplication of vectors with

matrices. Because the solver requires neither matrix inverse nor matrix-matrix

products, this approach is numerically more stable and reduces the error by

at least two orders of magnitude, compared to other solvers using radial basis

functions directly. Further, boundary conditions are integrated directly inside

the solver, at no extra cost. The method is locally conservative, keeping the

error virtually constant throughout the computation.
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1. Introduction

Radial basis function interpolation is one of the few methods that can approxi-
mate across a d -dimensional space a function only defined on a randomly distributed
set of n nodes x1, x2, ..., xn ∈ Rd [17, 14]. While initially used for interpolation
problems, this method can be used to defined surfaces in multiple dimensions [3]
or solve partial differential equations [18, 19, 6, 9]. One important characteristic
of radial basis functions is their definition using the relative positions of nodes,
obtained from the Euclidian norm ||.||d, rather than their absolute location in
space. For x ∈ Rd we define the radial basis function (RBF) at every node xj
as Φxj (x) = ϕ(||x − xj ||d), which we will also write as Φ(x − xj). Typically, Φ is
normalized, i.e. Φ(0) = 1. New functions can be generated by scaling of the modal

Received by the editors 23/03/2022.

1991 Mathematics Subject Classification. 65D12, 65F05, 35F50, 35F46, 65D05, 35L65.
One of us (PAG) would like to thank Carter Ball and Carlos Cabrera with setting up some

simulations used in this paper.

1



2 P.-A. GOURDAIN, M. B. ADAMS, M. EVANS, H. R. HASSON, ET AL.

function ϕ by a factor α, giving the standard definition of the radial basis function
Φα,xj as

Φα,xj (x) = ϕ(||x− xj ||d/α),
which we will also write as Φα(x− xj). We use the width parameter α rather than
the usual shape factor (i.e. 1/α) in this paper because we will compare the radial
basis function spread to the domain size throughout this paper.

A continuous function f can be approximated on a finite set of nodes U =
{x1, x2, ..., xn} using radial basis functions by computing a set of weights ωj defined
by

∀xi ∈ U, f (xi) =
∑
j

ωjΦα (xi − xj) .

The weights ωj can be found by solving the linear systemΦα(x1 − x1) ... Φα(x1 − xn)
... ... ...

Φα(xn − x1) ... Φα(xn − xn)

ω1

...
ωn

 =

f(x1)...
f(xn)


written in compact form as [Φα][ω] = [f ]. To solve this system, we need to find

the inverse of the matrix [Φα] and compute the weights ωj using

(1) [ω] = [Φα]
−1[f ].

The radial basis function Φ is said to be definite positive when [Φ] is invertible,
supposing U does not have any redundant nodes (i.e. xi=xj while i ̸= j). Once
the weights are known, the function f can be interpolated between nodes using the
function f defined by

(2) f(x) =
∑
j

ωjΦα (x− xj) .

Since radial basis functions can interpolate any smooth function using a lin-
ear combination of differentiable functions, it quickly spawned differential equation
solvers for elliptic [24], hyperbolic [23], parabolic [36] or shallow-water [11] equations
using different approaches such as spectral [30] or backward substitution [27, 37]
methods. Even differential equations with fractional operators [25, 22], curvilinear
coordinates [33] or complex boundary conditions [20] can be solved using this tech-
nique. The ease in defining spacial and temporal derivatives is probably the main
reason this method has found universal applications.

However, one major issue raised by Eq. (2) is evident. The interpolated function
f is now defined in term of the weights ωj . This becomes an issue when solving
differential equations using radial basis functions. For instance, the value of the
function might be required to compute the value of another function or match a set
of boundary conditions. Further if we want to interpolate a new function g, then
all the weights ωj must be computed again.

In the rest of the paper, we first define a set of nodal radial basis functions
(NRBF) that interpolates the impulse function. These functions form an orthonor-
mal basis for the inner product of interpolated function on U. We then summarize
the basic properties of NRBF formed using RBF with compact support, then we
present the theory behind our linear advection equation solver and compare it to
standard solvers. Finally, we conclude by showing how NRBF can be trivially
extended to solve the advection equation with a velocity which varies across the
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domain. It is important to note that the method is completely independent of
the number of spatial dimensions by construction. As a result, we will not look
at multidimensional cases in this paper. While we do not claim that the method
will perform well in a larger number of dimensions, the solver proposed is clearly
dimension agnostic.

2. Definition of nodal radial basis functions

The solution to avoid this problem is relatively straightforward. Rather than
using radial basis functions directly, which have well defined, yet poorly matched,
values at the node points, we can used them to interpolate the impulse functions
δ(x − xi) first. Once these new functions are defined, interpolation is trivial since
the weights for each interpolant Ψxi

is f(xi). To construct them, we can rewrite
Eq. (1) as

(3) [ω] = [Φα]
−1

∑
j

f(xj)[δj ].

Here the vectors [δj ] = [δ(xi − xj)]
T are defined using the impulse function

∀x, y ∈ R, δ(x− y) =

{
1 if x = y
0 if x ̸= y

This decomposition allows to create a series of interpolants on U for each translated
impulse function δ(x− xj)

(4) ∀xi, xj ∈ U, Ψα,xj
(xi) = δ (xi − xj) .

They can be expressed in term of our radial basis functions as

(5) Ψα,xj
(x) =

∑
i

ΩijΦα(xi − x).

and their weights Ωij can be computed given in Eq. (1)

[Ωj ] = [Φα]
−1[δj ]

It is interesting to note that these weights simply are the elements of the matrix
[Φα]

−1.

Theorem 1. The interpolant of f formed using Φxi
, i.e. f(x) =

∑
j ωjΦα (xi − xj),

and the interpolant of f formed using Ψxi , i.e. f(x) =
∑

i f(xi)Ψα,xi(x), are iden-
tical.

Proof. We can write ωj =
∑

i f(xi)Ωij using Eq. (3) and Eq. (2) becomes

f̄(x) =
∑
j

∑
i

f(xi)ΩijΦα(x− xj),

The sum operators can be easily permuted to give

f̄(x) =
∑
i

f(xi)
∑
j

ΩijΦα(x− xj).
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Since Ωij = Ωji and Φα(x−xj) = Φα(xj −x) since | |x− xj | |d = ||xj −x||d, we can
rewrite the above equation as

(6) f(x) =
∑
i

f(xi)Ψα,xi
(x).

So f ≡ f . □

While the functions Ψα,xi
are constructed using radial basis functions, they are

fundamentally different. Figure 1 shows the Ψα,0 together with one of the radial
basis functions used for its construction. In fact, it looks more similar to the
barycentric form of rational interpolants [10]. Clearly, Eq. (2) and Eq. (6) are

Figure 1. The nodal radial basis function (NRBF) with 0 as its
main support node and the radial basis function (RBF) that was
used to generate it. The rational basis function centered on the
same node is also given. We show only a portion of the interval [-
1,1] for clarity. Each interval nodes (besides 0) can be found where
the nodal radial basis function crosses the x-axis.

equivalent and the interpolants f and f are mathematically identical. While Eq.
(5) is used in the radial point interpolation collocation method (RPICM) [31] or
pseudo-spectral methods [5, 7], it is important to note that we defined here the
function Ψα,xj to be the interpolants of the translated impulse function δ(x− xj),
a definition similar to the construction of cardinal functions [2]. However, there is
no advantage in using Ψα,xj

as an interpolation method. The equivalence between
Eq. (2) and Eq. (6) shows that we get the exact same interpolant, yet we need to
compute many radial basis functions at every node in Eq. (6) and then perform a
linear system solve to form a single Ψα,xj .

However, the functions Ψα,xj can be used efficiently in solving differential equa-
tions, since the interpolating weights of a function f using Ψα,xj

are the values of
the functions f at the nodes xj. The main reason is that the functions Ψα,xj

are
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an orthonormal basis of U , the space of interpolants on U, for the inner product
defined as

< f.g >=

n∑
k=1

|f (xk) g(xk)|,

for any two interpolants f and g in U .

Theorem 2. The set of functions {Ψxj
}xj∈U forms an orthonormal basis for the

inner product of interpolated functions < . >.

Proof. Using the definition of the nodal radial basis function given by Eq. (4)

∀i, j < Ψxi
.Ψxj

>=

n∑
k=1

|Ψxi(xk)Ψxj
(xk)| =

n∑
k=1

δikδjk

So, < Ψxi
.Ψxj

>= 0 ⇐⇒ i ̸= j and < Ψxi
.Ψxj

>= 1 ⇐⇒ i = j. □

Based on the definition of the nodal radial function from Eq. (5), the spatial
derivative ∂kΨα,xj

can be computed easily

(7) ∂kΨα,xj (x) =
∑
i

Ωij∂kΦα(xi − x).

Reverting to the modal basis function at this stage, we now rewrite Eq. (11) as

(8) ∂kΨα,xj
(x) =

∑
i

Ωij(drϕ)(||xi − x||d/α)∂k||xi − x||d/α.

While Eq. (8) uses the elements of [Φα]
−1 we will show later that it is not necessary

to compute the matrix inverse of [Φα]. Rather, the solver uses a Cholesky decom-
position to compute the relevant spatial derivatives. The functions ∂kΨα,xj (x) only
depend on the node distribution and should be recomputed only when nodes change
locations, or when nodes are added (or dropped).

Ψα,xj
(x) is nodal in the sense that it is defined using nodes, rather modal, i.e.

the scaled translation of the modal function ϕ used in Eq. (1). It is also radial in
the sense that it solely defined by a series of Euclidian distances. Since the family
of functions defined by all the points inside the domain form an orthogonal basis
for this domain, we call the functions Ψα,xj

nodal radial basis functions (NRBF)
in the remainder of this paper.

Another key advantage of nodal radial basis functions, over more conventional
discretization schemes, boils down to computing discretized derivatives as a sum
of exact derivatives, given by Eq. (8). Exact derivatives, as opposed to discretized
derivatives, are always locally conservative i.e. the derivative operator ∂q with
respect to the variable q is such that for any smooth function g

(9)

∫
Ωc

∂qgdv =

∫
∂Ωc

gnqds,

where Ωc is the cell of the discretized domain and ∂Ωc is the cell boundary. This
is the divergence theorem applied to a single direction.
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Theorem 3. The derivative operator ∂̃q, used in Eq. (13) and defined as

∂̃qf =
∑
i

f(xi)∂qΨα,xi

for any interpolant f is locally conservative.

Proof. The derivative can be written as

∂̃qf =
∑
i

f(xi)
∑
j

Ωij∂qΦα(x− xj)

using Eq. (7). Since ∂̃q is a finite sum of exact derivatives, it trivially verifies Eq.
(9). □

3. Basis characteristics of nodal radial basis functions using compact
radial basis functions

In this section, we focus on the one-dimensional case, mostly with homogeneously
distributed nodes, to illustrate the properties of nodal radial basis functions in a
simple framework. However, this work can be directly extended to multiple space
dimensions and random node distributions.

The key advantage of nodal radial basis functions is ∀xi, xj Ψα,xj
(xi) = δij by

construction, a property shared with Lagrange polynomials and rational interpolants8.
Yet, they retain the multivariate interpolation capabilities on a set of randomly
distributed nodes, a theme central to radial basis function interpolation. Unless
otherwise stated, the modal radial basis functions used to form Ψα,xj are compact
Wendland functions [32] defined by

ψp,0(r) = (1− r)p+ =

{
(1− r)p

0
for 0 ≤ r ≤ 1
for r > 1

and
ψp,q(r) = Iqψp,0 for 0 ≤ r ≤ 1,

where p and q are integers. The operator I above is defined as If(r) =
∫∞
r
f(t)tdt

for 0 ≤ r. Wendland functions are Ck and can be computed analytically and lead
to a strictly positive definite matrix [Φα] in Rd, where d<p and k=2q.

Figure 1 shows the difference between the nodal radial basis function ψα=7ε0,x=0

and the modal radial basis function ϕα=7ε0 that was used to generate it on the
interval [−1, 1], with ε0 the distance between two consecutive nodes. A rational
basis function [10] is shown for comparison. While the nodal and rational basis
functions are similar close to the main support node, the radial basis functions
quickly drop to zero away from this node. To this extent, the nodal radial basis
functions resemble more compact functions like interpolets [4]

However, some radial basis functions are not ideal candidates to build nodal
radial basis functions. For instance, Gaussian functions, that are infinitely smooth
can trigger Runge’s phenomenon [13] in the interpolation of the impulse function
for width parameters relatively small, as shown in Figure 2. There is no Runge’s
phenomenon for Wendland functions, even for large width parameters. Since this
work focuses on solving a partial differential equation, getting large oscillations
near the boundary is problematic for two reasons. First, large oscillations are
usually caused by ill-conditioned matrices, a well-known problem when working
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with radial basis functions, that will limit the precision of the interpolation or
the differential equation solver. Second, these solvers are sensitive to boundary
condition errors and, using functions that are widely oscillatory there would clearly
be problematic. The number of sideband oscillations surrounding the main support

Figure 2. Left: The Gaussian nodal radial basis function is wide
enough to trigger Runge’s phenomenon in the nodal radial basis
function at the edge of the domain. Right: Wendland functions
(here ψ3,4) yield nodal radial basis functions with no boundary
instabilities.

node can be controlled by the degree of smoothness and the width parameters of
the radial basis function. Figure 3-a shows that an increase in the smoothness of
radial basis functions (using Wendland functions ψ3,1 throughψ3,4 leads to larger
sideband oscillations, a direct consequence of a weaker exponential decay of scaling
coefficients. However, this trend reverses if the width parameter is too small (as
seen in Figure 3-b).

This observation leads to the question of compactness. A priori, nodal radial
basis functions are not compact. Even if [Φα] is a banded matrix (i.e. non-zero
elements are close to the diagonal), [Φα]

−1 is not necessarily banded and could
even be dense. Figure 4 shows the scaling coefficients for several nodal radial basis
functions with the same support node (0 in this case case). The logarithmic scale
clearly shows the exponential decay of the coefficient away from the main support
node. In some cases, the exponential decay is not constant, and it depends on
the smoothness and width parameter. In fact, after the initial decay, the function
rebounds. This rebound gets pushed further out as the width parameter increases
(see Figure 4-a and b). As this point, boundary effects become dominant, leading
to a weaker exponential decay. We notice that these trends tend to disappear as
the function smoothness increases (see Figure 4-d). Yet, it is relatively easy to
truncate the functions generated by radial basis functions with low smoothness.
Truncation is simply enforced by dropping all scaling coefficients that are o(1). As
the smoothness and width parameter increase, more coefficients should be retained.
On small domains, like the one used in this section, truncation is not possible since
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a)

b)

Figure 3. Nodal radial basis functions ψd,k for Wendland func-
tions ψd,k of different degrees of smoothness k for width parame-
ters a) α = 35ε0 and b) α = 3ε0. Here ε0 is the smallest distance
between neighboring nodes in U. The interval was truncated for
clarity. The nodal functions are plotted using a solid line. A verti-
cal offset was added to disentangle the oscillations of the function.
The corresponding Wendland functions are plotted using dashed
lines and were not given any offset. Note here the nodal function
subscripts identify the Wendland functions rather than the geo-
metrical scaling and translating parameters as it is done in the
text.

there is no coefficient o(1) for ψ3,4 when width parameters are larger than 15 nodes,
as shown in Figure 4-d.

Figure 3 also shows that that, after some initial variations, the shape of the nodal
radial basis functions remains virtually the same as the width parameter increases.
This is a clear departure from radial basis functions, where the width parameter
clearly impacts the shape of the function. As the width parameter grows (and the
shape parameters goes to 0), radial basis functions become remarkably flat, leading
to better interpolants at the cost of ill-conditioned linear systems [29]. The resulting
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Figure 4. The log10 value of the scaling coefficients used to form
nodal radial basis function centered on 0 and using a) ψ3,1, b)ψ3,2,
c)ψ3,3 and d) ψ3,4 for different width parameters, given in number
of nodes. Each coefficient is associated with a node location.

trade-off between interpolation accuracy and numerical instabilities is difficult to
quantify, even if qualitative arguments can be inferred from a wide range of studies
(e.g. Ref. [8]). Nodal radial basis functions are less dependent on the width
parameter than radial basis functions. Figure 5-a to c shows that when changing
the width parameter by 10%, the maximum difference between nodal radial basis
functions stays below 10-5, for width parameters spanning 50 nodes. Under the
same conditions, Figure 5-d to e shows the maximum change between consecutive
radial basis functions is much larger than 10-2. While not shown on the figure, this
trend is also valid for basis functions centered on the domain boundaries. The shape
of the nodal radial basis functions there differs from the shape of the functions in
the domain interior, as shown in Figure 6. However, their construction is identical
to the other functions and does not require special treatment. The NRBF method
presented here is not bound to Wendland functions. However, the decays of the
coefficients is crucial suppressing the Gibbs phenomenon seen on Fig. 2 and they
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should be studied carefully before using other types of radial basis functions [12],
especially if they are infinitely smooth.

Figure 5. The log10 difference between nodal radial basis func-
tions using a) ψ3,1, b) ψ3,2 and c) ψ3,3 with consecutive width
parameters (given in number of nodes). The difference was com-
puted halfway between nodes since difference at the nodes is 0 by
construction. The log10 difference between two consecutive radial
basis functions c) ψ3,1, b) ψ3,2 and d) ψ3,3, using 10-4 cut-off.

4. The linear advection equation solved using Euler’s backward method

Now that we have explored the basic properties of nodal radial basis functions, we
would like to solve the following partial differential equation in multiple dimensions

(10)
∂ρ

∂t
+

−→
∇ .(ρ−→u ) = S

on the discretized domain U. This equation is hyperbolic and describes mass con-
servation, where ρ is a mass density, −→u is the velocity and S is the source term.
The backward Euler time discretization scheme is given by

ρt +
−→
∇ . (ρt−→u )∆t = ρt−∆t + St∆t.

It is convenient to drop the subscript term t and rewrite the equation as

(11) ρ+
−→
∇. (ρ−→u )∆t = ρ−∆t + S∆t = G

where ρ−∆t is the solution at the previous time step.
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Figure 6. Nodal radial basis functions for different support nodes,
indicated by a black dot). The total number of nodes is 71. The
effect of the boundary, while dramatic, does not really depend on
the width parameters for parameters larger than 50%. A bias was
added to each function to improve the clarity of the plot.

4.1. Nodal radial basis function solver. Using the nodal radial basis functions
defined earlier, we can interpolate the mass density ρ, the mass density flux ρ−→u in
Eq. (11) as

ρ =
∑
j

ρjΨα,xj
,

and

(12) ρ−→u =
∑
j

ρj
−→u jΨα,xj ,

as well as

G =
∑
j

GjΨα,xj
.

Notice that we make no assumptions regarding the velocity distribution. It could
be space and time dependent at this point. Using NRBFs in Eq. (11), we get

(13)
∑
j

ρjΨα,xj
+
∑
j

∑
k

ρjuk,j∂kΨα,xj
∆t =

∑
j

GjΨα,xj
,

where uk,j is the kth component of the vector −→u and ∂k is the partial derivative
along the direction k. So, we get ∀xi ∈ U

∑
j ρjΨα,xj

(xi)+
∑

j ρj
∑

k uk,j∂kΨα,xj
(xi)∆t =
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j GjΨα,xj

(xi). Using Eq. (4) we now have

(14) ∀xi ∈ U, ρi +
∑
j

ρj
∑
k

uk,j∂kΨα,xj
(xi)∆t = Gi.

Eq. (14) is valid for any number of spatial dimensions, is completely agnostic of
the node distribution and can be written in matrix form

(I −∆tA)[ρ] = [G].

Here I is the identity matrix and the elements of A are

Aij = −
∑
k

uk,j∂kΨα,xj (xi).

The solution to this system of equations is found by inverting the matrix (I−∆tA).

(15) [ρ] = (I −∆tA)−1[G].

Theorem 4. We can approximate the solution [ρ] with [ρ∗] using only matrix-
vector products

(16) [ρ∗] =

N∑
k=0

A[Gk]∆t
k,

where

∀k > 0, [Gk] = A[Gk−1] andA[G0] = [G].

Proof. Since (1−x)−1 =
∑∞

k=0 x
k, (I−∆tA)−1 can be approximated by a truncated

series for ∆t small enough, and we get

(17) (I −∆tA)−1 =

N∑
k=0

∆tkAk,

where A0 = I. As a result, one can find the approximate solution ρ∗ directly using

(18) [ρ∗] =

N∑
k=0

Ak[G]∆tk.

We also use the product of the matrix A by a vector v as A(Av) rather than (AA)v
since it is more efficient to compute when the number of nodes is large. □

However, taking time steps small enough to warrant the approximation leading
to Eq. (18) is not realistic in practice. However, if the velocity −→u and the source
term S vary on a time scale ∆T , which is large compared to our choice of ∆t,
then the algorithm can “step over” the slow temporal change in source and density.
Using Eq. (15) as our induction relation, we can start from a given solution at
t − ∆T where ∆T is defined as ∆T = P∆t. At this point, we can substantially
reduce ∆t while increasing P in such a way that the computational time step ∆T
keeps the method stable. This method is implicit, and time stepping is not limited
by the Courant–Friedrichs–Lewy (CLF) condition [21]. However, this method is
still limited by a Nyquist-Shannon condition, as taking a time step ∆T much larger
than the physical time evolution of the solution cannot capture the actual evolution
of the solution.
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Theorem 5. We can approximate the solution at t using a large time step ∆T =
P∆t

(19) [ρ] = (I −∆tA)−P [G−P∆t]

where [G−P∆t] = [ρ−P∆t] +
∑P−1

k=0 (I −∆tA)k [S−P∆t] ∆t.

Proof. Starting from Eq. (15) we get

[ρ] = (I −∆tA)−1 [ρ−∆t] + (I −∆tA)−1 [S] ∆t.

Since we suppose S constant during this interval of time we now have

[ρ] = (I −∆tA)−2 ([ρ−2∆t] + [S] ∆t+ (I −∆tA) [S] ∆t) .

We find Eq. (19) by induction. □

Using
∑P−1

k=0 (1− x)k =
∑P−1

k=0 (−1)k
(

P
k+1

)
xk we get

[G−∆T ] = [ρ−∆T ]−
P−1∑
k=0

(
− 1

P

)k+1 (
P

k + 1

)
Ak [S−∆T ]∆T

k+1.

Besides Ak and ∆T k+1,
(
1
P

)k+1 ( P
k+1

)
also decays quickly with k and we can trun-

cate the finite series given above to its M first terms as

[
G∗

−∆T

]
=

[
ρ∗−∆T

]
−

M∑
k=0

(
− 1

P

)k+1 (
P

k + 1

)
Ak [S−∆T ] ∆T

k+1.

In the problem discussed in this paper, M is between 10 and 20, while P can be
as large as 1010. We can recast this series as a successive product of a matrix
with a vector when necessary, as we did in Eq. (16). So far, we kept the source
term S for completion. We drop this term in the rest of the paper to simplify the
discussion as it does not impact mathematical foundations of the method. Since
(1 − x)−P =

∑∞
k=0

(
k+P−1
P−1

)
xk, we can also write Eq. (19) as a truncated series

where we keep the first N terms

(20) [ρ∗] =

N∑
k=0

(
1

P

)k (
k + P − 1

P − 1

)
Ak [G−∆T ] ∆T

k.

As for M, N can also be chosen between 10 and 20. Eq. (20) can be transformed
into a successive product of a matrix by a vector, as was done in Eq. (16). It is
important to note that we only need to know ∂kΨα,xj (xi) to solve this is problem.
So, there is no need to compute the matrix inverse of [Φα] to get the coefficients
Ωij. Eq. 5 shows that we can compute ∂kΨα,xj

(xi) by solving the linear system

[Φα][∂kΨα,xj
] = [∂kΦα]

using Cholesky’s factorization, which does not require any explicit matrix inversion
to solve Eq (33). So, the proposed solver uses neither matrix inversions nor matrix
products in its final form. It is only based on matrix-vector multiplications, as
other efficient solvers (e.g. Ref. [28]).
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4.2. Radial basis function solver. We now focus on solving a similar problem
using radial basis functions and compared both methods. The mass density can be
rewritten as

(21) ρ =
∑
j

ωρ,jΦα,xj
.

If we suppose constant velocity across the whole domain, we have

(22) ρ−→u =
∑
j

ωρ,jΦα,xj

−→u .

We will make this assumption in the remainder of this section. As we did before,
we take G to be

G =
∑
j

ωG,jΦα,xj
.

So, we get ∀xi ∈ U

(23)
∑
j

ωρ,jΦα,xj (xi) +
∑
j

ωρ,j

∑
k

uk∂kΦα,xj (xi)∆t =
∑
j

ωG,jΦα,xj (xi).

We can rewrite this system in matrix form as

(24) [Φα −∆tB][ωρ] = [Φα][ωG,−∆t]

where B is the matrix derivative defined by

Bij = −
∑
k

uk∂kΦα,xj (xi).

If we want to use the larger time step ∆T = P∆t, the procedure described
previously applied to equation Eq. (24) gives

(25) [ωρ] = ([Φα −∆tB]−1[Φα])
P [ωG,−∆T ]

However, the inverse of the matrix [Φα − ∆tB] needs to be computed explicitly
here, even if we use a series approximation to compute the matrix product ([Φα −
∆tB]−1 [Φα])

P . We can also rewrite Eq. (24) as

(I −∆tC)[ωρ] = [ωG]

where C = [Φα]
−1B. In this case we get,

[ωρ] = (I −∆tC)−P [ωρ,−∆T ] .

In this form, the system can be solved similarly to Eq. (19) and we can use the
same procedure to obtain an equation like Eq. (20). However, the matrix inverse
[Φα]

−1 needs to be computed explicitly, even when using a series approximation to
compute (I −∆tC)−1.

4.3. Comparison between the different solvers. Before embarking into a pa-
rameter scan to understand the limits of nodal radial basis functions as an implicit
advection equation solver, we first would like to compare it to a solver using radial
basis functions. Unless otherwise indicated, the radial basis function-based solvers
(i.e. RBF and NRBF) used the Wendland function ψ3,4, which guarantees strictly
positive definiteness in up to three dimensions. We chose this function for its ex-
ceptional smoothness. Besides the RBF solver, we also compared the NRBF solver
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to a standard implicit solver, the second order centered implicit (CI) solver given
by

ρn+1
i +

u∆T

12∆x
(−ρn+1

i+2 + 8ρn+1
i+1 − 8ρn+1

i−1 + ρn+1
i−2 ) = ρni ,

This equation can be turned into a matrix form leading to a form similar to Eq. (19).
We also compared the method to the explicit Lax-Wendroff (LW) discretization
scheme given by

(26) ρn+1
i = ρni − ∆T

2∆x
u
[
ρni+1 − ρni−1

]
+

∆t2

2∆x2
u2

[
ρni+1 − 2ρni + ρni−1

]
Both solver are notoriously locally non-conservative, allowing to check our locally
conservative NRBF approach. To obtain an absolute measure of the error, we
compared all numerical solutions to a smooth solution of the advection equation
Eq. (10) in one dimension with no source, namely

Fσ (x− x0 − ut) = 1 + exp− [(x− x0 − ut) /σ]
2
,

traveling from the left to the right. We used the value of the solution Fσ as a
Dirichlet boundary condition for the different methods, applied to three nodes to
the left and right sides of the domain. Our initial condition also used the solution
Fσ with its peak set on the left boundary.

Since Eq. (10) is dimensionless, we took the velocity u to be 1 and a domain
[-2,2]. For this comparison, we discretized our domain with 501 nodes. The peak
of Fσ starts at the left boundary node and travels to the right. As written, the
function peak reaches the right boundary at t=4. The main reason for adding a
constant to the function is to let the solution to relax to 1 after the Gaussian pulse
traversed the domain, allowing to test the long-term stability of the different solvers
for non-trivial solutions. While other methods can be used to solve this differential
equation, we use here the same method across all three implicit schemes to compare
all the three implicit solvers on the same footings.

Figure 7 shows the maximum error emax between the true solution, given by Eq.
(26), and the numerical solution, computed using different solvers. As expected,
the Lax-Wendroff solver (dashed black line in Figure 7) comes last, with a linear
increase of the error (seen as a logarithmic curve in the log plot of Figure 7). This
solver is known to have large numerical viscosity. It is also subject to the CFL
condition, forcing the time stepping to be much smaller than any implicit methods,
requiring 4 times as many as steps and degrading the solution even further. The
centered implicit solver (solid black line in Figure 3) does better than the explicit
solver. But the error also increases linearly (also seen as a logarithmic curve in the
log plot of Figure 7) throughout the computation, a sign that both solvers are not
conservative.

The radial basis function solver (solid red in Figure 7) starts with an error sim-
ilar to the Lax-Wendroff method but the error saturates rather than increasing
linearly. While numerical fluctuations are visible throughout, they never turn un-
stable, keeping the error around 10-4, even after the Gaussian pulse exited the
domain. This error was obtained with a width parameter 30 nodes (or 6% the
total domain width). Larger parameters caused numerical instabilities. The NRBF
solver, using the same width parameter as the RBF solver (dashed blue line in Fig-
ure 7), performs much better, with an error almost an order of magnitude smaller.
Further, the error is virtually constant throughout the computation, an indication
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Figure 7. Comparison between the error of three different im-
plicit methods using centered implicit finite differences (CI), ra-
dial basis functions (RBF), nodal radial basis functions using a
series approximation for the matrix inversion (NRBF) or a direct
solver (DNRBF). The nodal NRBF methods using a large width
parameter are indicated using the subscript “best”. The explicit
Lax-Wendroff (LW) method is shown for reference. The vertical
dot-dashed gray line corresponds to the time when the Gaussian
peak reaches the right boundary of the domain.

that the method is locally conservative, in the sense of Eq. (9). If it was not, the
error would keep increasing throughout the simulation. It is interesting to note that
the quality of the solution comes mostly from computing the inverse of the matrix
(I −∆tA)−P using a series approximation. When the matrix inverse is computed
directly (DNRBF, dashed green line in Figure 7), the error worsens noticeably.
Note that both the DNRBF and the NRBF methods give the exact same answer
when using ψ3,3 instead of ψ3,4, indicating that the poor results of the direct solvers
truly come from roundoff errors in the inverse computed in Eq. (25). If we reduce
the width parameter enough to limit numerical instabilities inside the RBF solver,
then both solvers have the exact same error, independent of the matrix inversion
method.

While the maximum value of the width parameter is problem dependent for
both the nodal and standard radial basis function solvers, we cannot avoid matrix
inversions for the latter, as Eq. (25) shows. Since the former solver uses a Cholesky
decomposition, round-off errors are bounded, allowing to use a width parameter
twice as large. After that, the NRBF method also becomes crippled by round-
off errors. While we show here the best case scenario, an increase in the width
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parameter does not yield necessarily a better solution when the inverse of the matrix
(I −∆tA)−P is computed directly (DNRBFbest, solid green line in Figure 7). But
there is a clear improvement when the series approximation is used (NRBFbest,
solid blue line in Figure 7), with a reduction of the error by more than an order of
magnitude compared to all other solvers.

5. Accuracy of the implicit nodal radial basis function solver

Nodal radial basis functions can solve the linear advection equation with greater
precision compared to other standard methods. However, these functions are de-
fined implicitly, and it would be difficult to determine the impact of the different
parameters on the quality of the solution. Yet, we have just seen that time step-
ping, the smoothness of the radial basis functions and possibly the presence of a
boundary can affect the solution. But we are now in a position to use the ‘no
boundary’ condition [26, 16] as an open boundary condition at the right boundary.
This condition was not used in the previous section since the explicit finite differ-
ence scheme needed boundary values at both boundaries and we wanted to treat
all boundary conditions on the same footing.

Now, the impact of time stepping is often an issue for computational methods.
While the method presented here is implicit and is not subject to the CFL condition,
it can only support a time stepping ∆T that are three times the ∆TCFL , the time
step given by the CFL, when using ψ3,4 and four times the ∆TCFL when using ψ3,3.
This limit can be increased further by using more points outside the boundaries.

At present, it is not possible to define this limit precisely since the nodal radial
basis functions are not explicitly formed. However, we can look in greater details
at the sub-cycle timestep ∆t. Figure 8 shows how the sub-cycling (i.e the ratio
∆T/∆t) impacts the error for nodal radial basis functions formed by the smoothest
Wendland functions used in this paper, namely ψ3,4. When the sub-cycle ratio
is small, the solver is not conservative, and the error builds up linearly. In this
case, the average error of a simulation (solid line) is close to the maximum error
of that simulation (dashed line), which is also the end error, while the minimum
error (dotted line) is orders of magnitude smaller than the average error. If we were
to plot this error with time it would behave like the error of the implicit centered
method.

While the error steadily diminishes with larger ratios, the method is still not
conservative until increasing the ratio does not yield better error. Once the error
has settled, we see that there is very little difference between the minimum and
maximum error, indicating that the method is now locally conservative and the
average error stays close to the minimum error. When plotted against time in
Figure 7, the error would be roughly flat throughout the simulation. For small
width parameters, this error quickly becomes insensitive to the ratio ∆T/∆t as it
gets dominated by interpolation error, controlled by the width parameter. What
is remarkable at this point is the fact that the method is still locally conservative
despite the large error. As the width parameter becomes larger though, the kink
in the error curve is pushed to higher values of ∆T/∆t and the error diminishes
steadily.

As we saw in Figure 3, the width parameter and the smoothness greatly change
the way the function couples the neighboring nodes to the main support node. Fig-
ure 9-a shows that their impact is dramatic. When the width parameter is small,
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Figure 8. Error for different ratios ∆T/∆t, computed for differ-
ent width parameters, given in number of nodes. The solid lines
give the average error throughout the best NRBF simulations for
different width parameters, while the shaded region gives the er-
ror bracket, bounded by the minimum (dotted line) and maximum
(dashed line) errors. Typically, when the average error is close to
the minimum error, then the method is locally conservative. In
this case the maximum error comes from the bump caused by the
solution going through the boundary. When the average error is
close to the maximum error, then the solver is not conservative and
lead to a linear increase of the error, as seen in centered implicit or
Lax-Wendroff methods. The size of the width parameter is given
as a function of half the number of nodes spanned by the modal
radial basis function. The domain has a total of 501 nodes.

the function smoothness does not impact the error at all and the weak coupling
between nodes (narrow stencil) yield a relatively large error. As the width param-
eter becomes large and more nodes are coupled, the error strongly depends on the
function smoothness and the width parameter. In the extreme case of ψ3,4, increas-
ing the width parameter six times reduces the error by four orders of magnitude.
However, despite the large error, the method remains locally conservative, showing
a small error variation throughout the simulation. We see that the error starts to
saturate for even larger width parameters, since the shape of the nodal radial basis
functions becomes independent of the shape parameter. As the coupling between
nodes initially increases with large width parameters, the number of nodes that
need to be added outside of the domain should also increase. This is necessary so
boundary conditions can be imposed with a spatial order that is consistent with
the spatial order of the method. Figure 9-b shows that the error does improve with
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a) b)

c)

Figure 9. Error for different width parameters (given as num-
ber of nodes) for a) for the Wendland functions ψ3,1, ψ3,2, ψ3,3,
and ψ3,4, b) a different number of boundary nodes and c) differ-
ent Gaussian pulse widths σ, defined in Eq. (26), both for the
Wendland function ψ3,4. The solid lines give the average error
throughout the best NRBF simulations, while the shaded region
gives the error bracket. The domain has 501 nodes.

more nodes located outside of the domain, but this change is weakly dependent of
on the number of boundary nodes. Since we are looking at a particular solution of
the partial differential equation, which is relatively smooth, and the error is mostly
driven by the width parameter and the function smoothness, the increase in the
number of nodes does not provide a better approximation of the solution, as shown
in Figure 10-a. However, numerical instabilities start to become problematic if the
width parameter is too large, forcing the error to increase. Since we have an excel-
lent approximation with fewer nodes, we can generate a random grid distribution
with larger variations (up to +/-30% from the homogeneous node locations) to see
the impact of the random distribution on the overall quality of the solution. Here
we let the simulation runs until t=10 to verify that the solver reaches the steady
state solution (1 according to Eq. (26)) and stays stable throughout the simulation.
While the error increases noticeably, Figure 10-b shows that the error is bounded
and remains reasonable even when nodes are displaced substantially.

As we discussed earlier, nodal radial basis functions can be truncated. Figure 10-
c shows the nodal radial basis functions are not conservative for extreme truncation.
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a) b)

c)

Figure 10. a) Using ψ3,4 with 200, 400, 800 and 1600 nodes and
b) with 200 nodes randomly distributed by 0%, 10%, 20% and 30%
compared to the homogeneous internode distribution distance. c)
Error caused by truncation of the nodal radial basis function for
different width parameters (in number of nodes) for ψ3,3. The
curve stops where the matrix is sparse without truncation.

However, as we reduced sparsity, the method becomes locally conservative and
remains such until the minimum sparsity has been reached. At this point, we
simply stopped plotting the curve. Note that the sparsity measurement is not
absolute. As we saw in Figure 10-a, the precision comes from the total number
of nodes contained inside the nodal radial basis function, which is controlled by
the width parameter, rather than the total number of points contained inside the
domain. When solving real problems, the total number of points inside the domain
will increase while the precision is still dictated by the width parameter and the
function smoothness. So, the sparsity will increase drastically for a given precision.

6. The advection equation with non-homogeneous velocity.

As an example, we can solve Eq. (10) with the following velocity distribution

uγ,σ (x− xc) = 1− γ exp− [(x− xc) /σ]
2
,

where we took xc to be the domain center node, γ the damping gain and σ the veloc-
ity distribution width. We chose σ small enough so the velocity at both boundaries
is 1 and the discretization can sample uγ,σ relatively well. We used here the domain
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[-4,4] to guarantee that the velocity distribution is virtually 1 at both boundaries.
The velocity distribution used here is shown in Figure 11-a. The solution of Eq.

a) b)

Figure 11. a) The solution (solid line) to the differential equation
as a function of time from boundary to boundary, together with
the Gaussian pulse following a ballistic trajectory (dashed line)
and the velocity distribution across the domain (dot-dashed line).
b) The maximum error between the ballistic solution and the nu-
merical solution at the right boundary for the Wendland functions
ψ3,1, ψ3,2, ψ3,3, and ψ3,4 with different width parameters (given in
number of nodes). The domain has 501 nodes. The left boundary
has Dirichlet’s conditions. The right boundary has a ‘no boundary’
condition.

(10) is compressed in regions where uγ,σ decreases and stretched in regions where
uγ,σ increases. The Gaussian pulse of Eq. (26) was used as initial condition and
as a Dirichlet condition of the left boundary throughout the simulation. The right
boundary here is open (i.e. the ‘no boundary’ boundary condition). Figure 11-a
shows the numerical solution as it moves from the left to the right.

If our Gaussian pulse was to pass through the domain with a ballistic trajectory,
the location xt of the peak would be given by

x(t)− x (t0) =

∫ t

t0

uγ,σ (x(t
′)− xc) dt

′
.

Because the velocity distribution is symmetric with respect to xc, the Gaussian
pulse following the ballistic trajectory is also a solution of Eq. (10), but only in
regions where uγ,σ = 1. The ballistic pulse traversing the domain is also shown in
Figure 11-a. As we can see, it is indistinguishable from the numerical solution at
the periphery of the domain.

We compared the numerical solution against the ballistic pulse at tfinal, when
both peaks are located at the right boundary. Figure 11-b shows that the maximum
error is comparable to the case with constant velocity, and shown in Figure 9-a.
The other errors were also similar and were not included to the paper. There is no
minimum and maximum error bracket here since the looked at the final simulation
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time tfinal and not at the whole time series since we have not computed the error
near xc with this method.

7. Conclusion

This paper shows how radial basis functions can be used to construct implic-
itly a family of nodal radial basis functions on a discrete set U of nodes, which
are interpolant of the translated impulse function δ(x − xj). Unlike radial basis
functions, which are translated and scaled version of a single modal function, the
nodal radial basis functions depend on the node distribution. These functions form
an orthonormal basis on U , the space of interpolant operating on U, leading to a
simplified expression of the solver obtained when discretizing the linear advection
equation. This solver can be extended trivially to the case where the velocity varies
across the whole domain.

One advantage of the nodal radial basis function method over the radial basis
function method is easily imposing boundary conditions. In general, boundary
conditions are given in term of the solution (Dirichlet) or its derivatives (Neumann).
Yet, the radial basis function solver computes the solution in term of weights rather
than the actual solution values, using Eq. (23). So, at every time step, the solution
has to be computed at the domain nodes using Eq. (21), the boundary conditions
have to be applied, and then, the new weights have to be computed using Eq. (1).

One possible issue with nodal radial basis functions comes from its computational
complexity. The Cholesky decomposition is O(N3), followed by N computations of
the nodal radial basis function derivatives, each O(N2), to form the matrix A. So,
we face another computation complexity that is O(N3), which is not present when
using radial basis functions. Each time step is O(N2) after that. When the time
evolution of the equation requires a number of time steps that is larger than N, the
nodal radial basis function becomes more advantageous. Indeed, we would need to
go back and forth between the actual value of the solution and its weight to impose
boundary conditions using radial basis functions, a transformation requiring O(N2)
operations.

The O(N3) dependence is problematic compared to the centered implicit and
Lax-Wendroff methods. But there are also simple remedies to this ailment. Global
nodal radial basis functions, as the one used in this paper, can be truncated easily,
leading to a computational complexity that is O(N) where one node is connected
to a limited set of neighboring nodes, as opposed to all the nodes in the set leading
to an O(N2) dependance. We can also use a partition of unity approach [1], similar
to the one used with radial basis functions [34], also leading to an O(N) scaling.

While the present work mostly used global nodal radial basis functions, it showed
that truncating global nodal radial basis functions can lead to sparse matrix alge-
bra. It can be extended relatively easily to partition-of-unity methods [15, 35], to
reduce the computational complexity from O(N2) to a O(N). This work was done
in relatively ideal conditions, staying away from solutions with sharp gradients nat-
urally arising from hyperbolic PDEs, which we plan to investigate further using
adaptive techniques. While adaptive meshing is not easy to implement, it clearly
does not conflict with the methods presented herein and will be explored in future
works.
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