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ABSTRACT. Every graph with maximum degree Δ can be colored with (Δ + 1) colors using
a simple greedy algorithm. Remarkably, recent work has shown that one can find such a

coloring even in the semi-streaming model: there exists a randomized algorithm that with high

probability finds a (Δ + 1)-coloring of the input graph in only 𝑂(𝑛 · polylog 𝑛) space assuming a

single pass over the edges of the graph in any arbitrary order. But, in reality, one almost never

needs (Δ + 1) colors to properly color a graph. Indeed, the celebrated Brooks’ theorem states

that every (connected) graph beside cliques and odd cycles can be colored with Δ colors. Can

we find a Δ-coloring in the semi-streaming model as well?

We settle this key question in the affirmative by designing a randomized semi-streaming

algorithm that given any graph, with high probability, either correctly declares that the graph

is not Δ-colorable or outputs a Δ-coloring of the graph.

The proof of this result starts with a detour. We first (provably) identify the extent to which

the previous approaches for streaming coloring fail for Δ-coloring: for instance, all these prior

approaches can handle streams with repeated edges and they can run in 𝑜(𝑛2) time, whereas
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prove that neither of these tasks is possible for Δ-coloring. These impossibility results however

pinpoint exactly what is missing from prior approaches when it comes to Δ-coloring.

We build on these insights to design a semi-streaming algorithm that uses (𝑖) a novel
sparse-recovery approach based on sparse-dense decompositions to (partially) recover the

“problematic” subgraphs of the input—the ones that form the basis of our impossibility results—

and (𝑖𝑖) a new coloring approach for these subgraphs that allows for recoloring of other vertices

in a controlled way without relying on local explorations or finding “augmenting paths” that

are generally impossible for semi-streaming algorithms. We believe both these techniques can

be of independent interest.

1. Introduction

Graph coloring problems are ubiquitous in graph theory and computer science. Given a graph

𝐺 = (𝑉, 𝐸), a proper 𝑐-coloring of 𝐺 is any assignment of colors from the palette {1, . . . , 𝑐} to
the vertices so that no edge receives the same color on both its endpoints. Recent years have

witnessed a flurry of results for graph coloring in the graph streaming model [58, 15, 7, 13, 14,

4, 16, 6, 22, 39]. In this model, the edges of the input graph arrive one by one in an arbitrarily

ordered stream and the algorithm needs to process these edges sequentially using a limited

space, much smaller than the input size. Of particular interest are semi-streaming algorithms,

introduced by [32], that use only 𝑂(𝑛) := 𝑂(𝑛 · polylog 𝑛) space1 on 𝑛-vertex graphs which is

proportional to the output size. We focus on this model in this paper.

One of the simplest forms of graph coloring problems is (Δ + 1)-coloring of graphs with
maximum degree Δ. Not only does every graph admits a (Δ + 1)-coloring, one can in fact find

one quite easily via a greedy algorithm: iterate over the vertices and color each one from any

of (Δ + 1) colors that has not appeared in any of its at most Δ colored neighbors. Yet, despite its

utter simplicity, this algorithm does not easily lend itself to a semi-streaming algorithm as the

arbitrary arrival of edges prohibits us from coloring vertices one at a time.

Nonetheless, a breakthrough of [7] showed that (Δ + 1) coloring is still possible in the semi-

streaming model, albeit via a randomized algorithm that employs a “non-greedy” approach. In

particular, [7] proved the following palette sparsification theorem: if we sample 𝑂(log 𝑛) colors
from {1, . . . , Δ + 1} for each vertex independently, then with high probability, the entire graph

can be colored by coloring each vertex from its own sampled colors. This result immediately

leads to a semi-streaming algorithm for (Δ+1)-coloring: sample these colors for each vertex and

store any edge in the stream that can potentially become monochromatic under any coloring of

vertices from their sampled list. A simple probabilistic analysis bounds the number of stored

1 Throughout, we use 𝑂( 𝑓 ) := 𝑂( 𝑓 · poly log 𝑓 ) to suppress polylog ( 𝑓 ) factors.
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edges by 𝑂(𝑛 log2 𝑛) with high probability, and the palette sparsification theorem guarantees

that one can find a (Δ + 1)-coloring of the graph at the end of the stream.

Going back to existential results, it is easy to see that there are graphs that do need Δ + 1
colors for proper coloring, for instance (Δ+1)-cliques or odd cycles (where Δ = 2). The celebrated

Brooks’ theorem [19] states that these two are the only examples: any (connected) graph besides

cliques and odd cycles can be colored with Δ colors (see also [49] and [47] for other classical

proofs of this result by Melnikov and Vizing, and by Lovász, respectively). Unlike existence of

(Δ + 1)-colorings which is rather a triviality, Brooks’ theorem turned out to be a fundamental

result in graph coloring [50, 63] with numerous proofs discovered for it over the years; see, e.g.,

[63, 25, 56, 57] and references therein. The algorithmic aspects of Brooks’ theorem have also

been studied extensively in classical algorithms [47, 62, 10], PRAM algorithms [44, 54, 43, 35],

or LOCAL algorithms [53, 18, 34].

Given the key role Brooks’ theorem plays in graph coloring literature on one hand, and

the recent advances on streaming coloring algorithms on the other hand, it is thus quite natural

to ask:

Does there exist a “semi-streaming Brooks’ theorem”, namely, a semi-streaming algo-

rithm that colors any given graph, besides cliques and odd cycles, with Δ colors?

This is precisely the question addressed in this paper. We emphasize that our interest in this

question is not in “shaving off” a single color from (Δ + 1)-coloring to Δ-coloring in practice, but

rather as a source of insights and ideas (as is the case, say, in graph theory or classical algorithms

where (Δ + 1)-coloring is just a triviality). In fact, Δ-coloring appears to be just beyond the reach
of our current techniques. For instance, previous streaming coloring algorithms in [7, 14, 4]

can all be obtained via palette sparsification (see [4] for details). Yet, it was already observed

in [7] that palette sparsification cannot handle Δ-coloring (we elaborate on this later). More

generally, while (Δ + 1)-coloring has a strong “greedy nature”, all existential/algorithmic proofs

of Δ-coloring are based on “exploring” the graph for certain structures, say cut vertices or

certain spanning trees [47], Kempe Chains [49], Rubin’s Block Lemma [30, 5], or “augmenting

paths” [54] to name a few (we refer the interested reader to [63] for an excellent overview of

various proofs of Brooks’ theorem). These (local) exploration tasks however tend to be generally

impossible in the semi-streaming model.2

1.1 Our Contributions

We start with studying the limitations of the current approaches in streaming graph coloring

for solving Δ-coloring. To do so, we focus on two common characteristics of all prior algorithms

2 For instance, while computing all neighbors of a given vertex is trivial via a semi-streaming algorithm (by storing edges
of the vertex), it is even impossible to discover the 2-hop neighborhood of a given vertex [31].
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in [7, 14, 4]: they all also naturally lead to (𝑖) sublinear-time algorithms for the corresponding

coloring problems that run in (𝑛3/2+𝑜(1)) time, and (𝑖𝑖) semi-streaming algorithms that can

handle repeated-edge streams wherein the same edge may appear more than once. We prove

that obtaining either type of algorithms is provably impossible for Δ-coloring:

Sublinear-time algorithms (Appendix A.1): Any algorithm that, given access to

adjacency lists and adjacency matrix of a graph with known maximum degree Δ,

can output a Δ-coloring with large constant probability requires Ω(𝑛Δ) queries to
input and time.

Repeated-edge streams (Appendix A.2): Any algorithm that, given the edges of

a graph with known maximum degree Δ in a repeated-edge stream, can output a

Δ-coloring with large constant probability requires Ω(𝑛Δ) space.

These impossibility results already demonstrate how different Δ-coloring is compared to

prior graph coloring problems studied in the semi-streaming model. But, as we shall elaborate

later, these results play a much more important role for us: they pinpoint what is missing from

prior approaches when it comes to the Δ-coloring problem and act as an excellent guide for

addressing our motivating question. This brings us to the main contribution of our work.

THEOREM 1.1 (Semi-Streaming Brooks’ Theorem). There exists a randomized semi-streaming

algorithm that given any connected graph 𝐺 = (𝑉, 𝐸) with maximum degree Δ, which is not a

clique nor an odd-cycle, with high probability, outputs a Δ-coloring of 𝐺.

Consequently, despite the fact that prior approaches inherently fail for Δ-coloring in

fundamental ways and that Δ-coloring is provably intractable in closely related models, we

can still obtain a semi-streaming Brooks’ theorem and settle our motivating question in the

affirmative. It is also worth mentioning that randomness in Theorem 1.1 is crucial: a very

recent result of [6] shows that deterministic semi-streaming algorithms cannot even find an

exp
(
Δ𝑜(1)

)
-coloring. Our Theorem 1.1 thus fully settles the complexity of the Δ-coloring problem

in the semi-streaming model.

Theorem 1.1 can be stated more generally as an algorithm that either decides whether

the input graph is Δ-colorable or not, and if yes, outputs the coloring. This is because checking

whether a graph is Δ-colorable can be done by simply storing a spanning forest of the input

(see, e.g., [32]) and maintaining the degrees of vertices; this allows us to check whether any

of the connected components in the graph is a (Δ + 1)-clique or an odd-cycle. If not, apply-

ing Theorem 1.1 to each connected component of the graph (in parallel in a single pass) gives

us the desired Δ-coloring (the algorithm does not even require the prior knowledge of Δ using a

standard trick observed in [7]; see Remark 4.21). However, we find the statement of Theorem 1.1

to best capture the most interesting part of the result and thus opted to present it in this form.
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Our Techniques. We shall go over our techniques in detail in the streamlined overview of

our approach in Section 2. For now, we only mention the three main technical ingredients of

our work:

𝑖). A thorough understanding of the powers and limitations of the palette sparsification

approach of [7] for Δ-coloring via a rough characterization of which (sub)graphs it still

applies to;

𝑖𝑖). An algorithm for implicitly identifying and storing “problematic” subgraphs of the

input graph—the ones that cannot be handled by palette sparsification approach of

previous step—via a novel sparse recovery approach that relies on algorithmic use of

sparse-dense decompositions (see Section 3.1) in place of their analytic use in prior

streaming algorithms [7, 4];

𝑖𝑖𝑖). Anew coloring procedure that combines simple graph theoretic ideaswith probabilistic

analysis of palette sparsification using a notion of helper structures; these are simple

subgraphs of the input that can be recovered via our semi-streaming algorithms from

the previous part and does not rely on local exploration steps of prior proofs of Brooks’

theorem mentioned earlier.

Other Sublinear Algorithms Models. Prior semi-streaming algorithms for graph coloring

also naturally lead to a series of algorithmic results for the respective problems in other models.

Our first impossibility result already rules out this possibility for Δ-coloring when it comes to

sublinear-time algorithms. Nevertheless, our approach in Theorem 1.1 is still quite flexible and

thus allows for extension of this algorithm to many other models. In particular, the algorithm is

implemented via a linear sketch (see [48]), which immediately implies the following two results

as well:

Dynamic streams: There exists a (single-pass) randomized semi-streaming algorithm for

Δ-coloring on the streams that contain insertion and deletion of edges.

Massively parallel computation (MPC): There exist a one round randomized MPC algo-

rithm for Δ-coloring on machines of memory 𝑂(𝑛) with only 𝑂(𝑛) extra global memory.

As this is not the focus of the paper, we omit the definition and details of the models and instead

refer the interested to [3, 48] and [45, 12] for each model, respectively.

1.2 Related Work

Similar to the classical setting, it is known that approximating theminimumnumber of colors for

proper coloring, namely, the chromatic number, is intractable in the semi-streaming model [40,

2, 24]. Thus, recent work has focused instead on “combinatorially optimal” bounds—termed

by [37]—for streaming coloring problems. On this front, we already discussed the (Δ+1)-coloring



6 / 66 S. Assadi, P. Kumar, P. Mittal

result of [7]. Independently and concurrently, [15] obtained a semi-streaming algorithm for𝑂(Δ)
colorings. These results were followed by semi-streaming algorithms for other coloring prob-

lems such as degeneracy coloring [14], coloring locally sparse graphs and (deg+1)-coloring [4],
(deg+1)-list coloring [39], adversarially robust coloring [22], edge-coloring (in W-streams) [13],

deterministic lower bounds and (multi-pass) algorithms [6], and coloring verification prob-

lems [16]. Moreover, [4] studied various aspects of palette sparsification technique of [7] and

showed that other semi-streaming coloring algorithms such as [15, 14] can also be obtained via

this technique.

Many of these work on streaming algorithms for graph coloring also extend to other

models such as sublinear-time and massively parallel computation (MPC) algorithms. For

instance, for (Δ+1)-coloring, there are randomized sublinear-time algorithms in𝑂(𝑛3/2) time [7]

or deterministic MPC algorithms with 𝑂(1) rounds and 𝑂(𝑛) per-machine memory [27] (see

also [26]). Moreover, subsequent to the conference publication of this paper in [8], some of

the ideas in our work was also used in [33] in designing distributed LOCAL algorithms for

Δ-coloring.

Numerous beautiful algorithmic results are known for Δ-coloring problem in various other

models such as classical algorithms [47, 62, 10], PRAM algorithms [44, 54, 43, 35], or LOCAL

algorithms [53, 18, 34, 11]. For instance, a remarkable “distributed Brooks’ theorem” of [54]

proves that any partial Δ-coloring of all but one vertex of the graph, can be turned into a proper

Δ-coloring of the entire graph by recoloring a single “augmenting path” of 𝑂(logΔ𝑛) length.
Finally, it is worth mentioning that Brooks’ theorem is part of a more general phenomenon

in graph theory: as the maximum clique size in 𝐺 moves further away from Δ + 1, so does its
chromatic number. For instance, [60] proves that for sufficiently large Δ, if a graph does not

contain a Δ-clique, then it is in fact always (Δ − 1)-colorable; see, e.g., [17, 59, 60, 46, 50, 52] and
references therein for various other examples.

2. Technical Overview

We now give a streamlined overview of our approach. While Theorem 1.1 is by far the main

contribution of our work, we find it illuminating to first talk about our impossibility results for

Δ-coloring as they, despite their simplicity, played a crucial role for us in obtaining Theorem 1.1

and we believe they can shed more light into different components of our final algorithm.

2.1 A Detour: Impossibility Results, Barriers, and Lessons Along the Way

Palette sparsification. Let us start by reviewing the palette sparsification theorem of [7]: if

we sample 𝑂(log 𝑛) colors from {1, . . . , Δ + 1} for each vertex independently, then with high

probability, we can still color the graph by coloring each vertex from its sampled palette. The

proof of this result in [7] uses a variant of sparse-dense decomposition [59] that partitions the
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graph into “(locally) sparse” vertices and a collection of “almost-clique” subgraphs that can be

turned into (Δ + 1)-cliques by changing 𝑜(1) fraction of their vertices and edges (Figure 1a). The
sparse vertices are then colored one at a time from their sampled lists using a standard greedy

coloring argument originally introduced in [51]. The main part of the proof is to handle almost-

cliques by going over them one by one and coloring each one entirely, using the sampled lists of

all its vertices at the same time, even assuming the outside vertices are colored adversarially.

(a) Sparse-dense

decomposition

(b) palette sparsification of

Δ-coloring

(c) query lower bound of

Δ-coloring

Figure 1. A graph with maximum degree Δ = 4 and its sparse-dense decomposition in (a) (each box

denotes an almost-clique and remaining vertices are sparse). Part (b) is an illustration of why palette

sparsification fails for Δ-coloring: the only way to Δ-color this graph is to color the marked vertices the

same, which cannot be done with these sampled lists. Part (c) shows a similar construction can be

used to prove a query lower bound for Δ-coloring. (The actual instance is obtained from Θ(𝑛/Δ) copies
of such pairs.)

As expected, the hard part in extending palette sparsification theorem of [7] to Δ-coloring

involves the argument for almost-cliques. Indeed, this is not just a matter of analysis; as already

observed by [7], this theorem fails for Δ-coloring (Figure 1b): consider a (Δ + 1)-clique minus a

single edge (𝑢, 𝑣); the only way we can find a Δ-coloring of this graph is if we color both 𝑢 and

𝑣 the same, which requires their sampled lists to intersect; by the birthday paradox this only

happens when size of each list is Ω(
√
Δ) which in turn implies that the algorithm has to store

Ω(𝑛Δ) edges from the stream—this is effectively the same as storing the input itself!

Sublinear time (query) algorithms. Consider a graph 𝐺 which is a collection of Θ(𝑛/Δ) pairs
of (Δ + 1)-cliques. For each pair, randomly pick two vertices (𝑢1, 𝑣1) and (𝑢2, 𝑣2) from its first

and second clique, respectively. Remove the edges (𝑢1, 𝑣1) and (𝑢2, 𝑣2) and instead include the
edges (𝑢1, 𝑣2) and (𝑢2, 𝑣1) in the graph. See Figure 1c for an illustration. It is easy to see that

the only way to Δ-color this graph is to find the “switched” edges in each copy and color their

endpoints the same inside each (now) almost-clique. Yet, it is an easy exercise to use the linear

lower bound on the query complexity of or function [20] to prove that this requires making

Ω(Δ2) queries to the adjacency lists or matrix of the graph for each pair, and thus Ω(𝑛Δ) queries
overall. This lower bound now leaves us with the following lesson.
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+ =

Figure 2. An illustration of

the hard instances for the

repeated-edge stream lower

bound—the actual instance

is obtained from Θ(𝑛/Δ)
copies of these graphs. The

only possible Δ-coloring is to

color both endpoints of

marked vertices the same.

LESSON 2 .1. Any semi-streaming algorithm for Δ-coloring should explicitly look at all but a tiny

fraction of edges of the graph presented in the stream.

Lesson 2.1 may sound trivial at first. After all, the semi-streaming model allows all algo-

rithms to look at all edges of the graph. Yet, note that numerous semi-streaming algorithms, say,

sampling algorithms, including all prior streaming coloring algorithms in [7, 14, 4, 39], do not

use this power—Lesson 2.1 implies that these algorithms cannot solve Δ-coloring.

Semi-streaming algorithms on repeated-edge streams. What if we take Lesson 2.1 to

the extreme and give the algorithm each edge (potentially) multiple times in the stream—this

should surely helps us even more, no? It turns out however that this is not really the case.

Suppose that we have a graph 𝐺 on a collection of Θ(𝑛/Δ) disjoint sets of vertices of size
Δ + 1 each. For each set of Δ + 1 vertices 𝑈 , consider a stream of edges that in the first part,

provides a subset 𝐸1 of edges over𝑈 and in the second part, provides another subset 𝐸2—the

repeated-edge stream allows these subsets to be overlapping and we shall choose them so that

𝐸1 ∪ 𝐸2 leaves precisely one pair of vertices (𝑢, 𝑣) among all pairs in 𝑈 without an edge. As

before, the only way to Δ-color this graph is to color vertices 𝑢, 𝑣 in each of the Θ(𝑛/Δ) pieces
the same. But, given that the edges between 𝐸1 and 𝐸2 may overlap, one can prove that finding

all these pairs requires Ω(𝑛Δ) space. This is by a reduction from communication complexity

lower bounds of the Tribes function [42] (a slightly less well-known cousin of the famous set

disjointness problem). This brings us to the next lesson.

LESSON 2 .2. Any semi-streaming algorithm for Δ-coloring should crucially use the fact that

each edge of the graph arrives exactly once in the stream.

Again, while the semi-streaming model only allows for presenting each edge once in the

stream, many algorithms are entirely oblivious to this feature. This includes all previous semi-

streaming coloring algorithms in [7, 15, 14, 4, 39], as well as various other ones for spanning

trees [32], sparsifiers [48], spanners [32, 31] and maximal matchings [32]. Lesson 2.2 says that

any potential Δ-coloring algorithm cannot be of this type.
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A natural algorithm or a barrier result? Finally, let us conclude this part by considering a

natural semi-streaming algorithm for Δ-coloring: Sample 𝑂(𝑛 log 𝑛/Δ) vertices 𝑆 uniformly at

random, and partition the input graph into two subgraphs 𝐺𝑆 consisting of all edges incident

on 𝑆, and 𝐺−𝑆 consisting of all remaining edges. We can easily detect, for each arriving edge in

the stream, which subgraph it belongs to. Moreover, it is easy to see that 𝐺𝑆 contains 𝑂(𝑛 log 𝑛)
edges and 𝐺−𝑆, with high probability, has maximum degree at most Δ − 1. We can thus store 𝐺𝑆

explicitly via a semi-streaming algorithm and run the algorithm of [7] on 𝐺−𝑆 to color it with

(Δ(𝐺−𝑆) + 1) = Δ colors. So, we have a Δ-coloring of 𝐺−𝑆 and all edges of 𝐺𝑆.

Surely, now that we know all of 𝐺𝑆, we should be able to extend the Δ-coloring of 𝐺−𝑆
to 𝐺𝑆, no? The answer however turns out to be no: unlike the case of (Δ + 1)-coloring, not every
partial coloring of a graph can be extended directly to a proper Δ-coloring of the entire graph.

But perhaps this is only an abstract worry and we should just find the right way of analyzing

this algorithm? The answer is yet again no: the algorithm we just proposed in fact neglects

both Lesson 2.1 and Lesson 2.2 and thus is doomed to fail completely.3 But this also leaves us

with the following lesson.

LESSON 2 .3. Any semi-streaming algorithm for Δ-coloring that colors the graph by extending a

partial coloring, subgraph by subgraph, should either provide a stronger guarantee than solely an

arbitrary Δ-coloring for each subgraph, or allow for recoloring of an already colored subgraph.

While perhaps less concrete than our two previous lessons, Lesson 2.3 has a profound

impact in the design of our semi-streaming algorithm that also colors the graph one subgraph at

a time; in particular, our algorithm is going to adhere to both restrictions imposed by Lesson 2.3

simultaneously.

2.2 The High-Level Overview of Our Algorithm

After this long detour, we are now ready to go over our algorithm in Theorem 1.1. As stated

earlier, the three main ingredients of our algorithm are: (𝑖) a variant of palette sparsification for
Δ-coloring that can color all but some problematic almost-cliques in the input (such as Figure 1b),

(𝑖𝑖) a sparse recovery approach for (partially) recovering these problematic subgraphs, and

(𝑖𝑖𝑖) a new coloring procedure that allows for extending the partial coloring of part (𝑖) to the
remaining subgraphs partially recovered in part (𝑖𝑖) to obtain a proper Δ-coloring of the entire

graph. We will go over each part separately in the following.

Part One: Powers and Limitations of Palette Sparsification for Δ-Coloring

While we already discussed in Section 2.1 that palette sparsification fails for Δ-coloring, we

are still going to employ its ideas crucially in our work. The goal of this step is to identify to

3 An added bonus of those impossibility results is to allow for quickly checking viability of potential algorithms.
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what extent this approach fails for Δ-coloring. We develop a classification of almost-cliques

(Section 4.1) based on the following three criteria:

Size—number of vertices: small for < Δ + 1, critical for Δ + 1, and large for > Δ + 1 vertices.
Inner density—number of non-edges inside the almost-clique: holey for Ω(Δ) non-edges
(or “holes” in the almost-clique), and unholey otherwise.

Outer connections—a measure of how “tightly” the almost-clique is connected to outside;

we postpone the technical details of this part to the actual definition in Section 4.1.

Among these, size and inner density are perhaps usual suspects. For instance, we already

saw in Section 2.1 that palette sparsification entirely fails for almost-cliques of size Δ + 1 with
exactly one non-edge—in our classification, these correspond to critical unholey almost-cliques.

The third criterion is more technical and is motivated by Lesson 2.3; as we are still going

to color the graph one almost-clique at a time, we would like to be able to reason about the

partial coloring of outside vertices and possibility of its extension to the almost-clique. This is

particularly relevant for small almost-cliques which can be actually a true clique inside and

hence would definitely be in trouble if the same exact set of colors is “blocked” for all their

vertices from outside. See Figure 3.

(a) “random” outside-coloring (b) “adversarial”

outside-coloring

(c) “adversarial”

outside-coloring

Figure 3. An illustration of three possible types of outer connections on a graph with maximum degree

Δ = 6. The almost-clique in part (a) has a “right” type of outside connection and is going to receive a

more “random” coloring on its neighbors, compared to the almost-clique in part (b) with “few” outside

neighbors and part (c) with “too many” ones. In particular, the latter almost-cliques now cannot be

Δ-colored without changing the color of outside vertices as the same colors are blocked for all vertices

of the inner (actual) cliques.

We then consider palette sparsification (on steroids!) wherein each vertex samples

polylog (𝑛) colors from {1, . . . , Δ} and characterize which families of almost-cliques in our

classification can still be colored using only the sampled colors. We show that all holey almost-

cliques (regardless of their size or outer connections) can be still colored from their sampled

colors using a similar argument as in [7]. More interestingly, we show that even unholey small

almost-cliques that have the “right” type of outside connections can be colored at this step.

Our analysis in this part deviates significantly from [7] and in particular crucially establishes



11 / 66 Brooks’ Theorem in Graph Streams

certain randomness properties on the coloring of vertices outside of an almost-clique when

trying to color the almost-clique itself (recall Lesson 2.3). Thus, what remains are unholey

critical almost-cliques (regardless of their outer connections) and unholey small almost-cliques

with “problematic” outside connections. We delegate coloring of these almost-cliques to the

next steps of the algorithm.

Let us now briefly discuss the effect of outer connections in coloring a small almost-clique.

As stated earlier, the main problem with small almost-cliques occurs when exactly the same

set of colors is used to color all outside vertices, thus blocking these colors entirely for the

almost-clique. While this event is basically unavoidable for almost-cliques with only a couple of

outside neighbors (Figure 3b), it becomes less and less likely as the number of outside neighbors

increases (Figure 3a). After all, for a color to be used on all these vertices, it should be sampled by

every single one of them in the first place. Wewill however run into problemagain in caseswhen

we have “too many” outside neighbors for every single vertex of the almost-clique (Figure 3c).

The almost-cliques of Figure 3c are particularly problematic as we have no knowledge of the

neighborhood of their outside vertices (for Figure 3b, we at least know that each of them have

many neighbors in the almost-clique, which is used crucially by our latter algorithms). Thus,

we should basically avoid ending up in a situation that we have to color such almost-cliques

after having colored their outside neighbors.

Fortunately, the almost-cliques of Figure 3c can only happen for small enough almost-

cliques; this in turn makes the neighborhood of these almost-cliques sufficiently sparse. Thus,

we can instead handle them similar to sparse vertices by increasing the size of sampled palettes

for vertices. There is however a subtle issue with this approach. Increasing the size of sampled

palettes means that even a fewer number of outside vertices can make a problem for us, hence

requiring us to send even more almost-cliques to sparse vertices to handle, leading to a chicken-

and-egg problem. A key idea in this part is a way to break this dependency cycle by careful

sequencing the order of processing of vertices in a way that ensures sufficient “randomness”

exist in the coloring of neighborhood of all small almost-cliques, except for the ones with very

few outside neighbors (the type in Figure 3b). We postpone the discussion of this “dependency-

breaking” step to Section 5 and Remark 5.7.

All in all, this step effectively establishes that palette sparsification achieves a “weak”

streaming Brooks’ theorem by Δ-coloring graphs that do not contain certain forbidden subgraphs

such as (Δ+1)-cliques minus few edges or Δ-cliques that have few neighbors outside (for Brooks’

theorem itself, the only forbidden subgraph is a (Δ + 1)-clique).

Part Two: Sparse Recovery for Remaining Almost-Cliques, and Helper Structures

Our next step is a way of finding edges of the almost-cliques left uncolored by the previous

step so that we can color them using a different approach. Let us bring up an obvious point

here: these left out almost-cliques are precisely the same family of instances that were at the
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core of our impossibility results in Section 2.1 (and their natural relaxations). Consequently, to

handle them, our algorithm needs to take into account the recipe put forward by Lesson 2.1

and Lesson 2.2: it should look at all edges of the stream exactly once. This rather uniquely

points us toward a canonical technique in the streaming model: sparse recovery (via linear

sketching).

1

2

3

®𝑁 (3) := [1, 0, 0, 1, 1, 0, 1]

4

5

𝐾 6

7

(a) neighbors-vector of 𝑣 = 3

1

2

3

𝜒(𝐾) := [0, 0, 1, 1, 1, 1, 1]

4

5

6𝐾

7

(b) characteristic-vector of 𝐾

1

2

3

®𝑁 (3) − 𝜒(𝐾) := [1, 0, 0, 0, 0,−1, 0]

4

5

6𝐾

7

(c) recovery-vector for

neighbors of 3

Figure 4. An illustration of sparse-recovery on the neighborhood of each vertex, plus an algorithm that

finds the identity of vertices in each almost-clique, allows for recovering all edges “highly-dense”

almost-cliques. Our actual algorithm is considerably more involved as it needs to partially recover

“not-too-dense” almost-cliques also.

Consider an almost-clique which is a (Δ + 1)-clique minus an edge (Figure 1b). On the

surface, recovering all edges of this almost-clique is problematic as these subgraphs are actually

quite dense; for instance, if the graph consists of only copies of such almost-cliques, we will need

Ω(𝑛Δ) space to store all of them. Butwhat saves us at this stage is the fact that these subgraphs are

actually too dense! Informally speaking, this reduces their “entropy” dramatically conditioned

on our knowledge of the sparse-dense decomposition. Thus, we can recover them implicitly

using a novel sparse recovery approach that uses sparse-dense decompositions algorithmically

and not only analytically.4

Although in the examples we discussed, we can hope to recover the entire almost-clique

in question implicitly, this will not be the case for all almost-cliques left uncolored by the

first part, e.g., for a (Δ + 1)-clique minus a
√
Δ-size inner clique (applying this method to a

graph consisting of only such almost-cliques requires Ω(𝑛
√
Δ) space). As a result, our semi-

streaming algorithm settles for recovering certain helper structures from these almost-cliques

instead. These are subgraphs of the input that are sufficiently simple to be recoverable via a

combination of sparse recovery, sampling, and some basic graph theory arguments. At the

same time, they are structured enough to give us enough flexibility for the final coloring step.

4 For the main results in [7] one only needs to know the existence of the decomposition and does not need to compute
it. That being said, [7] also gave algorithms for finding the decomposition from the stream (which is needed to run
their algorithms in polynomial time)—we use an extension of their algorithm by [9] in this paper.
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Given the technicality of their definitions (Definitions 4.6 and 4.7 and Figure 7), we postpone

further details to Section 4.1.

We point out that sparse recovery and linear sketching have been a staple of graph stream-

ing algorithms since the seminal work of [3]. But, these tools have been almost exclusively used

to handle edge deletions in dynamic streams. Their applications for us, on insertion-only streams,

as a way of (implicitly) sparsifying a graph using outside information (i.e., the sparse-dense

decomposition), is quite different and can form a tool of independent interest.

Part Three: The Final Coloring Procedure

The final step of our approach is then to color these remaining almost-cliques, given the extra

information we recovered for them in the previous step. For intuition, let us consider two

inherently different types of almost-cliques left uncolored by the approach in the first part.

(a) a (Δ + 1)-clique minus an edge (b) a Δ-clique with few neighbors

Figure 5. Two problematic almost-cliques in a graph with maximum degree Δ = 4. Both almost-cliques

are hard for palette sparsification. The only way part (a) can be Δ-colored is if the vertices incident on

the non-edge have intersecting lists. Part (b) is not Δ-colorable if the outside (marked) vertices are all

colored the same.

(Δ + 1)-clique minus an edge (𝒖, 𝒗) (Figure 5a): Suppose we know all edges of such an

almost-clique. We can color both 𝑢 and 𝑣 the same using a color that does not appear in their

outside neighbors (which is possible because vertices of almost-cliques have few edges out);

the standard greedy algorithm now actually manages to Δ-color this almost-clique (recall that

we assumed the knowledge of all edges of the almost-clique for now). The argument is simply

the following: Pick a common neighbor 𝑧 of 𝑢 and 𝑣, which will exist in an almost-clique, and

greedily color vertices from a color not used in their neighborhood, waiting for 𝑧 to be colored

last; at this point, since two neighbors of 𝑧 have the same color, there is still a choice for 𝑧 to be

colored with in the algorithm.

Δ-clique with few neighbors (Figure 5b): These are more problematic cases if we have

ended up coloring all their outside neighbors the same. Even if we know all edges of this almost-

clique, there is no waywe can color a Δ-clique with (Δ−1) colors (the same one color is “blocked”
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for all vertices). So, the next ingredient of our algorithm is a recoloring step that allows for

handling these almost-cliques (again, recall Lesson 2.3); we show that our strengthened palette

sparsification is flexible enough that, given the edges of a new almost-clique, allows for altering

some of its past decisions on outside vertices of this almost-clique. This step involves reasoning

about a probabilistic process (possibility of having a “good” color to change for an outside

vertex) after already viewing the outcome of the process (having ended up with a “blocked”

color). This requires a careful analysis which is handled by partitioning the randomness of the

process into multiple phases and using our classification of almost-cliques to limit the amount

of “fresh randomness” we need for this step across these phases. We discuss this in more details

in Section 5.

The discussion above oversimplified many details. Most importantly, we actually do

not have such a “clean” picture as above for the remaining almost-cliques we need to color.

Instead, the algorithm needs to handle almost-cliques that are not fully recoverable by sparse

recovery (as they are not sufficiently dense), using their helper structures described earlier.5

This coloring is thus done via a combination of the greedy arguments of the above type on the

helper structures, combined with palette sparsification ideas for the remaining vertices of the

almost-clique. This in turns requires using some out of (sampled) palette coloring of vertices,

which is in conflict with what the palette sparsification does and needs to be handled carefully;

see Sections 5.5 and 5.6.

3. Preliminaries

Notation. For an integer 𝑡 ⩾ 1, we define [𝑡] := {1, 2, . . . , 𝑡}. For a graph 𝐺 = (𝑉, 𝐸) and a

vertex 𝑣 ∈ 𝑉 , we use 𝑁𝐺 (𝑣) to denote the neighbors of 𝑣 in 𝐺, and 𝑁 (𝑣) when the graph is clear

from the context. Further, we define degree of 𝑣 by deg𝐺 (𝑣) := |𝑁𝐺 (𝑣) | (and similarly deg(𝑣)).
We refer to a pair (𝑢, 𝑣) of vertices in𝑉 as a non-edgewhen there is no edge between 𝑢 and 𝑣 in

𝐺. Similarly, we sometimes say that 𝑢 is a non-neighbor of 𝑣 and vice versa.

For a graph 𝐺 = (𝑉, 𝐸) and integer 𝑞 ⩾ 1, we refer to any function 𝐶 : 𝑉 → [𝑞] as a
𝑞-coloring and call it a proper coloring iff there is no edge (𝑢, 𝑣) in 𝐺 with 𝐶(𝑢) = 𝐶(𝑣). We

further refer to a function 𝐶 : 𝑉 → [𝑞] ∪ {⊥} as a partial 𝑞-coloring and call the vertices 𝑣 ∈ 𝑉
with 𝐶(𝑣) =⊥ as uncolored vertices by 𝐶. The edges (𝑢, 𝑣) in 𝐺 with 𝐶(𝑢) = 𝐶(𝑣) =⊥ are not

considered monochromatic, and thus we consider a partial 𝑞-coloring proper iff there is no

edge (𝑢, 𝑣) in 𝐺 with 𝐶(𝑢) = 𝐶(𝑣) ≠⊥. Finally, for any proper partial 𝑞-coloring, and any vertex
𝑣 ∈ 𝑉 , we define:

ColNei𝐶 (𝑣) := {𝑢 ∈ 𝑁 (𝑣) | 𝐶(𝑢) ≠⊥}: the neighbors of 𝑣 that are assigned a color by 𝐶; we
further define coldeg𝐶 (𝑣) := |ColNei𝐶 (𝑣) |.

5 For a (Δ + 1)-clique minus an edge (𝑢, 𝑣), the helper structure is the subgraph consisting of vertices 𝑢 and 𝑣, and all
edges incident on at least one of them. The helper structure of the other example is more tricky; see Figure 7.
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Avail𝐶 (𝑣) := {𝑐 ∈ [𝑞] | 𝐶(𝑢) ≠ 𝑐 for all 𝑢 ∈ 𝑁 (𝑣)}: the colors in [𝑞] that have not been as-

signed to any neighbor of 𝑣 by 𝐶, i.e., are available to 𝑣; we define avail𝐶 (𝑣) := |Avail𝐶 (𝑣) |.

Finally, we say that a coloring 𝐶1 is an extension of coloring 𝐶2 iff for every 𝑣 ∈ 𝑉 with 𝐶2(𝑣) ≠⊥,
𝐶1(𝑣) = 𝐶2(𝑣); in other words, only uncolored vertices in 𝐶2 may receive a different color in 𝐶1.

For a bipartite graph 𝐻 = (𝐿, 𝑅, 𝐸), a matching 𝑀 is any collection of vertex-disjoint edges.

We say that a matching 𝑀 is an 𝐿-perfect matching iff it matches all vertices in 𝐿. We use the

following presentation of the well-known Hall’s marriage theorem [36].

FACT 3.1 (cf. [36]). Suppose 𝐻 = (𝐿, 𝑅, 𝐸) is a bipartite graph such that for any set 𝐴 ⊆ 𝐿, we
have |𝑁 (𝐴) | ⩾ |𝐴|; then 𝐻 has an 𝐿-perfect matching.

Concentration results. We use the following standard form of Chernoff bound in our proofs.

PROPOS IT ION 3.2 (Chernoff bound; c.f. [29]). Suppose 𝑋1, . . . , 𝑋𝑚 are𝑚 independent random

variables with range [0, 𝑏] each. Let 𝑋 :=
∑𝑚
𝑖=1 𝑋𝑖 and 𝜇𝐿 ⩽ E[𝑋] ⩽ 𝜇𝐻 . Then, for any 𝛿 > 0,

Pr (𝑋 > (1 + 𝛿) · 𝜇𝐻) ⩽ exp

(
− 𝛿2 · 𝜇𝐻
(3 + 𝛿) · 𝑏

)
and Pr (𝑋 < (1 − 𝛿) · 𝜇𝐿) ⩽ exp

(
− 𝛿2 · 𝜇𝐿
(2 + 𝛿) · 𝑏

)
.

Throughout, we say that an event happens “with high probability”, or “w.h.p.” for short,

to mean that it happens with probability at least 1 − 1/poly(𝑛) for some large polynomial (the

degree can be arbitrarily large without changing the asymptotic performance of the algorithms).

Moreover, we pick this degree to be large enough to allow us to do a union bound over the

polynomially many events considered and we do not explicitly mention this union bound each

time (but in certain places that we need to do a union bound over exponentially many events,

we will be more explicit).

3.1 A Sparse-Dense Decomposition

We use a simple corollary of known streaming sparse-dense decompositions in [7, 9], which

have their origin in the classical work in graph theory [59, 50] and have subsequently been

used extensively in distributed algorithms as well [41, 23, 55, 38].

The decomposition is based on partitioning the vertices into “(locally) sparse” vertices

with many non-edges among their neighbors and “almost-clique” vertices that are part of a

subgraph which is close to being a clique. We formally define these as follows.

DEF IN IT ION 3.3. For a graph 𝐺 = (𝑉, 𝐸) and parameter 𝜀 > 0, a vertex 𝑣 ∈ 𝑉 is 𝜀-sparse iff

there are at least 𝜀2 · Δ2/2 non-edges between the neighbors of 𝑣.

DEF IN IT ION 3.4. For a graph 𝐺 = (𝑉, 𝐸) and parameter 𝜀 > 0, a subset of vertices 𝐾 ⊆ 𝑉 is

an 𝜀-almost-clique iff 𝐾 has the following properties:
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𝑖). Size of 𝐾 satisfies (1 − 5𝜀) · Δ ⩽ |𝐾 | ⩽ (1 + 5𝜀) · Δ.
𝑖𝑖). Every vertex 𝑣 ∈ 𝐾 has ⩽ 10𝜀Δ non-neighbors inside 𝐾;

𝑖𝑖𝑖). Every vertex 𝑣 ∈ 𝐾 has ⩽ 10𝜀Δ neighbors outside 𝐾;

𝑖𝑣). Every vertex 𝑢 ∉ 𝐾 has ⩾ 10𝜀Δ non-neighbors inside 𝐾 .

We note that property 𝑖𝑣). of Definition 3.4 does not typically appear in the definition of

almost-cliques in prior work but it is crucial for our proofs. However, this property follows

immediately from the proof of [9]. We have the following sparse-dense decomposition.

PROPOS IT ION 3.5 (Sparse-Dense Decomposition; cf. [50, 7, 9]). There is a constant 𝜀0 > 0

such that the following holds. For any 0 < 𝜀 < 𝜀0, vertices of any graph 𝐺 = (𝑉, 𝐸) can be

partitioned into sparse vertices 𝑉sparse that are 𝜀-sparse (Definition 3.3) and dense vertices

partitioned into a collection of disjoint 𝜀-almost-cliques 𝐾1, . . . , 𝐾𝑘 (Definition 3.4).

Moreover, there is an absolute constant 𝛾 > 0 and an algorithm that given access to only the

following information about 𝐺, with high probability, computes this decomposition of 𝐺:

Random edge samples: A collection of sets 𝑁sample(𝑣) of (𝛾 · 𝜀−2 · log 𝑛) neighbors of every
vertex 𝑣 ∈ 𝑉 chosen independently and uniformly at random (with repetition);

Random vertex samples: A set SAMPLE of vertices wherein each 𝑣 ∈ 𝑉 is included inde-

pendently with probability (𝛾 · log 𝑛/Δ), together with all the neighborhood 𝑁 (𝑣) of each
sampled vertex 𝑣 ∈ SAMPLE.

We note that a dense vertex is not necessarily not 𝜀-sparse. Or in other words, the set

𝑉sparse may not include all the 𝜀-sparse vertices of 𝐺, as some 𝜀-sparse vertices may still be be

included in some 𝜀-almost-clique.

3.2 Sparse Recovery

We also use the following standard variant of sparse recovery in our proofs. We note that the

specific recovery matrix below, the Vandermonde matrix, is not necessary for our proofs (i.e.,

can be replaced with any other standard construction) and is only mentioned explicitly for

concreteness.

PROPOS IT ION 3.6 (cf. [28]). Let 𝑛, 𝑘 ⩾ 1 be arbitrary integers and 𝑝 ⩾ 𝑛 be a prime number.

Consider the (2𝑘 × 𝑛)-dimensional Vandermonde matrix over F𝑝:

ΦV :=



1 1 1 · · · 1

1 2 3 · · · 𝑛

1 22 32 · · · 𝑛2

...
...

...
. . .

...

1 22𝑘−1 32𝑘−1 · · · 𝑛2𝑘−1



, or for all 𝑖 ∈ [2𝑘] and 𝑗 ∈ [𝑛]: ΦV
𝑖, 𝑗 = 𝑗𝑖−1 mod 𝑝.
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Then, for any 𝑘-sparse vector 𝑥 ∈ F𝑛𝑝, one can uniquely recover 𝑥 from ΦV · 𝑥 in polynomial time.

The proof that a 𝑘-sparse vector 𝑥 can be recovered from ΦV · 𝑥 is simply the following: for

ΦV ·𝑥 = ΦV · 𝑦 for two 𝑘-sparse vectors 𝑥 ≠ 𝑦 (i.e. recovery is impossible), we need ΦV · (𝑥− 𝑦) = 0.

But then this means that the (at most) 2𝑘 columns in the matrix ΦV corresponding to the support

of 𝑥 − 𝑦 have a non-trivial kernel; the latter is a contradiction as any 2𝑘 columns of ΦV are

independent (polynomial time recovery also can be obtained via syndrome decoding from

coding theory).

In order to safely use sparse recovery (in case when we mistakenly run it on a non-sparse

vector), we also need the following standard result that allows us to test whether the output of

the recovery is indeed correct or not. This result is also standard and is proven for completeness.

PROPOS IT ION 3.7. Let 𝑛, 𝑡 ⩾ 1 be arbitrary integers and 𝑝 ⩾ 𝑛 be a prime number. Consider

the (𝑡 × 𝑛)-dimensional random matrix ΦR over F𝑝 chosen uniformly from all matrices in F𝑡×𝑛𝑝 .

Then, for any two different vectors 𝑥 ≠ 𝑦 ∈ F𝑛𝑝, we have,

Pr
ΦR

(
ΦR · 𝑥 = ΦR · 𝑦

)
= 𝑝−𝑡 .

PROOF . Let 𝑧 := 𝑥 − 𝑦 and note that there exists at least one index 𝑖 ∈ [𝑛] with 𝑧𝑖 ≠ 0. We

need to calculate the probability of ΦR · 𝑧 = 0. Let 𝑟 be any row of matrix ΦR. We have,

Pr
(
⟨𝑟, 𝑧⟩ = 0

)
= Pr

©­
«
𝑟𝑖 · 𝑧𝑖 =

∑︁
𝑗≠𝑖

𝑟 𝑗 · 𝑧 𝑗ª®¬
= 𝑝−1,

because 𝑟𝑖 · 𝑧𝑖 is going to be any element of the field F𝑝 with equal probability (as 𝑧𝑖 is non-zero)

and choice of 𝑟𝑖 is independent of
{
𝑟 𝑗 | 𝑗 ≠ 𝑖

}
. As all the 𝑡 rows of ΦR are independent, we get

the final bound immediately. ■

We can now combine Proposition 3.6 and Proposition 3.7 to have a “safe” recovery w.h.p.

as follows: For the (unknown) vector 𝑥 ∈ F𝑛𝑝, we compute ΦV · 𝑥 and ΦR · 𝑥 in parallel. We first

use ΦV · 𝑥 in Proposition 3.6 to recover a vector 𝑦 ∈ F𝑛𝑝; then, since we know ΦR, we can also

compute ΦR · 𝑦 and use Proposition 3.7 to check whether ΦR · 𝑦 = ΦR · 𝑥: if yes, we output 𝑦 and
otherwise output ‘fail’. It is easy to see that if 𝑥 is indeed 𝑘-sparse, this scheme always recovers

𝑥 correctly, and in any other case, w.h.p., it does not recover a wrong vector (but may output

‘fail’).

3.3 Palette Graphs, Matching View of Coloring, and Random Graph Theory

We also borrow a key technique from [7] for coloring almost-cliques in the decomposition. In

the following, we shall follow the presentation of [7] as specified in the notes by [1] which is

conceptually identical but notation-wise slightly different from the original presentation.
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We note that this subsection might be rather too technical and not intuitive enough at this

stage and can be skipped by the reader on the first read of the paper—we will get to these topics

only starting from Section 5.2 of our algorithm once we start with the final coloring step of our

algorithm, and by that time we have set the stage more for these definitions.

DEF IN IT ION 3.8. Let 𝐺 = (𝑉, 𝐸) be a graph, 𝑞 ⩾ 1 be an integer, and 𝐶 be a proper partial

𝑞-coloring of 𝐺. Let 𝐾 be any almost-clique in 𝐺. We define the base palette graph of 𝐾 and 𝐶

as the following bipartite graph GBase := (L,R, EBase):
Vertex-set: L consists of all vertices in 𝐾 that are uncolored by 𝐶 and R consists of all the

colors in [𝑞] that are not assigned to any vertex in 𝐾 . To avoid ambiguity, we use nodes to

refer to elements of L and R (as opposed to vertices), and call nodes in L as vertex-nodes,

and nodes in R as color-nodes.

Edge-set: there is an edge between any pair of vertex-node 𝑣 ∈ L and color-node 𝑐 ∈ R iff

𝑐 ∈ Avail𝐶 (𝑣), i.e., 𝑐 does not appear in the neighborhood of 𝑣 in the partial coloring 𝐶.

Figure 6 gives an illustration of this definition.

The base palette graph gives us a different graph theoretic way of looking at graph coloring.

Suppose we start with a proper partial 𝑞-coloring 𝐶 of 𝐺 and manage to find an L-perfect
matchingM in GBase;6 this will allow us to find an extension of 𝐶 that colors all vertices of 𝐾:

simply color each vertex 𝑣 ∈ 𝐾 with the color 𝑐 which corresponds to the matched pair ofM(𝑣)
(in GBase). This “matching view” of the coloring problem turns out to be quite helpful when

analyzing almost-cliques in [7], and we shall use and considerably generalize this idea in this

paper as well.

There is however an obvious obstacle in using GBase when coloring the graph: we may not

have access to all of GBase (when using a semi-streaming algorithm due to space limitations).

This motivates the next definition.

DEF IN IT ION 3.9. Let 𝐺 = (𝑉, 𝐸) be a graph, 𝑞 ⩾ 1 be an integer, and 𝐶 be a proper partial

𝑞-coloring of 𝐺. Let 𝐾 be any almost-clique in 𝐺 and S := {𝑆(𝑣) ⊆ [𝑞] | 𝑣 ∈ 𝐾} be a collection
of sampled colors.7 We define the sampled palette graph of 𝐾 , 𝐶, and S, denoted by GSample =
(L,R, ESample) as the spanning subgraph of the base palette graph GBase obtained by letting

ESample to be the edges (𝑣, 𝑐) from EBase such that 𝑐 ∈ 𝑆(𝑣).

Let us again fix a small almost-clique 𝐾 and the partial coloring 𝐶. Consider the sampled

palette graph GSample of 𝐾 , 𝐶, and S := {𝑆(𝑣) | 𝑣 ∈ 𝐾} for 𝑆(𝑣) of size, say, polylog (𝑛), chosen
randomly from [𝑞]. This is now a much sparser subgraph that is easier to maintain via a

6 Clearly, this will not be always possible, for instance when size of 𝐾 is larger than 𝑞—in general, one needs some
preprocessing steps before being able to apply this idea.

7 Think of 𝑆(𝑣) as being a small set of colors sampled for each vertex. For instance, in the context of palette sparsification
theorem of [7], 𝑆(𝑣) is the set of 𝑂(log 𝑛) colors sampled for each vertex.
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Figure 6. An illustration of base palette graphs (Definition 3.8) and sampled palette graphs

(Definition 3.9).

semi-streaming algorithm. Similar to before, if we find an L-perfect matching in GSample we will
be done. The challenge now, however, is to argue that not only GBase, but even GSample (that has
much fewer edges) contains such a matching (with high probability over the choice of sampled

lists).

This challenge can be addressed using “random graph theory type” arguments: we first

establish several key properties ofGBase itself that ensure that it has anL-perfectmatching; then,

we consider GSample which is a random subgraph of GBase and use simple tools in the analysis

of random graphs to prove that GSample also w.h.p. has an L-perfect matching.8 The following

lemma mentions one example of such a random graph theory type argument that played a

key role in [7] (we shall use this lemma and some news ones that we establish throughout our

proofs in this paper).

LEMMA 3.10 ([7]). Let 𝐻 = (𝐿, 𝑅, 𝐸) be any bipartite graph with the following properties:
(𝑖) 𝑚 := |𝐿| and 𝑚 ⩽ |𝑅| ⩽ 2𝑚;

(𝑖𝑖) The minimum degree of vertices in 𝐿 is at least (2/3) ·𝑚, i.e.,min𝑣∈𝐿 deg𝐻 (𝑣) ⩾ (2/3) ·𝑚;
(𝑖𝑖𝑖) For every set 𝐴 ⊆ 𝐿 of size |𝐴| ⩾ 𝑚/2, we have ∑

𝑣∈𝐴 deg𝐻 (𝑣) ⩾ ( |𝐴| · 𝑚) −𝑚/4.

For any 𝛿 ∈ (0, 1), a subgraph of 𝐻 obtained by sampling each edge independently with probability

at least ( 20
𝑚
· (log𝑚 + log (1/𝛿))) contains an 𝐿-perfect matching with probability at least 1 − 𝛿.

As discussed earlier, the way one applies Lemma 3.10 is by setting 𝐻 to be the base palette

graph of a given almost-clique, in which case, sampled palette graph has the same distribution

as specified in Lemma 3.10 and thus w.h.p. will have the desired matching. Also, while at this

stage the properties of 𝐻 in this lemma may sound rather arbitrary, as we shall see later in our

proofs, they appear naturally as properties of base graphs of (certain) almost-cliques. Finally,

we note that even though the proof of this lemma is rather technical and so we do not repeat

8 Note that if GBase is indeed a bipartite clique, then GSample would become a standard random graph. However, in general,
GBase can be “sufficiently far” from a bipartite clique, which requires a careful analysis of GSample beyond known results
in random graph theory. See Lemma 3.10 (and its proof in [7]) for an example.
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it here, it is not hard to verify that at least the graph 𝐻 itself has an 𝐿-perfect matching using

Hall’s theorem (Fact 3.1), given the conditions imposed on it in Lemma 3.10.

4. The Semi-Streaming Algorithm

In this section we describe the algorithm that collects necessary information for the Δ-coloring

from the stream. This will then be used in ourmain coloring procedure in Section 5 to prove The-

orem 1.1. The algorithm consists of the following three main parts:

The palette-sampling algorithm (Algorithm 1): An algorithm, quite similar to palette

sparsification approach, that samples polylog (𝑛) potential colors for each vertex and store
all possibly monochromatic edges during the stream.

The find-decomposition algorithm (Algorithm 2): An algorithm that recovers a sparse-

dense decomposition of the input graph as specified in Proposition 3.5 plus some extra

useful information about the decomposition.

The sparse-recovery algorithm (Algorithm 3): An algorithm that uses sparse recovery

techniques to extract further “helper structures” about the almost-cliques in the decompo-

sition of the previous step.

We elaborate on each of these algorithms and their guarantees in the following subsections.

But we shall emphasize that they all run in parallel in a single pass over the stream. To continue,

we start with setting up some parameters and key definitions.

4.1 Parameters, Classification of Almost-Cliques, and Helper Structures

We use the following parameters for the design of our algorithms.

𝛼 = 103 : a large constant used to simplify various concentration inequalities

𝛽 = 100 · log 𝑛 : used to bound the size of certain palettes in palette-sampling

𝜀 =
10−8

log 𝑛
: used as the parameter of sparse-dense decomposition of Proposition 3.5.

(1)

We also assume9 that Δ = Ω(log5 𝑛) as otherwise we can simply store the graph entirely

and solve the problem offline, using any classical algorithm for Brooks’ theorem.

Recall the notion of almost-cliques inDefinition 3.4 used in our sparse-dense decomposition.

In the coloring phase of the algorithm, we make further distinctions between almost-cliques

based on their sizes as defined below—the coloring algorithm will treat these classes separately

and our algorithms in this section provide further information about these different classes.

9 This is used in the proof of Lemma 5.2.
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Classificationof almost-cliques. Westartwith the following simple definition that partitions

almost-cliques based on their size.

DEF IN IT ION 4.1. Let 𝐾 be an almost-clique in the sparse-dense decomposition. We say that 𝐾

is small iff it has at most Δ vertices, critical iff it has exactly Δ + 1 vertices, and large otherwise.

We have the following basic observation based on this definition.

OBSERVAT ION 4.2. (𝑖) Any critical almost-clique contains at least one non-edge, and (𝑖𝑖) any
large almost-clique contains at least (Δ + 2)/2 non-edges.

PROOF . Property (𝑖) holds because there are no (Δ + 1) cliques in our input as otherwise the

graph will not be Δ-colorable, and (𝑖𝑖) holds because maximum degree of vertices is Δ and thus

every vertex has at least one non-edge in a large almost-clique. ■

A property that fundamentally affects how we color an almost-clique is the number of

non-edges inside it. Intuitively, if an almost-clique is very “clique-like”, that is, it has very few

non-edges inside, then it is more difficult to color. This motivates the following definition.

DEF IN IT ION 4.3. Let 𝐾 be an almost-clique in the sparse-dense decomposition. We say that 𝐾

is holey iff it has at least 107 · 𝜀Δ non-edges (or “holes”) inside it. Otherwise, 𝐾 is unholey.

Another key property that governs our ability to color an almost-clique is how it is con-

nected to the outside and in particular, what we can expect from a coloring of its neighbors

outside: can we see those colors as being “random” or are they “adversarial”? In the latter

case, can we recolor some to make them “less adversarial”? This motivates the following two

definitions.

DEF IN IT ION 4.4. Let 𝐾 be an almost-clique in the decomposition and 𝑣be any vertex outside 𝐾

that is neighbor to 𝐾 . We say that:

𝑣 is a friend of 𝐾 iff there are at least 2Δ/𝛽 edges from 𝑣 to 𝐾 , i.e., |𝑁 (𝑣) ∩ 𝐾 | ⩾ 2Δ/𝛽;
𝑣 is a stranger to 𝐾 iff there are less than Δ/𝛽 edges from 𝑣 to 𝐾 , i.e., |𝑁 (𝑣) ∩ 𝐾 | < Δ/𝛽;

We emphasize that there is a gap in the criteria between friend and stranger vertices, and

hence it is possible that a vertex is neither a friend of nor a stranger to an almost-clique. Based

on the notion of friend and stranger vertices, we can further classify almost-cliques into these

classes.

DEF IN IT ION 4.5. Let 𝐾 be an almost-clique in the decomposition. We say that 𝐾 is:

friendly iff 𝐾 has at least one neighbor outside 𝐾 that is a friend of 𝐾 .

lonely iff all neighbors of 𝐾 outside 𝐾 are strangers.
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social otherwise; that is, 𝐾 has at least one neighbor outside 𝐾 that is not a stranger, but at

the same time, it has no friends.

We approach coloring friendly and lonely almost-cliques quite differently, but both ap-

proaches can handle social almost-cliques. This will be crucial as we can distinguish between

friendly and lonely almost-cliques but our tester may classify social almost-cliques in either of

these groups.

Helper structures. As stated earlier, the problematic almost-cliques to Δ-color are unholey

ones. Some of these unholey almost-cliques can be handled by a “global” argument that reason

about the coloring of their neighbors outside. But for the rest, wemayneed to consider recoloring

some of their neighbors outside and/or using some extra information about the graph. In the

following, we define two “helper structures” that provide this extra information for our coloring

approach. Our algorithms in this section then show how we can find these subgraphs in the

stream.

The first structure we have handles unholey almost-cliques which are critical.

DEF IN IT ION 4.6. Let 𝐾 be an unholey almost-clique which is critical. We define a critical-

helper structure for 𝐾 as a tuple (𝑢, 𝑣, 𝑁 (𝑣)) with the following properties:
(𝑖) 𝑢, 𝑣 are vertices of the graph and are both in 𝐾;
(𝑖𝑖) 𝑢 and 𝑣 are non-neighbor to each other;
(𝑖𝑖𝑖) 𝑁 (𝑣) is the neighborhood of 𝑣 in the graph.

At a very high level, if we have a critical-helper structure of 𝐾 at hand, we can color 𝑢

and 𝑣 the same (the crucial knowledge of 𝑁 (𝑣) allows us to do this) which “buys” us an extra

color which will be sufficient for us to color the entire almost-clique also.

The second structure we have handles unholey almost-cliques which are friendly or even

social.

DEF IN IT ION 4.7. Let 𝐾 be an unholey almost-clique which is either friendly or social. We

define a friendly-helper structure for 𝐾 as a tuple (𝑢, 𝑣, 𝑤, 𝑁 (𝑣), 𝑁 (𝑤)) with the following

properties:

(𝑖) 𝑢, 𝑣, 𝑤 are vertices of the graph such that 𝑢 ∉ 𝐾 and is not a stranger to 𝐾 and 𝑣, 𝑤 ∈ 𝐾;
(𝑖𝑖) 𝑢 is neighbor to 𝑣 and non-neighbor to 𝑤, and 𝑣 and 𝑤 are themselves neighbors;

(𝑖𝑖𝑖) 𝑁 (𝑣) and 𝑁 (𝑤) are the neighborhoods of 𝑣 and 𝑤 in the graph, respectively.

Again, at a high level, if we have a friendly-helper structure of 𝐾 at hand, we will be able

to (re)color 𝑢 and 𝑤 the same, which “buys” us an extra color for 𝑣 and gives us the required

flexibility for coloring the entire almost-clique (the knowledge of 𝑁 (𝑣) and 𝑁 (𝑤) crucially



23 / 66 Brooks’ Theorem in Graph Streams

𝑢

𝑣

𝐾

𝑁 (𝑣)

(a) A critical helper: The vertices 𝑢 and 𝑣 can

receive the same color.

𝑣

𝑤

𝑢

𝐾

𝑁 (𝑣) \ 𝐾

𝑁 (𝑤) \ 𝐾

|𝑁 (𝑢) ∩ 𝐾 | ⩾ Δ
𝛽

(b) A friendly helper: The vertices 𝑢 and 𝑤

can receive the same color.

Figure 7. The two types of helper structures in Definition 4.6 and Definition 4.7.

allows us to choose the colors for these vertices without creating a conflict with their neighbors

in the graph).

4.2 Palette Sampling

One key component of our algorithm is a color sampling procedure in the same spirit as the

palette sparsification theorem of [7].

Input: Graph 𝐺 = (𝑉, 𝐸) with known vertices 𝑉 and streaming edges 𝐸.

(𝑖) For every vertex 𝑣 ∈ 𝑉, sample the following lists of colors:

𝐿1(𝑣): Sample a single color chosen uniformly at random from [Δ].
𝐿2(𝑣): Sample each color in [Δ] independently with probability 𝛽

Δ
.

𝐿3(𝑣): Sample each color in [Δ] independently with probability 100·𝛼·log 𝑛
𝜀2·Δ .

𝐿4(𝑣) := (𝐿∗4(𝑣) and 𝐿4,𝑖 (𝑣): 𝑖 ∈ [𝛽]): Independently, sample each color in [Δ]
with probability

𝛽

Δ
in 𝐿∗

4
(𝑣) and with 𝑞 := 1

100
√
𝜀Δ
in 𝐿4,𝑖 (𝑣) for 𝑖 ∈ [𝛽].

𝐿5(𝑣): Sample each color in [Δ] independently with probability 𝛽

Δ
.

𝐿6(𝑣) := (𝐿6,𝑖 (𝑣): 𝑖 ∈ [2𝛽]): Sample each color in [Δ] independently with
probability 𝛽2/Δ.

(𝑖𝑖) Let 𝐿(𝑣) := ∪ 𝑗∈[6]𝐿 𝑗 (𝑣). Store any edge (𝑢, 𝑣) if 𝐿(𝑢) ∩ 𝐿(𝑣) ≠ ∅ and let 𝐻 be the

subgraph of 𝐺 on these stored edges, referred to as the conflict graph.

Algorithm 1. The palette-sampling algorithm.

The main difference of this algorithm with that of [7] is that the number of sampled colors

per vertex is larger here (polylog (𝑛) as opposed to 𝑂(log 𝑛)) and that we explicitly partition
these samples into multiple lists instead of just one.
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At this point, the choices of the lists 𝐿1(𝑣) . . . 𝐿6(𝑣) may seem arbitrary:10 the (very) rough

idea is that we will use different lists at different stages of the coloring, and the sizes are chosen

to allow each stage to go throughwithout causing toomuch dependency for the next stage. In the

rest of this subsection, we will bound the space complexity of palette-sampling (Algorithm 1).

Recall that in the conflict graph 𝐺, we only keep an edge (𝑢, 𝑣) if 𝐿(𝑢) ∩ 𝐿(𝑣) ≠ ∅—which

makes sense, since if we restrict ourselves to coloring vertices with a color from their lists 𝐿(·),
then these are the only edges that can be monochromatic. We have the following (standard)

lemma.

LEMMA 4.8. With high probability, conflict graph 𝐻 in palette-sampling has 𝑂(𝑛 · log6 𝑛)
edges.

PROOF . First, note that for any vertex 𝑣 ∈ 𝑉 , 𝐿1(𝑣) has a single color. We want to establish that

the sizes of the other lists |𝐿2(𝑣) |, . . . , |𝐿6(𝑣) | are bounded by 𝑂(log3 𝑛) with high probability.
For 𝐿2(𝑣): We have that the expected size of 𝐿2(𝑣) is 𝛽

Δ
· Δ = 𝛽 by linearity of expectation.

Since each color is sampled into 𝐿2(𝑣) independently, we have via an application of Chernoff

bound (Proposition 3.2, with 𝛿 = 1) that:

Pr ( |𝐿2(𝑣) | > 2𝛽) ⩽ exp

(
−1

2 · 𝛽
3 + 1

)
⩽ 𝑛−25.

By union bound, we have that with high probability, |𝐿2(𝑣) | is bounded by 2𝛽 = 𝑂(log 𝑛) for all
𝑣 ∈ 𝑉 . We can apply the same argument on all lists with expected size Ω(log 𝑛) to show that

their sizes are within a constant of their respective expected values with high probability. In

particular, 𝐿3(𝑣), 𝐿∗4(𝑣), 𝐿5(𝑣), all have expected sizes that are Ω(log 𝑛) and also 𝑂(log3 𝑛) (see
Eq. (1)), and hence have size 𝑂(log3 𝑛) for each one with high probability. Further, since for

each 𝑖, 𝐿6,𝑖 (𝑣) has expected size 𝛽2, |𝐿6(𝑣) | is 𝑂(log3 𝑛) as well, with high probability.
This leaves us with the lists 𝐿4,𝑖 (𝑣): Note that their expected size is 1

100
√
𝜀
= 100

√︁
log 𝑛. Since

each color is sampled into 𝐿4,𝑖 (𝑣) independently, we can use a Chernoff boundwith 𝛿 = 10
√︁
log 𝑛

to get:

Pr
(��𝐿4,𝑖 (𝑣)�� > 1000 log 𝑛

)
⩽ exp

(
−
100 log 𝑛 · 100

√︁
log 𝑛

3 + 10
√︁
log 𝑛

)
⩽ 𝑛−100.

And hence w.h.p., |𝐿4(𝑣) | is 𝑂(log2 𝑛).
At this point, we have that there exist an absolute constant 𝛾 > 0 such that with high

probability, |𝐿(𝑣) | < 𝛾 · log3 𝑛 for all 𝑣 ∈ 𝑉 . We condition on this event for the rest of this proof.

Our strategy is to bound deg𝐻 (𝑢) for each 𝑢 ∈ 𝑉 . Recall that an edge {𝑢, 𝑣} is in 𝐻 if

𝐿(𝑣) samples a color from 𝐿(𝑢). An arbitrary color 𝑐 ∈ [Δ] is in 𝐿(𝑣) with probability at

10 And indeed redundant; technically speaking, we could have just sampled a single list of colors of proper size and
postponed the partitioning to the analysis (as in fact done in [7])—however, we find it more transparent to consider
these lists explicitly separate from each other due to various dependency issues that this explicitly avoids.



25 / 66 Brooks’ Theorem in Graph Streams

most 𝛾 · log3(𝑛)/Δ (since each of the lists 𝐿𝑖 (𝑣) is sampled uniformly). Then for any choice of

𝐿(𝑢) (of size at most 𝛾 · log3 𝑛), we have by the union bound:

Pr (𝐿(𝑢) ∩ 𝐿(𝑣) ≠ ∅) = Pr
©­
«

⋃
𝑧∈𝐿(𝑢)

𝑧 ∈ 𝐿(𝑣)ª®
¬
⩽

∑︁
𝑧∈𝐿(𝑢)

Pr (𝑧 ∈ 𝐿(𝑣)) = 𝛾2 log6(𝑛)
Δ

,

where the randomness is over the choice of 𝐿(𝑣).
Now we can bound the degree of an arbitrary vertex 𝑢 in the subgraph 𝐻 formed by the

edges stored in Algorithm 1. First, fix the list 𝐿(𝑢)—we already conditioned on the event that

it is small, but now we will “give up” the remaining randomness in the choice of 𝐿(𝑢), and
proceed by assuming an arbitrary choice. Let 𝑋𝑢,𝑣 be the indicator random variable that is 1 iff

the edge {𝑢, 𝑣} is in 𝐻 . Then the expected degree of 𝑢 is (𝛾2 · log6 𝑛) by the previous argument

and linearity of expectation. Finally, we observe that for 𝑣 ≠ 𝑤, 𝑋𝑢,𝑣 and 𝑋𝑢,𝑤 are independent,

and via another application of Chernoff bound (Proposition 3.2, with 𝛿 = 1), we have:

Pr
(
deg𝐻 (𝑢) ⩾ 2𝛾2 log6 𝑛

)
⩽ exp

(
−𝛾

2 log6 𝑛

4

)
.

Thus by union bound, each 𝑢 ∈ 𝑉 has degree 𝑂(log6 𝑛) in 𝐻 with high probability. This immedi-

ately implies the bound on the number of edges stored by Algorithm 1. ■

We can now bound the space used by palette-sampling. We have done all of the heavy-

lifting already, by bounding the number of edges stored in 𝐻 . The only new observation in the

following lemma is that edges and colors can be stored in 𝑂(log 𝑛) bits.

LEMMA 4.9. With high probability, palette-sampling uses 𝑂(𝑛 · log7 𝑛) bits of space.

PROOF . We showed in the proof of Lemma 4.8 that with high probability, |𝐿(𝑣) | = 𝑂(log3 𝑛)
for all 𝑣 ∈ 𝑉 . Since each color is from [Δ], it can be represented by ⌈log Δ⌉ bits, and hence storing
the lists 𝐿(𝑣) for all 𝑣 uses 𝑂(𝑛 log4 𝑛) bits.

Further, each edge can be represented by 2 · ⌈log 𝑛⌉ bits, so by invoking Lemma 4.8, we

have that we need 𝑂(𝑛 · log7 𝑛) bits to store the conflict graph 𝐻 . ■

4.3 Finding the Decomposition

We also work with the sparse-dense decomposition, but unlike [7], not only as an analytical tool

but in fact algorithmically (as will become evident from the next subsection). We now describe

an algorithm for finding the sparse-dense decomposition of Proposition 3.5. In particular, we

only need to provide the random edge and vertex samples required by the proposition. But,

in addition to the samples required for the decomposition, we will also collect independent

random edge samples to allow us to distinguish friend vertices from strangers (Definition 4.4).

Let us start by bounding the space used by find-decomposition and then present the

main properties of the algorithm for our purpose.
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Input: Graph 𝐺 = (𝑉, 𝐸) with known vertices 𝑉 and streaming edges 𝐸.

(𝑖) Let 𝛾 be the constant from the statement of Proposition 3.5.

(𝑖𝑖) Vertex samples: For each vertex 𝑣, sample 𝑣 into the set SAMPLE with probability
(𝛾 · log 𝑛/Δ) independently. During the stream, for each vertex 𝑣 in SAMPLE, store all
edges incident on 𝑣.

(𝑖𝑖𝑖) Edge samples: For each vertex 𝑣, use reservoir sampling on edges of 𝑣 to pick a sample

𝑁sample(𝑣) of size
(
𝛾 · 𝜀−2 · log 𝑛

)
from its neighborhood.

(𝑖𝑣) Neighbor samples: For each vertex 𝑣, store each neighbor of 𝑣 in 𝐼sample(𝑣) with
probability 𝛽2/Δ.

Algorithm 2. The find-decomposition algorithm.

LEMMA 4.10. With high probability, find-decomposition uses 𝑂(𝑛 log4 𝑛) bits of space.

PROOF . The set SAMPLE has size 𝛾 · 𝑛 log 𝑛/Δ in expectation, and since each vertex 𝑣 is in

SAMPLE independently, the size is at most (say) 5𝛾 · 𝑛 log 𝑛/Δ with high probability by Chernoff
bound (Proposition 3.2). For each 𝑣 ∈ SAMPLE, we use upto Δ · ⌈log 𝑛⌉ bits of space to store all
of its edges, and hence in total we use 𝑂(𝑛 log2 𝑛) bits to store SAMPLE and the neighborhood
of vertices in it.

The sets 𝑁sample(𝑣) have fixed sizes (𝛾 · 𝜀−2 · log 𝑛) each. Storing a neighbor takes ⌈log 𝑛⌉
bits, and hence storing all the sets 𝑁sample(𝑣) takes 𝑂(𝑛 log4 𝑛) bits of space.

The set 𝐼sample(𝑣) is of size at most 2𝛽2 with high probability (again, the proof is the same

as in Lemma 4.8). Hence storing 𝐼sample(𝑣) for all 𝑣 uses 𝑂(𝑛 log3 𝑛) bits of space. ■

We now establish the main properties we need from find-decomposition.

LEMMA 4.11. We can compute a sparse-dense decomposition (Proposition 3.5) of the input graph

𝐺 = (𝑉, 𝐸) with high probability using the samples collected by find-decomposition.

PROOF . The proof is immediate—we collect SAMPLE and 𝑁sample(𝑣) as needed by Proposi-
tion 3.5, so we can use the algorithm in the proposition to compute the decomposition. ■

We will also show that the independent random edge samples 𝐼sample(𝑣) are enough for a
tester that can distinguish friends from strangers for any almost-clique.

LEMMA 4.12. There exists an algorithm that given an almost-clique 𝐾 , a vertex 𝑣 ∉ 𝐾 , and the

random neighbor samples 𝐼sample(𝑣), with high probability can distinguish:
𝑣 has at most Δ/𝛽 neighbors in 𝐾 , that is, 𝑣 is a stranger to 𝐾;
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𝑣 has at least 2Δ/𝛽 neighbors in 𝐾 , that is, 𝑣 is a friend of 𝐾 .

The randomness in this lemma is only over the sample 𝐼sample(𝑣).

PROOF . Fix a vertex 𝑣 ∉ 𝐾 . Let 𝑢 be any neighbor of 𝑣 in 𝐾 . Then 𝑢 ∈ 𝐼sample(𝑣) with probability
𝛽2/Δ. Let 𝑋𝑢 ∈ {0, 1} be the indicator random variable which is 1 iff 𝑢 ∈ 𝐼sample(𝑣). Thus,
𝑋 :=

∑
𝑢∈𝑁 (𝑣)∩𝐾 𝑋𝑢 counts the size of intersection of 𝐼sample(𝑣) with 𝐾 . Firstly, we have

E[𝑋] =
∑︁

𝑢∈𝑁 (𝑣)∩𝐾

𝛽2

Δ
= |𝑁 (𝑣) ∩ 𝐾 | · 𝛽

2

Δ
.

Thus, by Definition 4.4, E[𝑋] is at least 2𝛽 if 𝑣 is a friend of 𝐾 and at most 𝛽 if 𝑣 is a stranger. Our

tester can simply compute the value of 𝑋 and output friend if 𝑋 is more than 3
2
𝛽, and stranger

otherwise. To prove the correctness, suppose that |𝑁 (𝑣) ∩ 𝐾 | < Δ/𝛽, i.e. 𝑣 is a stranger. Then,
by an application of Chernoff bound (Proposition 3.2 with 𝛿 = 1/2) we have:

Pr

(
𝑋 >

3

2
· 𝛽

)
< exp

(
− 1/4 · 𝛽
3 + 1/2

)
< exp

(
− 𝛽
16

)
< 𝑛−6,

by the choice of 𝛽 in Eq. (1). The other case can be proven symmetrically. Hence if 𝑣 is a stranger

(resp. friend), our tester also outputs stranger (resp. friend) with high probability. ■

An immediate consequence of Lemma 4.12 is that we have a tester that can distinguish friendly

almost-cliques from lonely almost-cliques (Definition 4.5).

LEMMA 4.13. There exists an algorithm that given an almost-clique 𝐾 , and to the random

neighbor samples 𝐼sample(𝑣) for every 𝑣 ∈ 𝑉 , with high probability can distinguish:
𝐾 is a friendly almost-clique;

𝐾 is a lonely almost-clique.

The randomness in this lemma is only over the samples
{
𝐼sample(𝑣) | 𝑣 ∈ 𝑉

}
.

PROOF . For each vertex 𝑣 ∈ 𝑉 \ 𝐾 , run the tester from Lemma 4.12. If 𝐾 has even one friend,

then that friend is distinguished by the tester in Lemma 4.12 as a friend, and we can return

that 𝐾 is friendly. Otherwise, if 𝐾 is lonely, it means that every vertex 𝑣 we tested for 𝐾 will be

considered stranger also with high probability and thus we can correctly mark 𝐾 as lonely. ■

4.4 Sparse Recovery for Almost-Cliques

Finally, we come to the most novel part of this section. Recall that as discussed earlier, palette

sparsification (and thus our own palette-sampling) is doomed to fail for Δ-coloring. To bypass

this, we rely on the helper structures defined in Definitions 4.6 and 4.7, which, combined with

the palette sparsification-type approach of palette-sampling, allow us to color the graph.

The first challenge here is that we obviously cannot afford to find the neighborhood of

every vertex, and we do not know during the stream which vertices will satisfy the properties
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we need for these structures. We step around this by (crucially) using randomization to sample

the “right” vertices. The second and main challenge is that for some almost-cliques (say, a

critical almost-clique with only one non-edge), we may actually have to recover neighborhood

of all vertices in the almost-clique before finding the required helper structure; but doing this

naively requires too much space. Instead, we use the sparse recovery matrices of Section 3.2,

in conjunction with the decomposition found by find-decomposition, to recover these parts

much more efficiently.

Input: Graph 𝐺 = (𝑉, 𝐸) with known vertices 𝑉 and streaming edges 𝐸.

For every 𝑟 ∈ 𝑅 = {2𝑖 | 0 ⩽ 𝑖 ⩽ ⌈log Δ⌉}:11
(𝑖) Sample each vertex 𝑣 ∈ 𝑉 in a set 𝑉𝑟 independently with probabilitymin{1, 𝛽

𝜀·𝑟 }.
(𝑖𝑖) Construct the (2𝑟 × 𝑛) Vandermonde matrix ΦV

𝑟 (see Proposition 3.6) and sample an

(𝛼 × 𝑛) random matrix ΦR
𝑟 (see Proposition 3.7) over the field F𝑝 where 𝑝 is a fixed

prime larger than 𝑛 and smaller than, say, 𝑛2, and 𝛼 is the parameter in Eq. (1).

(𝑖𝑖𝑖) For each vertex 𝑣 ∈ 𝑉𝑟, define a vector 𝑦(𝑣) ∈ F 2𝑟𝑝 and 𝑧(𝑣) ∈ F 𝛼𝑝 initially set to 0. For

any incoming edge {𝑢, 𝑣} in the stream, update

𝑦(𝑣) ← 𝑦(𝑣) +ΦV
𝑟 · e𝑢 and 𝑧(𝑣) ← 𝑧(𝑣) +ΦR

𝑟 · e𝑢,

where e𝑢 is the 𝑛-dimensional vector which is 1 on coordinate 𝑢 and 0 everywhere

else.

Algorithm 3. The sparse-recovery algorithm.

Let us start by bounding the space of this algorithm.

LEMMA 4.14. sparse-recovery uses 𝑂(𝑛 log4 𝑛) bits of space.

PROOF . For each 𝑟 ∈ 𝑅, each 𝑣 ∈ 𝑉 is sampled into 𝑉𝑟 with probability (at most)
𝛽

𝜀𝑟
, which

means the expected size of 𝑉𝑟 is (at most)
𝛽𝑛

𝜀𝑟
. Since each sample is independent, we have by

Chernoff bound (Proposition 3.2) that,

Pr

(
|𝑉𝑟 | > 2 · 𝛽𝑛

𝜀𝑟

)
⩽ exp

(
− 𝛽𝑛
4𝜀𝑟

)
⩽ exp

(
−100𝑛 log 𝑛

4𝜀 · 2Δ

)
⩽ 𝑛25/2·𝜀 ≪ 1/poly(𝑛),

by the choice of 𝜀 = Θ(log−1(𝑛)) in Eq. (1).

Combining with the union bound over 𝑂(log Δ) choices of 𝑟 ∈ 𝑅, we have that each 𝑉𝑟 is
of size at most

2𝛽𝑛

𝜀𝑟
with high probability. For each 𝑣 ∈ 𝑉𝑟, Algorithm 3 stores two vectors 𝑦(𝑣)

and 𝑧(𝑣) that require 𝑂(𝑟 · log 𝑝) and 𝑂(𝛼 · log 𝑝) bits, respectively, where 𝑝 is the order of the
field F𝑝. This, together with the bound on 𝑉𝑟 and since 𝛼 = Θ(1) by Eq. (1) means that the total
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number of bits needed to store these vectors is 𝑂(𝜀−1 · 𝛽𝑛 log 𝑝 · log Δ) = 𝑂(𝑛 log4 𝑛) bits (where
we used the fact that both 𝜀−1 and log 𝑝 are bounded by 𝑂(log 𝑛)).

Finally, the algorithm does not need to explicitly store the Vandermonde matrix for ΦV
𝑟 (as

each of its entries can be easily generated in 𝑂(log 𝑝) space at any point) and can store each

random matrix ΦV
𝑟 in 𝑂(𝛼 · 𝑛 log 𝑝) = 𝑂(𝑛 log 𝑛) bits as 𝛼 = Θ(1) and log 𝑝 = 𝑂(log 𝑛). Thus, for

all 𝑟 ∈ 𝑅, we also need to store 𝑂(𝑛 log2 𝑛) bits to store the random matrices. Overall, the total

space of the algorithm is still 𝑂(𝑛 log4 (𝑛)), concluding the proof. ■

Wenow switch to proving themain properties of sparse-recovery for our purpose. Before

getting into details however, we state a standard observation about linear transformations

(namely, ΦV
𝑟 and Φ

R
𝑟 in sparse-recovery) over a stream of updates.

OBSERVAT ION 4.15. Fix any 𝑟 ∈ 𝑅 and 𝑣 ∈ 𝑉𝑟 in sparse-recovery. At the end of the stream,

𝑦(𝑣) = ΦV
𝑟 · 𝜒(𝑁 (𝑣)) and 𝑧(𝑣) = ΦR

𝑟 · 𝜒(𝑁 (𝑣)),

where 𝜒(𝑁 (𝑣)) ∈ {0, 1}𝑉 is the characteristic vector of 𝑁 (𝑣).

PROOF . We only prove the equation for 𝑦(𝑣); the one for 𝑧(𝑣) follows similarly. Initially, we

set 𝑦(𝑣) = 0. Then, during the stream, whenever we see the edge {𝑢, 𝑣} for each 𝑢 ∈ 𝑁 (𝑣), we
update 𝑦(𝑣) by adding ΦV

𝑟 · e𝑢 to it. As ΦV
𝑟 is a linear transformation, we have,

𝑦(𝑣) =
∑︁

𝑢∈𝑁 (𝑣)
ΦV
𝑟 · e𝑢 = ΦV

𝑟 ·
©­
«

∑︁
𝑢∈𝑁 (𝑣)

e𝑢
ª®¬
= ΦV

𝑟 · 𝜒(𝑁 (𝑣)),

concluding the proof. ■

Recall from Proposition 3.6 that given ΦV
𝑟 ·𝑥 for an 𝑟-sparse vector 𝑥 ∈ F𝑛𝑝, we can recover 𝑥

in polynomial time, and by Proposition 3.7, we can test our recovered vector to make sure

with high probability that it is indeed equal to 𝑥. We use this idea combined with the fact that

at the end of the stream we know a sparse-dense decomposition of the graph to recover one

helper structure for each almost-clique (that needs one). We start with the key part that handles

the critical-helper structures (Definition 4.6). There will also be a simpler part that handles

friendly-helper structures almost-cliques (Definition 4.7).

Finding Critical-Helper Structures. We start by recovering a critical-helper structure for

any critical almost-clique as defined in Definition 4.6. Let 𝐾 be a critical almost-clique and 𝑣 be

a vertex in 𝐾 . Define the vector 𝑥 (𝑣) := 𝜒(𝑁 (𝑣)) − 𝜒(𝐾). For any coordinate 𝑢 ∈ [𝑛] in 𝑥 (𝑣),

𝑥 (𝑣)𝑢 =




0 if 𝑢 ∉ 𝑁 (𝑣) ∪ 𝐾 or 𝑢 ∈ 𝑁 (𝑣) ∩ 𝐾
1 if 𝑢 ∈ 𝑁 (𝑣) \ 𝐾
𝑝 − 1 if 𝑢 ∈ 𝐾 \ 𝑁 (𝑣)

, (2)
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𝑤∗

...

𝑣

𝐾

|𝑁 (𝑣) \ 𝐾 | ⩽ deg𝐾 (𝑤∗) ≈ 𝑟

|𝐾 \ 𝑁 (𝑣) | ⩽ deg𝐾 (𝑤∗) ≈ 𝑟

Figure 8. Finding a

critical-helper: With high

probability, there is a vertex

𝑣 ∈ 𝑁𝐾 (𝑤∗) which is sampled
in 𝑉𝑟.

as we do the computation over F𝑝. Notice that since 𝑣 belongs to the almost-clique 𝐾 , by Defini-

tion 3.4, size of both 𝑁 (𝑣) \ 𝐾 and 𝐾 \ 𝑁 (𝑣) is at most 10𝜀Δ. Thus, 𝑥 (𝑣) is already considerably
sparser than 𝜒(𝑁 (𝑣)). In the following, we are going to take this idea to the next level to recover
a critical-helper structure for 𝐾 using the vectors computed by sparse-recovery.

LEMMA 4.16. There exists an algorithm that given a critical almost-clique 𝐾 (Definition 4.1),

with high probability, finds a critical-helper structure (𝑣, 𝑢, 𝑁 (𝑣)) of 𝐾 (Definition 4.6) using the

information gathered by sparse-recovery.

PROOF . (Sidefigure 8 gives an illustration that might be helpful to refer to during the proof.)

For any vertex 𝑤 ∈ 𝐾 , define:
𝑁𝐾 (𝑤) := 𝐾 \ 𝑁 (𝑤): as the non-edge neighborhood of 𝑤 in 𝐾 and deg𝐾 (𝑤) =

��𝑁𝐾 (𝑤)
�� as

the non-edge degree of 𝑤.

Define 𝑤∗ as the vertex that maximizes this non-edge degree, i.e., 𝑤∗ = argmax𝑤∈𝐾 deg𝐾 (𝑤).
By Observation 4.2, we have deg𝐾 (𝑤∗) ⩾ 1. We first have the following simple claim that will

be crucial in finding the neighborhood of at least one vertex in 𝑁𝐾 (𝑤∗) using sparse recovery.

CLAIM 4.17. Let 𝑟 ∈ 𝑅 be the smallest integer such that 𝑟 ⩾ 2 · deg𝐾 (𝑤∗). Then, for every
𝑤 ∈ 𝑁𝐾 (𝑤∗), the vector 𝑥 (𝑤) := 𝜒(𝑁 (𝑤)) − 𝜒(𝐾) is 𝑟-sparse.

Proof. Fix any 𝑤 ∈ 𝑁𝐾 (𝑤∗). By the definition of 𝑤∗, we have deg𝐾 (𝑤) ⩽ deg𝐾 (𝑤∗) ⩽ 𝑟/2. At
the same time, since 𝐾 is a critical almost-clique and thus has size Δ + 1, this means that the

number of neighbors of 𝑤 outside 𝐾 is also at most deg𝐾 (𝑤∗) ⩽ 𝑟/2. By Eq. (2), this means that

𝑥 (𝑤) has at most 𝑟 non-zero entries. ■

Consider the parameter 𝑟 of Claim 4.17. We have that deg𝐾 (𝑤∗) ⩾ 𝑟/4 as elements of 𝑅 are

within a factor two of each other and by the value of 𝑟. Given that each vertex is chosen in 𝑟

with probability min{1, 𝛽/(𝜀 · 𝑟)}, we have,

Pr
(
𝑉𝑟 ∩ 𝑁𝐾 (𝑤∗) = ∅

)
⩽

(
1 − 𝛽

𝜀 · 𝑟

)𝑟/4
⩽ exp

(
− 𝛽
4𝜀

)
≪ 1/poly(𝑛),
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by the choice of 𝛽 = Θ(log 𝑛) and 𝜀 = Θ(log−1(𝑛)) in Eq. (1). In the following, we condition on

the high probability event that a vertex 𝑣 ∈ 𝑁𝐾 (𝑤∗) is sampled in 𝑉𝑟. For now, let us assume

that we know the identity of this vertex 𝑣 in 𝑉𝑟.

Firstly, by Claim 4.17, we have that the vector 𝑥 (𝑣) is 𝑟-sparse. Secondly, since 𝑣 ∈ 𝑉𝑟,
sparse-recovery has computed 𝑦(𝑣) = ΦV

𝑟 · 𝜒(𝑁 (𝑣)) by Observation 4.15 and since we are

given 𝐾 , we can also compute ΦV
𝑟 · 𝜒(𝐾). Thus, by linearity, we can compute ΦV

𝑟 · 𝑥 (𝑣) this way.
Finally, since 𝑥 (𝑣) is 𝑟-sparse, by Proposition 3.6, we can actually recover 𝑥 (𝑣) fromΦV

𝑟 ·𝑥 (𝑣). But
again, since we know 𝜒(𝐾), this gives us 𝜒(𝑁 (𝑣)) and in turn 𝑁 (𝑣) as well. Thus, the algorithm
can return the critical-helper structure (𝑣, 𝑢, 𝑁 (𝑣)) for 𝑢 = 𝑤∗ which satisfies all the properties

(as (𝑣, 𝑤∗) is a non-edge).
It only remains the remove the assumption on the knowledge of identity of 𝑣 in 𝑉𝑟 (and

possibly the value of 𝑟 itself). For this, we simply iterate over all vertices𝑤 ∈ 𝐾 and for each one

run ΦV
𝑟 · 𝑥 (𝑤) and ΦR

𝑟 · 𝑥 (𝑤) as described above for all values of 𝑟 ∈ 𝑅 (by using 𝑧(𝑣) in place of

𝑦(𝑣) when computing the latter). As outlined in Section 3.2, we can now apply Proposition 3.7 to

the outcome of each sparse recovery to get thatwith high probability, any vector 𝜒(𝑁 (𝑤)) thatwe
recover is correct. Since we know that the vertex 𝑣 will not output ’fail’, we are guaranteed that

with high probability we will return a valid critical-helper structure, concluding the proof. ■

Finding Friendly-Helper Structures. We now switch to finding a friendly-helper structure

of Definition 4.7 for each almost-clique 𝐾 that is unholey and not lonely.

LEMMA 4.18. There exists an algorithm that given an unholey and not lonely almost-clique 𝐾

(Definition 4.1) and a vertex 𝑢 ∉ 𝐾 which is not a stranger to 𝐾 , with high probability, finds a

friendly-helper structure (𝑢, 𝑣, 𝑤, 𝑁 (𝑣), 𝑁 (𝑤)) of 𝐾 (Definition 4.7) using the information gathered

by sparse-recovery.

PROOF . Define 𝑟max = max𝑟∈𝑅 𝑟. We have the following straightforward claim.12

CLAIM 4.19. For any vertex 𝑣 ∈ 𝑉 , with probability at least 𝛽

2𝜀·Δ , we can recover the set 𝑁 (𝑣).

Proof. Note that 𝑟max = 2⌈log Δ⌉ which is between Δ and 2Δ. Recall that each 𝑣 is sampled into

the set𝑉𝑟max
with probability

log 𝑛

𝜀·𝑟max
, which is at least

log 𝑛

2𝜀·Δ . And then note that for each vertex 𝑣 in

𝑉𝑟max
, sparse-recovery stores ΦV

𝑟max
· 𝜒(𝑁 (𝑣)) by Observation 4.15. By Proposition 3.6, we can

recover 𝑁 (𝑣) from ΦV
𝑟max
· 𝜒(𝑁 (𝑣)) for every 𝑣 ∈ 𝑉𝑟max

, concluding the proof of the claim. ■

We prove Lemma 4.18 using this claim. Firstly, by property 𝑖𝑣). of Definition 3.4, there are

also at least 10𝜀Δ vertices 𝑤 in 𝐾 that are not neighbors of 𝑢. By Claim 4.19, we recover 𝑁 (𝑤)

12 A careful reader may notice that in this claim, we actually do not really need sparse recovery; we could have simply
stored all edges of vertices sampled in 𝑉𝑟max

explicitly during the stream. However, given that we indeed need sparse
recovery for all other ranges of 𝑉𝑟 for 𝑟 ∈ 𝑅 in the previous part, we use a unified approach for 𝑉𝑟max

as well.
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for any such choice of 𝑤 with probability at least 𝛽/(2𝜀 · Δ). As such, we have,

Pr (𝑁 (𝑤) is not recovered for any 𝑤 ∈ 𝐾 \ 𝑁 (𝑢)) ⩽
(
1 − 𝛽

2𝜀 · Δ

)𝜀·Δ
⩽ exp

(
−𝛽
2

)
⩽ 𝑛−50,

by the choice of 𝛽 = 100 log 𝑛 in Eq. (1). In the following, we further condition on the high

probability event that for some 𝑤 ∈ 𝐾 \ 𝑁 (𝑢), we have recovered 𝑁 (𝑤). Similar to the proof

of Lemma 4.16, let us assume that we know the identity of 𝑤.

Now consider 𝑁 (𝑤) ∩ 𝑁 (𝑢) ∩ 𝐾; since |𝑁 (𝑢) ∩ 𝐾 | ⩾ Δ/𝛽 as 𝑢 is not a stranger to 𝐾

(Definition 4.4), and |𝐾 \ 𝑁 (𝑤) | ⩽ 10𝜀Δ by property 𝑖𝑖). of Definition 3.4, we have that

|𝑁 (𝑤) ∩ 𝑁 (𝑢) ∩ 𝐾 | ⩾ Δ/𝛽 − 10𝜀Δ > Δ/2𝛽

by the choice of parameters 𝜀 < 10−6 · 1/𝛽 in Eq. (1). By the same argument as above, we have,

Pr (𝑁 (𝑣) not recovered for any 𝑣 ∈ 𝑁 (𝑤) ∩ 𝑁 (𝑢) ∩ 𝐾) ⩽
(
1 − 𝛽

2𝜀 · Δ

)Δ/2𝛽
⩽ exp

(
− 1

2𝜀

)
⩽ 𝑛−100,

by the choice of 𝜀 in Eq. (1). We now have: 𝑢 is a vertex which is not a stranger to 𝐾 , 𝑤 is a

non-neighbor of 𝑢 in 𝐾 and we have 𝑁 (𝑤), and 𝑣 is a neighbor of both 𝑢 and 𝑤 and we have

𝑁 (𝑣). Thus, we can return (𝑢, 𝑣, 𝑤, 𝑁 (𝑣), 𝑁 (𝑤)) as a friendly-helper structure of 𝐾 .
Finally, removing the assumption on the knowledge of 𝑣 and 𝑤 is exactly as in the proof

of Lemma 4.16: we simply go over all choices of vertices in 𝐾 that we have sampled in𝑉𝑟max
and

check whether any pairs of them satisfy the requirements of the structure or not—by the above

argument, with high probability, we will find a pair. ■

4.5 Listing the Information Collected by the Algorithm

For the ease of reference in the analysis, we now take stock of what all our algorithms collected

about the graph from the stream. In particular, with high probability, we have the following

information at the end of the stream:

1. A list of sampled colors 𝐿(𝑣) for every vertex 𝑣 ∈ 𝑉 as specified in Algorithm 1.

Proof: Follows from the definition of palette-sampling in Algorithm 1.

2. The conflict graph 𝐻 consisting of every edge (𝑢, 𝑣) in the graph where 𝐿(𝑢) ∩ 𝐿(𝑣) ≠ ∅.
Proof : Follows from the definition of palette-sampling in Algorithm 1.

3. A decomposition of𝐺 into sparse vertices and almost-cliques as specified in Proposition 3.5.

Proof: Follows from Lemma 4.11 for find-decomposition in Algorithm 2.

4. A collection Kfriendly of almost-cliques that contains all friendly almost-cliques and no

lonely almost-clique, and for each 𝐾 ∈ Kfriendly, one vertex 𝑢 ∉ 𝐾 which is not a stranger

to 𝐾 .

Proof: Follows from Part (3.) and Lemma 4.13 for find-decomposition in Algorithm 2.
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5. A collectionKlonely of almost-cliques that contains all lonely almost-cliques and no friendly

almost-clique. Moreover,Kfriendly ⊔Klonely partition all almost-cliques, which also implies

that every social almost-clique belongs to exactly one of these two collections.

Proof: Follows from Parts (3.), (4.), and Lemma 4.13 for find-decomposition in Algo-

rithm 2.

6. A collection ofKcritical of critical almost-cliques and for each 𝐾 ∈ Kcritical, a critical-helper

structure (𝑢, 𝑣, 𝑁 (𝑣)) of Definition 4.6.

Proof: Follows from Part (3.) and Lemma 4.16 for sparse-recovery in Algorithm 3.

7. A collection of friendly-helper structures {(𝑢, 𝑣, 𝑤, 𝑁 (𝑣), 𝑁 (𝑤))} of Definition 4.7, one

for each 𝐾 ∈ Kfriendly such that 𝑢 is the vertex specified for 𝐾 ∈ Kfriendly in Part (4.).

Proof: Follows from Part (4.) and Lemma 4.18 for sparse-recovery in Algorithm 3.

8. The recovery graph 𝐻+ consisting of all edges in the critical-helper structures of Part (6.)

and in the friendly-helper structures of Part (7.).

Proof: Follows from Parts (6.) and (7.).

We shall note that at this point, we covered all the process that is done by our algorithm

during the stream and what remains is to prove this information is useful, i.e., we can indeed

color the graph in the post-processing step using this information. This is the content of the next

section.

Before moving on, we should note that, with high probability, the space complexity of

(𝑖) palette-sampling is 𝑂(𝑛 log7 𝑛) bits by Lemma 4.9, (𝑖𝑖) find-decomposition is 𝑂(𝑛 log4 𝑛)
bits by Lemma 4.10, and (𝑖𝑖𝑖) sparse-recovery is 𝑂(𝑛 log4 𝑛) by Lemma 4.14. Thus, our entire

streaming algorithm takes 𝑂(𝑛 log7 𝑛) space. This adhere to the space complexity promised

in Theorem 1.1.

REMARK 4.20. As stated, the space complexity of our algorithm is bounded with high prob-

ability but not in the worst-case. This is standard to fix; simply run the algorithm as it is and

whenever it attempted to use more than, say, 100 times, the space guaranteed by its expectation,

terminate it and “charge” the failure probability to the error.

REMARK 4.21 (Removing Prior Knowledge of Δ). We observe that this semi-streaming algo-

rithm does not really need to know Δ before the stream begins. In particular, we can run𝑂(log 𝑛)
independent copies of the algorithm, each with a difference “guess” of Δ ∈

{
2𝑘 | 2𝑘 ⩽ 2𝑛

}
. At

the same time, we can compute Δ at the end of the stream by simply counting for each vertex

the number of edges incident to it in 𝑂(𝑛 log 𝑛) space.
An overestimate of Δ does not hurt us in terms of space usage, but an underestimate can

(for example, if we guess Δ = 1, and the input includes a clique on 𝑛 − 1 vertices, the algorithm
stores the entire graph). Hence, if at any point (for any guess Δ), if a vertex has degree larger

than 2Δ, we stop that run of the algorithm. Now, at the end of the stream we will have:

The actual maximum degree Δ.
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The output of the algorithm for Δ′ and 2Δ′ such that Δ′ ⩽ Δ ⩽ 2Δ′.

But now we can get the desired samples by “resampling” the outputs from Algorithms 1 to 3.

In particular, for each vertex 𝑣 ∈ 𝑉 , and each color 𝑐 ∈ 𝐿(𝑣) from the run of Algorithm 1 with

guess Δ′, we keep 𝑐 with probability Δ′/Δ. Since we are only dropping colors from the palettes,

this process only removes some edges from the conflict graph. The samples of Algorithm 2

are adapted in a similar manner. Finally, the set of sampling rates 𝑅 in Algorithm 3 for 2Δ′ is a

superset of that for a (hypothetical) run with the correct guess of Δ, so we can just ignore the

vectors corresponding to unused sample rates.13

Hence at the end of the stream we know Δ and can adapt the samples as required, so the

coloring procedure in the next section can proceed as normal.

5. The Coloring Procedure

We now describe the coloring procedure that we use to find a Δ-coloring of the graph. This

procedure is agnostic to the input graph, in the sense that we run it after processing the stream,

and it only uses the information we gathered in the previous section, listed in Section 4.5

(throughout, we condition on the high probability event that the correct information is collected

from the stream).

The general framework in our coloring procedure is the following: We will maintain a

proper partial Δ-coloring 𝐶 : 𝑉 → [Δ] ∪ {⊥} (as defined in Section 3). We then go through

different phases in the coloring algorithm and each phase updates 𝐶 by coloring certain subsets

of vertices, say, (a subset of) sparse vertices, or certain almost-cliques. These new colorings

are typically going to be extensions of 𝐶 but in certain cases, we crucially have to go back and

“edit” this partial coloring, i.e., come up with a new proper partial coloring which is no longer

an extension the current one. Eventually, we will color all the vertices of the graph and end up

with a proper Δ-coloring.

In the following, we present the order of the phases of our coloring procedure and the

task we expect from each one. Each phase shall use a different list of colors 𝐿1(·), · · · , 𝐿6(·)
computed by palette-sampling (Algorithm 1) when updating the partial coloring. We also note

that the order of running these phases is crucial as some of them present further guarantees for

subsequent phases, and some of them need to assume certain properties of the current partial

coloring which will no longer remain true if we change the order of phases.

On the high level, the coloring procedure is as follows (Table 1 give a summary of which

combination of almost-cliques are handled in which phase).

Phase 1 – One-Shot Coloring (Section 5.1): We use the single color sampled in 𝐿1(𝑣) for
every vertex 𝑣 ∈ 𝑉 to color a large fraction of vertices. The effect of this coloring is that it

13 Technically, there is no need to even run Algorithm 3 separately for different guesses of Δ.
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“sparsifies” the graph for sparse vertices. We note that this part is standard and appears in

many other coloring results starting from, to our knowledge, [51]; see [7] for more details.

Phase 2 – Lonely (or Social) Small Almost-Cliques (Section 5.2): Recall that from Part (5.)

of Section 4.5, we have a list of Klonely of almost-cliques that contains all lonely almost-

cliques and potentially some social ones. We can easily also identify which of these

almost-cliques are small (Definition 4.1) based on their size.

We will color all these small almost-cliques in Klonely by colors in 𝐿2(·). This requires a
novel argument that uses the facts that: (𝑖) these almost- cliques are “loosely connected” to

outside (no “high degree” neighbor, formally friend vertices, in their neighborhood), and

(𝑖𝑖) the coloring outside only used a limited set of colors, namely, is sampled from 𝐿1(·)
and 𝐿2(·) so far and is thus not “too adversarial” (recall the discussion we had in Lesson 2.3
regarding necessity of such arguments). Moreover, the coloring in this phase is an extension

of the last one.

Phase 3 – Sparse Vertices (Section 5.3):We then conclude the coloring of all sparse vertices

using the sampled lists 𝐿3(𝑣) for every sparse vertex 𝑣 ∈ 𝑉 (by Part (3.) of Section 4.5, we

know these vertices). This part is also a standard argument as a continuation of Phase 1.

But to apply this standard argument, we use the fact that even though we interleaved the

standard approach with Phase 2 in the middle, since that coloring was only an extension

of Phase 1 (meaning it did not recolor any vertex colored in Phase 1), the argument still

easily goes through.

The coloring in this phase is also an extension of the last one. However, now that all sparse

vertices are colored, we go ahead and remove the color of any vertex which is not sparse

and nor is colored by Phase 2 (these are remnants of one-shot coloring in Phase 1 and we

no longer need them now that all sparse vertices are colored). This is just to simplify the

analysis for later parts.

It is worthmentioning that this interleaving of Phase 2 in themiddle of Phase 1 and 3 is cru-

cial for our arguments (this is the chicken-and-egg problem mentioned in Section 2.2): the

lists 𝐿3(·) used in Phase 3 are much larger than the rest and thus the “not-too-adversarial”

property of coloring of outside vertices in Phase 2 will no longer be guaranteed had we

changed the order of Phase 2 and 3; at the same time, changing the order of Phase 1 and 2

will also destroy the “sparsification” guarantee provided by Phase 1 for sparse vertices.

Phase 4 – Holey Almost-Cliques (Section 5.4): The next step is to color holey almost-cliques

(Definition 4.3), i.e., the ones with Ω(𝜀Δ) non-edges inside them, using colors sampled in

𝐿4(·). We note that we actually do not knowwhich almost-cliques are holey andwhich ones

are not.14 Instead, we simply run this phase over all remaining almost-cliques and argue

that all the holey ones (and possibly some other ones) will get fully colored as desired.

14 Technically, we could have designed a semi-streaming algorithm that also recovers this information about the
decomposition (at least approximately). However, as we explain next, this is not needed.
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Type
Holey Unholey

Friendly Social Lonely Friendly Social Lonely

Small Phase 4 Phases 2 or 4 Phase 2 Phase 6 Phases 2 or 6 Phase 2

Critical Phase 4 Phase 4 Phase 4 Phase 5 Phase 5 Phase 5

Large Phase 4 Phase 4 Phase 4 – – –

Table 1. A list of all combination of different almost-cliques together with the phase of our coloring

procedure that is responsible for handling them. Note that by Observation 4.2, there are no unholey

large almost-cliques. The sparse vertices are handled in Phase 1 and Phase 3. Moreover, Phase 1 may

color some vertices of lonely (or social) small almost-cliques that we are not allowed to recolor (we can

recolor all the other remnants of Phase 1 after Phase 3).

The proof of this phase is a simple generalization of a similar proof used in the palette

sparsification theorem of [7], which even though quite technical, does not involve much

novelty from us in this work. The coloring in this phase is an extension of the last one.

Phase 5 – Unholey Critical Almost-Cliques (Section 5.5): By Observation 4.2, all large

almost-cliques are holey. Thus, the largest remaining almost-cliques at this point are

unholey critical almost-cliques. We know these almost-cliques in Kcritical by Part (6.)

of Section 4.5 (the holey ones are already colored and it is possible, yet unlikely, that even

some of unholey ones are also colored in Phase 4). We color the remainder ofKcritical now.

In the previous phases, we solely colored vertices from lists 𝐿(·) sampled in palette-

sampling. But we already know that such an approach is just not going towork for unholey

critical almost-cliques (recall the example in Figure 1b discussed in Section 2.1). This is the

first time we deviate from this approach (and thus deviate from palette sparsification-type

arguments).

We now will use the critical-helper structures (Definition 4.6)—which our streaming

algorithm collected in Part (6.) of Section 4.5—and a new “out of palette” coloring argument,

wherein we color one of the vertices of the almost-clique using a color not sampled for it, so

that two vertices of the almost-clique are colored the same. We then show that this already

buys us enough flexibility to color the remaining vertices using lists 𝐿5(·) of vertices similar

to Phase 4. The coloring in this phase is also an extension of the last one.

Phase 6 – Unholey Friendly (or Social) Small Almost-Cliques (Section 5.6): It can be

verified, after a moment of thought or better yet by consulting Table 1, that the only almost-

cliques remained to color are the ones that are unholey, small, and also not lonely. They

are perhaps the “most problematic” ones and are handled last.15 These almost-cliques also

require the “out of palette” coloring argument used in Phase 5, but even this is not enough
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for them (we already discussed this regarding Figure 5b in Section 2.2). In particular,

unlike Phase 4 and 5 that allowed for coloring of the almost-cliques even in the presence

of adversarial coloring of outside vertices, this simply cannot be true for this phase (as

shown in Figure 5b); at the same time, unlike Phase 2 almost-cliques, we cannot hope for

a “random” coloring of outside vertices.

To handle these almost-cliques, we rely on our friendly-helper structures (Definition 4.7)

combined with a recoloring step: in particular, we recolor one vertex outside of the

almost-clique using the sampled lists 𝐿6(·) and show that this recoloring, plus another out

of palette coloring argument, again buys us enough flexibility to color these almost-cliques

also from lists 𝐿6(·) (we note that this out of palette coloring argument is in fact different

from the one used in Phase 5). Finally, due to the recoloring step, the coloring in this phase

is no longer an extension of the last one.

After all these phases, we have finished coloring all the vertices. In other words, we now

have Δ-coloring of the entire graph as desired. This will then conclude the proof of Theorem 1.1.

In the rest of this section, we go over each of these phases in details and present the

algorithm and analysis for each one (postponing the less novel ones to Appendix B). We again

emphasize that to find the final Δ-coloring, this phases must be executed in this particular order.

5.1 Phase 1: One-Shot Coloring

We start with the standard one-shot coloring algorithmused extensively in the coloring literature

(to the best of our knowledge, this idea has appeared first in [51]). The purpose of this algorithm

is to color many pairs of vertices in the neighborhood of sparse vertices using the same color

(recall that neighborhood of sparse vertices contains many non-edges which can potentially

be colored the same). This then effectively turn the sparse vertices into “low degree” ones and

reduces the problem from Δ-coloring to 𝑂(Δ)-coloring which is much simpler.

We have the following basic observation about the correctness of one-shot-coloring.

OBSERVAT ION 5.1. The partial coloring 𝐶1 computed by one-shot-coloring is a proper

partial Δ-coloring in 𝐺.

PROOF . It is immediate to verify that 𝐶1 is a proper partial coloring in 𝐻 simply because we

remove both colors of any monochromatic edge. To see this also holds in 𝐺, note that for any

edge (𝑢, 𝑣) ∈ 𝐺, if 𝐶1(𝑢) = 𝐶1(𝑣) ≠⊥, then it means that 𝑥 (𝑢) = 𝑥 (𝑣) which in particular also

15 It is quite natural to ask if these almost-cliques are the “hardest” to color, why do we wait to color them after everything
else, at which time, our hands might be too tied? There are two closely related answers: (𝑖) they may just be connected
to each other (or rather the graph can only consists of these types of almost-cliques) and thus we anyway have to
deal with at least one of them after having colored the rest of the graph; and (𝑖𝑖) even though they are “hard” to color,
they are somewhat “more robust” also, compared to say Phase 2 almost-cliques, in that we can color them even when
their outside neighbors are colored adversarially by using a key recoloring step.
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Input: The vertex set 𝑉, the conflict-graph 𝐻, and the list 𝐿1(𝑣) for every vertex 𝑣 ∈ 𝑉.
(𝑖) For every vertex 𝑣 ∈ 𝑉:

Activate 𝑣 independently with probability 1/𝛼 for parameter 𝛼 = Θ(1) in Eq. (1).

If 𝑣 is activated, set 𝑥(𝑣) to be the only color in 𝐿1(𝑣), otherwise set 𝑥(𝑣) =⊥.
(𝑖𝑖) For every vertex 𝑣 ∈ 𝑉, set 𝐶1(𝑣) = 𝑥(𝑣) if for all 𝑢 ∈ 𝑁𝐻(𝑣), 𝑥(𝑣) ≠ 𝑥(𝑢); otherwise, set

𝐶1(𝑣) =⊥. In words, any activated vertex 𝑣 keeps its color 𝑥(𝑣) iff it is not used

anywhere in its neighborhood.

Algorithm 4. The one-shot-coloring algorithm.

means 𝐿1(𝑢) ∩𝐿1(𝑣) ≠ ∅. Thus, the conflict graph 𝐻 contains the edge (𝑢, 𝑣) also, a contradiction
with 𝐶1 being a proper partial coloring of 𝐻 . ■

We now get to the main property of one-shot-coloring. The effect of this partial coloring

is that the neighborhood of every sparse vertex 𝑣 ∈ 𝑉 becomes abundant with available colors

(compared to the remaining degree of 𝑣). In particular, recall the definition of coldeg𝐶1 (𝑣) as the
colored degree of a vertex 𝑣 and avail𝐶1 (𝑣) as the number of colors available to 𝑣with respect

to a partial coloring 𝐶1 (defined in Section 3). Then we have the following guarantee for the

one-shot-coloring algorithm:

LEMMA 5.2. For every sparse vertex 𝑣 ∈ 𝑉sparse, in the partial coloring𝐶1 of one-shot-coloring,

avail𝐶1 (𝑣) > (deg (𝑣) − coldeg𝐶1 (𝑣)) +
𝜀2 · Δ
2𝛼

with high probability, where the randomness is only over the choice of the lists 𝐿1(𝑣).

The proof is postponed to Appendix B.1.

5.2 Phase 2: Lonely (or Social) Small Almost-Cliques

In this section, we will describe an algorithm that extends the partial coloring 𝐶1 of Phase 1 to

all small almost-cliques that are inKlonely of Part (5.) of Section 4.5 (which in particular, contains

all lonely almost-cliques and no friendly almost-clique). We are going to work with palette

graphs introduced in Section 3.3 in this phase. The algorithm is simply as follows.

In Phase 2, we start by setting 𝐶 to be equal to 𝐶1 of Phase 1 and then successively run Algo-

rithm 5 on each small almost-clique 𝐾 ∈ Klonely while updating 𝐶 as described by the algorithm.

At the end, we let 𝐶2 denote the final partial Δ-coloring.
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Input: A proper partial Δ-coloring 𝐶, a small almost-clique 𝐾 ∈ Klonely, the conflict-graph 𝐻,

and the list 𝐿2(𝑣) for every vertex 𝑣 ∈ 𝐾.
(𝑖) Construct the sampled palette graph GSample = (L,R, ESample) of the almost-clique 𝐾,

𝐶, and S := {𝐿2(𝑣) | 𝑣 ∈ 𝐾} (according to Definition 3.9).

(𝑖𝑖) Find an L-perfect matchingM in GSample and output ‘fail’ if it does not exists.
Otherwise, update 𝐶(𝑣) =M(𝑣) whereM(𝑣) denotes the color corresponding to the
color-node matched to the vertex-node 𝑣 by the matchingM.

Algorithm 5. The algorithm of Phase 2 for coloring each small almost-clique in Klonely.

LEMMA 5.3. With high probability, 𝐶2 computed by Phase 2 is a proper partial Δ-coloring in 𝐺

that is an extension of 𝐶1 and colors all small almost-cliques inKlonely.

The randomness in this lemma is only over the randomness of one-shot-coloring (activa-

tion probabilities) and choice of the lists 𝐿1(𝑣) and 𝐿2(𝑣) for all 𝑣 ∈ 𝑉 .

We prove Lemma 5.3 in the rest of this subsection. The fact that 𝐶2 is an extension

of 𝐶1 follows immediately from the definition of the algorithm as for every 𝐾 ∈ Klonely, the

corresponding GSample only contains vertices uncolored by 𝐶1 and we never change the color of
any colored vertex. Moreover, the fact that 𝐶2 is a proper Δ-coloring follows from the definition

of GSample as described in Section 3.3 (note that we only need edges in 𝐻 and not all of 𝐺 to

construct GSample).
The main part of the proof in this phase is to show that we actually succeed in coloring all

small almost-cliques inKlonely in this phase, i.e., w.h.p., Algorithm 5 does not ever return ‘fail’.

Fix a small almost-clique 𝐾 ∈ Klonely. Consider the base palette graph GBase = (L,R, EBase)
of 𝐾 and 𝐶 (Definition 3.8) where 𝐶 denotes the partial coloring passed to Algorithm 5 when

coloring 𝐾 . First, note that |L| ⩽ |R | since |𝐾 | ⩽ Δ as 𝐾 is small (Definition 4.1), and we remove

at most one color-node in R per each vertex-node in L removed from 𝐾 . Thus, having an

L-perfect matching in GBase and GSample is not entirely out of the question. We now establish

two other properties of GBase that will allow us to argue that GBase has an L-perfect matching.

We will then build on these properties to prove the same for GSample as well.

CLAIM 5.4. Every vertex in L in GBase has degree at least 3Δ/4, with high probability.

Proof. Fix a vertex-node 𝑣 ∈ L (and 𝑣 ∈ 𝐾). By property 𝑖𝑖𝑖). of Definition 3.4, 𝑣 has at most

10𝜀Δ neighbors outside 𝐾 , each of which can rule out at most one color for 𝑣. As for neighbors

inside 𝐾 , recall that each vertex 𝑢 ∈ 𝐾 activates in Algorithm 4 with probability 1/𝛼. This
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implies that in expectation, at most Δ/𝛼 of them can receive a color in 𝐶1 (and hence 𝐶). By an

application of Chernoff bound (Proposition 3.2), at most 2Δ/𝛼 < Δ/100 vertices of 𝐾 are colored

by 𝐶1 with high probability (for the choice of 𝛼 in Eq. (1)).

Hence, in total, only 10𝜀Δ + Δ/100 colors are ruled out for 𝑣 by 𝐶 with high probability.

Given the value of 𝜀 in Eq. (1), this means degGBase (𝑣) > 3Δ/4 with high probability. ■

The following claim—albeit simple to prove after having setup the process carefully—is

the heart of the argument in this phase. Roughly speaking, this claim allows us to treat the

coloring outside the almost-clique as “not too adversarial”.

CLAIM 5.5. Every vertex in R in GBase has degree at least 3Δ/4, with high probability.

PROOF . To lower bound the degree of a color-node 𝑐 ∈ R, we have to work a little harder.
The main idea is this: for a color-node 𝑐 to lose its edges to Ω(Δ) vertex-nodes in L, the color 𝑐
itself must have been used to color Ω(𝛽) vertices outside 𝐾 by 𝐶; this is because of the crucial

condition that 𝐾 is not friendly and hence each vertex receiving the color 𝑐 outside of 𝐾 only

rules 𝑐 out for less than 2Δ/𝛽 vertex-nodes of L. It is generally very hard to keep track of which
colors are assigned by 𝐶 so far in the neighborhood of 𝐾 , but fortunately we have a loose but

simple proxy for that: as 𝐶 is using only the colors in 𝐿1(·) and 𝐿2(·) at this point, we can simply

consider which colors are sampled in these lists in the neighborhood of 𝐾 instead. We formalize

this in the following.

Fix a color-node 𝑐 ∈ R. For every vertex 𝑣 ∉ 𝐾 , we define 𝑚(𝑣, 𝐾) as the number of edges

from 𝑣 to 𝐾 in𝐺. We define the randomvariable 𝑋𝑐,𝑣which is equal to𝑚(𝑣, 𝐾) iff 𝑐 ∈ 𝐿1(𝑣)∪𝐿2(𝑣)
and otherwise 𝑋𝑐,𝑣 = 0. Notice that 𝑋𝑐,𝑣 is a (potentially loose) upper bound on the reduction in

the degree of color-node 𝑐 ∈ R because of any assignment of a color the vertices outside of 𝐾 .

In other words, we have that,

degGBase (𝑐) ⩾ |L| −
∑︁
𝑣∉𝐾

𝑋𝑐,𝑣 . (3)

We use the variable 𝑋𝑐,𝑣, instead of the actual color assignment of 𝑣 by 𝐶, for two reasons: One,

it is easy to compute its probability, and second (and more importantly) these variables for

different 𝑣’s are independent (while the actual color of vertices will be correlated). We would

like to show that random variable 𝑋𝑐 :=
∑
𝑢∉𝐾 𝑋𝑐,𝑢 is sufficiently small.

Recall that 𝑐 ∈ 𝐿1(𝑣) with probability 1/Δ, and it is in 𝐿2(𝑣) with probability 𝛽/Δ by the
choice of lists in palette-sampling (Algorithm 1). Thus, it is in the union of the two lists with
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probability at most 2𝛽/Δ. Hence,

E[𝑋𝑐] ⩽
∑︁
𝑣∉𝐾

𝑚(𝑣, 𝐾) · 2𝛽
Δ

=

∑︁
𝑢∈𝐾
|𝑁 (𝑢) \ 𝐾 | · 2𝛽

Δ

(by a simple double counting argument for edges between 𝐾 and its neighbors)

⩽ |𝐾 | · 10𝜀Δ · 2𝛽
Δ

(by property 𝑖𝑖𝑖). of almost-cliques in Definition 3.4)

⩽ Δ · 20𝜀 · 𝛽 (as |𝐾 | ⩽ Δ since 𝐾 is small by Definition 4.1)

⩽ Δ/100. (by the choice of 𝜀, 𝛽 in Eq. (1))

To prove a concentration bound for 𝑋𝑐, note that it is a sum of independent random

variables in the range [0, 2Δ/𝛽], as each vertex 𝑣 ∉ 𝐾 has less than 2Δ/𝛽 neighbors in 𝐾 (as 𝐾

is not a friendly almost-clique and thus has no friend neighbors—see Definition 4.4). Thus, by

Chernoff bound (Proposition 3.2 for 𝑏 = 2Δ/𝛽), we have,

Pr

(
𝑋𝑐 > (1 + 20) ·

Δ

100

)
⩽ exp

(
− 202 · Δ/100
(3 + 20) · 2Δ/𝛽

)
= exp

(
−400 log 𝑛

46

)
< 𝑛−8,

by the choice of 𝛽 in Eq. (1). A union bound over all choices of 𝑣 ∉ 𝐾 and 𝑐 ∈ [Δ], combined

with Eq. (3), implies that with high probability, degGBase (𝑐) ⩾ |L| − 21Δ/100.
Finally, as already proven in Claim 5.4, |L| ⩾ |𝐾 | − Δ/100 with high probability as at

most Δ/100 vertices of 𝐾 are colored by 𝐶1. Given that size of 𝐾 is also at least (1 − 5𝜀)Δ by

property 𝑖). of almost-cliques in Definition 3.4, and by the choice of 𝜀 in Eq. (1), we get that with

high probability |L| ⩾ Δ − 2Δ/100. Combined with the above bound, we have

degGBase (𝑐) ⩾ Δ − 2Δ/100 − 21Δ/100 > 3Δ/4

as desired, concluding the proof. ■

Given that size of L in GBase is at most Δ, it is now easy to use Claims 5.4 and 5.5, combined

with Hall’s theorem (Fact 3.1) to prove that GBase has an L-perfect matching. But, our goal is to

prove that GSample, not only GBase, has such a matching; this is the content of the next claim.

CLAIM 5.6. The subgraph GSample has an L-perfect matching with high probability.

PROOF . We condition on the high probability events that GBase has the properties in Claims 5.4

and 5.5. An important observation is in order: the properties of GBase depend on the choice of

𝐿1(𝑣) for 𝑣 ∈ 𝑉 but only 𝐿2(𝑣) for 𝑣 ∉ 𝐾 (as we only need to visit the coloring of 𝐶 with 𝐿2(·)
outside of 𝐾). As a result, even conditioned on these properties, the choice of 𝐿2(𝑣) for 𝑣 ∈ 𝐾 is

independent and from its original distribution in palette-sampling.

At this point, GSample is a subgraph of GBase obtained by sampling each edge independently

and with probability 𝛽/Δ by the choice of 𝐿2(·) in palette-sampling (Algorithm 1). We use

this to prove that GSample should also have an L-perfect matching with high probability. The
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argument follows standard ideas in random graph theory (even though GSample is not exactly a
random graph).

By Hall’s theorem (Fact 3.1), for GSample to not have an L-perfect matching, there should

exist a set 𝐴 ⊆ L such that
��𝑁GSample (𝐴)�� < |𝐴|. But for this to happen, there should exist a pair

(𝑆,𝑇 ) of subsets of L and R, respectively, such that |𝑇 | = |𝑆 | − 1 and no edge between 𝑆 and
R \ 𝑇 is sampled in GSample (simply take 𝐴 = 𝑆 and notice that 𝑁 (𝐴) ⊆ 𝑇 which has size less

than 𝐴). We refer to any such pair (𝑆, 𝑇 ) as a witness pair. We bound the probability that any

witness pair exists in GSample.

Case 1: when |𝑺| ⩽ 2Δ/3. Consider any choice of the set𝑇 with |𝑇 | = |𝑆 |−1 fromR. By Claim5.4,

degree of every vertex-node in 𝑆 is at least 3Δ/4 in GBase. This means the number of edges from

𝑆 to R \ 𝑇 is at least |𝑆 | · (3Δ/4 − 2Δ/3) = |𝑆 | · Δ/12. As such,

Pr ((𝑆, 𝑇 ) is a witness pair) ⩽
(
1 − 𝛽

Δ

) |𝑆 |·Δ/12
⩽ exp

(
−100
12
· |𝑆 | · log 𝑛

)
< 𝑛−8|𝑆 |,

by the choice of 𝛽 in Eq. (1). A union bound over all
( |R |
|𝑆 |−1

)
< 𝑛|𝑆 |−1 choices for 𝑇 then implies

that for any such 𝑆,

Pr (there is a set 𝑇 so that (𝑆,𝑇 ) is a witness pair) ⩽ 𝑛|𝑆 |−1 · 𝑛−8|𝑆 | < 𝑛−7|𝑆 | .

Finally, a union bound all choices for the set 𝑆, partitioned based on their size, implies that,

Pr (there is a witness pair (𝑆, 𝑇 ) with |𝑆 | ⩽ 2Δ/3) ⩽
2Δ/3∑︁
𝑠=1

( |L|
𝑠

)
· 𝑛−7|𝑠| < 𝑛−5.

Case 2: when |𝑺| > 2Δ/3. Again, fix any choice of the set 𝑇 with |𝑇 | = |𝑆 | − 1 from R. This
time, by Claim 5.5, degree of every color-node not in 𝑇 is at least 3Δ/4 in GBase. This means that

neighborhood of each such color-node intersects with 𝑆 in at least 3Δ/4 − (Δ − 2Δ/3) = 5Δ/12
(as |L| ⩽ Δ) vertex-nodes. In other words, there are at least |R \ 𝑇 | · 5Δ/12 edges between 𝑆 and
R \ 𝑇 in GBase. Thus,

Pr ((𝑆,𝑇 ) is a witness pair) ⩽
(
1 − 𝛽

Δ

) |R\𝑇 |·5Δ/12
⩽ exp

(
−500
12
· |R \ 𝑇 | · log 𝑛

)
< 𝑛−40|R\𝑇 |,

by the choice of 𝛽 in Eq. (1). A union bound over all
( |R |
|𝑇 |

)
=

( |R |
|R\𝑇 |

)
< 𝑛|R\𝑇 | choices for 𝑇 then

implies that for any such 𝑆,

Pr (there is a set 𝑇 so that (𝑆, 𝑇 ) is a witness pair) ⩽ 𝑛|R\𝑇 | · 𝑛−40|R\𝑇 | ⩽ 𝑛−39·( |R|−|𝑆 |+1) ,

where we used the fact that |𝑇 | = |𝑆 | − 1. Now note that the number of choices for the set 𝑆 of a

fixed size is (|L|
|𝑆 |

)
=

( |L|
|L| − |𝑆 |

)
⩽ 𝑛|L|−|𝑆 | ⩽ 𝑛|R |−|𝑆 |,
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where the last inequality uses the fact that |R | ⩾ |L|. As a result,

Pr (there is a witness pair (𝑆, 𝑇 ) with |𝑆 | > 2Δ/3) ⩽
|L|∑︁

𝑠=2Δ/3
𝑛|R |−|𝑆 | · 𝑛−39·( |R|−|𝑆 |+1) < 𝑛−39.

Finally, by combining Case 1 and 2 above, we have that with high probability, there is

no witness set (𝑆,𝑇 ) in GSample. This implies that for every 𝐴 ⊆ L, we have
��𝑁GSample (𝐴)�� ⩾ |𝐴|,

which, by Hall’s theorem (Fact 3.1), implies that GSample has an L-perfect matching. ■

Lemma 5.3 now follows immediately from Claims 5.4 to 5.6 as described earlier.

REMARK 5.7. Before moving on from this subsection, let us mention why our coloring pro-

cedure attempts to color lonely small almost-cliques (Phase 2) before the remaining sparse

vertices. In Claim 5.5, we crucially used the fact that we can use the lists used to color 𝐶 so

far as a proxy for approximating the event 𝐶(𝑣) = 𝑐 with 𝑐 ∈ 𝐿1(𝑣) ∪ 𝐿2(𝑣), instead. This was
okay because these lists are of relatively small size to make the argument go through. However,

coloring sparse vertices requires us to use the lists 𝐿3(·) which are much larger and thus would

break this claim entirely.

Concretely, in Claim 5.5, we had 𝑂(𝜀Δ2) edges going out of the almost-clique and each

was responsible for blocking a fixed color on a vertex with probability 𝑝 = 𝑂(𝛽/Δ) which is

governed by sizes of 𝐿1(·), 𝐿2(·). This meant that each color was blocked for 𝑂(𝜀 · 𝛽 · Δ) vertices
which can be made 𝑜(Δ) by taking 𝜀 sufficiently smaller than 𝛽. Nevertheless, had we also

included lists 𝐿3(·), then the right probability parameter 𝑝 would have become 𝑂(𝛽/(𝜀2Δ))
which is crucial for coloring 𝜀-sparse vertices; but then, it meant that the bound we got on the

number of blocked vertices for a color is actually 𝑂(𝜀Δ2 · 𝛽/(𝜀2Δ)) = 𝑂(Δ/𝜀) which is > Δ no

matter the tuning of parameters.

5.3 Phase 3: Sparse Vertices

In this phase, we will describe an algorithm to extend the partial coloring 𝐶2 to all vertices

of 𝑉sparse. The key observation is that for any extension of 𝐶1 (i.e. 𝐶2, and every intermediate

coloring in this phase), the gap between available colors and remaining degree created by 𝐶1

for each sparse vertex (see Lemma 5.2) does not shrink. This is because if 𝐶 is an extension

of 𝐶1, each additional neighbor of some sparse vertex 𝑣 that 𝐶 colors, increases coldeg𝐶 (𝑣) by 1,
and decreases avail𝐶 (𝑣) by at most 1, keeping the gap intact. We have the following lemma for

this phase:

LEMMA 5.8. With high probability, there exists a proper partial Δ-coloring 𝐶 that is an extension

of 𝐶2 and colors all remaining vertices in 𝑉sparse using only the colors in the lists 𝐿3(𝑣) for sparse
vertices 𝑣 ∈ 𝑉sparse (and thus the randomness is also only over these lists).

Once again, since the lemma is not new, its proof is postponed to Appendix B.2.



44 / 66 S. Assadi, P. Kumar, P. Mittal

We note that 𝐶 is not the final coloring we obtain in this phase. Instead, we are going

to update 𝐶 to a proper Δ-coloring 𝐶3 that colors all vertices in 𝑉sparse as well as all small

almost-cliques inKlonely handled by Phase 2; however, we shall remove the color of every other

vertex 𝑣, i.e., set 𝐶3(𝑣) =⊥ for them. Such vertices are solely colored by the one-shot-coloring

algorithm and we no longer need their guarantees as we are done coloring sparse vertices.

Thus, to summarize:

𝐶3 is a proper partial Δ-coloring of all vertices in 𝑉sparse as well as small almost-cliques in

Klonely and does not color any other vertex (we also require no further properties from 𝐶3

and it might as well be considered adversarially chosen from now on).

5.4 Phase 4: Holey Almost-Cliques

In this phase, we will extend the partial coloring 𝐶3 to all vertices in holey almost-cliques.

LEMMA 5.9. There exists a proper partial Δ-coloring 𝐶4 that is an extension of 𝐶3 and assigns a

color to every vertex 𝑣 in each holey almost-clique using a color from 𝐿4(𝑣). The randomness in
this lemma is only over the lists 𝐿4(·) of all vertices.

As discussed in the overview of the coloring algorithm, we will iterate over all almost-

cliques in our decomposition, and attempt to color them assuming that they are holey. The

main tool to show that this succeeds on holey almost-cliques is the following lemma, which

shows that any coloring outside a holey almost-clique can be extended to it while using only

the lists 𝐿4(·) on vertices inside it.

LEMMA 5.10. For a holey almost-clique 𝐾 , and any partial Δ-coloring 𝐶 outside 𝐾 , there exists,

with high probability, a coloring 𝐶′ which extends 𝐶 to 𝐾 such that 𝐶′(𝑣) ∈ 𝐿4(𝑣) for all 𝑣 ∈ 𝐾 .

The proof is almost verbatim from [7], except that we have to go through every step

carefully to make sure it works for Δ-coloring—hence we provide it in Appendix B.3 for com-

pleteness.

Lemma 5.9 now follows immediately from Lemma 5.10 by going over all uncolored almost-

cliques at this point one by one, and apply this lemma with 𝐶 being the current coloring, and 𝐶′

being the one we can update this coloring to. Thus, at the end, we obtain the desired 𝐶4.

5.5 Phase 5: Unholey Critical Almost-Cliques

In this phase, we will color unholey critical almost-cliques. In particular, we have a setKcritical of

almost-cliques, and for each 𝐾 ∈ Kcritical, a critical-helper structure (𝑢, 𝑣, 𝑁 (𝑣)) (Definition 4.6).

The main lemma of this section is:

LEMMA 5.11. With high probability, there exists a proper partial Δ-coloring 𝐶5 that is an ex-

tension of 𝐶4 and satisfies the following properties: (𝑖) it colors vertices of all almost-cliques in
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Kcritical; and (𝑖𝑖) for any vertex 𝑣, if 𝐶5(𝑣) ∉ 𝐿(𝑣), then 𝑁𝐻+ (𝑣) = 𝑁𝐺 (𝑣); that is, we can only color 𝑣
with a color not from 𝐿(𝑣) if we know its entire neighborhood (via the critical helper structure).

The randomness in this lemma is only over the lists 𝐿5(𝑣) for vertices 𝑣 inKcritical.

This is the first phase in which we use our out-of-palette-coloring idea – we do not require

that 𝐶5(𝑣) ∈ 𝐿(𝑣) always holds in this lemma. In particular, for the vertex 𝑣 in the critical-helper

(𝑢, 𝑣, 𝑁 (𝑣)), we are going to use a color out of its sampled palette. Since we know the entire

neighborhood of 𝑣, we at least have enough information to avoid an improper coloring.

The proof of the lemma is algorithmic. We start with a brief overview. The plan (as always)

is to iterate over the almost-cliques of Kcritical in arbitrary order, and extend the coloring 𝐶4

to eventually color all of them. For a particular almost-clique 𝐾 ∈ Kcritical, we will use the

critical-helper structure (𝑢, 𝑣, 𝑁 (𝑣)) to assign the same color to both 𝑢 and 𝑣. The reason we can

do this is that we know all the neighbors of 𝑣, and hence can pick a color in the list 𝐿5(𝑢) that
can be assigned to both of them – existence of such a color in the first place is because both 𝑢

and 𝑣 belong to an almost-clique and thus have at most 𝑂(𝜀Δ) edges to outside; thus, as long as
we have sampled a color out of these many, which will happen with high probability, we can

find such a color. Having done that, the rest of 𝐾 can be colored by palette sparsification: the

imbalance we create by giving two vertices the same color is just enough for it to succeed with

high probability.

Input: critical almost-cliquesKcritical, a critical-helper structure

for each 𝐾 ∈ Kcritical, and the partial coloring 𝐶4.

(𝑖) Initialize 𝐶 ← 𝐶4. For each 𝐾 ∈ K:
Let (𝑢, 𝑣, 𝑁(𝑣)) be the critical-helper structure for 𝐾 of Part (6.) of Section 4.5.

Find a color 𝑐 ∈ 𝐿5(𝑢) that is not used in 𝑁𝐻+ (𝑢) ∪ 𝑁𝐻+ (𝑣) by 𝐶, and set

𝐶(𝑢) ← 𝑐 and 𝐶(𝑣) ← 𝑐.

Extend 𝐶 to color 𝐾 \ {𝑢, 𝑣} with the color of each vertex 𝑤 chosen from 𝐿5(𝑤),
by constructing the sampled palette graph of 𝐾 with respect to 𝐶 and sampled

lists S := {𝐿5(𝑤) | 𝑤 ∈ 𝐾} exactly as in Algorithm 5 (see Claim 5.13 for details).

(𝑖𝑖) Return 𝐶5 ← 𝐶 as the output coloring.

Algorithm 6. The unholey-critical-coloring algorithm.

This algorithm claims to color all of the almost-cliques inKcritical, but it is not obvious at

all that each of its steps is possible. We will prove this in the following series of claims.
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CLAIM 5.12. With high probability, there exists a color 𝑐 ∈ 𝐿5(𝑢) such that 𝑐 is not used by 𝐶 in

𝑁𝐺 (𝑢) ∪ 𝑁𝐺 (𝑣). Further, there is an algorithm that can find this color if it exists.

PROOF . Recall that 𝑢 and 𝑣 have at most 10𝜀Δ neighbors each outside 𝐾 , and hence only at

most 20𝜀Δ neighbors in total which are colored by 𝐶 (see Sidefigure 9).

𝑢

𝑣

𝐾

⩽ 10𝜀Δ colored

neighbors

⩽ 10𝜀Δ colored

neighbors

Figure 9. 𝐿5(𝑢) has a color
not used by 𝐶 over

𝑁(𝑢) ∪ 𝑁(𝑣).

Let Avail𝐶 (𝑢, 𝑣) be the set of colors in [Δ] that are not used in the neighborhood of 𝑢 or 𝑣

by the coloring 𝐶. Then

|Avail𝐶 (𝑢, 𝑣) | ⩾ Δ − 20𝜀Δ ⩾ Δ/2.

Wewould like to show that Pr (𝐿5(𝑢) ∩ Avail𝐶 (𝑢, 𝑣) = ∅) is small. Since each color fromAvail𝐶 (𝑢, 𝑣)
is sampled into 𝐿5(𝑢) independently with probability 𝛽/Δ, the probability that none of them
are in 𝐿5(𝑢) is at most: (

1 − 𝛽
Δ

)Δ/2
⩽ exp

(
−𝛽 · Δ

2Δ

)
= 𝑛−50.

Hence a “good” color exists with high probability.

To find this color, we note that the critical-helper structure contains 𝑁 (𝑣) and while we do
not necessarily know all the neighbors of 𝑢 in 𝐺, we do know the ones that:

Have a color from 𝐿5(𝑢) in their own palette.

Were assigned a color outside their palette – since for such vertices we know all of their

neighbors by the invariant maintained in Lemma 5.11.

This means that we can iterate over the colors in [Δ], and check for each one whether it is used
by 𝑁𝐻+ (𝑢) ∪ 𝑁𝐻+ (𝑣), which serves as a proxy for checking 𝑁𝐺 (𝑢) ∪ 𝑁𝐺 (𝑣), and we are done. ■

We now have to perform a somewhat daunting task—to extend the coloring 𝐶 to the rest

of the almost-clique 𝐾 . It turns out that the small imbalance we create in the previous line (by

coloring 2 vertices with 1 color) is enough for palette sparsification to come to our rescue.

CLAIM 5.13. With high probability, 𝐾 \ {𝑢, 𝑣} can be colored as an extension of 𝐶, while coloring
each vertex 𝑤 ∈ 𝐾 \ {𝑢, 𝑣} with a color from 𝐿5(𝑤).
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PROOF . Consider the base and the sampled palette graphs GBase and GSample (Definitions 3.8
and 3.9) corresponding to the partial coloring 𝐶, with:

L := 𝐾 \ {𝑢, 𝑤},
R := [Δ] \ {𝑐}, where 𝑐 is the color assigned to 𝑢 and 𝑣, and
𝑆(𝑣) := 𝐿5(𝑣) for all 𝑣 ∈ L.

Recall that an L-perfect matching in GSample implies a coloring of remaining vertices in 𝐾 from

their 𝐿5(·) lists which is further an extension of 𝐶. We are going to use Lemma 3.10 to obtain

that GSample has a perfect matching.

For this, we need to establish the required properties of GBase. Proceeding in the same

order as the lemma (recall that 𝑚 denotes |L| in this lemma):

(𝑖) 𝑚 ⩽ |R | ⩽ 2𝑚: In this instance, |𝐿| = |𝑅 |, so both inequalities follow trivially.

(𝑖𝑖) Theminimumdegree of any vertex inL is at least 2𝑚/3: Note that any vertex 𝑣 ∈ L is in

𝐾 , and hence has only at most 10𝜀Δ edges going out of 𝐾 (in 𝐺, the input graph). Hence

there are at most 10𝜀Δ colors that are blocked for 𝑣, and degGBase (𝑣) ⩾ |R | − 10𝜀Δ ⩾
(2/3) · 𝑚.

(𝑖𝑖𝑖) For any subset 𝐴 ⊆ L such that |𝐴| ⩾ 𝑚/2,∑︁
𝑣∈𝐴

degGBase (𝑣) ⩾ |𝐴| · 𝑚 −𝑚/4.

Let 𝑡 denote the number of non-edges in 𝐾 , and recall that since 𝐾 is unholey, 𝑡 ⩽

107 ·𝜀Δ < Δ/10. Note that any vertex 𝑣 ∈ 𝐾 has at most Δ− (|𝐾 | −1−deg𝐾 (𝑣)) neighbors
(in 𝐺) outside 𝐾 , because deg𝐺 (𝑣) ⩽ Δ, and 𝑣 has exactly |𝐾 | − 1 − deg𝐾 (𝑣) neighbors
inside 𝐾 . But since each non-edge between 𝑣 ∈ L and a color in R corresponds to an

edge from 𝑣 to outside 𝐾 , we have:

degGBase (𝑣) ⩾ |𝑅| − (Δ + 1) + |𝐾 | − deg𝐾 (𝑣).

By summing this inequality for all 𝑣 ∈ 𝐴, we get:∑︁
𝑣∈𝐴

degGBase (𝑣) ⩾
∑︁
𝑣∈𝐴
|𝑅 | − (Δ + 1) + |𝐾 | − deg𝐾 (𝑣)

=

∑︁
𝑣∈𝐴

Δ − 1︸︷︷︸
|𝑅|

−(Δ + 1) + |L| + 2︸  ︷︷  ︸
|𝐾 |

−deg𝐾 (𝑣)

=

∑︁
𝑣∈𝐴
|L| − deg𝐾 (𝑣) = |𝐴| · 𝑚 −

∑︁
𝑣∈𝐴

deg𝐾 (𝑣)
︸         ︷︷         ︸

⩽2𝑡

⩾ |𝐴| · 𝑚 −𝑚/4.
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Each edge of GBase is sampled into GSample independently with probability

𝛽/Δ ⩾ 99 log 𝑛/𝑚 ⩾ 20/𝑚 · (log 𝑛 + 3 · log 𝑛).

By Lemma 3.10 GSample has a perfect matching with probability at least (1 − 𝑛−3). ■

This concludes the proof of Lemma 5.11.

5.6 Phase 6: Unholey Friendly (or Social) Small Almost-Cliques

In this (final!) phase, we describe an algorithm that takes the partial coloring 𝐶5 and from it

compute a proper Δ-coloring of the entire graph by coloring the remaining vertices. This step

however is the one that includes our recoloring ideas and thus the coloring we obtain is no

longer an extension of 𝐶5.

We are left with a set Kfriendly of unholey small almost-cliques, that may be friendly or

social. For each 𝐾 ∈ Kfriendly, we have a friendly-helper (𝑢, 𝑣, 𝑤, 𝑁 (𝑣), 𝑁 (𝑤)) (Definition 4.7).

Note in particular that we will actually edit the color assigned to some vertices, so the coloring

obtained by this algorithm is not necessarily an extension of 𝐶5. We show the following lemma:

LEMMA 5.14. Given the coloring 𝐶5 from the previous section, with high probability there exists

a proper coloring 𝐶6 that colors the entire graph such that: For any vertex 𝑣, if 𝐶6(𝑣) ∉ 𝐿(𝑣),
𝑁𝐺 (𝑣) = 𝑁𝐻+ (𝑣). That is, we can color 𝑣 with a color not from 𝐿(𝑣) only if we know its entire

neighborhood (via the friendly-helper structure).

The randomness in this lemma is over the lists 𝐿6,𝑖 (𝑣) for all vertices 𝑣 ∈ 𝑉 and all 𝑖 ∈ [2𝛽]
(even including vertices that were colored before this phase).

Once again, we will prove the lemma with an algorithm. The idea is the same, to extend

the coloring 𝐶5 to each almost-clique inKfriendly one-by-one, with a key difference being that

we will go back and edit the color of one vertex per almost-clique we color.

For an almost-clique 𝐾 , we will use its friendly-helper structure (𝑢, 𝑣, 𝑤, 𝑁 (𝑣), 𝑁 (𝑤)) to
assign the same color to 𝑢 and 𝑤, and then invoke palette sparsification to color the rest of 𝐾 .

As before, while the algorithm claims to color all the almost-cliques in Kfriendly, it is far

from obvious that each step it performs is possible. We show that this is indeed the case.

CLAIM 5.15. With high probability, there exists a color in 𝐿6,𝑖𝑢 (𝑢) that does not appear in 𝐶 over

𝑁 (𝑢) ∪ 𝑁 (𝑤). Further, there is an algorithm that can find this color if it exists.

PROOF . The crucial observation is that since 𝑢 is not a stranger to 𝐾 , it has at least Δ/𝛽
uncolored neighbors in the coloring 𝐶. Further, since 𝑤 ∈ 𝐾 – an almost-clique – it has at

most 10𝜀Δ neighbors outside 𝐾 , and hence only at most 10𝜀Δ neighbors that receive colors in 𝐶.

Hence there are at least Δ/𝛽 − 10𝜀Δ ⩾ Δ/2𝛽 colors that are not used by 𝐶 in 𝑁 (𝑢) ∪ 𝑁 (𝑤) (see
Sidefigure 10).
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Input: The set of almost-cliquesKfriendly, a friendly-helper structure for each 𝐾 ∈ Kfriendly,

and the partial coloring 𝐶5.

(𝑖) Initialize 𝐶 = 𝐶5, and an index 𝑖𝑢← 0 for each vertex 𝑢 ∈ 𝑉(𝐺) (this keeps track of
how many times we recolored 𝑢).

(𝑖𝑖) For each 𝐾 ∈ Kfriendly:

Let (𝑢, 𝑣, 𝑤, 𝑁(𝑣), 𝑁(𝑤)) be the friendly-helper structure of 𝐾.
Find a color 𝑐 ∈ 𝐿6,𝑖𝑢 (𝑢) such that 𝑐 ∉ 𝐶(𝑁𝐻+ (𝑢) ∪ 𝑁𝐻+ (𝑤)) and set

𝐶(𝑢) ← 𝑐 and 𝐶(𝑤) ← 𝑐.

Update 𝑖𝑢← 𝑖𝑢 + 1 (we emphasize that 𝑢 is not part of 𝐾 but rather a neighbor to

it).

Extend 𝐶 to color 𝐾 \ {𝑣, 𝑤} with each remaining vertex 𝑥 getting a color from

𝐿6,2𝛽 (𝑥) exactly as in Algorithm 6 (see Claim 5.16 for details).

Extend 𝐶 to color 𝑣 by finding a color that does not appear in 𝑁𝐻+(𝑣).
(𝑖𝑖𝑖) Return 𝐶6 ← 𝐶 as the output.

Algorithm 7. The unholey-friendly-coloring algorithm.

𝑤

𝑢

𝐾

⩽ 10𝜀Δ colored

neighbors

⩾
Δ
𝛽
uncolored

neighbors

Figure 10. 𝐿6,𝑖𝑢 (𝑢) has a
color not used by 𝐶 over

𝑁(𝑢) ∪ 𝑁(𝑤).

Let Avail𝐶 (𝑢, 𝑤) denote this set of colors. We are interested in showing that the probability

Pr
(
𝐿6,𝑖𝑢 (𝑢) ∩ Avail𝐶 (𝑢, 𝑤) = ∅

)
is small. We start with the technical note that this is the first

time (any part of) the coloring algorithm is looking at 𝐿6,𝑖𝑢 (𝑢), and hence this particular list is
independent of 𝐶 entirely. Recall that each color from Avail𝐶 (𝑢, 𝑤) is in 𝐿6,𝑖𝑢 (𝑢) independently
with probability 𝛽2/Δ. Hence the probability that none of them is in 𝐿6,𝑖𝑢 (𝑢) is at most:(

1 − 𝛽
2

Δ

)Δ/2𝛽
⩽ exp

(
− 𝛽

2 · Δ
2𝛽 · Δ

)
= 𝑛−50.
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So there is a color 𝑐 that satisfies our requirements with high probability. To find 𝑐 we can

iterate over the colors of 𝐿6,𝑖𝑢 (𝑢) and check whether 𝑐 is used by 𝐶 in 𝑁𝐻+ (𝑢)∪𝑁𝐻+ (𝑤). As before,
this is a proxy for checking that 𝑐 is used in 𝑁𝐺 (𝑢) ∪ 𝑁𝐺 (𝑤), and it works because 𝑐 ∈ 𝐿(𝑢),
𝑁𝐻+ (𝑤) = 𝑁𝐺 (𝑤), and if any neighbor of 𝑢 picked a color out of its palette, it will be in 𝑁𝐻+ (𝑢).

Note that we increment 𝑖𝑣 in the final line to get a “fresh” list for the next time we have to

color 𝑣—this happens at most 𝛽 times for a vertex 𝑣 (since it must be a non-stranger to some

almost clique 𝐾 to be recolored), and 𝐿6 has 2𝛽 lists for each 𝑣, so there are always enough lists

to go around. ■

Next, we have the palette sparsification analogue of this phase.

CLAIM 5.16. With high probability, 𝐾 \ {𝑣, 𝑤} can be colored as an extension of 𝐶, where the
color of each vertex 𝑥 ∈ 𝐾 \ {𝑣, 𝑤} is from 𝐿6,2𝛽 (𝑥).

PROOF . Consider the base and the sampled palette graphs GBase and GSample (Definitions 3.8
and 3.9) corresponding to the partial coloring 𝐶, with:

L = 𝐾 \ {𝑣, 𝑤},
R = [Δ] \ {𝑐}, where 𝑐 is the color assigned to 𝑢 and 𝑤, and
𝑆(𝑥) = 𝐿6,2𝛽 (𝑥) for all 𝑥 ∈ L.

Recall that an L-perfect matching in GSample gives a coloring which extends 𝐶 to L using only

colors from the list 𝐿6,2𝛽. Hence our focus shifts to showing thatGBase has the properties required
by Lemma 3.10 to obtain that GSample has a perfect matching. Proceeding in the same order as

the lemma:

(𝑖) 𝑚 ⩽ |R | ⩽ 2𝑚: The first inequality follows from the fact that |R | = Δ−1, and𝑚 ⩽ Δ−2
(since 𝐾 is a small almost-clique, and we removed two vertices from it). For the second

one, note that 2𝑚 = 2|𝐾 | − 4 ⩾ 3/2 · Δ.
(𝑖𝑖) Theminimumdegree of any vertex inL is at least 2𝑚/3. Note that any vertex 𝑣 ∈ L is in

𝐾 , and hence has only at most 10𝜀Δ edges going out of 𝐾 (in 𝐺, the input graph). Hence

there are atmost 10𝜀Δ colors that are blocked for 𝑣, and degGBase (𝑣) ⩾ |R |−10𝜀Δ ⩾ 2𝑚/3
(the last inequality is from combining parts (i) and (ii) above).

(𝑖𝑖𝑖) For any subset 𝑆 ⊂ L such that |𝑆 | ⩾ 𝑚/2,∑︁
𝑣∈𝑆

degGBase (𝑣) ⩾ ( |𝑆 | · 𝑚) −𝑚/4.

Since the only facts we use are that 𝐾 is unholey, and points (𝑖) and (𝑖𝑖) above, the
proof is exactly the same as in Claim 5.13.

And once again, by invoking Lemma 3.10 we are done. ■

To finish up, note that 𝑣 has two neighbors (𝑢 and 𝑤) with the same color, and we know its

entire neighborhood. Hence we can find a color to assign to it, and we are done.



51 / 66 Brooks’ Theorem in Graph Streams

This concludes the proof of Lemma 5.14. As at this point, all vertices of the graph are

colored, we obtain a proper Δ-coloring of 𝐺. This in turn concludes the proof of Theorem 1.1.
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Appendix

A. Proofs of the Impossibility Results

We present the formal proofs of our impossibility results, alluded to Section 2.1, in this appendix.

The first is in the query model, and shows that it is essentially impossible to do better than

the trivial algorithm that learns the entire graph. The second is in the streaming setting, and

shows that it is essentially impossible to do better than to store the entire graph in a slightly

non-standard model where edges of the input can appear more than once in the stream.

Notation: We will use a boldface x to denote a vector (or a bit string), and 𝑥𝑖 to index it.

A.1 Sublinear-Time Algorithms

In this section, we show that there is no algorithm in the general query model that solves

Δ-coloring in 𝑜(𝑛Δ) queries, via a reduction from the and-or-one𝑡,𝑚 problem.

We assume that the vertices of the graph 𝐺 = (𝑉, 𝐸) are known, as is the maximum degree

Δ. The general query model supports the following queries on 𝐺:

Degree queries: Given a vertex 𝑣 ∈ 𝑉 , output deg(𝑣).
Neighbor queries: Given a vertex 𝑣, and an index 𝑖 ∈ [Δ], output the 𝑖-th neighbor of 𝑣,

or ⊥ if 𝑖 > deg(𝑣).
Pair queries: Given two vertices 𝑢 and 𝑣 ∈ 𝑉 , output whether {𝑢, 𝑣} is an edge in 𝐺 or not.

The or problem on 𝑁 bits is: Given query access to a bit-string x ∈ {0, 1}𝑁 , determine

whether there exists an 𝑖 such that 𝑥𝑖 = 1. By query access, we mean that the algorithm can ask

for any 𝑖 ∈ {𝑁} whether 𝑥𝑖 is 0 or 1. It is well known that the randomized query complexity

𝑅(or𝑁 ) is Ω(𝑁) (see [20]). We will reduce the following promise version of the problem to

Δ-coloring (which is also known to have randomized query complexity Ω(𝑁)):

PROBLEM A.1 (or-one𝑁 ). Given query access to a string x ∈ {0, 1}𝑁 such that the Hamming

weight of x is at most 1, determine whether there is an index 𝑖 such that 𝑥𝑖 = 1.

Let 𝑁 =
(𝑛
2

)
. The reduction from or-one𝑁 to Δ-coloring is the following: For a bit-string

x ∈ {0, 1}𝑁 , we will define a graph 𝐺 on the vertex set𝑈 = {𝑢1, . . . , 𝑢𝑛} ∪𝑉 = {𝑣1, . . . , 𝑣𝑛}. We

index x as 𝑥𝑖, 𝑗 for 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛, and add edges to 𝐺 as follows:

If 𝑥𝑖, 𝑗 = 0, add the internal edges {𝑢𝑖 , 𝑢 𝑗} and {𝑣𝑖 , 𝑣 𝑗}.
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If 𝑥𝑖, 𝑗 = 1, add the crossing edges {𝑢𝑖 , 𝑣 𝑗} and {𝑣𝑖 , 𝑢 𝑗}.

Note that the graph 𝐺 is (𝑛− 1)-regular (so Δ = 𝑛− 1). Now, if x = 0𝑁 , then the sets𝑈 and𝑉

have no edges between them, and 𝐺 is just two copies of 𝐾𝑛, and hence not Δ-colorable. If, on

the other hand, 𝑥𝑖, 𝑗 = 1 for one pair (𝑖, 𝑗) then 𝐺 is two copies of 𝐾𝑛 minus an edge, connected

by a pair of cross edges, and by Brooks’ Theorem 𝐺 is Δ-colorable. To finish the reduction, we

need to show that we can simulate each of the queries of the general query model on 𝐺 with at

most a single query on x:

Degree queries: We always return 𝑛 − 1, without looking at any bit of x.
Neighbor queries: To get the 𝑗-th neighbor of 𝑢𝑖 (or 𝑣𝑖), we need to look at the bit:



𝑥 𝑗,𝑖 if 𝑗 < 𝑖

𝑥𝑖, 𝑗+1 if 𝑖 ⩽ 𝑗 ⩽ 𝑛 − 1

Pair queries: Assume without loss of generality that the query is for the pair (𝑢𝑖 , 𝑣 𝑗) such
that 𝑖 < 𝑗. Then we can answer it by just looking at the bit 𝑥𝑖, 𝑗 .

And hence, a 𝑜(𝑛2) query algorithm for Δ-coloring a graph on 2𝑛 vertices implies a 𝑜(𝑁) query
algorithm for the or-one problem on 𝑁 =

(𝑛
2

)
bits. Note that we can pad an arbitrary instance of

or-one𝑁 to an instancewe can reducewith atmost a constant blowup in size, since (𝑛+1)2 ⩽ 2𝑛2

for all 𝑛 large enough.

LEMMA A.2. The randomized query complexity of Δ-coloring a graph on 𝑛 vertices is Ω(𝑛2) for
some choice of Δ = Θ(𝑛).

We can take this idea further: Suppose instead that we have Θ(𝑛/Δ) instances of or-one
on

(Δ+1
2

)
bits. In particular, define the and-or-one problem:

PROBLEM A.3 (and-or-one𝑡,𝑚). Given query access to a set of 𝑡 strings x1, . . . ,x𝑡 ∈ {0, 1}𝑚,
compute:

𝑡∧
𝑖=1

or-one𝑚(x𝑖).

Then it is well known that the randomized query complexity of and-or-one𝑡,𝑚 is Ω(𝑡𝑚)
(see [21], [61]). We will take an instance of and-or-one with 𝑚 =

(Δ+1
2

)
and 𝑡 ∈ N—setting

𝑛 = 𝑡 · 2𝑚—and reduce it to Δ-coloring a graph on 2𝑛 vertices. In particular, the graph will

just be the (disjoint) union of the graphs formed by reducing each of the or-one𝑚 instances

in the fashion described above. Note that the graph will be Δ-regular. It is immediate that a

𝑜(𝑛Δ)-query algorithm for Δ-coloring implies a 𝑜(𝑡 ·Δ2) = 𝑜(𝑡𝑚)-query algorithm for and-or-one,

and we have a contradiction.

LEMMA A.4. The randomized query complexity of Δ-coloring a graph on 𝑛 vertices is Ω(𝑛Δ) for
all choices of 100 ⩽ Δ < 𝑛/100.
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A.2 Streaming Algorithms on Repeated-Edge Streams

In this section, we will show that any 𝑂(1) pass algorithm for Δ-coloring on graph streams with

repeated edges needs Ω(𝑛Δ) space to color a graph on 𝑛 vertices and maximum degree Δ. In

particular, we will reduce the tribes problem from communication complexity to the cliqueΔ+1
problem. We start by defining the tribes𝑚,𝑛 problem.

PROBLEM A.5 (tribes𝑚,𝑛). In the tribes𝑚,𝑛 problem, Alice andBob receive𝑚 vectorsx1, . . . , x𝑚 ∈
{0, 1}𝑛 and y1, . . . , y𝑚 ∈ {0, 1}𝑛 respectively. They want to compute the function:

𝑚∧
𝑘=1

disj𝑛(x𝑘, y𝑘).

Where disj𝑛 is the standard disjoint function that is true iff its inputs differ in all of their bits.

In words, the problem is just to solve 𝑚 instances of disj𝑛, and return true only if all of

them are disjoint. By a result of [42], the randomized communication complexity of tribes𝑚,𝑛

is Ω(𝑚𝑛). We will show a low-communication protocol for tribes𝑚,𝑛 assuming a small-space

algorithm for cliqueΔ+1, which is defined as follows:

PROBLEM A.6 (cliqueΔ+1). Given a graph 𝐺 as a stream, determine whether or not 𝐺 contains

a (Δ + 1)-clique.

First, we will do a warm-up reduction, from disj𝑁 to clique, which simply asks if the input

graph is a clique. Suppose that 𝑁 =
(𝑛
2

)
for some 𝑛,16 and we have an instance x, y ∈ {0, 1}𝑁

of disj𝑁 . Then we can relabel the indices to (𝑢, 𝑣) such that 1 ⩽ 𝑢 < 𝑣 ⩽ 𝑛. Let 𝐴 be the set

{(𝑖, 𝑗) | 𝑥𝑖, 𝑗 = 1}, and 𝐵 be the same for y. Define a graph 𝐺 on the vertex set 𝑉 = {𝑣1, . . . , 𝑣𝑛} as
follows: Add the edge {𝑣𝑖 , 𝑣 𝑗} to 𝐺 iff {𝑖, 𝑗} is in 𝐴 ∪ 𝐵. Note that 𝐴 and 𝐵 are disjoint if and only

if 𝐴 ∪ 𝐵 is the entire universe, which is equivalent to 𝐺 being a clique.

Assume that we have a constant-pass 𝑜(𝑛2) space algorithm for Δ-coloring (and hence for

clique). Then here is a low-communication protocol for disj𝑁 : Alice will form “half” the stream

by taking the edge set 𝐴, and run the streaming algorithm for clique on it, and communicate the

state of the algorithm (using 𝑜(𝑛2) bits) to Bob. Bob will then continue running the algorithm

on his “half” of the stream (the edge set 𝐵), and hence finish one pass of the algorithm over

the edges of 𝐺. If there are additional passes required, Bob will communicate the state of the

algorithm to Alice (again, using 𝑜(𝑛2) bits) and the process will repeat. After a constant number

of passes, the streaming algorithm will decide whether 𝐺 is a clique, and hence if 𝐴 and 𝐵 are

disjoint, having used 𝑜(𝑛2) · 𝑂(1) communication. And hence we have shown the following

lemma:

LEMMA A.7. There is no constant pass 𝑜(𝑛2) space streaming algorithm for clique.

16 This is easily achieved by blowing up the universe by at most a constant factor.
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We can use the same idea when starting with an instance of tribes𝑚,𝑘 where𝑚 =
(Δ+1
2

)
, and

𝑘 ∈ N17 to rule out a 𝑜(𝑛Δ) space algorithm for cliqueΔ+1 (and hence Δ-coloring). In particular,

define the 𝑘-partite graph 𝐺 on the vertex sets 𝑉1, . . . , 𝑉𝑘, such that each 𝐺(𝑉𝑖 , 𝐸𝑖) is the graph
that is a clique iff x𝑖 and y𝑖 are disjoint.

Then supposing we have a constant pass 𝑜(𝑛Δ) space algorithm for cliqueΔ+1, we can use

exactly the same low communication protocol as before: Alice and Bob each construct half

of the graph stream, and to complete a pass exchange the entire state of the algorithm twice.

This implies a 𝑜(𝑛Δ) = 𝑜(𝑘Δ2) = 𝑜(𝑚𝑘) communication protocol for tribes𝑚,𝑘, and we have the

contradiction we desire.

LEMMA A.8. There is no constant pass 𝑜(𝑛Δ) space streaming algorithm for Δ-coloring.

The crucial observation is that in the stream created in the communication protocol, the

edges of 𝐺 can repeat. In particular, if the bit (𝑖, 𝑗) is zero in both x and y, both Alice and Bob

add the edge {𝑣𝑖 , 𝑣 𝑗} to their halves of the stream. Suppose that our algorithm for Δ-coloring

(and hence clique) is only required to work on graph streams with no repeated edges. Then

the low communication protocol breaks down completely, and hence it is actually possible to

solve the Δ-coloring problem in 𝑜(𝑛Δ) space.

A technical remark: Note that both of the lower-bounds we prove are for the problem which

tests whether a graph is Δ-colorable, but they also apply to the promise version of the problem

where the graph is guaranteed to be Δ-colorable, and the task is to output a coloring. In particular,

supposewehave a Δ-coloring algorithmA on a graph stream, thenwe canuse it for the reduction

from disj𝑁 as follows:

RunA on the input stream for the graph 𝐺 with edge set 𝐴 ∪ 𝐵, communicating between

Alice and Bob as before.

IfA fails to output a coloring, then the sets 𝐴 and 𝐵 are disjoint (w.h.p.).

IfA outputs a coloring, then we need to test it. In particular, if the coloring is improper,

there exists an edge in 𝐺 that is monochromatic. Alice and Bob can independently test

their halves of the edges for such an edge, and if they don’t find one, the coloring is valid,

and hence 𝐴 and 𝐵 are disjoint.

A similar argument shows that the query lower-bound applies to the promise version too.

17 And setting 𝑛 = 𝑘 · (Δ + 1).
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B. Missing Proofs from Section 5

In this appendix, we show all the results whose proofs we skipped in Section 5. The common

factor between these results is that they are all small modifications of previous work and are

presented here only for completeness.

Preliminaries: We use a standard form of Talagrand’s inequality [64] as specified in [50]. A

function 𝑓 (𝑥1, . . . , 𝑥𝑛) is called 𝑐-Lipschitz iff changing any 𝑥𝑖 can affect the value of 𝑓 by at

most 𝑐. Additionally, 𝑓 is called 𝑟-certifiable iff whenever 𝑓 (𝑥1, . . . , 𝑥𝑛) ⩾ 𝑠, there exist at most

𝑟 · 𝑠 variables 𝑥𝑖1 , . . . , 𝑥𝑖𝑟·𝑠 so that knowing the values of these variables certifies 𝑓 ⩾ 𝑠.

PROPOS IT ION B .1 (Talagrand’s inequality; cf. [50]). Let 𝑋1, . . . , 𝑋𝑚 be𝑚 independent random

variables and 𝑓 (𝑋1, . . . , 𝑋𝑚) be a 𝑐-Lipschitz function; then for any 𝑡 ⩾ 1,

Pr ( | 𝑓 − E[ 𝑓 ] | > 𝑡) ⩽ 2 exp

(
− 𝑡2

2𝑐2 · 𝑚

)
.

Moreover, if 𝑓 is additionally 𝑟-certifiable, then for any 𝑏 ⩾ 1,

Pr
(
| 𝑓 − E[ 𝑓 ] | > 𝑏 + 30𝑐

√︁
𝑟 · E[ 𝑓 ]

)
⩽ 4 exp

(
− 𝑏2

8𝑐2𝑟 E[ 𝑓 ]

)
.

B.1 From Section 5.1

LEMMA B.2 (Re-statement of Lemma 5.2). For every sparse vertex 𝑣 ∈ 𝑉sparse, in the partial
coloring 𝐶1 of one-shot-coloring,

avail𝐶1 (𝑣) > (deg (𝑣) − coldeg𝐶1 (𝑣)) +
𝜀2 · Δ
2𝛼

with high probability, where the randomness is only over the choice of the lists 𝐿1(𝑣).

PROOF . We consider the random variable gap that counts the colors assigned (by 𝑥) to at least

two neighbors of 𝑣, and retained (in 𝐶1) by all of them. Note that if gap is large, we are in good

shape: since each color it counts increases the number of colored neighbors of 𝑣 by at least 2,

while decreasing the number of colors available to 𝑣 by 1. And hence our aim is to show that

gap is large with high probability.

We do this in a roundabout manner. First, we lower bound the expectation of gapwith

that of the random variable gap′, which counts the number of colors assigned to exactly two

vertices in 𝑁 (𝑣), and retained by both of them. The main reason for this is that E[gap′] is easy
to calculate, and large enough for our purposes. In particular, let 𝐹 be the set of non-edges

between the neighbors of 𝑣, that is

𝐹 = {{𝑢, 𝑤} ⊂ 𝑁 (𝑣) | {𝑢, 𝑤} ∉ 𝐸(𝐺)}.
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Then since 𝑣 is sparse, |𝐹 | ⩾ 𝜀2 · Δ2/2 (by Definition 3.3).

For a color 𝑐 ∈ [Δ] and a non-edge 𝑓 = {𝑢, 𝑤} ∈ 𝐹, let gap′
𝑐, 𝑓

indicate the event:

𝑥 (𝑢) = 𝑥 (𝑤) = 𝑐,
no other vertex in 𝑁 (𝑣) ∪ {𝑣} receives the color 𝑐 from 𝑥, and

no vertex in 𝑁 (𝑢) ∪ 𝑁 (𝑤) receives 𝑐.

By definition, gap′ =
∑
𝑐, 𝑓 gap′𝑐, 𝑓 . We have:

Pr
(
gap′𝑐, 𝑓

)
⩾

1

Δ2
·
(
1 − 1

Δ

)3Δ
⩾

1

Δ2
· exp

(
−2
Δ
· 3Δ

)
=

1

𝑒6 · Δ2 .

Where the first inequality follows because |𝑁 (𝑢) ∪ 𝑁 (𝑤) ∪ 𝑁 (𝑣) | ⩽ 3Δ, and the second because

exp

(
−2
Δ

)
⩽ 1 − 2

Δ
+ 2

Δ2
⩽ 1 − 1

Δ
.

By linearity of expectation,

E[gap] ⩾ E[gap′] ⩾ Δ︸︷︷︸
choose 𝑐

· 𝜀
2 · Δ2
2︸ ︷︷ ︸

choose 𝑓

· 1

𝑒6 · Δ2 =
𝜀2 · Δ
2𝑒6

.

Next, we want to show that gap is concentrated around its expectation, and for once,

Chernoff does not suffice. Define the random variable assign which counts the number of

colors assigned (by 𝑥) to at least two vertices in 𝑁 (𝑣), and the random variable lose which

counts the number of colors assigned to at least two vertices in 𝑁 (𝑣), and lost by any of them.

Then clearly gap = assign − lose. We will show that assign and lose are both concentrated

around their means, and this implies that gap is too.

First, note that assign depends only on the assignment 𝑥 (𝑤) for all𝑤 in the neighborhood

of 𝑣, that is:

assign :
∏

𝑤∈𝑁 (𝑣)
[Δ] → N.

Further, it is 1-Lipschitz – changing 𝑥 (𝑤) from 𝑐 to 𝑐′ can:

Make it so 𝑐 occurs only once (instead of twice) in 𝑁 (𝑣), decreasing assign by 1.
Make it so 𝑐′ occurs twice (instead of once) in 𝑁 (𝑣), increasing assign by 1.

And hence the net change to assign from changing 𝑥 (𝑤) is at most 1 in absolute value. Then by

the first part of Talagrand’s Inequality (Proposition B.1, with𝑚 = Δ, 𝑐 = 1, and 𝑡 = 𝜀2·Δ
20𝑒6

) we have:

Pr

(
|assign − E[assign] | ⩾ 𝜀

2 · Δ
20𝑒6

)
⩽ 2 · exp

(
− 2𝜀4 · Δ2
800𝑒12 · Δ

)
.

Which for Δ = Ω(log5 𝑛) (the Ω hides a monstrous constant), is 1/poly(𝑛). Note that our choice
of 𝑡 is 1/10-th of the lower bound on the expected value of gap.



60 / 66 S. Assadi, P. Kumar, P. Mittal

The same argument does not work for lose—the random variable depends on the 2-hop

neighborhood of 𝑣, which has size roughly Δ2, and hence the bound we get above is too weak.

However, note that in addition to being 2-Lipschitz, lose is also 3-certifiable. More concretely,

let𝑊 denote the 2-hop neighborhood of 𝑣, then:

Changing 𝑥 (𝑤) for some 𝑤 in𝑊 can change the contribution of at most 2 colors to lose:

the old and the new color assigned by 𝑥 to 𝑤. Hence lose is 2-Lipschitz.

For any 𝑠, to get lose ⩾ 𝑠, we need to set 𝑥 (·) for three vertices (two neighbors of 𝑣, and
one of their common neighbors) to 𝑖, for 𝑖 ∈ [𝑠].

Then by second part of Talagrand’s Inequality (Proposition B.1, with 𝑐 = 2, 𝑟 = 3, 𝑏 =
𝜀2·Δ
20𝑒6

):

Pr

(
|lose − E[lose] | > 𝜀2 · Δ

20𝑒6
+ 60

√︁
3 · E[lose]

)
⩽ 4 · exp

(
−

(
𝜀2 · Δ
20𝑒6

)2
· 1

48 · E[lose]

)
.

Crudely, we upper bound lose (and hence E[lose]) by Δ/2, to give us:

Pr

(
|lose − E[lose] | > 𝜀2 · Δ

20𝑒6
+ 60

√︁
3/2 · Δ

)
⩽ 4 · exp

(
− 𝜀4

9600𝑒12
Δ

)
.

Which with Δ = Ω(log5 𝑛) (and Ω doing an even braver job) is 1/poly(𝑛).
Taking the union of the bad events (i.e. either assign or lose deviates too much from its

mean), and applying the triangle inequality, we have that with high probability:

gap > E[gap] − 𝜀
2 · Δ
10𝑒6

− 𝑂(
√
Δ).

And hence combining with the lower bound on E[gap] we found earlier, gap > 𝜀2·Δ
2000

with high

probability. ■

B.2 From Section 5.3

LEMMA B.3 (Re-statement of Lemma 5.8). With high probability, there exists a proper partial

Δ-coloring 𝐶 that is an extension of 𝐶2 and colors all remaining vertices in 𝑉sparse using only the

colors in the lists 𝐿3(𝑣) for sparse vertices 𝑣 ∈ 𝑉sparse (and thus the randomness is also only over
these lists).

PROOF . Let 𝐶 initially be the coloring 𝐶2. We will color the vertices of 𝑉sparse greedily by

updating 𝐶. That is, we iterate over 𝑉sparse in arbitrary order, and if a vertex 𝑣 is uncolored in 𝐶,

we pick a color in 𝐿3(𝑣) which does not conflict with any of its neighbors in 𝐻 , and set 𝐶(𝑣) to it.
Using the randomness of 𝐿3(𝑣), and conditioning on the high probability event of Lemma 5.2:

CLAIM B .4. With high probability, for each vertex 𝑣 ∈ 𝑉sparse, and any partial coloring 𝐶 that

extends 𝐶1, there exists a color 𝑐 ∈ 𝐿3(𝑣) that is not used in 𝑁𝐻 (𝑣) by 𝐶.
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Proof.We would like to show that Avail𝐶 (𝑣) and 𝐿3(𝑣) have a nonzero intersection with high

probability. Since 𝑣 is sparse, by Lemma 5.2 we have:

avail𝐶 (𝑣) > (deg (𝑣) − coldeg𝐶1 (𝑣)) +
𝜀2 · Δ
2𝛼

Which implies that even if the entire neighborhood of 𝑣 is colored by 𝐶, there are still 𝜀
2

2𝛼
· Δ

colors available for 𝑣 to use.

Since each color from Avail𝐶 (𝑣) is sampled into 𝐿3(𝑣) independently with probability
100𝛼·log 𝑛

𝜀2·Δ ,

Pr (Avail𝐶 (𝑣) ∩ 𝐿3(𝑣) = ∅) ⩽
(
1 − 100𝛼 · log 𝑛

𝜀2 · Δ

) 𝜀2 ·Δ
2𝛼

⩽ exp

(
−100𝛼 · log 𝑛

𝜀2 · Δ · 𝜀
2 · Δ
2𝛼

)
< 𝑛−50,

concluding the proof. ■

And hence the greedy algorithm can color 𝑉sparse. Note that this algorithm can be implemented

efficiently using the information we gathered in Section 4. In particular, since 𝐶 only assigns

colors from 𝐿(𝑣) to 𝑣, it is enough to check for conflicts in 𝐻 while coloring from 𝐿3(𝑣). ■

B.3 From Section 5.4

LEMMA B.5 (Re-statement of Lemma 5.10). For a holey almost-clique 𝐾 , and any partial Δ-

coloring 𝐶 outside 𝐾 , there exists, with high probability, a coloring 𝐶′ which extends 𝐶 to 𝐾 such

that 𝐶′(𝑣) ∈ 𝐿4(𝑣) for all 𝑣 ∈ 𝐾 .

The main thing we want to exploit is that 𝐾 has a lot of non-edges, since we can assign the

same color to both endpoints of a non-edge. One easy way to do this for many non-edges simul-

taneously is to generate a “matching” of non-edges, which we do via the following algorithm:

It follows immediately that𝑀 is a matching; we will show that for holey cliques,𝑀 is large

with constant probability.

LEMMA B.6. If 𝐾 is a holey clique, Algorithm 8 produces a matching of size ℓ =
𝑡

106𝜀Δ
with

probability at least 1/2.

PROOF . We define:

Present(𝑐) as the set of non-edges present in 𝐹 when we encounter color 𝑐 in line (ii) of

Algorithm 8. Let present(𝑐) denote |Present(𝑐) |.
A color 𝑐 is successful if we add assign it to a non-edge during Algorithm 8.

Note that the number of successful colors is exactly the size of 𝑀 , and hence we would like to

show that many colors succeed. To do so, we show that present(·) is large for many colors.

In particular, we say that a color 𝑐 is heavy if it has present(𝑐) ⩾ 𝑡/2, and have the following
claim:
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Input: The input graph 𝐺, an almost-clique 𝐾, the partial coloring 𝐶, and the list 𝐿4,𝑖 (𝑣) for
each 𝑣.

(𝑖) Initialize 𝐶′← 𝐶.

(𝑖𝑖) Let 𝐹 = { 𝑓1, . . . , 𝑓𝑡} be the set of non-edges in 𝐾.

(𝑖𝑖𝑖) For each color 𝑐 ∈ [Δ]: If there is a non-edge 𝑓 = {𝑢, 𝑣} ∈ 𝐹 such that
𝑐 ∈ 𝐿4,𝑖 (𝑢) ∩ 𝐿4,𝑖 (𝑣), and 𝑐 is not used in the neighborhood of 𝑢 or 𝑣, then:

Assign 𝐶′(𝑢) ← 𝑐 and 𝐶′(𝑣) ← 𝑐.

Add 𝑓 to 𝑀.

Remove all non-edges incident on 𝑓 from 𝐹.

Algorithm 8. The colorful-matching algorithm.

CLAIM B .7. There are at least Δ/2 heavy colors.

PROOF . For a non-edge 𝑓 = {𝑢, 𝑣}, define Blocked( 𝑓 ) to be the set of colors used by 𝐶 to

color the neighbors of 𝑢 or 𝑣 outside 𝐾 . By property item 𝑖𝑖𝑖). of Definition 3.4, the number of

neighbors of 𝑢 or 𝑣 (and hence the number of colors used by 𝐶 to color them) is at most 20𝜀Δ. As

a result, at the beginning of the algorithm:∑︁
𝑓 ∈𝐹
|Blocked( 𝑓 ) | ⩽ 𝑡 · 20𝜀Δ.

This means that on average, each color occurs in Blocked( 𝑓 ) for at most

𝑡 · 20𝜀Δ · 1/Δ = 20𝜀𝑡

non-edges 𝑓 . By Markov’s Inequality, there are at most Δ/2 colors 𝑐 which occur in Blocked( 𝑓 )
for more than 40𝜀𝑡 non-edges 𝑓 . Hence there are at least Δ/2 colors 𝑐 which are not blocked for
at least 𝑡 − 40𝜀𝑡 ⩾ 9/10 · 𝑡 non-edges in 𝐹—at the beginning of the algorithm.

How many of these non-edges remain in Present(𝑐) when we look at 𝑐? Upon adding the

non-edge {𝑢, 𝑣} to 𝑀 , we remove all non-edges incident on 𝑢 or 𝑣 from 𝐹. Since each 𝑢 ∈ 𝐾 has

at most 10𝜀Δ non-neighbors in 𝐾 (property 𝑖𝑖). of Definition 3.4), each non-edge added to 𝑀

removes at most 20𝜀Δ edges from Present(𝑐). Because the algorithm has already succeeded if

|𝑀 | becomes larger than ℓ, the number of edges removed from Present(𝑐) is at most ℓ · 20𝜀Δ in
total, which is < 𝑡/10. Hence there are at least Δ/2 colors 𝑐 with present(𝑐) ⩾ 8/10 · 𝑡 ⩾ 𝑡/2. ■

Regrouping, we have shown that there are many colors in [Δ] that can be assigned to

many non-edges in 𝐹. Next, we would like to show that for each of these heavy colors 𝑐, the

probability that 𝑐 is in sampled by both endpoints of a non-edge in Present(𝑐) is high.
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CLAIM B .8. For a heavy color 𝑐, Pr (𝑐 is successful) ⩾ 10−5 · 𝑡/𝜀Δ2.

Proof. The color 𝑐 is successful if there is least one non-edge {𝑢, 𝑣} ∈ Present(𝑐) such that

𝑐 ∈ 𝐿4,𝑖 (𝑢) ∩ 𝐿4,𝑖 (𝑣). Using the inclusion exclusion principle, and cutting out terms of “order”

more than 2:

Pr (𝑐 is successful) ⩾
∑︁

{𝑢,𝑣}∈Present(𝑐)
Pr

(
𝑐 ∈ 𝐿4,𝑖 (𝑢) ∩ 𝐿4,𝑖 (𝑣)

)

−
∑︁

𝑓 ,𝑔 ∈Present(𝑐)
Pr

©­
«
𝑐 ∈

⋂
𝑤∈ 𝑓∪𝑔

𝐿4,𝑖 (𝑤)ª®¬
.

The first term is easy to compute exactly: 𝑐 belongs to both lists with probability 𝑞2, so∑︁
{𝑢,𝑣}∈Present(𝑐)

Pr
(
𝑐 ∈ 𝐿4,𝑖 (𝑢) ∩ 𝐿4,𝑖 (𝑣)

)
= present(𝑐) · 𝑞2.

For the second term, we have to consider two cases:

| 𝑓 ∪ 𝑔 | = 3: The probability that 𝑐 belongs to 𝐿4,𝑖 (𝑤) for 3 vertices 𝑤 is 𝑞3. After picking

𝑓 = {𝑢, 𝑣} from Present(𝑐), there are at most 20𝜀Δ choices for the third vertex, and hence

the total contribution of terms of this type is at most

present(𝑐) · 20𝜀Δ · 𝑞3.

| 𝑓 ∪ 𝑔 | = 4: The probability that 𝑐 belongs to the list of 4 vertices is 𝑞4. And there are

at most present(𝑐)2 ways to pick a 2-set of non-edges. So the total contribution of these
terms is at most

present(𝑐)2 · 𝑞4.

Adding everything up, we get:

Pr (𝑐 is successful) ⩾ present(𝑐) · 𝑞2 − present(𝑐) · 10𝜀Δ · 𝑞3 − present(𝑐)2 · 𝑞4

⩾ 9/10 · present(𝑐) · 𝑞2 − present(𝑐)2 · 𝑞4

(since 𝑞 = 1

100
√
𝜀Δ
and thus 10𝜀Δ · 𝑞 < 1/10 for 𝜀 < 1)

⩾ present(𝑐) · 𝑞2 ·
(
9/10 − 20𝜀Δ2 · 𝑞2

)
(since present(𝑐) ⩽ |𝐹 | ⩽ 20𝜀Δ2 by property 𝑖𝑖). of Definition 3.4)

⩾ 8/10 · present(𝑐) · 𝑞2 (since 𝑞 =
1

100
√
𝜀Δ
, 20𝜀Δ2 · 𝑞2 = 1/200)

⩾
𝑡

105 · 𝜀Δ2 ,

concluding the proof. ■
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Finally, we are ready to prove the lemma itself. Let 𝜃 = 10−5 · 𝑡/𝜀Δ2 (the RHS of Claim B.8);

note that 𝜃 < 1 because 𝑡 ⩽ |𝐹 | ⩽ 20𝜀Δ2. Let 𝑍 be a random variable with the binomial

distribution B (Δ/2, 𝜃). Note that we can couple each Bernoulli trial used to determine 𝑍 with

a heavy color succeeding – since there are at least Δ/2 of them, they succeed with probability

at least 𝜃, and two different colors are independent of each other. Hence 𝑍 is a lower bound

for |𝑀 |. We follow our usual formula:

E[𝑍] = Δ/2 · 𝜃 = 10−5 · 𝑡/2𝜀Δ.

And with an application of Chernoff Bound (Proposition 3.2, with 𝛿 = 1/2):

Pr (𝑍 < 1/2 · E[𝑍]) ⩽ 2 exp

(
− (1/2)2 · 𝑡
105 · 2𝜀Δ · (2 + 1/2)

)
⩽ 2 exp

(
− 107 · 𝜀Δ
106 · 2𝜀Δ

)
⩽ 2𝑒−5 < 1/2.

And hence with probability at least 1/2,

|𝑀 | ⩾ 𝑍 ⩾ 10−5 · 𝑡/8𝜀Δ > 10−6 · 𝑡/𝜀Δ = ℓ.

This concludes the proof. ■

Now, since we run Algorithm 8 for 𝛽 independent sets lists {𝐿4,𝑖 (𝑣) | 𝑣 ∈ 𝑉 }, we get a
non-edge matching 𝑀 of size ℓ = 𝑡/𝜀Δ from one of the runs with high probability. We keep the

coloring assigned to this largest non-edge edge matching, and hence have the following lemma:

LEMMA B.9. Suppose 𝐾 is a holey almost-clique, with 𝑡 ⩾ 107 · 𝜀Δ non-edges inside it. Then for
any coloring 𝐶 outside 𝐾 , with high probability there is an extension 𝐶′ of 𝐶 which:

Colors 2 · 𝑡
106·𝜀Δ vertices of 𝐾 .

Uses only 𝑡
106·𝜀Δ colors inside 𝐾 , and further for each 𝑣 ∈ 𝐾 that it colors, uses a color from

𝐿4(𝑣).

Let us pause for a moment, and consider why we did all this work. Lemma B.9 tells us that

Algorithm 8 colors some number of vertices in 𝐾 , using only half that many unique colors. As

in the case of sparse vertices, this creates enough of a gap between available colors and the

remaining degree of each vertex in 𝐾 such that an available color is sampled in 𝐿4(𝑣) with high
probability. This is exactly what we need to prove Lemma 5.10.

PROOF OF LEMMA 5.10 . Let 𝐶′ be the partial coloring obtained from Lemma B.9. Then we

define the base and sampled palette graphs GBase and GSample (Definitions 3.8 and 3.9) with:
L as the set of vertices of 𝐾 not colored by 𝐶′.

R as the set of colors not used by 𝐶′ in 𝐾 .

𝑆(𝑣) = 𝐿∗4(𝑣) for each 𝑣 ∈ L.
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We will show that GBase satsifies the conditions in Lemma 3.10, and hence GSample has an L-
perfect matching with high probability, and hence 𝐶′ can be extended to (𝐿4 ∪ 𝐿∗4)-color all of 𝐾 .
In the same order as the lemma:

(𝑖) For 𝑚 := L, 𝑚 ⩽ |R | ⩽ 2𝑚: To get the first inequality, we rewrite |L| and |R | in terms

of 𝐾 and the vertices and colors removed by 𝐶′:

|L| = |𝐾 | − 2𝑡

106 · 𝜀Δ , |R | = Δ − 𝑡

106 · 𝜀Δ .

Note that if |𝐾 | ⩾ Δ + 1 + 𝑘, the number of non-edges inside 𝐾 (that is, 𝑡) is at least 𝑘 · Δ.
Then the number of vertices removed far outstrips the number of colors, in particular:

|L| = Δ + 1 + 𝑘 − 2𝑘

106 · 𝜀 ⩽ Δ − 𝑘, |R | = Δ − 𝑘

106 · 𝜀.

Which makes |L| ⩽ |R | for 𝑘 ⩾ 1, because 1
106·𝜀 > 2. On the other hand, if 𝐾 = Δ + 1,

since 𝑡 ⩾ 107 · 𝜀Δ,
|R | − |L| = 107 · 𝜀Δ

106 · 𝜀Δ − 1 ⩾ 9.

To get the second inequality, first note that 𝑚 ⩾ 2/3 · Δ. This is because the maximum

number of non-edges in 𝐾 is (2Δ) · (10𝜀Δ) = 20𝜀Δ2 (by property 𝑖𝑖). of Definition 3.4),

and hence the number of vertices in L is at least

(1 − 5𝜀)Δ − 40𝜀Δ2

106 · 𝜀Δ ⩾ 2/3 · Δ.

Then since |𝑅| ⩽ Δ we are done.

(𝑖𝑖) Each vertex 𝑣 ∈ L has degGBase (𝑣) ⩾ 2/3 · 𝑚: Each vertex 𝑣 in L may have up to 10𝜀Δ

edges out of 𝐾 (in 𝐺), hence blocking 10𝜀Δ colors in R for 𝑣. Since all the remaining

colors are available to 𝑣,

degGBase (𝑣) ⩾ |𝑅| − 10𝜀Δ ⩾ 𝑚 − 15𝜀 · 𝑚 ⩾ 2/3 · 𝑚.

Where the second inequality follows from part (i).

(𝑖𝑖𝑖) For every set 𝐴 ⊂ L of size |𝐴| ⩾ 𝑚/2, we have∑
𝑣∈𝐴 degGBase (𝑣) ⩾ |𝐴| ·𝑚−𝑚/4; recall

that for any 𝑣 ∈ L:

degGBase (𝑣) ⩾ |𝑅| − (Δ + 1) + |𝐾 | − deg𝐾 (𝑣).
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Let 𝑇 := 𝑡
106·𝜀Δ ⩾ 10. Summing the inequality above over 𝑣 ∈ 𝐴, we get:∑︁

𝑣∈𝐴
degGBase (𝑣) ⩾

∑︁
𝑣∈𝐴

(
|𝑅 | − (Δ + 1) + |𝐾 | − deg𝐾 (𝑣)

)

=

∑︁
𝑣∈𝐴
(Δ − 𝑇︸︷︷︸
|𝑅|

−(Δ + 1) + |L| + 2𝑇︸    ︷︷    ︸
|𝐾 |

−deg𝐾 (𝑣))

=

∑︁
𝑣∈𝐴

(
|𝐿| − deg𝐾 (𝑣) + 𝑇 − 1

)

= |𝐴| · (𝑚 + 𝑇 − 1) −
∑︁
𝑣∈𝐴

deg𝐾 (𝑣)
︸         ︷︷         ︸

⩽2𝑡

> |𝐴| · 𝑚.

Where the last inequality follows from

(𝑇 − 1) · |𝐴| ⩾ 𝑇/2 · |𝐴| ⩾ 𝑡𝑚

106 · 4𝜀Δ ⩾
𝑡Δ

106 · 6𝜀Δ ⩾ 5𝑡.

And now by the promised application of Lemma 3.10, GSample has an L-perfect matching, and

we are done. ■
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