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ARTICLE INFO ABSTRACT

Dataset link: https://doi.org/10.6084,/m9.figsh Background: Multivariate pattern analysis (MVPA or pattern decoding) has attracted considerable attention as
are.13708654.v1 a sensitive analytic tool for investigations using functional magnetic resonance imaging (fMRI) data. With the
Keywords: introduction of MVPA, however, has come a proliferation of methodological choices confronting the researcher,
functional magnetic resonance imaging with few studies to date offering guidance from the vantage point of controlled datasets detached from specific
multivariate pattern analysis experimental hypotheses.

pattern classification New method: We investigated the impact of four data processing steps on support vector machine (SVM)
pattern decoding classification performance aimed at maximizing information capture in the presence of common noise sources.
rapid event-related design The four techniques included: trial averaging (classifying on separate trial estimates versus condition-based

averages), within-run mean centering (centering the data or not), method of cost selection (using a fixed or
tuned cost value), and motion-related denoising approach (comparing no denoising versus a variety of nuisance
regressions capturing motion-related reference signals). The impact of these approaches was evaluated on real
fMRI data from two control ROIs, as well as on simulated pattern data constructed with carefully controlled
voxel- and trial-level noise components.

Results: We find significant improvements in classification performance across both real and simulated
datasets with run-wise trial averaging and mean centering. When averaging trials within conditions of each
run, we note a simultaneous increase in the between-subject variability of SVM classification accuracies which
we attribute to the reduced size of the test set used to assess the classifier’s prediction error. Therefore, we
propose a hybrid technique whereby randomly sampled subsets of trials are averaged per run and demonstrate
that it helps mitigate the tradeoff between improving signal-to-noise ratio by averaging and losing exemplars
in the test set.

Comparison with existing methods: Though a handful of empirical studies have employed run-based trial
averaging, mean centering, or their combination, such studies have done so without theoretical justification
or rigorous testing using control ROIs.

Conclusions: Therefore, we intend this study to serve as a practical guide for researchers wishing to optimize
pattern decoding without risk of introducing spurious results.

1. Introduction voxels (Haynes and Rees, 2006; Kriegeskorte, 2011; Pereira et al., 2009;
Norman et al., 2006). Successful classification is taken as evidence
that the particular collection of voxels under examination contains
information relevant to the task at hand. Multivariate analyses have
gained wide appeal over univariate approaches for offering improved
sensitivity and, in principle, the possibility to map regions coding
experimental variables in latent multidimensional spaces (Diedrichsen
et al., 2013; Naselaris et al., 2011)(but see Popov et al. (2018), Davis
et al. (2014)). This, in turn, greatly deepens the richness of informa-

tional content available in neural representations as measured using
stimuli from the distributed pattern of BOLD activity across many fMRL

Multivariate pattern analysis (MVPA or pattern decoding) has be-
come an increasingly preferred analytical tool in functional magnetic
resonance imaging (fMRI) studies. In contrast to univariate analyses,
which relate the effects of experimental variables to the activity of
single voxels or to the average activity within a region of interest (ROI),
MVPA leverages machine learning algorithms (Hastie et al., 2001;
Vapnik, 1995) to classify (or ‘decode’) attributes of the experimental
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With the adoption of multivariate methods in neuroimaging has
come the development of experimental design and statistical ana-
lytic approaches optimized for machine learning classification. Using
either real or simulated datasets, researchers have documented the
extent to which select methodological approaches can improve the
power and sensitivity of MVPA using support vector machines (SVMs).
For example, because standard machine learning practice advises that
statistical methods tend to perform better when trained on more ob-
servations (Hastie et al., 2001), specialized approaches have been
developed for producing accurate and unbiased single-trial activation
estimates from rapid event-related fMRI designs to maximize the num-
ber of training exemplars (Prince et al.,, 2022; Turner et al.,, 2012;
Mumford et al., 2012). The efficiency of two such approaches (least
squares single, LSS; least squares all, LSA) interact with experimental
design considerations such as stimulus onset asynchrony (Mumford
et al., 2014; Abdulrahman and Henson, 2016), the number of trials per
run and run length (Coutanche and Thompson-Schill, 2012; Zeithamova
et al., 2017). Moreover, which approach is more efficient depends, in
part, on the mixing proportions of noise components, with different
recommendations given when scanner noise dominates trial-level noise
or vice versa (Abdulrahman and Henson, 2016). Other studies have
instead focused on optimization at the level of the classifier by investi-
gating the impacts of dimensionality reduction techniques (e.g. feature
selection) (De Martino et al., 2008; Mourdo-Miranda et al., 2006),
choice of kernel and hyperparameter settings (LaConte et al., 2005),
data partitioning schemes (Etzel et al., 2011; Varoquaux et al., 2017),
or the type of performance measure chosen for model evaluation (Dinga
et al., 2019).

The practical importance of these reports is that experimental de-
sign, statistical modeling and preprocessing approaches interact in
complex ways to influence final classifier performance. Left without
guidance, researchers must be cautious of the risk of spurious results
arising by trying out a large number of processing variations directly
on experimental data (Etzel et al., 2011). Though no “one size fits all"
set of guidelines is likely to exist for all experimental questions and
designs, the field would benefit from more systematic studies of how
certain processing strategies (or unique combinations thereof) impact
classification of diverse datasets.

1.1. The current investigation

In this paper, we evaluate the independent and joint effects of four
data processing approaches on multivariate pattern classification using
support vector machines, with the goal of providing recommendations
to researchers using rapid event-related designs. We propose that even
in the most idealized setting when the researcher is able to make
rational and informed design decisions, fMRI data is still susceptible to
multiple sources of noise that will impede classification performance.
These include trial-level variations in the BOLD, run-level shifts in
mean BOLD signal, and human subject movement. Therefore, the four
processing approaches we investigate here were selected in a concerted
effort to improve the power and sensitivity of MVPA by counteracting
these common noise components.

1.1.1. Condition-wise trial averaging

The first noise component we target is trial-level noise by which
we mean random deviations around a voxel’s mean activation across
repetitions of a given condition (Davis et al., 2014). Most MVPA studies
to date perform classification on data composed of separate activation
estimates for each trial of each run. Although this decision is motivated
by the fact that modeling each trial individually maximizes the quantity
of data available for training the classifier, ultimately it increases the
risk of poor classification performance if the signal-to-noise ratio (SNR)
at the trial level is low. In fMRI contexts, trial-level deviations from a
voxel’s expected activation level is assumed to be normally distributed
with a mean of zero. Therefore, a simple way to improve the SNR is to
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simply average the separate trial estimates within each condition, run,
and subject, thereby canceling out the noise. Alternatively, one could
estimate the average response across trials of each type by collapsing all
trials of each type into a single regressor in a traditional GLM, although
it is worth noting this latter approach might offer a marginally less
precise estimate of neural activity when inter-trial intervals are short
(common in rapid event-related designs) and trial variability is higher
than scanner noise (Abdulrahman and Henson, 2016).

In univariate analyses, trial averaging increases the spatial extent of
activation as an approximate function of the square root of the num-
ber of trials averaged (Huettel and McCarthy, 2001). In multivariate
contexts, the impact is less well understood. To our knowledge, only
one methodological investigation has compared MVPA classification
for trial-wise versus (partially) aggregated condition estimates (Zei-
thamova et al., 2017). The primary focus of that work was on the trade-
off between trial number and SOA, and in supplementary materials
the researchers noted a small but significant increase in classification
performance when repetitions of the same exemplar were modeled
using a single regressor (arguably a form of averaging) despite the
reduction in the total number of training exemplars. Averaging all trials
of each type could potentially drive SNR even higher. Interestingly,
a small set of MVPA studies have noted in their methods that they
chose to average trial-specific estimates (producing one example per
condition per run for training and testing the classifier) in an effort
to improve the robustness of the signal (Nestor et al., 2013, 2011;
Etzel et al., 2016; Stehr et al., 2021). This is despite the concern that
averaging all trials of each type dramatically reduces the size of the
test sets, which has the potential to increase error variance (Pereira
et al., 2009). Therefore, in the current study we include a quantitative
comparison of the performance of SVM classifiers built on individual-
trial vs trial-averaged data along with a hybrid model in which random
subsets of trials from each condition were averaged (partial averaging).

1.1.2. Run-wise mean centering

Another source of noise inherent to all fMRI studies consists in run-
level shifts in mean activity, which uniformly impact all trials within
each run. Run-based variance may derive from cognitive processes in
the participant, such as drifts in attention or changes in physiological
arousal, or may occur as an artifact of deconvolving overlapping trials
in the presence of noise (Lee and Kable, 2018). Cross-validation using
a leave-one-run out approach is commonly recommended for within
subject analyses (Etzel, 2015), but it is possible that run-level structure
in variance will impede the classifier’s ability to find a stable separating
hyperplane between clusters composed of trials from different runs.
Therefore, run-level mean-centering of trial-specific estimates (i.e. sub-
tracting each voxel’s run-level mean from each trial estimate of that
run) is recommended as a means to cancel out such run-based shifts
and is documented to produce robust and significant improvements in
classification accuracy across both real and simulated data (Lee and
Kable, 2018). Nevertheless, run-wise mean centering does not appear to
be widely adopted among researchers. It is important to note that run-
based mean-centering differs from the default scaling applied by many
SVM algorithms which is applied to data from all runs simultaneously
and therefore cannot adequately address variance structured across
separate runs. Given past work showing that different data treatment
techniques often interact in complex ways (Etzel et al.,, 2011), we
also investigate how run-wise mean centering interacts with the other
techniques investigated here.

1.1.3. Motion-related nuisance regression

Human subject movement is ubiquitous in fMRI data, and such
noise has been shown to drastically compromise the quality of statis-
tical analyses (Power et al., 2014; Oakes et al., 2005). This, in turn,
has sparked an extensive endeavor to estimate and model motion-
related variance (Friston et al.,, 1996; Hajnal et al., 1994; Power,
2017). Although it is standard practice to include rigid body motion
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estimates (and their derivatives) as nuisance regressors in functional
connectivity analyses, some researchers omit these nuisance factors
in univariate statistical design matrices due to concerns that these
approaches may be overly aggressive in removing task-related variance.
It is unclear whether the benefits obtained by carefully accounting for
human subject motion as observed in functional connectivity analyses
will be mirrored in MVPA approaches. Therefore, we evaluate four
common implementations of motion regression on SVM classification
and compare the impact of this additional processing step against that
achieved by model-free approaches (i.e. condition-wise trial averaging,
run-wise mean centering).

1.1.4. Cost parameter tuning

It is important to note that SVM classification performance is sensi-
tive to the cost parameter, C, which controls the bias—variance trade off
in the linear boundary fit to the training feature space (Pereira et al.,
2009; Cortes and Vapnik, 2015). When C is small, the classifier seeks
narrow margins with few violations to the data producing solutions that
have low bias but high variance. When C is large, the classifier fits
the data less rigidly and is more tolerant to the number and severity
of violations to the margin producing lower variance but potentially
higher variance. Although the majority of MVPA studies fit SVMs with
a fixed cost at a default value of 1, the current advice in the machine
learning field is to optimize C in a nested cross-validated fold (a com-
putationally more demanding approach). Because both approaches may
be implemented by researchers, we evaluate the above data processing
methods using classifiers that are developed using both a fixed cost
value (C = 1) and costs tuned over wide range of possible values within
nested cross-validated folds.

In what follows, we evaluate the success of each approach at miti-
gating variance at either the trial (condition-based trial averaging), run
(run-wise mean centering), or human subject (motion-related nuisance
regression) level along with their possible interactions and discuss
the relative costs and benefits involved in executing each technique.
We implement the manipulations on data consisting of single-trial
activation estimates (derived by a LSS GLM) on two separate datasets.
The first dataset consisted of real human fMRI data obtained as part of
a previously published study in which participants made finger presses
in response to visual discrimination judgments (Stehr et al., 2021). The
second dataset consists of simulated multivoxel patterns, generated for
many crossed levels of trial- and voxel-level noise, in an additional
effort to better understand the underlying dynamics of each proposed
method.

To preview the results, we found that trial averaging in conjunction
with run-wise mean centering produced substantial and robust in-
creases in mean cross-validated classification accuracy across both real
and simulated data (an average increase of 16% classification accuracy,
SE = 0.04, in real data), as compared to the most standard process-
ing without these data treatments. However, these gains from trial
averaging, in particular, were also accompanied by a sizable increase
in between-subject variance, likely attributed to having a reduced
number of test observations available for externally evaluating the
trained classifier. Therefore, we propose a new technique in which we
compute multiple averages within each condition and run by randomly
sampling trials without replacement. We recommend this technique
to researchers who wish to better mitigate the trade-off between the
improvement in signal strength from trial averaging and the increased
variance due to having a smaller test set.

2. Materials and methods
2.1. Human participant fMRI data
fMRI data was acquired from human participants in a study investi-

gating the action observation network (Stehr et al., 2021). Twenty-five
healthy adults, ranging in age from 21 to 42 years (mean = 24.7, sd =
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3.6), participated in the experiment which was approved by the ethical
review board of the University of California, Irvine. One participant
was excluded from the study due to excessive head motion. Participants
were scanned at the Facility for Imaging and Brain Research at the
University of California, Irvine on a 3 T Siemens Prisma MRI scanner
(Siemens Medical Solutions) equipped with a 32-channel receive-only
phased array head coil. High resolution anatomical images were col-
lected using a single T1-weighted magnetization prepared rapid acqui-
sition gradient echo (MPRAGE) sequence (176 sagittal slices; 1 mm
isovoxel resolution; field of view = 256 mm; TR = 2000 ms; TE =
1.99 ms; TI = 900 ms: flip angle = 9 degrees; GRAPPA acceleration
factor = 2; bandwidth = 240 Hz/Px).

Functional images were acquired using a T2*-weighted gradient re-
called echoplanar imaging multi-band pulse sequence (cmrr-mbep2d bold)
from the University of Minnesota Center for Magnetic Resonance
Research (68 slices co-planar with the AC/PC; interleaved acquisition;
in-plane resolution = 2 x 2 mm; 2 mm slice thickness, no gap; 106 x
106 matrix size; field of view = 212 mm; phase partial Fourier scheme
of 6/8; TR = 1500 ms; TE = 30 ms; flip angle = 79 degrees; bandwidth
= 2144 Hz/Px; echo spacing = 0.57 ms; excite pulse duration = 8200
microseconds; multi-band factor = 4; phase encoding direction = AP;
fat saturation on; advanced shim mode on). At the beginning of each
session, an additional pair of EPI images with phase-encoding directions
of opposite polarity in the anterior to posterior plane were acquired
to correct for susceptibility distortions in each participant’s functional
data.

This was an event-related study in which participants viewed short
(3 s) animations of human avatars performing one of two actions. After
viewing the clip, the participant’s task was to press a button with the in-
dex or middle finger of their right hand reflecting a 2-alternative forced
choice judgment on the action depicted. To prevent motor planning
during the action vignette, stimulus-response labels were randomized
across the two buttons and were not displayed until the vignette was
completed. The screen cleared as soon as the participant made their
response.

Trials were separated by a 3, 4.5, or 6 s inter-trial interval (ITI),
pseudo-randomized within each run such that, in total, each trial lasted
10.5, 12, or 13.5 s. The onset of each trial event, including the response
interval, was synchronized with the onset of volume acquisition. The
experiment was organized into 8 runs containing 24 trials each for a
grand total of 192 trials. Of the 24 participants included in the study,
22 completed the full 8 runs while 2 participants only completed 7 runs.

2.1.1. Image preprocessing

Preprocessing was conducted using BrainVoyager QX v20.6 (Goebel
et al., 2006). All functional images were slice-time corrected, motion
corrected to the first volume both within and between runs using rigid
body transformations, linearly detrended, and temporally high pass
filtered (cutoff frequency 0.01 Hz). Scans were additionally corrected
for susceptibility-induced magnetic field distortions using the field map
method (Jezzard and Balaban, 1995), implemented in BrainVoyager’s
COPE v1.0 plugin. All functional images were co-registered to each
individual’s T1-weighted image.

2.1.2. ROI definition

For the current investigation, our aim was to classify which of
two buttons was depressed during the response intervals of a visual
discrimination task in two regions of interest (ROIs): left somatomotor
(SomMot) and right primary auditory cortex (Al), respectively.

SomMot. To identify brain areas activated by making button presses,
events were modeled as a boxcar function of 200 msec duration starting
from the moment the button was depressed, convolved with a two-
gamma hemodynamic impulse response function (Friston et al., 1998;
Glover, 1999). Fixed effects maps for individual subjects were then
aligned to a template subject (a pilot participant) in surface space using
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B) Run-wise mean centering
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Fig. 1. (A) Method of aggregating data for classification, shown for a sample of 12 trials from a single run of human participant data (somatomotor region). (B) The effect of
run-wise mean centering shown from a sample subject (somatomotor region). Diamonds represent the marginal means within runs and black horizontal bars represent the overall
mean within runs. (C) Sample motion-related nuisance regressors, from a single subject and run. (D) The impact of the cost hyper-parameter, C, on the SVM decision boundary.

cortex-based alignment (Frost and Goebel, 2012), which allows for
group level analysis without applying nonlinear registration into atlas
space. The resulting left hemisphere somatomotor ROI, contralateral to
the right hand button presses, was identified using a random effects
group GLM, with threshold determined using the false discovery rate
g < (1 x107%.). The identified vertices were then projected back into
native volumetric coordinates to extract voxel-wise patterns specific to
each participant. Across participants, SomMot ranged in size from 588
to 828 voxels (mean=691, SD=62.2).

Al. Primary auditory cortex served as a control ROI, and was identi-
fied anatomically in each individuals’ native surface using Freesurfer’s
cortical surface atlas mapping algorithms in conjunction with the 1,000
atom resolution Schaefer atlas (Schaefer et al., 2018). This atlas empha-
sizes homogeneity of function within parcels coupled with high reso-
lution “atomic” parcellation in approximately equisized units. Across
participants, Al ranged in size from 386 to 632 voxels (mean=496,
SD=62.4).

2.1.3. Motion-related nuisance regressors

We evaluated the impact of 4 different types of motion-related
nuisance regressors on MVPA classification results (see Fig. 1 C). Nui-
sance regressors included the detrended time series of the 6 rigid-body
realignment parameters (R = [X Y Z pitch yaw roll]), estimated from
the three-dimensional motion correction (3DMC) procedure performed
during preprocessing. The 24 parameter Volterra expansion nuisance
model included the 6 rigid body estimates and the preceding timepoint,
as well as their first derivatives ((Friston et al., 1996): [R = [R R? R,_;
th_ ], where 7 and 7 — 1 refer to the current and immediately preceding
timepoint).

Despiking (e.g. volume censoring) is commonly used to reduce
variance accounted for by large head jerks (producing large changes

in image intensity) which may not be captured well by the 3DMC
or Volterra nuisance regressors (Lemieux et al., 2007; Satterthwaite
et al., 2013; Yan et al., 2013). Despiking was performed by including
in the model a matrix of “scan nulling" regressors (i.e. a heaviside
function) targeting each corrupted timepoint identified as volumes with
framewise displacement exceeding 0.5 mm (Power et al., 2012). In
addition, all trials with three or more timepoints censored near the peak
of the expected hemodynamic response were excluded due to increased
variance in the trial-specific beta estimates when peak volumes are
censored.

Global signal regression (GSR) is commonly used to remove dis-
tributed, non-neural sources of variance contaminating the images
(Power, 2017). The global signal regressor was computed as the av-
erage BOLD intensity measured from the white matter and ventri-
cles over time, using the anatomical masks derived from Freesurfer’s
segmentation, and the first derivative thereof.

All nuisance regressions were performed prior to estimating the
trial-by-trial activation estimates, which constitute the data passed on
to the classifier. The denoised timeseries was produced by regress-
ing each voxel’s timeseries onto the respective matrix of nuisance
regressors and collecting the model residuals.

2.1.4. Trial-specific activation estimates

After z-scoring the pre-processed time series, trial-specific activation
estimates for all voxels within the ROIs were derived by iteratively
fitting a separate general linear model for each trial that included one
regressor for the trial-of-interest and two nuisance regressors modeling
all other trials grouped by the type of button that was pressed (the least
squares separate or LSS approach (Mumford et al., 2012; Turner et al.,
2012)). Trial-specific activation estimates were generated using Matlab
R2018b (TheMathWorksInc, 2017) and the code used to produce them
is available at: https://doi.org/10.6084,/m9.figshare.13708654.v1.
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Fig. 2. (A) Data from three sample voxels illustrating how trial-specific estimates were created by first generating a line by sampling an intercept and slope parameter from
a bivariate normal distribution and then adding normally distributed noise independently to each trial. Each voxel’s ‘ideal’ line is shown for illustration only and reflects the
difference between the expected responses to each type of trial in that voxel. (B) Illustration of run-level shifts in mean activity across all trial types shown from a sample of

simulated data.
2.2. Simulated multi-voxel activation patterns

Activation patterns were simulated using an analytic framework
that describes the observed activation on any given trial as a com-
bination of the fixed effects of the experimental variables along with
random deviations from these fixed effects at the trial, voxel and run
level. To generate multivariate response patterns that properly incorpo-
rate these unique variance components, we used a multilevel modeling
approach (Diedrichsen et al., 2013; Davis et al., 2014) that incorporated
trial, voxel, and run-level variability. Fig. 2 conceptually illustrates how
the pattern data was generated and Appendix A details the formal de-
scription. Custom R code for generating activation patterns is provided
at https://doi.org/10.6084,/m9.figshare.13708654.v1.

Each voxel was assigned a unique intercept and slope term (see
Fig. 2 A) by sampling from a bivariate Gaussian distribution with mean
intercept of one and mean slope of zero, with the intercept and slope
assumed to be uncorrelated. This corresponds to a population of voxels
with no effect of stimulus condition, on average. The standard deviation
of the intercept term was fixed at 1 while the standard deviation of
the slope term was varied over four values (0.01, 0.05, 0.1, and 0.2),
simulating a range of effect sizes across the voxels but no univariate
effect of the conditions (i.e. voxel’s with more extreme slopes are
more “informative" about the conditions of interest). Following the
convention set forth by Davis and colleagues (Davis et al., 2014), we
refer to the voxel-level variability in slope (i.e. effect size) by 5, which
is a variance component of the G matrix in Diedrichson’s random effects
model (Diedrichsen et al., 2011).

Run-specific shifts in mean activity across all conditions were con-
structed through independent draws from a Gaussian distribution with
mean zero and standard deviation 1.5, then added to each voxel’s
intercept term of each run as a single constant. Each voxel’s idealized
response to the experimental conditions, remained consistent across
runs.

Normally distributed noise was generated for each trial with mean
zero and standard deviation varied over five values (0.5 to 1.5 with step

size of .25). Finally, trial-by-trial activation estimates were generated
by linear combination of all fixed and random effects (including trial-,
voxel-, and run-related deviations).

This process was implemented for an ROI containing 200 voxels
using a study design with 12 repetitions of two trial types, for a total
of 24 trials per run. Each simulated study consisted of 8 runs of data
which we generated 30 times, simulating 30 subjects. For ease of
interpretation, subjects were not modeled as random effects though
each simulated subject was generated by independent draws from the
model. This simulation method captures the intuition that trials are
repeated measurements across voxels and scans; and that voxels differ
in how informative they are about the experimental variables.

An additional simulation addressed specifically the impact of trial
averaging and mean-centering on situations where all voxels entirely
lack information relative to the conditions being decoded. In these
simulations a 200 voxel ROI was generated such that each voxel had
a mean slope of zero with zero variability (5 = 0). Thirty studies
containing thirty participants each were simulated for the same five
levels of trial-level variability as in the other simulations, with all other
parameters constant.

2.3. Classification

MVPA was performed on the acquired and simulated data using a
linear support vector machine with default scaling (all voxels and ob-
servations standardized to zero mean and unit variance) using custom
R code relying on the e1071 package (Meyer et al., 2018). The labels
classified in the human subject fMRI data corresponded to which of two
response buttons were pressed during the experiment. In the simulated
data, the SVM algorithm classified labels corresponding to the two
simulated trial types — type A and type B. All analyses were performed
within subject using 8 fold leave-one-run-out cross validation. Within
each fold, predictions were made on samples from the left out run
and final classification performance was computed by taking the mean
across all folds.
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2.3.1. Trial averaging by condition and run

We investigated the impact of three methods of aggregating event-
related data for multivariate analyses (see Fig. 1A). The first and most
commonly used method involves training and testing the classifier on
data composed of activation patterns observed on each individual trial.
In this analysis, the number of samples (training and testing, combined)
passed to the classifier is equal to the number of trials within the cur-
rent data partition (i.e. exchangeability block, Winkler et al. (2014)).
Due to unavoidable temporal dependencies between adjacent trials and
the tendency for trial estimates drawn from within the same run to be
more similar than trial estimates drawn from different runs (Pereira
et al., 2009; Etzel et al., 2009) it is ideal to partition data such that
all the trials from a single run are excluded from training and used for
subsequent validation, which eliminates the potential for within-scan
bias during classifier training.

The second approach we investigated involves averaging all trial-
specific estimates of each type within run (e.g. averaging all Type
A trials within run into a single, average sample). We refer to this
method as “1-Avg" because it results in one averaged observation per
class within each run. Averaging trial-specific estimates by run has
the potential to reduce trial-variability that could be a major source
of noise limiting classifier performance, but comes at the expense of
greatly reducing the number of training and testing examples supplied
to the classifier. Reducing training observations has the potential to
impoverish the fit of the decoder to the data whereas reducing test
observations impacts the precision with which the prediction error
can be estimated within each cross-validated fold thereby increasing
between-subject variance of the final classification accuracy

In a third approach we introduce a hybrid model to strike a better
balance between the opposing effects of improving signal-to-noise ratio
(SNR) by trial averaging and maintaining a sufficiently large num-
ber of test samples. In this “2-Avg" approach, we randomly sampled
(without replacement) half of the trials from each condition within a
run, then averaged each group of trials separately thus producing two
averaged activity estimates per condition, per run. For our datasets,
both of which involve two trial types, this results in a test set of four
observations. To reduce sampling error, this process was iterated ten
times within each fold and the resulting classification accuracies were
averaged.

2.3.2. Run-wise mean centering

Run-wise mean centering (see Fig. 1B) was performed by subtract-
ing each voxel’s run-level mean beta estimate, for all trial types, from
the estimates within that run (Lee and Kable, 2018; Etzel et al., 2011;
Pereira et al., 2009). Though we subsequently refer to this operation as
“mean centering", it should be noted that this type of mean centering
is distinct from the default mean centering performed by the majority
of SVM algorithms that operate on all samples pooled across the
acquisition scans.

2.3.3. Cost tuning

Many MVPA studies fit linear SVM classifiers to multi-voxel re-
sponse patterns using a fixed cost parameter, C, of 1. However, op-
timizing C (see Fig. 1D) by minimizing the cross-validated test-error
has been shown to improve the predictive power of a classifier (Hastie
et al., 2001). On both datasets, we compare the benefits of tuning the
cost parameter over 12 values from the more liberal 2712 to the more
rigid 2! compared to using a fixed C = 1. This was achieved using
a nested cross-validated fold in which an inner second level-split was
generated leaving one run of the original training data out and used to
evaluate the performance of each value of C. This was repeated for
all folds of the nested loop, and the lowest value of C maximizing
predictive accuracy of the inner cross-validation test data was then
applied to the training and testing data in the external loop.
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2.3.4. Statistical analyses

Statistical significance of classification results at the group level
using only the most common processing decisions (no trial averaging,
no mean centering, no motion-related nuisance regression, no cost
tuning) was evaluated in each ROI using non-parametric permutation
tests. In these tests, labels of button responses were permuted within
individual participants 1,000 times each and classifiers were trained
and testing using the same procedures outlined above. This yielded
the expected distribution of classification accuracy for each participant
under the null hypothesis. Significance (p < 0.05, one tailed) was
ascertained from group-level null distributions constructed using a
bootstrap procedure in which a single sample was drawn from each
participant’s null distribution (iterated 1,000 times and sampled with
replacement).

To statistically evaluate the individual and joint impact of the four
methodological decisions on MVPA decodability, we constructed mul-
tilevel linear models (MLMSs) for both the real and simulated datasets.
For the human fMRI data, MLMs were created using as dependent
variable each participant’s cross-validated classification accuracy. Fixed
factors included the type of ROI (somatomotor versus the control
region) and the four methodological treatments (type of motion-related
nuisance regression, presence or absence of trial averaging, presence
or absence of mean centering, and cost parameter choice). Participants
were modeled as a random effect (random intercepts) and data from
each ROI was explicitly nested within each participant to account for
shared variance (a nested random effects structure).

The data grouping structure of the simulated data diverged con-
siderably from the human participant data in the sense that ‘subjects’
were generated by independent draws from the model for a variety
of levels of trial-level noise and voxel-level variability in effect size.
We refer to each unique combination of trial-level noise and voxel-
level variability as a ‘dataset’, with each dataset containing activation
patterns from 30 simulated subjects. The random effects structure of the
MLM applied to the simulated data was therefore specified to include
a random intercept for each dataset (to account for differences in base-
line classification accuracy across different parameter settings) with
simulated subjects nested within datasets. The fixed effects included
the same methodological factors that were tested in the human fMRI
data with the exception of motion-related nuisance regression, which
was not evaluated because the data were simulated at the level of trial
activation estimates rather than timeseries.

All statistical analyses were conducted in R using the ‘nlme’ pack-
age (Pinheiro et al., 2019). The significance of each factor (or interac-
tion) was assessed using Likelihood Ratio Tests comparing each model
to reduced models lacking the variable (or interaction) in question.

3. Results
3.1. Human participant data

To establish a baseline for comparing the impact of the four method-
ological approaches on mean classification accuracy, we begin by re-
porting group-level results in each ROI using only the most common
processing combinations: no motion-related nuisance regression besides
that typically deployed during preprocessing, training and testing on
separate estimates for each trial, no run-wise mean centering of trial
estimates, and training the SVM with a fixed cost value of 1.

Across all 24 subjects, the left somatomotor region (SomMot) clas-
sified the button pressed (button 1 versus button 2) with a mean
accuracy of 56.90% (SE = 1.36), which non-parametric permutation
tests revealed to be significantly higher than that expected by chance
(Pperm < 0.001, mean of null distribution = 50.10%, SD = 0.88). The ROI
serving as a control region (primary auditory cortex or Al) classified
the type of button pressed with a mean accuracy of 51.89% (SE = 0.82)
which is 5.01% lower that obtained in SomMot and yet still higher than
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Fig. 3. Average classification accuracy for all combination of methodological decisions
grouped by ROI (SomMot = somatomotor; Control = primary auditory cortex).

that expected by chance (p,,,, = 0.029, mean of null distribution =
50.17%, SD = 0.90).

Fig. 3 displays mean classification accuracies for all combinations
of methodological approaches applied to the human fMRI data. Initial
inspection of the data revealed that trial averaging, run-wise mean
centering, and certain types of motion-related nuisance regression lead
to higher across-subject variability in classification accuracies (i.e. het-
eroscedasticity), which is a problem for lineal models. For a discussion
of measures taken to address violations to the assumption of equal
variances, please see Appendix B.

The multilevel linear model (MLM), including all methodological
factors as well as the type of ROI as fixed factors, revealed a significant
main effect of ROI on classification accuracies (y2(10) = 12.208,p <
0.001) with SomMot classifying the type of button pressed with signifi-
cantly higher accuracy than the control region (b = 5.434, SE = 1.458,
t(23) = 3.727, p = 0.001).

However, the main effect of ROI was qualified by a significant
three-way interaction between ROI, the method of trial averaging,
and the presence or absence of within-run mean centering (y%(65) =
19.947,p < 0.001). To interpret this interaction, planned contrasts
compared classification accuracies for the two methods of computing
condition-based trial averages (2-avg and 1-avg) to the results obtained
by classifying data consisting of separate estimates for each trial (no-
avg). Fig. 4 shows all parameter estimates along with 95% confidence
intervals.

First, fixed effect parameter estimates revealed that classification ac-
curacies were higher in both the 2-avg and 1-avg conditions compared
to no-avg (2-avg vs no-avg: b = 4.180, SE = 0.235, t(2813) = 17.761,
p < 0.001; 1-avg vs no-avg: b = 5.124, SE = 0.430, t(2813) = 11.930,
p < 0.001). Additionally, classification accuracies in the 2-avg and 1-
avg conditions were significantly higher when the data was also mean
centered within each run (2-avg vs no-avg with mean centering: b =
1.795, SE = 0.500, t(2801) = 3.591, p < 0.001; 1-avg vs no-avg with
mean centering: b = 2.072, SE = 1.030, t(2801) = 2.011, p = 0.044).
Furthermore, this increase in classification accuracies by averaging,
when coupled with run-wise mean centering, was found to exist only in
the SomMot region (2-avg vs no-avg with mean centering in SomMot
vs control: b = 3.664, SE = 0.960, t(2780) = 3.818, p < 0.001; 1-avg
vs no-avg with mean centering in SomMot vs control: b = 5.250, SE =
2.034, t(2780) = 2.581, p = 0.010).

In order to better understand the effect of trial averaging within
each ROI, two separate MLMs were constructed using only data from
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Fig. 4. Fixed effect parameter estimates from multilevel linear models (MLMs) showing
the interaction between RO, trial-averaging technique and within-run mean centering
in the human subject fMRI dataset. The 95% confidence intervals were computed
for the contrasts comparing the two conditions where trials were averaged within
runs (2-avg and 1-avg) versus data comprising a separate estimate for each trial.
Parameter estimates above zero indicate that averaging trials by run produced higher
accuracies than training/testing the classifier on individual trial estimates. Estimates
were computed from four separate MLMs fixing the level of ROI and mean centering.

each ROIL Both models revealed that averaging trials together within
each run improved classification accuracies over not averaging any trial
estimates (SomMot: »2(10) = 377.355,p < 0.001; Control: y2(10) =
66.382, p < 0.001). However, trial averaging improved decodability in
SomMot (2-avg vs no-avg: b = 6.025, SE = 0.325, t(1401) = 18.540, p
< 0.001; 1-avg vs no-avg: b = 7.120, SE = 0.570, t(1401) = 18.540, p
< 0.001) considerably more than it did in the control region (2-avg vs
no-avg: b = 2.312, SE = 0.328, t(1414) = 7.058, p < 0.001; 1-avg vs
no-avg: b = 3.155, SE = 0.638, t(1414) = 4.946, p < 0.001).

As shown in Fig. 4, confidence intervals were wider for the 1-avg
condition compared to the 2-avg condition, reflecting larger between
subject variation in classification accuracies when trial estimates for an
entire run are averaged into a single exemplar per condition. This was
true of both ROIs, indicating that the increase in variance is linked to
having fewer observations rather than the presence or absence of true
signal embedded in the data.

The impact of the type of motion-related nuisance regression (i.e.
data cleaning step) applied prior to pattern estimation can be seen
by comparing the rows of Fig. 3 within each panel, with parameter
estimates shown in Fig. 5. There was a significant main effect of the
type of data cleaning step applied (y2(14) = 17.190, p = 0.002) as well as
a significant interaction between the data cleaning step and the amount
of trial averaging applied within run (y2(34) = 19.423, p = 0.010).

This interaction was broken down by comparing classification accu-
racy resulting from each data cleaning step to accuracies obtained from
using no motion-related nuisance regression separately for each of the
two contrasts on the trial averaging level (2-avg vs no-avg and 1-avg vs
no-avg). These contrasts revealed that applying global signal regression
(GSR) to the timeseries before extracting trial estimates significantly
improved classification accuracy in the 2-avg condition compared to
no-avg (b = 2.222, SE = 0.729, t(2795) = 3.049, p = 0.002) as well
as in the 1-avg condition compared to no-avg (b = 2.881, SE = 1.347,
t(2795) = 2.140, p = 0.033).

No other data cleaning steps significantly differed by the type of
trial averages computed. Parameter estimates from the main effect
of data cleaning step revealed that, averaged across all other factors,
using the Volterra expansion as nuisance regressor significantly lowered
classification accuracy (b = —0.800, SE = 0.285, t(2815) = —2.8100, p
= 0.005).
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Fig. 5. The interaction between type of motion-related nuisance regression (data
cleaning) and trial averaging within the human subject fMRI dataset. Results show
parameter estimates with 95% confidence intervals from a multilevel linear model.
Contrasts were set on the type of data cleaning step applied by comparing each data
cleaning step to using no nuisance regression at all. Contrasts on the type of trial
averaging method compared each method to the baseline approach using a separate
activation estimate for each trial. Therefore, estimates above zero indicate that the
given data cleaning step produced higher classification accuracies for the given trial
averaging method versus using no trial averaging.

The impact of cost parameter selection can be assessed by com-
paring the first and last three columns within each group of ROIs in
Fig. 3. Overall, choosing a fixed cost value of one versus tuning the cost
parameter did not impact mean classification accuracies nor interact
with any of the other three processing decisions (all p’s n.s.).

3.2. Simulated data

Fig. 6 shows mean classification accuracies from simulated pattern
data for all combinations of methodological factors (level of trial av-
eraging, presence or absence of within-run mean centering, and cost
parameter selection). These methodological approaches were applied
to several simulated datasets generated with varying levels of trial-level
variability (¢2) and voxel-level variability in effect of experimental
conditions (slope or 7, ).

Overall, mean classification accuracies varied with both trial- and
voxel-level variability. Classification accuracy increased when trial-
level variability decreased, indicating that more consistent patterns
across trials improved decoding. Moreover, classification accuracy in-
creased as voxel-level variability in the mean effect of the experimental
conditions increased, consistent with reports that increased variance in
the spatial patterns, even when the fixed effect size is zero, improves
classifier performance (Davis et al., 2014).

An MLM was conducted to determine which, if any, of the data
processing choices impacted mean classification accuracies across all
combinations of model parameter settings used to generate the pattern
data. The MLM included the cross-validated classification accuracies
as the dependent measure and included a random intercept for each
combination of trial variability and voxel-level variability in slope
(e.g. the dataset) with simulated participants nested within datasets. As
such, it evaluated the independent and joint effects of the processing
methods on classification accuracies across all datasets. The analysis
yielded many significant main effects and interactions, therefore we
focus on the highest order interaction which occurred between all three
processing choices (y%(20) = 67.104,p < 0.001). Fig. 7 displays this
interaction graphically by plotting the MLM parameter estimates along
with confidence intervals for the two contrasts on trial averaging from
four simpler MLMs holding mean centering and cost choice constant.

Results from the full MLM revealed that both methods of trial
averaging improved classification accuracies over using separate trial
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estimates (avg-2 vs no-avg: b = 5.173, SE = 0.182, t(8248) = 28.368,
p < 0.001; avg-1 vs no-avg: b = 5.369, SE = 0.249, t(8248) = 21.567, p
< 0.001). Furthermore, this improvement from averaging trials (both 2-
avg and 1-avg) was significantly higher when the data were also mean
centered within runs (avg-2 vs no-avg: b = 4.842, SE = 0.358, t(8248)
= 13.524, p < 0.001; avg-1 vs no-avg: b = 8.530, SE = 0.588, t(8248)
= 14.497, p < 0.001). Finally, tuning the cost parameter improved
classification accuracies for both trial averaging methods but much less
so when the data had been mean centered within each run (avg-2 vs
no-avg: b = -5.189, SE = 0.701, t(8239) = -7.397, p < 0.001; avg-1
vs no-avg: b = —4.865, SE = 1.167, t(8239) = —4.169, p < 0.001).

3.3. Simulations with zero effect size for all voxels

To evaluate whether trial averaging or within-run mean centering
has the potential to artificially inflate mean classification performance,
we conducted simulations to quantitatively evaluate the impact of
these methodological choices on a true null condition in which all
the voxels in the pattern are drawn from the same distribution that is
uninformative about the conditions. To that end, multivariate response
patterns were generated that contained a mean effect size of zero and
zero variability in effect size across voxels (r; = 0). Thirty studies
containing thirty participants each were simulated for the same five
levels of trial-level variability as in the other simulations, with all
other parameters constant. Results of the classifications can be seen in
supplementary Figs. 1 and 2.

An MLM was constructed with dependent variable set to the mean
classification accuracy across all 30 studies and random intercepts for
each study and each level of trial-level noise variability. This analysis
revealed that mean classification accuracy did not vary significantly
with trial averaging (y2(11) = 2.54, p = 0.280), presence or absence of
within-run mean centering (y2(12) = 2.170, p = 0.140), or the decision
to use a fixed versus tuned cost value (y2(13) = 0.001, p = 0.981).

4. Discussion

We evaluated the impact of four methodological approaches on
MVPA-decoded classification accuracies in both real and simulated
fMRI data. These methodological considerations were selected, in part,
because of their common use in fMRI univariate and functional connec-
tivity analyses, with the potential benefits when implementing them for
multivariate pattern analysis unclear. This analysis is intended to serve
as a practical guide for researchers wishing to optimize multivariate
classification analyses without the risk of introducing spurious results
by testing each method directly on experimental hypotheses of interest.

Some general observations across these analyses warrant attention.
First, methodological approaches leading to large improvements in
SVM classifier performance did so in the context of both real and sim-
ulated datasets. In this analysis, that is most prominently the case with
run-wise trial averaging coupled with mean-centering. The benefits
of these approaches for the classification of both real and simulated
data is evidence that the potential to improve classification is not
limited to highly specific characteristics of either dataset. With that
said, future studies should test the effectiveness of these methods across
a wider range of experimental designs, regions of interest and types of
classifiers.

Secondly, the methods producing significant improvements often
interacted in complex ways, highlighting the complex dynamics inher-
ent to SVM analyses of multivariate pattern data. For example, the
benefit of global signal regression for classification accuracy was only
apparent for trial averaged data, with no improvement observed for
MVPA conducted on individual trial exemplars. It is precisely these
interactions that motivated this evaluation of processing pipelines.

Lastly, while classifying button presses in real human participant
data, the improvements brought about by these decisions were much
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Fig. 7. The three way interaction between trial averaging, cost tuning, and mean
centering present in the simulated pattern data. Fixed effect parameter estimates and
95% confidence intervals were computed from four multilevel linear models contrasting
the trial averaging method versus using separate trial estimates while fixing the method
of mean centering and cost parameter selection method. An estimate above zero
indicates that the trial averaging technique deployed improved mean classification
accuracy versus training/testing on separate trial activation estimates.

larger in a region of interest in which we had strong a priori ex-
pectations for highly accurate classification (somatomotor) versus a
control region (primary auditory cortex). Analysis of simulated mul-
tivoxel activation patterns which lacked any informative content rein-
force that trial averaging and mean centering do not artificially inflate
mean classification performance in the absence of real signal. This is
very reassuring, as one does not want to unintentionally introduce
bias to the classification algorithm, as has been observed with some
feature-reduction approaches (Ambroise and McLachlan, 2002).

4.1. Trial averaging

It is generally advised to use as many observations for training the
classifier as possible (Pereira et al., 2009; Etzel et al., 2009). Therefore
classifying based on separate estimates for each trial may be thought
to give better results because it maximizes the training set size. Alter-
natively, averaging trials by condition and run could reduce uniformly
distributed trial-level noise, thus enhancing the discriminability of the
multivariate patterns by improving the signal-to-noise ratio (SNR). We
found that reducing noise by trial averaging produced one of the largest
gains in classification accuracies among the methods we tested and this
result was consistent for both real and simulated data.

and voxel-level variability in the mean difference between trials of each type, 7, . Each colored square displays mean cross-validated classification

Given the trade-offs anticipated from trial averaging (reduced num-
ber of training/test exemplars versus trial-level noise reduction), two
findings from this analysis are particularly surprising. The first is
the magnitude of improvement induced by trial averaging. In the
human participant data, when classifying button presses in somatomo-
tor cortex, the improvement in mean classification accuracy brought
about by averaging all trials of each type within runs was 6.3% and
when coupled with within-run mean centering (discussed below) the
improvement climbed to 10.9%.

Another important finding is that trial averaging causes a marked in-
crease in the between-subject variability of the classification accuracies.
One possible explanation for the increased variance may be the reduced
size of the test set used to assess the prediction error of the classifier at
each split of cross-validation. When estimating classification accuracy
using the more traditional trial-based approach, the algorithm is tested
on an entire run of samples, which in this study consisted of 24
exemplars (twelve from each condition). When all trial estimates are
averaged within run to one per condition (1-avg), the cross-validated
test error is evaluated with only two observations per split, constraining
the test error to only a few possible values. It has been theoretically
shown that with training sets of the same size, having more data for
validation decreases the variance of the estimated accuracy (Arlot and
Celisse, 2010). Therefore, we conclude that it is important to strike
a balance between maintaining a large enough test set to yield a
stable estimator of classifier performance and reducing trial-level noise
through trial averaging.

As expected, doubling the number of items in the test set nearly
halved the between-subject variability in classification accuracy (the
2-avg condition compared to the 1-avg condition). However, this was
also associated with a reduction in mean classification accuracy, which
we interpret as due to a higher SNR from having fewer trials included
in each average. Therefore, when planning an MVPA study, researchers
should carefully weigh any knowledge they have about the amount
of trial-level noise inherent to the region(s) under study versus the
increased test-set variance brought about by limiting that noise through
averaging trials of variously sized subsets.

4.2. Run-wise mean centering

It is widely recognized that each scan in a session is associated
with a unique shift in the mean MR signal across all trial types. These
shifts may reflect the cognitive state of the participant, such as drifts in
attention and changes in physiological arousal, or the state of the MR
hardware (i.e. thermal noise, scanner drift). Whereas condition-based
trial averaging was used to reduce trial-by-trial variability, the variance
component that run-wise mean centering aims to reduce is run-level
variation in the baseline activation for all trials within each run.
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The mechanism by which this improves classification is intuitive:
Since the cross-validation procedure for most MVPA studies is parti-
tioned on runs, training a classifier using exemplars from run-shifted
distributions introduces artificial clusters within the training data. This
in turn, should be anticipated to impair the classifier’s ability to find
a stable separating hyperplane between blocks of training data from
different runs or to generalize to test data from new runs. Our data
confirm this hypothesis in both real and simulated datasets, replicating
other studies (Lee and Kable, 2018; Etzel et al., 2011; Pereira et al.,
2009).

Furthermore, we show that mean centering interacts with the met-
hod of trial averaging. When training and testing using separate trial
estimates, mean centering did not make a significant difference to mean
classification accuracy. This may be because the increased variance as-
sociated with the noisy trial exemplars in effect masks the partitioning
effect of run-wise variance. However, with the inclusion of run-wise
trial averaging, trial variance is reduced and large improvements are
seen when mean centering is included.

4.3. Cost selection

Tuning the SVM cost parameter, C, within a nested cross-validated
loop is a computationally intensive process, particularly when con-
ducted over many regions of interest (as in a searchlight MVPA anal-
ysis) or when implemented as part of permutation testing. Consistent
with previous analyses (Varoquaux et al., 2017) our results also show
that tuning C versus using a fixed value of 1 depends on the statistical
structure of the underlying dataset.

Cost tuning did not have a significant impact on classification
performance using the human participant data in either ROI. In con-
trast, cost tuning significantly interacted with trial averaging and mean
centering in the simulated datasets such that cost tuning improved clas-
sification accuracies when trials were run-averaged and mean centered
prior to classification. One explanation for this finding is that setting
C high, such as when C = 1, leads to a higher likelihood of overfitting
the classifiers (Hastie et al., 2001), a significant disadvantage when the
classifier is trained and tested on data composed of blocks with distinct
shifts in mean activity. Thankfully, our results show that cost tuning
can be omitted from MVPA pipelines without penalty by simply mean
centering the data within each run prior to classification, which is a
computationally simpler and faster operation.

4.4. Motion-related nuisance regression

It has long since been recognized that head movements severely
compromise the quality of fMRI data (Friston et al., 1996; Hajnal et al.,
1994), sparking many endeavors to denoise the BOLD signal through
reference time series capturing motion-related fluctuations (Caballero-
Gaudes and Reynolds, 2017). These reference signals are sometimes
added as nuisance regressors to the design matrix that is fit to the
voxel time series and therefore constitute additional data cleaning
above and beyond the volume registration performed during normal
preprocessing. Though it is now standard to use such nuisance regres-
sors to denoise BOLD data in preparation of functional connectivity
analyses, no studies to date have examined their impact on multivariate
decoders.

Prior to estimating trial-specific activation estimates, we denoised
the raw timeseries using four different types of motion-related nuisance
regressors: the 6 rigid-body realignment parameters (3DMC), the 24
parameter Volterra expansion, a despiking model using an FD thresh-
old of 0.5 mm, and the average signal from the white matter and
ventricles (GSR). Denoising the data using GSR led to a significant
increase in classification accuracies but only for data that had under-
gone trial averaging (both 1-avg and 2-avg conditions). Also, including
the full Volterra expansion of the rigid body realignment parameters
as nuisance regressors significantly reduced accuracies irrespective of
whether trial averaging, run-wise mean centering, or cost tuning was
applied.
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4.5. Conclusions

Though hard and definitive guidelines regarding the tested methods
cannot be drawn for all designs and tasks, the current investigation
reveals that across real and simulated datasets MVPA-decodability can
be significantly improved through trial averaging, mean centering, and
inclusion of Global Signal Regression.
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Appendix A. Formal framework for multi-voxel simulations

There is wide agreement that BOLD fMRI data contains multiple
sources of variability, including trial-, voxel-, and run-level variabil-
ity (Friston et al., 1994). To generate multivariate response patterns
that properly incorporate all these unique variance components, we
used a multilevel modeling approach (for similar models, see Diedrich-
sen et al., 2013; Davis et al., 2014).

The first level of the model is given by Eq. (A.1) and describes
how activation in voxels, regardless of the type of condition, varies
randomly from trial to trial.

Atus = Uy + Xsﬁus + €rvss

Al
eps ~ N(0,6°) @

Here, the data are summary statistics (e.g. LSS beta coefficients) repre-
senting the activation, A,,,, observed on trial 7, voxel v, and scan s. The
variable X is an N,,;,;; X Neypariares design matrix and the observed acti-
vation is represented as a linear combination of the baseline activation
(or intercept), a,,, plus the product of the beta coefficients, g,,, and
X, plus trial-specific deviations, ¢,,, (A.1). These trial-level errors are
assumed to follow a normal distribution with mean zero and variance
0'2.

The voxel-level model (A.2), describes how the multivariate patterns
constitute repeated measurements across voxels that vary in two im-

portant respects: firstly, voxels vary in their mean baseline activation


https://doi.org/10.6084/m9.figshare.13708654.v1
https://doi.org/10.6084/m9.figshare.13708654.v1
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across trials of all types and secondly they vary in the effect of the
experimental conditions.

al}S = aS + eaus’

ﬂm = ﬂs + eﬁus’
PT,Tp

2
<€(1US> ~ N' <”GS> ) Tﬂ )
€pus Hps PT, Ty Tﬁ
This level of the model characterizes the entire population of voxels as
having a mean baseline activity in each scan, a,, and a mean effect
of the experimental contrast in each scan, f,. Voxel-specific devia-
tions to each of these summary statistics are allowed by the inclusion
of error terms, ¢,,; and eg,, respectively. The regression parameters
in Eq. (A.1), a,, and B,,, are therefore not fixed but conceptualized as
random variables with a multivariate Gaussian probability distribution
across voxels and scans. This probability distribution is summarized
by the mean vector of coefficients, u,, and w4, and the variance-
covariance matrix. This matrix contains the between-voxel variances
in both baseline, r‘f, and effect of the experimental contrast, 72, as well
as their covariance, pz,7;. The parameters 7z, and 7 are of particular
importance as they inherently model voxel-level variability and fit the
common understanding that in any ROI there are, to greater or lesser
extent, mixtures of both task-relevant and task-irrelevant voxels.

The third, and final, level of our model (A.3) accounts for the
finding that there are often signal-related shifts in the mean activity of
all trials within each run. There may be many causes of these run-level
shifts including drifts in attention, changes in physiological arousal, or
between-run differences in proportions of trial types.

(A.2)

aS =7+€HS’

A.3
€qs ~ N(0,0%) -3)

The variance component of interest in this model corresponds to run-
by-run variability in the mean activity of all trials across voxels. Like
other levels, this is implemented by an error term, ¢,,, which quantifies
each run’s deviation from the expected value of all runs, «,. These
errors are also assumed to be normally distributed with mean zero and
variance ?.

The combined equation (A.4) for activation A on trial 7 in voxel v
for scan s is therefore a combination of fixed effects of the experimental
variables as well as trial-, voxel-, and scan-level random effects:

Atus =V te€gs s t Xsﬂs + Xseﬂus + €5 (A4)

In our own simulations, since we coded the two conditions in
the design matrix as —0.5 and 0.5 (deviation coding scheme) this
meant that the voxel-specific intercept represented that voxel’s average
(baseline) activation for trials of both conditions and the voxel-specific
slope represented the effect of the experimental variables within that
voxel. By sampling these slopes from a distribution with a mean slope
of zero and varying the standard deviation of slopes, we simulated
a context in which there is a range of effect sizes across the voxels
(i.e. voxel’s with more extreme slopes are more “informative" about
the conditions of interest) but no univariate effect of the conditions.

Appendix B. Addressing violations to the assumption of equal
variances in linear models

Human fMRI data

Prior to fitting the multi-level linear models (MLMs) on classifi-
cation accuracies from the human fMRI data, Levene’s test revealed
significant departures from the assumption of equal variances between
groups (i.e. heteroscedasticity) for the fixed factors of: trial averaging
method (F(2,2864) = 333.0l,p < 0.001); run-wise mean centering
(F(2,2865) = 127.21, p < 0.001); and motion-related nuisance regression
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approach (F(4,2862) = 2.86, p = 0.022). Therefore, the heteroscedastic-
ity was included in the model by means of a variance function allowing
different variances per stratum, computed as the ratio of each variance
to a reference level. Specifying unique variances for fully crossed
levels of trial averaging, mean centering and data cleaning was not
computationally feasible due to the sheer number of levels and model
convergence issues. Therefore, we specified unique variances for the
two most critically heteroscedastic factors based on the magnitude of
the F statistic from Levene’s test: trial averaging method and run-wise
mean centering.

Simulated data

For the simulated data, Levene’s test revealed significant heterosce-
dasticity for the factors of trial averaging (F(2,8997) = 887.61,p <
0.001), presence or absence of within-run mean centering (F(1,8998) =
867.54,p < 0.001), and the cost selection method (F(1,8998) = 61.454,
p< 0.001). Therefore, unique variances were modeled for all three
heteroscedastic factors.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jneumeth.2023.109808.
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