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Abstract

The posterior superior temporal sulcus (pSTS) is a brain region characterized by perceptual representations of human body
actions that promote the understanding of observed behavior. Increasingly, action observation is recognized as being
strongly shaped by the expectations of the observer (Kilner 2011; Koster-Hale and Saxe 2013; Patel et al. 2019). Therefore, to
characterize top-down influences on action observation, we evaluated the statistical structure of multivariate activation
patterns from the action observation network (AON) while observers attended to the different dimensions of action
vignettes (the action kinematics, goal, or identity of avatars jumping or crouching). Decoding accuracy varied as a function
of attention instruction in the right pSTS and left inferior frontal cortex (IFC), with the right pSTS classifying actions most
accurately when observers attended to the action kinematics and the left IFC classifying most accurately when observed
attended to the actor’s goal. Functional connectivity also increased between the right pSTS and right IFC when observers
attended to the actions portrayed in the vignettes. Our findings are evidence that the attentive state of the viewer
modulates sensory representations in the pSTS, consistent with proposals that the pSTS occupies an interstitial zone
mediating top-down context and bottom-up perceptual cues during action observation.

Key words: action observation, action observation network, attention, multivariate pattern analysis, posterior superior
temporal sulcus

Introduction
The posterior superior temporal sulcus (pSTS) is linked to the
perceptual representations of body actions during action obser-
vation. Classically, the pSTS is characterized as providing the
key sensory input needed to facilitate the interpretation of goals
from motor behavior and ascribe intentions in social interac-
tions (Thompson and Parasuraman 2012; Pyles and Grossman
2013; Lingnau and Downing 2015). This strictly perceptual char-
acterization of the pSTS, however, fails to account for the influ-
ence of high-level contextual factors on the neural response.
Activation in the pSTS is modulated by recent history of the
observed action events (Vangeneugden et al. 2011), whether the
viewer is attending to the social dimensions of an event (Tavares
et al. 2008), whether the observed action is consistent with the
expectation of the viewer (Wyk et al. 2009; Jastorff et al. 2011;

Saygin et al. 2012; Maffei et al. 2015; Urgen and Saygin 2020),
and whether the action is construed as intentional or incidental
(Morris et al. 2008).

Contemporary theories of the action observation network
(AON) now emphasize an integrative role of the pSTS rather
than one of strict sensory encoding. In these proposals, specific
action features, such as body postures and local kinematics, are
encoded in the lateral occipitotemporal cortex (LOTC) regions
and subsequently bound into action representations in the pSTS
(Giese and Poggio 2003). The action representations are further
tuned by modulatory signals that reflect top-down influences
imposed by cognitively derived internal models (Geng and Vos-
sel 2013; Sokolov et al. 2018). These modulatory influences are
constructed in higher levels of the AON (i.e., the inferior frontal
cortex; IFC) and are proposed to shape action representations
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so as to facilitate the behavioral goals of the viewer (Carter
and Huettel 2013; Patel et al. 2019). In one special class of
these models, predictive coding models, top-down signals bias
perceptual encoding in favor of expected actions as determined
fromprior knowledge of action goals, increasing the efficiency of
perceptual encoding of the subsequently observed action (Kilner
2011; Koster-Hale and Saxe 2013; Bach and Schenke 2017).

An important innovation in this new class of theoretical
models is the specialized role of the pSTS as the integrator of two
information streams: bottom-up sensory encoding of observed
actions and top-down cognitively derived context.Unlike strictly
representational accounts, integrativemodels are highly flexible
in that they emphasize the encoding of sensory cues dependent
on the observer’s cognitive state. This integrative role, therefore,
provides a new framework by which the local functional hetero-
geneity of the pSTS can be interpreted (Patel et al. 2019), namely
that sensory information may be represented uniquely depend-
ing on the attentive goals of the viewer.This stands in contrast to
proposals that characterize the pSTS as host to distinct neural
populations for low-level perceptual and high-level social cog-
nitive functions, intermixed and distributed throughout LOTC
(Hein and Knight 2008; Bahnemann et al. 2009; Deen et al. 2015).

Integrative and predictive coding models are both influential
in understanding brain systems that underlie action observation
and moreover are supported by univariate mapping studies
showing that the behavioral goals of the observer alter activation
maps distributed along the superior temporal sulcus. What is
currently lacking, however, is direct evidence that the behavioral
goals of the observer alter action representations that are con-
structed during action observation. One proposed mechanism
bywhich thismay occur is the sharpening of neural tuning to the
attended actions, akin to the attention-mediated gain increases
observed in early visual cortex during feature-based attention
tasks (Treue and Martínez Trujillo 1999; Saenz et al. 2002; Kok
et al. 2012). Feature-based attention gain is a mechanism con-
sistent with all classes of top-down integrative models and has
been observed widely throughout sensory systems (Maunsell
and Treue 2006). Alternatively, observer goals have the potential
to alter behavior without restructuring action representations
directly. This could be achieved through the introduction of bias
in the decision-making process, which would manifest in later
stages of cortical processing while leaving action representa-
tions unadulterated (i.e., Summerfield and Egner 2009).

A further consideration is the level of abstraction of the
top-down influences that may shape perceptual representa-
tions. This is particularly important during action observation,
in which a specific goal can be achieved through various com-
binations of an individual’s actions, while specific actions may
not be diagnostic of an individual’s current goals or intentions
(Thompson et al. 2019). Thus, expectations of upcoming actions
could include anticipated kinematic events, action outcomes, or
perhaps even abstracted representations of action goals (Kilner
2011).

In this study, we investigate how feature-based attention
modifies the statistical structure of action representations
embedded within the spatial activation patterns elicited during
action observation. We test the hypothesis that directing
attention to kinematic aspects of an action vignette sharpens
the tuning of these representations and compare it to when
attention is directed to features not associated with action
recognition (namely, the identity of the actor,which is associated
with the LOTC and inferior temporal cortex but not the pSTS;
Lingnau and Downing 2015). We also evaluate the efficacy by

which directing attention to observer goals (rather than specific
actions) facilitates the decoding of action representations. We
evaluate this hypothesis in three regions of the AON: the pSTS,
the form and motion-selective LOTC (Oosterhof et al. 2010;
Wurm and Lingnau 2015), and the IFC (Ogawa and Inui 2011;
Wurm and Lingnau 2015). In a second analysis, we compare
connectivity strength within the AON as a function of observer
attention state to evaluate if the changes in information are
likewise associated with selective strengthening of information
through key pathways. Our results are consistent with models
of the pSTS as dynamically restructuring action representations
depending on the viewer’s attentive state, with actions most
strongly differentiated when observers attend to the kinematic
content. These results are consistent with top-down and
predictive coding models that emphasize the role of prior
knowledge in shaping action representations.

Methods
Participants

Twenty-five healthy adults (8 male, 17 female) ranging in age
from 21 to 42 years old (mean= 24.7, SD= 3.6) from the UC
Irvine campus and surrounding community enrolled in and
completed the study. Participants gave written informed con-
sent. All experimental procedures were approved by the Uni-
versity of California Irvine Institutional Review Board. All par-
ticipants had normal or corrected-to-normal vision. One partic-
ipant was excluded from the analysis due to excessive motion
during scanning.

MR Image Acquisition

Participants were scanned at the Facility for Imaging and Brain
Research at the University of California, Irvine, on a 3 Tesla
Siemens Prisma MRI scanner (Siemens Medical Solutions)
equipped with a 32-channel receive-only phased array head
coil. High-resolution anatomical images were collected using a
single T1-weighted magnetization–prepared rapid acquisition
gradient echo (MPRAGE) sequence (176 sagittal slices; 1 mm
isovoxel resolution; field of view= 256 mm; TR= 2000 ms;
TE= 1.99 ms; TI= 900 ms: flip angle= 9 degrees; GRAPPA
acceleration factor=2; bandwidth= 240 Hz/Px).

Two types of functional scans were acquired across two ses-
sions, both using a T2∗-weighted gradient recalled echoplanar
imaging multiband pulse sequence (cmrrmbep2dbold) from
the University of Minnesota Center for Magnetic Resonance
Research (CMRR). Session 1 consisted of localizer scans designed
to identity regions of interest (ROIs) within the AON (69
slices coplanar with the AC/PC; in-plane resolution= 2 2 mm;
106 106 matrix size; 2 mm slice thickness, no gap; interleaved
acquisition; field of view= 212 mm; phase partial Fourier
scheme of 6/8; TR= 2000 ms; TE= 30 ms; flip angle= 79 degrees;
bandwidth= 1814 Hz/Px; echo spacing=0.66 ms; excite pulse
duration= 8200 microseconds; multiband factor= 3; phase-
encoding direction=PA; fat saturation on; advanced shim
mode on). Session 2 comprised the main experiment and
therefore incorporated rapid event–related scans that were
designed to sample the hemodynamic response more rapidly
(68 slices coplanar with the AC/PC; in-plane resolution=2 2mm;
106 106 matrix size; 2 mm slice thickness, no gap; interleaved
acquisition; field of view= 212 mm; phase partial Fourier
scheme of 6/8; TR= 1500 ms; TE= 30 ms; flip angle= 79 degrees;
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bandwidth= 2144 Hz/Px; echo spacing= 0.57 ms; excite pulse
duration= 8200 microseconds; multiband factor= 4; phase-
encoding direction=PA; fat saturation on; advanced shimmode
on). At the beginning of each session, an additional pair of EPI
images with phase-encoding directions of opposite polarity
in the anterior-to-posterior plane was acquired to correct for
susceptibility distortions in each participant’s functional data.

Session 1: Functional Localizers
In the first session, all participants underwent three functional
localizer scans (two repetitions each) to identify the pSTS, mid-
dle temporal complex (hMT+), and extrastriate body area (EBA).
Stimuli were displayed on a BOLDScreen32 LCD monitor con-
trolled by MATLAB (Mathworks, Inc.) and the Psychophysics
Toolbox extensions (Brainard 1997) on a Windows desktop. Sub-
jects viewed the animations through a mirror mounted on the
head coil and directed at a screen positioned at the head end of
the scanner.

Posterior superior temporal sulcus. To localize areas of the brain
that respond selectively to biological motion, participants were
shown 12 alternating blocks of intact and scrambled point-light
biological motion (Grossman et al. 2010). Animations depicted
an actor with 12 lights attached to the joints performing 25
unique actions, such as walking, jogging, throwing, kicking,
etc. Scrambled animations were produced by randomizing the
starting position of the point-light dots within a region approx-
imating the target figure and then leaving their motion vectors
intact. Animations had a duration of 1 s and were separated by
a 1-s fixation intertrial interval (ITI). Participants performed a 1-
back task on each animation, indicating by button presswhether
the current animation was the same or different action as the
one immediately prior. The pSTS was identified using a group
random-effects GLM that contrasted intact versus scrambled
trials, thresholded using a false discovery rate (FDR; Genovese
et al. 2002) of q< 0.005.

Lateral occipitotemporal cortex. The LOTC was identified jointly
using two localizers, one targeting hMT+ and the other targeting
the EBA. Although separable in individual subjects (Weiner and
Grill-Spector 2011, 2013), the hMT+ and EBA in group analyses
jointly occupy the ascending limb of the posterior inferotempo-
ral sulcus (pITS; Downing et al. 2007). The LOTC was therefore
identified as the union of the hMT+ and EBA (described below),
constrained to the dorsal extent by the inferior temporal gyrus.

To isolate the motion-selective hMT+, participants passively
viewed alternating 12-s blocks of optic flow dot motion and
stationary dot patterns (Huk et al. 2002). Optic flow was con-
structed with 500 black dots randomly dispersed within a circu-
lar aperture, alternating between expansion and contraction. In
the stationary interval, dots remained frozen in position for 12 s.
The motion-selective responses on the pITS were thresholded
using FDR, q< 0.005.

To isolate the body-selective EBA, participants viewed
images of headless bodies, cars, and limbs (hands and feet)
(Stigliani et al. 2015). Each image was superimposed on top
of a 10.5-degree phase-scrambled background generated from
a randomly selected image to minimize low-level differences
across categories. Images were presented in 12 blocks, with 9
images shown per block. Body and limb selective brain regions
were identified as those with higher brain response when
viewing bodies and limbs versus images of cars, FDR, q< 0.005.

Session 2: Action Observation
Action vignettes spanning 3 s (see Fig. 1A) were generated in
Poser Pro 11 (2015) and depicted one of two avatars (a boy or
a man) performing the same sequence of actions in which the
avatar walked toward a bookshelf, indicated intent to reach one
of two boxes, and then either crouched down or jumped up to
reach the box. The vignette ended after the execution of the
action and prior to the avatar making contact with the box. Each
vignette was constructed such that it was visualized from eight
unique viewpoints that spanned an 80-degree viewing range on
each side (left and right, profile to rear views). Two different
avatars (a man and a boy) were selected such that participants
could discriminate identity based on body type without directed
attention to facial features, and so that attention would be
directed to articulating body features in all three attention con-
ditions (including the attention to identity condition). The man
and boy differed in height and therefore gait stride and traversed
the samedistance as they approached the target objects. In order
to synchronize the timing of key events in the action vignette
(arrival to the shelf, initiation of the action), the boy walked with
a slightly faster gait relative to the man.

Before beginning the experiment in the scanner, all partici-
pants were familiarized with the action vignettes and practiced
the task under all three attention conditions: attending to the
actor’s identity, the action category, or the proximate goal of the
action. To prevent motor response preparation while viewing
the action vignette, stimulus–responsemappings were obscured
until the response interval, during which the labels for the
three binary dimensions of the action (identity: boy/man; action:
crouch/jump; goal: low box/high box) were randomly assigned
to the left and right sides of fixation on each trial. Participants
reported the correct label by pressing the button corresponding
to the side of the screen correctly displaying the value of the
feature they attended. Classification was always conducted on
the trials with the action labels jumping versus crouching.

Trials were separated by a 3-, 4.5-, or 6-s ITI, pseudorandom-
ized within each run such that, in total, each trial lasted 10.5, 12,
or 13.5 s. The onset of each trial eventwas synchronizedwith the
onset of volume acquisition to ensure synchronization with the
event-related acquisition. Each run of the experiment contained
eight conditions per attention task from a fully crossed design
comprising two avatars (boy and man), two actions (crouching
and jumping) and two viewpoints (leftward and rightward walk-
ing). The three attention tasks (attend to avatar identity, action
category, and action goal) were randomly interleaved within
each run, resulting in a total of 24 trials per run or approximately
5 min of scan time. The experiment was organized into eight
runs for a total of 192 trials.

Imaging Analysis

Preprocessing
Preprocessing of functional imaging data was conducted using
BrainVoyager QX v20.6 (Goebel et al. 2006). All functional images
were slice-time corrected,motion-correctedwithin and between
runs, linearly detrended, and temporally high-pass filtered
(cutoff frequency 0.01 Hz). Session 2 scans were additionally
corrected for susceptibility-induced magnetic field distortions
using the field map method (Jezzard and Balaban 1995),
implemented in BrainVoyager’s COPE v1.0 plugin. All functional
images were coregistered to each individual’s T1-weighted
image.
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Figure 1. (A) Timing of trial events in the rapid event–related design. Precue specified the dimension to be attended (action, goal, or identity). The response cue

psuedorandomized judgment–response mappings to prevent the participant from engaging in motor planning during the action observation interval. (B) Filmstrip
view of stills from the action vignette showing detailed views of an avatar jumping with the intention to reach the box on top of the bookshelf. (C) Regions of interest
were identified using independent localizer scans (pSTS and LOTC) and surface-based atlas segmentation (IFC). The BOLD response to each event was estimated
by iteratively fitting a linear model that included a separate regressor for each trial and confound regressors for all other trials grouped by type (LSS approach).
The resulting matrix of beta coefficients was separated by trial type (attend to action, goal, or identity) and used to train and test three separate SVM classifiers
per participant. (D) Expected patterns of MVPA results for action classification based on models proposing distinct sensory representations of actions unaltered
by the attentive state of the viewer, and (E) integrative models that are tuned to action kinematics (left) and more broadly to actions and the corresponding goals
(right).
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Session 1: Regions of Interest
Functional data in session 1 were aligned to a template pilot
subject using cortex-based alignment (Frost and Goebel 2012).
Sulcal curvature was constructed on white matter surfaces
derived from FreeSurfer’s recon-all algorithm (http://surfe
r.nmr.mgh.harvard.edu/), imported into BrainVoyager using
custom library functions (https://github.com/tarrlab/Freesu
rfer-to-BrainVoyager). Regions of interest were identified on
the cortical surface and then projected back into native
volumetric coordinates by searching along the vertex normal
1 mm towards the white matter and 3 mm towards the
gray matter.

The IFC (comprising BA44, BA45A, BA45B, BA47, and the infe-
rior frontal sulcus) was identified anatomically in each individu-
als’ native anatomical images using FreeSurfer’s cortical surface
atlas mapping algorithms in conjunction with the 400 atom
resolution Schaefer atlas (Schaefer et al. 2018). This atlas empha-
sizes homogeneity of functional systems within the parcels,
coupled with high-resolution “atomic” parcellation in approxi-
mately equisized units, and therefore higher precision in iden-
tifying ROI boundaries.

Session 2: Action Observation under Attentional Instructions
The time series from each voxel in the ROIs was first z-scored
across time, and trial-by-trial patterns of estimated blood
oxygen level–dependent (BOLD) activation were derived using
the least squares separate (LSS) general linear model approach
(Mumford et al. 2012; Turner et al. 2012). The LSS procedure uses
a separate GLM to estimate the pattern of activity for each trial
where the model for the ith trial is

Y =XLSSiβLSSi + εi

such that the design matrix for the ith trial, XLSSi, contains
one regressor of interest modeling the stimulus-evoked BOLD
response to the ith trial and several other nuisance regressors
modeling responses to the remaining trials grouped by trial type.
Stimulus-evoked BOLD responses to each event were modeled
as 4.5-s boxcar functions that included both the precue and the
action vignette, which were separated by a brief (0.5 s) fixed
interstimulus interval. This conservative approach was imple-
mented to account for the variability in temporal integration
windows across the regions of interest, which are known to
be quite extended in the pSTS as compared with the LOTC
(Hasson et al. 2008). The boxcar functions were then convolved
with a canonical double-gamma hemodynamic response func-
tion (HRF) (Friston et al. 1998; Glover 1999). In order to account
for variability in the latency of the HRF across the brain and
across subjects (Steffener et al. 2010), we optimized the time-to-
response-peak parameter of the two-gamma function (5 possi-
ble values between 5 and 7 s in steps of 0.5 s), with the modeled
HRF that produced the highest coefficient of determination (R2)
for all trials within the voxel selected for downstream analysis.
Our LSS design matrix contained six nuisance regressors, one
for each action condition (crouching and jumping) crossed with
each of the three attention tasks (attend to identity, action, and
goal) and additional nuisance regressors capturing the average
signal and first derivative measured from the white matter
and ventricles over time. Following beta extraction, trials with
extreme movement near the peak response (three or more con-
secutive timepoints of framewise displacement above 2 mm)
were censored from later analysis. Also, variance in the beta
series accounted by repetitions of actions was removed.

Multivariate Pattern Analysis
Trial betas were separated by attention task (attend to identity,
action, and goal) for each participant, andmean centered within
runs to remove spurious correlations between the estimated
activity levels of different trial types across runs (Lee and Kable
2018). The resulting normalized betaswere then averagedwithin
runs to a single activation estimate per action class. The matrix
of n activation estimates by k voxels and 1xn class labels was
then used to train three separate support vector machine (SVM)
classifiers, one per attention task, implemented in the e1072
package in R (Meyer et al. 2018). The SVM consisted of a linear
kernel and a cost value of 1. Classificationwas performedwithin
subjects using 8-fold leave-one-run out cross validation. Within
each fold, two predictions were made from the held-out test
set, one from each action class. The final classification accuracy
for each subject was computed as the mean accuracy across all
8-folds.

To examine task-related differences in multivariate pattern
analysis (MVPA) classification accuracy, we constructed a lin-
ear mixed-effects model (LMM) using the lme4 package imple-
mented in R (Bates et al. 2019). The LMM predicted classification
accuracy based on the fixed effects of attention task, ROI, and
their two-way interaction, with participants as random effects.
P values were obtained using likelihood ratio tests comparing
each model to reduced models lacking the variable (or interac-
tion) in question.

Because classification scores are often discrete and may
not be normally distributed, statistical significance was fur-
ther quantified using a randomization procedure at the group
level (Stelzer et al. 2013). In these tests, condition labels were
exhaustively permuted within the individual participants, and
classifiers were trained and tested using the same procedures as
above. This procedure yields the expected distribution of classi-
fication accuracy (for each participant) under the null hypoth-
esis. Significance (P< 0.05, one-tailed) was ascertained from
group-level null distributions, constructed using a bootstrap
procedure in which a single sample was drawn from each par-
ticipant’s null distribution (iterated 1000 times and sampled
with replacement). This procedure was implemented for the
planned comparisons of attention conditions (permutations on
task labels): attending to action versus identity, and goal versus
identity. In a second set of permutations, this procedure was
implemented to evaluate whether classification accuracy devi-
ated significantly from chance in each of the attention condi-
tions (permutations of action labels; chance=50% classification
accuracy).

Functional Connectivity
Functional connectivity was computed as the Pearson correla-
tion of the beta series between two ROIs, separately for each
attention task. Beta series connectivity is based on the assump-
tion that if two brain regions are functionally interacting, then
the amount of activity captured by beta estimates should cor-
relate across trials (Rissman et al. 2004). Beta series correlations
were calculated fromROI-averaged time series inwhich volumes
with FDR greater than .4 mm were excluded. As for the MVPA
analysis, trialwise betas were estimated using LSS GLMs with
nuisance regressors including the global signal measured from
the white matter and ventricles and the Volterra expansion
of all six rigid body motion realignment parameters (Fristen
et al. 1996). Pearson correlations were computed between each
64 beta time series, Fisher r-z transformed. Paired, one-tailed
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Figure 2. Identification of regions of interest. Left: Group activation maps from the three independent functional localizer scans, displayed on inflated cortical surface

meshes of a pilot subject. Right: The regions of interest, including the atlas-derived IFC, projected onto a single subject cortical surface.

repeated measures t-tests for the planned contrasts of action >

identity and goal > identity were conducted on the transformed
correlations.

Results
Functional Localizer Analysis

Results from the independent localizer scans are shown in
Figure 2. The biologicalmotion localizer identified large bilateral
regions of the pSTS, notably of larger extent in the right hemi-
sphere, whereas the hMT+ and EBA localizers jointly revealed
large bilateral coactivation in ventral temporal cortex and LOTC.
The spatial overlap between hMT+ and EBA is consistent with
reports of functionally distinct neural populations that colocal-
ize to the inferior occipital sulcus when identified in group-
based localizers (Downing et al. 2007).

Multivariate Pattern Analysis

To test the hypothesis that the attentional state of the partici-
pant sharpens the population tuning of the multivariate infor-
mational content during action observation, we evaluated the
cross-validated accuracy of action classification (labels: jumping
and crouching) from ROI activation patterns (Fig. 3). An LMM
with mean classification accuracy as the dependent variable
yielded significant main effects of ROI (χ2(5) = 72.83, P< 0.001)
and task (χ2(2) = 9.69, P< 0.007), and a significant ROI × task
interaction (χ2(10) = 21.81, P=0.016). Thus, attentional demands
influenced the decodability of actions in a subset of ROIs.

To better break down the task x ROI interaction, six within-
ROI LMMs were constructed evaluating the influence of the
attention instruction on classification accuracies. Planned

contrasts compared mean classification accuracies during
action and goal attention conditions to the identity attention
condition, which served as a baseline in which attention
was directed to invariant features (identity) rather than to
the dynamic kinematic features. Parameter estimates for
each model are presented in Supplemental Table S1. Action
decoding in the right pSTS was significantly more accurate
when participants attended to the action kinematics versus the
identity of the avatar (b=0.172, SE=0.062, t(48) = 2.786, P=0.008,
uncorrected), consistent with the sharpening hypothesis of the
action-tuned neural populations. Permutation tests confirmed
that the increase in classification accuracy in the attend-to-
action condition exceeded levels expected by chance, with
differences greater than observed in 95% of null models
(Supplemental Fig. S1).

Action decoding in the right pSTS did not, however, differ
significantly between trials when the participant attended to
the goal of the action versus the identity of the actor (b=−0.022,
SE=0.060, t(48) =−0.370, P=0.713). In contrast, action decod-
ing in the left IFC increased when participants attended to
goal as compared with attending to identity, reaching marginal
significance in the LME model (b=0.13, SE=0.06, t(72) = 2.11,
P=0.04, uncorrected) and exceeding 95% of null models in the
nonparametric permutation tests (Supplemental Fig. S2).

No other ROIs revealed significant task-related differences in
action decoding.

In all conditions, the trials were labeled according to the por-
trayed action and the goal of the actor, which, in these vignettes,
were strictly confounded (i.e., the actor always gazed upward
prior to jumping up and gazed downward prior to crouching
down). Thus, classification of the two actions in the attend-to-
action and attend-to-goal conditions reflects the same stim-
ulus events. We therefore attribute the observed variations in
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Figure 3. MVPA classification accuracies from decoding action class (jumping and crouching) by task demand. Error bars indicate SEM. Asterisks indicate statistical
significance derived from nonparametric permutation tests that evaluated the classification accuracies within each ROI and attention condition expected from chance

(
∗
P< 0.05,

∗∗
P< 0.01,

∗∗∗
P< 0.001). Dashed line indicates chance level binary classification accuracy (50%).

classification performance across conditions to reflect changes
in the cortical state of the observer, rather than to any perceptual
differences between the conditions.

To evaluate the specificity of directed attention on decoding
accuracy for observed action, we computed classification accu-
racy for the same trials labeled by actor identity (man vs. boy),
whichwere crossed evenly with the two actions and three atten-
tion conditions. Six within-ROI LMMs for each of the ROIs within
the AON found no evidence that classification accuracy when
coding for identity was modulated by the attentive state of the
observer (all Ps> 0.34; Supplementary Fig. S3; Supplementary
Table S2).

Univariate Analysis

It could be argued that variations in multivariate decodability
of actions as a function of top-down instruction may reflect
differences in univariate activation levels across tasks, rather
than sharpened neural tuning per se. We therefore compared
the univariate responses in the ROIs as a function of task (Fig. 4).

Statistical analysis of the average stimulus-evoked responses
revealed a main effect of ROI (χ2(5) = 496.96, P< 0.001), but
no main effect of task instruction (χ2(2) = 1.26, P=0.533), nor
an interaction between task and ROI (χ2(10) = 496.96, P=0.992).
Thus, the more diagnostic activation patterns in the pSTS when
attending to action kinematics versus actor identity cannot be
attributed to attentionally driven increases in the average BOLD
response within the region. That multivariate classification
accuracy is independent of BOLD activation levels is consistent
with previous reports that classification is just as high for
nonpreferred categories of visual stimuli as it is for preferred
categories, within the same brain region (Haxby et al. 2001).

Task Instructions as a Means to Modulate Attention
In this experimental design, observers were instructed to attend
to particular dimensions of an action vignette without knowing
in advance which action was upcoming. One could hypothesize
that the failure to modulate classification accuracy in the AON
more broadly (outside of the right pSTS) may reflect a failure

of task instructions to guide observer behavior and therefore to
alter brain state.

To evaluate this, we analyzed behavioral performance in the
scanner, inwhich participantswere required to properly identify
the label for the action, action goal, or identity of the actor on
each trial. Participants were highly accurate in detecting the
features of the action vignettes that they were cued to attend
(see Fig. 5). A linear mixed-effects logistic regression model pre-
dicting the binary outcome of each trial (“correct” vs. “incorrect”)
for each task revealed a trend, but no significant effect of task on
accuracy (χ2(2) = 5.470, P=0.065). An LMM on response latencies,
however, yielded a significant main effect of task (χ2(2) = 12.068,
P=0.002) such that response latencies were longer when partic-
ipants identified the goal of the action versus the identity of the
actor (b=92.74, SE=23.85, t(22.12) = 3.888,P< 0.001), but notwhen
they identified the action category compared with the identity
of the actor (b=34.86, SE=21.09, t(23.18) = 1.653, P=0.112).

In a second analysis, we evaluated whether activation pat-
terns in the AON regions contained information as to the unique
attention states of the observer in the three attention condi-
tions, without regard for the action being observed. We trained
a single classifier per ROI to perform a three-way classifica-
tion with classification labels specifying task instruction (attend
to action, goal, or identity) rather than action observed (jump
or crouch). Figure 6 displays mean classification accuracies for
decoding task. All ROIs classified the task demand more accu-
rately than what would be expected by chance (randomized
permutation tests; right pSTS, P=0.01; left pSTS, P< 0.001; right
LOTC, P=0.009; left LOTC, P=0.007; right IFC, P=0.02; left IFC,
P=0.004), evidence that participants differentially allocated their
attention according to the task instruction,which in turn altered
the informational content in each ROI.

Functional Connectivity
Theoretical models propose the inferior frontal cortex (IFC) to
function as a biasing agent such that the sensory represen-
tations of specific body kinematics are consistent with the
observer’s current behavioral goals (Kilner 2011; Koster-Hale
and Saxe 2013). We therefore hypothesized that the signature
of such feedback may be reflected through increased functional
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Figure 4. Group univariate responses by task demand modeled during the precue and action observation periods. Univariate activity estimates were produced by
averaging the trial-by-trial LSS beta coefficients across trials of each task demand and then averaging the data across voxels within the ROI.

connectivity between the pSTS and IFC during experimental
conditions when participants directed their attention to action
features.

Analysis of the Pearson’s coefficients on the beta time series
revealed strong functional connectivity between the right pSTS
and the right IFC during action observation under all task
instructions (Fig. 7A). When compared across tasks, only the
connection between the right pSTS and right IFC varied as
a function of task such that it increased significantly when
participants attended to action versus when they attended to
the actors’ identity (t=2.21, P=0.018, uncorrected) (Fig. 7B).

Discussion
The pSTS is increasingly recognized as an integrative hub for
decoding social cues that convey essential information for mak-
ing inferences about actions and intentions (Dasgupta et al.
2016; Sokolov et al. 2018). Contemporary theories propose that
the action representations in pSTS are modulated by the atten-
tive state of the observer, and thus identical actions may result
in unique representations when viewed under different task
goals (Patel et al. 2019). In this study, we test the hypothesis
that directed attention to action features sharpens the tuning of
neural populations in the pSTS for subsequently viewed actions,
reflecting the strengthening of top-down influences acting upon
the pSTS.

We found that the attentive state of the observer alters the
population code in the right pSTS and the left IFC when viewing
action vignettes, as demonstrated by a significant effect of
the attention instruction on MVPA accuracy. Specifically, the
spatial activation patterns for two distinct actions—jumping
and crouching—are more easily differentiated in the right
pSTS when observers direct their attention to the kinematic
features of the vignette. The spatial activation patterns for
the two observed actions are more easily differentiated in the
left IFC when observers attended to the implied goals of the
actors. The significant improvement in both these ROIs is
higher than expected by chance and higher than decodability
of the same actions when observers reported the actors’

identities. This finding is consistent with models of the AON
that propose that pSTS and IFC work together to ascertain
implied goals from body kinematics (Hamilton and Grafton,
2008; Kilner 2011), whereas body postures (which specified
identity in this experiment) are associated with encoding in
the more posterior LOTC and ventral fusiform body area (FBA;
Peelen and Downing 2007).

Our findings add to the handful of reports in other sensory
domains inwhich directed feature-based attention refines infor-
mation in the population response, resulting in more distinct
activation patterns that facilitate classification (Kok et al. 2012;
Braunlich and Love 2019). A likely mechanism of this attention
benefit is the known increased gain in neurons with underlying
tuning preferences for the attended features, resulting in an
overall sharpening of the population response (for review, see
Reynolds and Heeger 2009). In fMRI activation patterns, this has
the consequence of warping the representational distinctive-
ness of the attended items and, when analyzing for information
within distributed activation patterns, improving the efficacy of
the trained classification algorithm (Çukur et al. 2013; Nastase
et al. 2017).

Attention to Action Features Sharpens Neural Tuning
in the Right pSTS

Our current findings are consistent with previous fMRI univari-
ate mapping studies that have documented stronger and more
widespread activation on the pSTS when attention is directed
to social dimensions of an event rather than nonsocial features
(Tavares et al. 2008; Safford et al. 2010; Lee et al. 2014). Those
studies conclude that directed attention to the social aspects of
a scene differentially engages neural populations with tuning
to features that promote the interpretation on social events.
In our study, we found no change in the univariate response
across our three attention tasks, likely because all tasks focused
on highly salient social aspects of the stimulus (identity of the
actor, actions being conducted, or the goals of the actor). Instead
we have documented a shift in the statistical structure of the
information within the pSTS multivariate activation patterns,
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Figure 5. Behavioral results from the performance in the scanner, broken down
by attention task. (A) Mean accuracy and (B) response latency (ms) for detecting
the feature cued at the beginning of each trial.

without an associated increase (or decrease) in the univari-
ate response. Thus, we conclude that our attention manipula-
tion did not recruit new populations of neurons during action
observation but instead altered the information content of the
representations constructed during action observation.

In our results, directing attention to the kinematic features
of the action vignette improved classification across a wide
range of viewing perspectives of the scene, from profile views
of the actors with strong lateral movements, to near midline
views. Although there is evidence of viewpoint specificity in
STS neurons recorded in monkeys (Oram and Perrett 1994),
evidence from fMRI strongly favors viewpoint-invariant repre-
sentations on the human STS (Grossman et al. 2010). In line with
this, behavioral research indicates that not all features of an
action sequence are equally salient,with key diagnostic features

most strongly capturing the attention of the observer (Casile
and Giese 2005; Thurman and Grossman 2008). Moreover, with
practice, observers can readily identify those salient features
and more easily discern action exemplars, with changes in the
univariate pSTS response closely following those improvements
in training (Grossman et al. 2004; Jastorff et al. 2009). Our current
findings are consistent with both of these observations, namely
that attention operates on action representations in a manner
that is robust to changes in viewpoint and therefore likely
reflects the enhanced salience of diagnostic features for action
templates, or action categories, rather than specific instances
themselves.

Attention to Action Goals Sharpens Neural Tuning
in the IFC

Observed directed actions are readily interpreted in the context
of the expected outcomes that will be attained and implied
intent of the actor (Csibra and Gergely 2007). How this is
achieved, however, is a complicated problem as the same action
can indicate multiple outcomes and intentions depending on
contextual factors, while many actions (variations in body
kinematics) have potential to achieve the same ultimate
outcome. Evidence indicates that the neural representations
in the IFC are closely linked to inferred goals of the actions,
even when those goals are specified by body kinematics. For
example, the IFC is modulated by the inferred outcomes of
observed graping actions rather than the kinematics themselves
(Hamilton and Grafton 2008), and neurostimulation of the IFC
modulates sensitivity to action outcomes rather than to the
body kinematics (Avenanti et al. 2018).

Thus the IFC is important for building mental representa-
tions of action goals, whether derived from long-term concep-
tual representations, the perception of diagnostic action fea-
tures, or online processing of sensorimotormappings (Buxbaum
and Kalenine 2010). Indeed, there is significant evidence that
goal-related neural representations also exist in the inferior
parietal lobule (IPL; Grafton and Tipper 2012), likely reflecting
the strong connectivity between IPL and IFC (Vry et al. 2015). It is
perhaps not surprising then that we observed attending to the
goals of the action vignette improved classification accuracy in
the IFC.

What is perhaps more surprising is that directed attention to
goals did not improve classification accuracy in the pSTS. The
reason for this is not entirely clear but may be due to the inher-
ent ambiguity of potential body kinematics to achieve goal out-
comes (as noted above) or as a consequence of retaining infor-
mation as to the vignette goals in a representational state dis-
tinct from body kinematics (e.g., as semantic representations).

Attention Does Not Modulate Action Representations
in the LOTC

Finally, we did not find evidence for attentional modulation of
action representations in other regions of the AON,which is con-
sistent with the proposal that the LOTC is largely sensory driven
and tuned to specific body postures and kinematic features
(Lingnau andDowning 2015). It isworth noting that each of these
regions was able to accurately classify the attentive demands of
the three trial instructions, indicating the attentive state of the
observer altered how informationwas processed throughout the
AON. Changing task instructions did not, however, render the
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Figure 6. MVPA classification accuracies from decoding task instruction (attend to action, goal, or identity). Error bars indicate SEM. Asterisks indicate statistical

significance based on nonparametric permutation tests (
∗
P< 0.05,

∗∗
P< 0.01,

∗∗∗
P< 0.001). Dashed line indicates three-way classification accuracy at chance (33%).

two observed actions more or less easily decodable in the most
posterior nodes of the AON.

Predictive Coding in Action Observation

Although computational models emphasize bottom-up, feed-
forward mechanisms of action perception from form and
motion features (Hoffman and Flinchbaugh 1982; Mather et al.
1992; Lange and Lappe 2006), biologically inspired models
have always noted the top-down influences from prefrontal
cortex (Giese and Poggio 2003; Kilner 2011). Prefrontal cortex
activation is commonly observed when measuring brain
activity during action observation (Saygin et al. 2004; Dasgupta
et al. 2016), and interruption to the IFC using noninvasive
brain stimulation likewise interferes with action recognition
(van Kemenade et al. 2012).

There is mounting evidence that the interpretation of
actions, including identifying specific actions and their asso-
ciated goals, follows a predictive coding framework (Kilner
et al. 2007a, 2007b; Urgen and Miller 2015). Empirical studies
leveraging the power of dynamic causal modeling (DCM) to
infer the direction of causal influence between functionally
connected brain regions have revealed both feedforward and
feedback connections between IFC and pSTS that aremodulated
when viewing actions (Gardner et al. 2015; Maffei et al. 2015;
Sokolov et al. 2018; Urgen and Saygin 2020).

An important component of predictive coding models is the
error signal that is elicited when the observed events mismatch
the predicted sensory signals. This error signal has been repeat-
edly documented in univariate fMRI studies as an increase in
the pSTS response when the observed actions violate expecta-
tions (Koster-Hale and Saxe 2013; Hillebrandt et al. 2014; Marsh
et al. 2014). These include situations in which actors perform
irrational reaching and graspingmovements (Jastorff et al. 2011),
when humans engage unexpectedly in robotlike movements
(Saygin et al. 2012; Urgen and Saygin 2020), or when stick figures
perform actions at reduced versus normal gravity (Maffei et al.

2015), among other similar violations (Wyk et al. 2009; Gardner
et al. 2015; Cardellicchio et al. 2018). Moreover, predictive cod-
ing is proposed to operate hierarchically such that cognitively
derived internal models can exist in multiple levels of abstrac-
tion, from visual kinematic features to the more abstracted
action goals (Kilner et al. 2007b; Bach and Schenke 2017).

The pathways by which error signals propagate through
the AON are an active area of investigation. Dual pathway
models propose distinct structural and functional pathways for
action understanding, with a ventrodorsal pathway for action
identification further split into a caudal route that codes diag-
nostic action features and a ventral route that processes action
goals (Buxbaum and Kalenine 2010; Binkofski and Buxbaum
2013). Tracing studies in monkeys support the notion of dual
pathways, with a dorsal route connecting the upper bank of the
STS to premotor cortex via parietal connections, and a second
ventral route direct between the lower bank of the pSTS and
premotor cortex (Nelissen et al. 2011). In humans, undirected
functional connectivity analyses reveal strong connectivity
between the IFC and pSTS that carries information unique
from that in other segments of the AON network (Dasgupta
et al. 2016), and dynamic causal modeling shows that this top-
down pathway is strongly modulated by viewing biological
motion (Sokolov et al. 2018). As further indirect evidence in
support of these top-down models, in this study, we observe
attention to mediate this pathway such that directed attention
to actions increases functional connectivity between the right
IFC and pSTS. Although functional connectivity does not imply
direct structural connectivity, it is nonetheless consistent
with a model in which neural information is biased along
processing pathways contingent on the attentive state of the
observer.

Additional Considerations

An important consideration is the possibility that the attentive
state guides not just which features to which an observer
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Figure 7. Functional connectivity results. (A) Task-based functional connectivity correlation matrices for each attention task. (B) Right upper matrix is the difference
in functional connectivity between attending to goal than attending to identity. Lower left matrix is the difference in correlation between all ROIs when subjects
attending to action than attending to identity. (C) ROIs in the current functional connectivity analysis: IFC, LOTC, pSTS. IFC connectivity to pSTS, indicating in red
arrow, is significantly more strongly connected during attending to action than identity.

attends, but also the temporal intervals during which attention
is directed to the action vignette. Indeed, not all intervals
of actions are equally salient (Lu and Liu 2006; Thurman
and Grossman 2008), and thus, an efficient observer would
deploy attention to the vignette only during the critical
moments that are diagnostic to the directed attention task.
Ideally, one would be able to identify the diagnostic intervals
participants used for the judgments on each trial and model
those as independent events. Unfortunately, our experimental
design precluded separating different intervals of the action
vignette, all of which occurred within 1 sec, without jittered
timing, of adjacent events. Moreover, observers withheld all
motor responses until after the response cue appears (to
prevent motor planning during the vignette), precluding any
estimates as to when observers made perceptual judgments
based on RTs. To evaluate the importance of critical time
windows during action recognition would also benefit con-
siderations of ROI-specific hemodynamic responses, which
have known variations in temporal integration windows that
will require individualized modeling (Hasson et al. 2008).
With those caveats nonwithstanding, the field would benefit
from future research identifying and tracing the neural

substrates of dynamic attention allocation during action
observation.

Conclusions
The pSTS supports the initial perceptual encoding of dynamic
body states that underlie particular goals (e.g., handmovements
during reaching actions, decoding dynamic facial expressions,
and the encoding of limb kinematics during whole-body move-
ments). These perceptual representations are subsequently
interpreted by higher-level cognitive systems to support action
understanding and intentional states for social interactions.
Our findings indicate that the converse is also true: Cognitive
systems shape the coding of action representations in the pSTS
when observers attend to action features. We propose that the
putative functional heterogeneity of pSTSmay be accounted for,
in part, by top-down influences reflecting the observer’s goals
when engaged in action observation.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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