
On Constructing Spanners from Random Gaussian

Projections

Sepehr Assadi #

Department of Computer Science, Rutgers University, New Brunswick, NJ, USA

Michael Kapralov #

School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland

Huacheng Yu #

Department of Computer Science, Princeton University, NJ, USA

Abstract

Graph sketching is a powerful paradigm for analyzing graph structure via linear measurements

introduced by Ahn, Guha, and McGregor (SODAŠ12) that has since found numerous applications in

streaming, distributed computing, and massively parallel algorithms, among others. Graph sketching

has proven to be quite successful for various problems such as connectivity, minimum spanning

trees, edge or vertex connectivity, and cut or spectral sparsiĄers. Yet, the problem of approximating

shortest path metric of a graph, and speciĄcally computing a spanner, is notably missing from

the list of successes. This has turned the status of this fundamental problem into one of the most

longstanding open questions in this area.

We present a partial explanation of this lack of success by proving a strong lower bound for a

large family of graph sketching algorithms that encompasses prior work on spanners and many (but

importantly not also all) related cut-based problems mentioned above. Our lower bound matches

the algorithmic bounds of the recent result of Filtser, Kapralov, and Nouri (SODAŠ21), up to

lower order terms, for constructing spanners via the same graph sketching family. This establishes

near-optimality of these bounds, at least restricted to this family of graph sketching techniques, and

makes progress on a conjecture posed in this latter work.
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1 Introduction

Analyzing structure of different objects via random linear projections, also known as sketching,

is a fundamental paradigm that arise in various contexts. Canonical examples of this

approach include dimensionality reduction results such as Johnson-Lindenstrauss lemma [25],

sparse recovery results in compressed sensing [16], approximation algorithms for large

matrices [40, 41], or various sketches for statistical estimation such as AMS sketch [4], count

sketch [12], or count-min sketch [14] in data streams.

A pioneering work of [1] initiated graph sketching that considers this paradigm for

graphs. A graph sketching algorithm samples a sketching matrix A from a Ąxed distribution,

independent of the input graph G, and compute A ·R(G) where R is a suitable representation

of G chosen by the algorithm designer, say, its adjacency matrix, Laplacian, or (signed)

edge-incidence matrix. The algorithm then uses A · R(G), referred to as the sketch, to

(approximately) discover properties of G with no further access to G, e.g., to determine
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whether or not G is connected. Assuming one can design a sketching matrix A with ŞfewŤ

rows, this approach leads to sketches that can be stored and updated efficiently and be used

to recover fundamental properties of G.

The linearity of the sketches and the natural ŞcomposabilityŤ guarantee that comes with

it makes graph sketching a versatile tool in many applications. For instance, graph sketching

is the de facto method of algorithm design for dynamic streaming algorithms that process a

graph speciĄed via a sequence of edge insertions and deletions; see, e.g. [1, 2, 30, 6, 31, 21].

Graph sketching works seamlessly in this model as linearity of sketches allows one to update

them easily after each update in the stream. It is even known that this method is universal

for dynamic streams under certain (strong) assumptions on length of the stream [35, 3] (see

also [28] for necessity of these assumptions). Another model that has beneĄted greatly from

graph sketching is that of distributed sketching (a.k.a. simultaneous communication model or

broadcast congested clique) wherein every vertex is a processor that sees only edges incident

on the vertex and its task is to communicate a small message, simultaneously with other

vertices, that allows a referee to solve the problem; see, e.g. [10, 1, 2, 11, 37, 7, 42]. Finally,

graph sketching has also been a powerful tool for designing distributed or massively parallel

algorithms; see, e.g. [1, 2, 24, 22, 38, 27, 20, 21].

All these considerations have turned graph sketching into a highly attractive solution

concept in the last decade since their introduction in [1]. We now have efficient sketches, that

often match existentially optimal bounds up to poly-log factors1, for various fundamental

problems such as connectivity [1], minimum spanning trees [1], edge connectivity [1], vertex

connectivity [23], cut sparsiĄers [2], spectral sparsiĄers [30, 31], graph coloring [5], densest

subgraph [36], and others.

Graph sketching for spanners

We study graph sketching for the problem of computing spanners that (approximately)

preserve the shortest path metric of the input graph. Formally,

▶ DeĄnition 1. A subgraph H of a graph G = (V, E) is a d-spanner of G for some integer

d ≥ 1, called the stretch of the spanner, if for every pair u, v ∈ V one has

distG(u, v) ≤ distH(u, v) ≤ d · distG(u, v),

where dist∗(·, ·) stands for the shortest path metric of the corresponding graph.

For every integer k ≥ 1, every n-vertex graph G = (V, E) admits a (2k − 1)-spanner with

only O(n1+1/k) edges which is also existentially optimal under the widely-believed Erdős

Girth Conjecture. For instance, every graph admits an O(log n)-spanner on O(n) edges.

Spanners are notably absent from the list of successes in graph sketching. Indeed, despite

the signiĄcant attention given to sketching spanners, see, e.g., [2, 34, 20, 21, 17], until very

recently, it was not even known whether an o(n)-spanner can be recovered via sketches of

O(n) size. The work of [21] made the Ąrst progress on this problem in nearly a decade by

presenting an O(n2/3)-spanner using sketches of Õ(n) size2, or more generally a d-spanner

using sketches of size Õ(n2/d3/2). But such bounds are still quite far from existential bounds

on spanners dictated by the girth conjecture. Yet, no non-trivial lower bounds are known for

1 For instance, sketches of size O(n log3 n) for spanning forests of n-vertex graphs [1] compared to
existential bound of Ω(n log n) bits to store the spanning forest.

2 We use Õ(·) and Ω̃(·) notation to hide poly-log factors.
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this problem3, beside the work of [37] (see also [42]) that proves that Ąnding any spanning

tree requires sketches of size Ω(n log3 n) bits (namely, a lower bound for any spanner of Ąnite

stretch).

The lack of progress on understanding graph sketching for spanners have also been

consequential in other computing models that use graph sketching as their primary tool,

most notably, the dynamic streaming model. Indeed, complexity of spanners has been a

tantalizing open question in the dynamic streaming model already since its introduction in [1]

(for insertion-only streams, optimal algorithms that essentially match existential bounds

under Erdős girth conjecture have been known since the introduction of the model itself

in [18]; see, also [9, 19]).

This state-of-affairs raises the following question: What is the best stretch-vs-size tradeoff

possible for constructing spanners via graph sketching? We make progress on this longstanding

open question by proving a nearly-tight lower bound for a large family of graph sketching

algorithms that encompasses prior work on spanners in [21] and most other closely related

problems.

1.1 Our Contribution

We prove a lower bound on the size of a special case yet general family of sketches

for graph spanners. This family, that shall be deĄned shortly, contains the prior sketching

algorithm of [21] for graph spanners Ű our lower bound matches their bound up to lower order

terms and is thus nearly-optimal. In addition, this family also contains many prior sketching

algorithms for Şcut-basedŤ problems such as connectivity [1], vertex connectivity [23], and

spectral sparsiĄers [30] (and thus also cut sparsiĄers). We now elaborate more on our results,

starting with the deĄnition of our sketches, which we call random Gaussian sketches.

Random Gaussian sketches

To date, the main success of graph sketching has been for cut-based problems [1, 2, 30, 23].

These sketches all work by encoding a graph G as its
(

n
2

)
× n signed edge-incidence matrix

B(G) (see Section 3.1) and then apply a sketching matrix A with few rows on the left to

obtain the sketch A · B(G). The power of these sketches comes from surprisingly powerful

cancellations that the use of the signed edge incidence matrix enables. In addition, the

sketching matrix A of in these approaches implements a sparse recovery scheme on carefully

chosen random subgraphs of the input graphs (e.g. uniformly random subgraphs of the

input graph in the case of connectivity [1], cut sparsiĄers [2], or spectral sparsiĄers [30], and

sampled vertex induced subgraphs in the case of spanners [21]).

To give a concrete example, let us consider the AGM sketches [1] for Ąnding spanning

forests. For any graph G = (V, E) and any set of vertices S ⊆ V , adding up the columns

of B(G) corresponding to vertices in S, i.e.,
∑

v∈S B(G)v gives us a vector with non-zero

entries corresponding to edges of the cut (S, V \ S). The linearity of matrix A then allows us

to obtain

A ·

∑

v∈S

B(G)v


=
∑

v∈S

A · B(G)v,

3 This state-of-affairs is in sharp contrast with another widely-studied problem of Ąnding large matchings
which is also absent from the list of successes in graph sketching; for the matching problem, asymptotically
tight lower bounds which are much stronger than existential bounds are known; see [6, 15, 8].

APPROX/RANDOM 2023
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for a cut S speciĄed in the recovery phase. The sketching matrix A itself is an ℓ0-sampler

sketch that samples a non-zero entry of a vector v given A · v (see [26, 32]). An ℓ0-sampler

sketch is typically implemented via a simple sparse recovery sketch combined with a sampling

matrix that samples the edges of the graph at O(log n) geometrically decreasing rates.

Combined with the above approach, we can thus sample an edge from any cut of the graph

speciĄed in the recovery phase. The algorithm of [1] heavily builds on this subroutine by

implementing BorůvkaŠs algorithm for growing connected components via using these sketches

to Ąnd an outgoing edge from each component in each step.

In this paper, we focus on this family of sketches where the sparse recovery scheme is

implemented using random Gaussian projections. This means that each row of the sketching

matrix is of the type g · S where S is an
(

n
2

)
×
(

n
2

)
-dimensional diagonal sampling matrix Ű

where S(u,v),(u,v) = 1 iff (u, v) is sampled Ű and g is an
(

n
2

)
-dimensional vector of independent

Gaussian variables:

[
g

]
1×(n

2
)
×


 S




(n

2
)×(n

2
)

×


 B(G)




(n

2
)×n

=
[

g · S · B(G)
]

1×n
.

The entire sketch is obtained by taking s such rows where sampling matrices can be

correlated but Gaussian vectors are independent. The recovery algorithm is given sampling

matrices and the sketch but not Gaussian variables. We refer to s as the dimension of the

sketch (thus size of the sketch is O(s · n)). See Section 3.1 for formal deĄnitions.

General ŞpowerŤ of random Gaussian sketches? In Appendix A, we show this family of

sketches can implement many (but importantly not all) prior cut-based sketching algorithms

in [1, 30, 23], and most importantly the spanner sketch of [21]. But we also point out that

these sketches are not universal and one can easily construct problems where the power of

these sketches does not match general sketching algorithms4. Perhaps more importantly, we

assume that the recovery algorithm of these sketches is oblivious to the Gaussian vectors used

in the sketching matrix which means that the recovery algorithm has a partial knowledge of

the sketching matrix. A particular shortcoming of this is that while these sketches handle

the ŞmainŤ source of cancelations enabled by edge-incidence matrix, they do not handle a

ŞsecondaryŤ source of cancelation: to obtain sketches of subgraphs of the input by generating

the sketching matrix again at the recovery phase, apply it on some recovered part of the

input, and subtract it from the original sketch (this approach is used in the edge connectivity

and cut sparsiĄer sketch of [2] Ű although we note that random Gaussian sketches can recover

a cut sparsiĄer by instead implementing the algorithm of [30]). We thus see the merit of

study of this family as arguably the Şmost naturalŤ candidate for Ąnding spanners, given

their past successes for closely related problems.

Our result

We prove a near-optimal lower bound on the dimension of random Gaussian sketches for

constructing spanners, or even returning the distance of two Ąxed vertices (see also The-

orem 5).

4 Consider recovering the induced subgraph of the input on the Ąrst
√

n vertices. A sparse recovery
algorithm that spends O(

√
n) bits per each of these

√
n vertices gives a sketch of size O(n) for this

problem. However, any random Gaussian sketch requires a dimension of Θ(
√

n) that cannot be amortized

over all vertices, leading to a sketch of size O(n3/2) instead.
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▶ Result 1. Any random Gaussian sketch for constructing a d-spanner with constant

probability of success requires dimension Ω(n1−o(1)/d3/2), or put differently, any random

Gaussian sketch of dimension s can only achieve a stretch of Ω((n/s)2/3−o(1)). The lower

bound applies even to the problem of approximating the distance of two Ąxed vertices.

Our lower bounds in Result 1 matches algorithmic bounds of [21] up to the no(1) term

for computing spanners via graph sketching (whose sketches Ąt the framework of random

Gaussian sketches) for all stretch d. This establishes the optimality of these bounds at least

among this popular family of graph sketching algorithms. We note that [21] conjectured

optimality of their algorithmic bounds among all graph sketching techniques; our bounds

in Result 1 makes partial progress towards settling this conjecture.

Before moving on, we note that for the case when dimension s = polylog(n), corresponding

to sketches of size Õ(n), Result 1 implies a lower bound of n2/3−o(1) on the stretch; this

should be contrasted with the O(log n) bound of existential results on the stretch of spanners

with O(n) edges, suggesting that computing spanner is much harder using graph sketching

(speciĄcally via random Gaussian sketches) compared to existential bounds and arbitrary

algorithms. Finally, the lower bound holds even for the algorithmically easier problem of

simply estimating distance of two Ąxed vertices in the graph, as opposed to recovering the

entire shortest path metric via a spanner.

Our techniques

We consider a family of hard instances that form a random chain of cliques of size (n/d)

with diameter d, and a single edge e∗ that connects two vertices at distance Θ(d) together

(see Figure 1). It is easy to see that such e∗ should belong to every o(d)-spanner of the graph

and we prove that no random Gaussian sketch of ŞsmallŤ dimension can recover e∗. The proof

is through analyzing how much a single random Gaussian projection can reveal information

about e∗, or a bit more formally, the KL-divergence between the resulting sketches of two

neighboring graphs that only differ on e∗. The rest follows by summing up this information

across the s projections.

To prove the bound for a single projection, we use properties of Gaussian variables and

KL-divergence to bound the information revealed about the edge e∗ by the effective resistance

of the sampled subgraph of the input after applying the sampling matrix. We prove that

the distribution of our input, combined with a hierarchical expander decomposition of all

edges of sampling matrix, implies that the sampled subgraph of the input form a chain of

expanders (with proper lower bounds on both expansion and minimum degree). This step

requires analyzing expansion of vertex-sampled subgraphs of an expander which can be of

independent interest. Lastly, we bound the effective resistance of the edge e∗ in this chain of

expanders by exhibiting a proper electrical Ćow in the graph using properties of expanders.

Related work

In a recent independent work Chen, Khanna and Li [13] showed, similarly to our work, a

lower bound matching the sketching dimension of [21] for linear sketches that can support

continuous weight updates (as opposed to sketches that are only required to work for

unweighted graphs). Thus, from the perspective of the ultimate result, the lower bound

of [13] is incomparable to ours. Their lower bound works for more general sketches than ours

(although still not universal), but assumes that these sketches work in the continuous weight

update model; our lower bound assumes a special sketch structure, but works in the mode

APPROX/RANDOM 2023



57:6 On Constructing Spanners from Random Gaussian Projections

standard setting of unweighted graphs. There is quite a bit of overlap in techniques: both

papers use expander decompositions and prove that expanders are preserved under vertex

sampling (but the actual proofs of the corresponding lemmas are different).

2 Preliminaries

Notation

We use N (µ, σ) to denote the Gaussian distribution with mean µ and variance σ2. For any

distributions P and Q, D(P ♣♣ Q) denotes the KL-divergence of P from Q and ∥P − Q∥tvd

is the total variation distance between P and Q.

For a graph G = (V, E) on n vertices, we use d1, . . . , dn to denote the degrees of vertices

in G. For any sets of vertices S, T ⊆ V , E(S, T ) denotes the set of edges between S and T

and volG(S) :=
∑

v∈S dv denotes the volume of S (we drop the subscript when clear). The

conductance of G is deĄned as

φ(G) := min
S⊆V

♣E(S, V \ S)♣
min¶vol(S), vol(V \ S)♢ .

We say that G is a φ-expander if its conductance is at least φ.

For a graph G, A is the adjacency matrix, D is the degree diagonal matrix, B is the signed

edge-incidence matrix, L is the Laplacian matrix, and L̃ is the normalized Laplacian matrix.

The spectral gap of G is deĄned as the second smallest eigenvalue of L̃ which is related to

the conductance via CheegerŠs inequality. Finally, RG
eff(u, v) denotes the effective resistance

between u, v when treating edges of G as resistors with unit resistance.

We also use the following (variant of) expander decomposition that bounds the minimum

degree of resulting expanders. The proof is a simple modiĄcation of standard decompositions,

e.g. in [29, 39].

▶ Proposition 2. Let G = (V, E) be any graph on n vertices and m edges, and ε ∈ (0, 1/2)

and dmin ≥ 1 be parameters. The vertices of G can be partitioned into subgraphs H1, . . . , Hk

such that:

(i) Each Hi is an ε-expander with minimum degree dmin;

(ii) At most 8ε · m log n + n · dmin edges E0 of G do not belong to any subgraph ¶Hi♢i∈[k].

3 Main Result

We formalize Result 1 in this section. We start by deĄning the sketching model, using random

Gaussian projections, that we study. We then present our lower bound for constructing

spanners (and in general preserving shortest path metric) using these sketches. Finally, we

give the proof outline of this result here and postpone the proof of its main ingredients to

the subsequent sections.

3.1 Random Gaussian Projections and Sketches

For an n-vertex graph G = (V, E), its signed edge-incidence matrix is an
(

n
2

)
× n-

dimensional matrix B = B(G) deĄned as follows:

Each column corresponds to a vertex v and each row corresponds to a pair of vertices

(u, w);

The entry B(u,w),v is either +1 if (u, w) is an edge in G and v = u, −1 if (u, w) is an edge

in G and v = w, and 0 otherwise.
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Note that for any edge e = (u, v) of G, the corresponding row (u, v) in B has exactly one +1

at column u, one −1 at column v, and is otherwise 0. A row (u, v) of B which does not have

a corresponding edge in G is the all-0 row.

Our sketches are based on taking random Gaussian projections of matrix B, which roughly

speaking correspond to sampling edge of G (using any sampling scheme oblivious to the

graph), and multiply a Gaussian vector with signed edge-incidence matrix of the resulting

graph. Formally,

▶ DeĄnition 3. Let G = (V, E) be an n-vertex graph and consider the following:

(i) Sampling matrix: Let S be a
(

n
2

)
×
(

n
2

)
-dimensional diagonal matrix with 0-1-values

on the diagonal. Notice that the matrix S · B(G) is the edge-incidence matrix of

the subgraph of G obtained by picking only those edges of G that their corresponding

(diagonal) value in S is 1.

(ii) Gaussian projection: Let g be a
(

n
2

)
-dimensional vector of Gaussian random variables,

where each entry is sampled independently from N (0, 1).

A random Gaussian projection of G with respect to S is an n-dimensional vector obtained

by sampling g ∼ N (0, 1)(
n

2), and returning p := g · S · B(G).

Using DeĄnition 3, we can deĄne the sketches we focus on as follows.

▶ DeĄnition 4. Let Π be a problem deĄned on n-vertex graphs G = (V, E). A random

Gaussian sketch for Π is deĄned via the following pair:

(i) Sketching matrices: A distribution Dsmpl on s-tuples of sampling matrices for some

s ≥ 1.

(ii) Recovery algorithm: An algorithm that given s sampling matrices S = (S1, . . . , Ss) ∼
Dsmpl and s random Gaussian projection P = (p1, . . . , ps) of any graph G with respect

to these sampling matrices, returns a solution to Π(G).

We refer to s as the dimension of the sketch (note that a sketch of dimension s has size

O(s · n)).

A random Gaussian sketch for a graph G then consists of sampling the sketching matrices

S from Dsmpl (independent of G), receiving random Gaussian projections P, and running

the recovery algorithm on (S, P) to return the solution.

We emphasize that in DeĄnition 4, the recovery algorithm is given the sketching matrices

used for random Gaussian projections explicitly, but is not given the Gaussian vectors

themselves.

We note that our formalization of random Gaussian sketches is new to this paper, albeit

it has been used implicitly in prior algorithmic results for in graph sketching literature.

In Appendix A, we elaborate more on this connection and point out that how these sketches

can be used to solve many of the canonical problems in graph sketching literature such as

connectivity, minimum spanning tree, cut or spectral sparsiĄers, and most closely related

to ours, spanners. But we also emphasize that these sketches are not universal Ű see the

discussion on the power of these sketches in Section 1.1.

3.2 The Lower Bound

The following is the formalization of Result 1 that we prove.

▶ Theorem 5. For any absolute constant δ ∈ (0, 1), and integers n ≥ 1 and 1 ≤ d ≤ n2/3−δ,

any random Gaussian sketch (DeĄnition 4) that outputs a d-spanner of every given n-vertex

graph G with probability at least 2/3 has dimension (i.e., number of rows)

Ω(
n1−δ

d3/2
).

APPROX/RANDOM 2023



57:8 On Constructing Spanners from Random Gaussian Projections

Moreover, the lower bound continues to hold even if the algorithm is only required to answer

the shortest path distance between two prespeciĄed vertices up to a factor of d.

Theorem 5 can alternatively be seen as proving that any random Gaussian sketch of dimension

s can only achieve a stretch of

Ω((
n

s
)2/3−δ),

for any constant δ > 0. In light of the result of [21], the bounds obtained in Theorem 5

are optimal, up to no(1)-factors, for the entire range of dimension s or stretch d. In

particular, Theorem 5 implies that to obtain a n2/3−Ω(1)-spanner, one needs random Gaussian

sketches of dimension nΩ(1). This makes progress on a conjecture of [21] that stated the

same bounds for arbitrary sketches.

Finally, we also mention that Theorem 5 works even for the problem wherein we are

given two vertices a and b of the graph, and our goal is to simply determine the distance of

a and b in the graph using the sketches. This problem is algorithmically easier than Ąnding

a spanner of the graph in that Ąrstly, we do not need to pick subset of edges of the graph G

and can preserve the shortest path metric in any desired way, and secondly that we only

need to maintain the distance between two vertices and not all pairs. Yet, effectively the

entirety of our effort is to prove the result for spanners already and we get this stronger lower

bound almost for free using standard ideas.

In the rest of this section, we Ąrst present a hard input distribution used to establish The-

orem 5. We then state our main technical lemma that bounds the information revealed by a

single random Gaussian projection on the graphs sampled from this distribution and show

how this lemma easily implies the theorem. The next subsection then includes the proof

outline of this technical lemma, whose main ingredients are postponed to the next sections.

3.3 A Hard Input Distribution

For any sufficiently large n, d > 0, we deĄne a hard distribution µ = µ(n, d) over n-

vertex graphs. For simplicity, we prove the lower bound for (d/2)-spanners instead Ű re-

parameterizing d then implies the same asymptotic lower bound for exact d-spanners as well

(see Figure 1).

Distribution µ(n, d). A hard input distribution for (d/2)-spanners of n-vertex graphs.

1. Partition the vertices V into d groups V1, . . . , Vd: each v ∈ V is sent to one of the

groups chosen uniformly at random.

2. Let G be a graph obtained by placing a clique on each Vi ∪ Vi+1 for i ∈ [d − 1].

3. Sample a pair of vertices (u∗, v∗) ∈
(

V
2

)
independently and return the graph G + e∗ for

e∗ = (u∗, v∗).

In the following, we use B = B(G) to the denote the signed edge-incidence matrix of G;

we also use B(e∗) as the edge-incidence matrix of the n-vertex graph consisting of the single

edge e∗ = (u∗, v∗). We emphasize that the Ąnal graph output by the distribution is G + e∗

(this notation will be make the latter parts of the proof cleaner).

We Ąrst establish a straightforward property of graphs sampled from µ in context of

spanners.

▶ Lemma 6. With constant probability over the choice of (G, e∗) ∼ µ(n, d), every (d/2)-

spanner of G + e∗ contains the edge e∗ = (u∗, v∗).
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V1
V2 V3 V4 V5 V6 V7 V8

u∗

v∗

e∗

Figure 1 An illustration of µ = µ(n, d) for n = 24 and d = 8. Any 4-spanner of G contains e∗.

Proof. For a graph G and pairs (u∗, v∗) sampled from µ(n, d),

Pr
u∗,v∗

(distG(u∗, v∗) > d/2) =
1

d2
·


O(d) +
d∑

i=1

♣d/2 − i♣


>
1

5
,

where the equality holds since when u∗ ∈ V1, v∗ can be in Vd/2+2, . . . , Vd, when u∗ ∈ V2, v∗

can be in Vd/2+3, . . . , Vd, and so on (O(d) handles the differences of even or odd choices of d

and d/2).

Moreover, whenever the distance of u∗, v∗ in G is more than d/2, any (d/2)-spanner

of G + e∗ should contain the edge e∗, as otherwise the distance between u∗ and v∗ in the

spanner will be more than d/2 times their distance in G + e∗, violating the bound on the

stretch of the spanner. ◀

The following lemma is the main technical contribution of our work. Roughly speaking,

this lemma bounds the ŞinformationŤ that can be learned about the edge e∗ in µ using a

single sub-sampled Gaussian projection of a graph sampled from µ.

▶ Lemma 7. Let S be any sampling matrix and consider a single random Gaussian projection

with respect to S. For (G, e∗) sampled from µ = µ(n, d),

E
G,e∗

[
min¶1,Dg(g · S · B(G) ♣♣ g · S · (B(G) + B(e∗)))♢

]
= O(

d3/2

n1−δ
),

for any constant δ > 0, where the KL-divergence is taken only over the Gaussian variables.

Before getting to the proof of Lemma 7, we show that it implies Theorem 5 immediately.

Proof of Theorem 5 (assuming Lemma 7). Let (Dsmpl, A) be any sub-sampled Gaussian

sketch of dimension s ≥ 1 for recovering a (d/2)-spanner. Consider a distribution µ′ on

n-vertex graphs deĄned as follows:

Distribution µ′: Sample (G, e∗) from µ and θ ∈ ¶0, 1♢ uniformly at random; if θ = 0,

return G, otherwise return G + e∗.

Let G′ be a graph sampled from µ′. Suppose we sample S = (S1, . . . , Ss) from Dsmpl

and receive sub-sampled Gaussian projections P = (p1, . . . , ps) where for every i ∈ [s],

pi = gi · Si · B(G′) for a Gaussian vector gi. Additionally, suppose we are even given

(S, G, e∗), and thus the only unknown information is whether or not e∗ ∈ G′ also, i.e.,

whether θ = 1 or not. This way, we can run A, using S, P as input, to obtain a (d/2)-spanner

of G′: if e∗ belongs to this spanner, we declare e∗ is in G′ and otherwise we say it is not.

By Lemma 6, we are going to be able to determine the value of θ with probability 1/2 + Θ(1).

This implies that over the distribution µ′,

∥[(S, G, e∗, P) ♣ θ = 0] − [(S, G, e∗, P) ♣ θ = 1]∥tvd = Ω(1), (1)
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57:10 On Constructing Spanners from Random Gaussian Projections

as otherwise, we cannot estimate the value of θ with probability better than 1/2 + o(1) given

our input (S, G, e∗, P) which is sampled from either µ′ ♣ θ = 0 or µ′ ♣ θ = 1. We now have,

LHS of Eq (1) ≤ E
(S,G,e∗)

∥[P ♣ θ = 0, S, G, e∗] − [P ♣ θ = 1, S, G, e∗]∥tvd

(as the distribution of (S, G, e∗) is the same under both θ = 0 and θ = 1)

≤
√

E
(S,G,e∗)

min¶1,D(P ♣ θ = 0, S, G, e∗ ♣♣ P ♣ θ = 1, S, G, e∗)♢

(by PinskerŠs inequality, the fact that TVD is bounded by 1, and concavity of
√·)

=

√√√√
E

(S,G,e∗)


min¶1,

s∑

i=1

D(pi ♣ θ = 0, S, G, e∗ ♣♣ pi ♣ θ = 1, S, G, e∗)♢
]

(by chain rule of KL-divergence as piŠs are now only function of giŠs and so are independent)

≤

√√√√
s∑

i=1

E
(S,G,e∗)

[
min¶1,D(pi ♣ θ = 0, S, G, e∗ ♣♣ pi ♣ θ = 1, S, G, e∗)♢

]

(we can take min inside the summation to get an upper bound)

=

√√√√
s∑

i=1

E
(Si,G,e∗)

[
min¶1,D(pi ♣ θ = 0, Si, G, e∗ ♣♣ pi ♣ θ = 1, Si, G, e∗)♢

]

(as pi is only a function of Si conditioned on G, e∗)

=

√√√√
s∑

i=1

E
(Si,G,e∗)∼µ

min¶1,Dgi
(gi · Si · B(G) ♣♣ gi · Si · (B(G) + B(e∗)))♢,

where the last equality is because input graph G′ in µ′ is G when θ = 0 and G + e∗ when

θ = 1, and distribution of (Si, G, e∗, gi) is the same under µ and µ′.

Now given that Si ⊥ (G, e∗) in µ, each term in the RHS above is the same quantity upper

bounded in Lemma 7. Thus, combining Eq (1), the above equation, and Lemma 7, we get

that

Ω(1) = ∥[(S, G, e∗, P) ♣ θ = 0] − [(S, G, e∗, P) ♣ θ = 1]∥tvd ≤
√

s · O(
d3/2

n1−δ
),

which implies that s = Ω(n1−δ/d3/2) as desired. This implies the Ąrst part of Theorem 5.

The proof of the second part follows almost immediately from the above argument as

follows. Consider the following distribution:

Distribution µ′′: Sample (G′, e∗, θ) from µ′. Add two new vertices a and b to the graph

and add edges (a, u∗) and (v∗, b) to the graph as well.

Let G′′ be a graph sampled from µ′′. Consider the distance between a and b in G′′: if θ = 1

in the sampled G′, distance of a and b is 3, otherwise, if θ = 0, by the same argument

as Lemma 6, the distance between a and b is more than (d/2) with constant probability.

This means that if our algorithm could simply estimate the distance of a and b to within a

factor of (d/6), it can determine the value of θ with probability 1/2 + Θ(1).

Now if we further give u∗, v∗, and the Gaussian variables on all edges incident to a or b

to the recovery algorithm, what the algorithm knows becomes the sketches of G′′ \ ¶a, b♢
(by simply subtracting the corresponding Gaussians). Since the Gaussians revealed are

independent of the sketch of G′′ \ ¶a, b♢, the same exact argument as the Ąrst part now

implies that the same lower bound of s = Ω(d3/2/n1−δ) on the sketch dimension. Given that

the number of vertices in G′′ is n + 2, and by re-parameterizing d with a constant factor, we

obtain the desired lower bound. This concludes the proof of Theorem 5. ◀
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3.4 Proof Outline of Lemma 7

We now present the proof outline of Lemma 7, postponing the proof of its two main ingredients

to the next two sections. For convenience, we restate Lemma 7 below.

▶ Lemma (Restatement of Lemma 7). Let S be any sampling matrix and consider a single

random Gaussian projection with respect to S. For (G, e∗) sampled from µ = µ(n, d),

E
G,e∗

[
min¶1,Dg(g · S · B(G) ♣♣ g · S · (B(G) + B(e∗)))♢

]
= O(

d3/2

n1−δ
),

for any constant δ > 0, where the KL-divergence is taken only over the Gaussian variables.

To continue, we deĄne the following notation for the sampling matrix S:

graph(S): the graph on V containing all edges e ∈
(

V
2

)
where Se,e = 1.

m(S): the number of edges in graph(S).

G(S): the subgraph of G on edges that belong to graph(S), i.e., G(S) := G ∩ graph(S).

Note that this way we have, B(G(S)) = S · B(G) and B(G(S) + e∗) = S · (B(G) + B(e∗)).

Ingredient one: from KL-divergence to effective resistances

The Ąrst key step of the proof of Lemma 7 is to relate the KL-divergence term of Lemma 7

to effective resistance of the edge e∗ in the underlying sampled graph. Formally,

▶ Lemma 8. For any sampling matrix S, any Ąxed G, and any pair of vertices e = (u, v) ∈(
V
2

)
,

min¶1,Dg(g · S · B(G) ♣♣ g · S · (B(G) + B(e)))♢ ≤ 2 · R
G(S)+e
eff (u, v).

We will apply Lemma 8 to the choice of edge e∗ = e whenever e∗ belongs to graph(S), i.e.,

when e∗ is sampled by the sampling matrix S. To prove Lemma 8, we Ąrst calculate the

KL-divergence between two high-dimensional Gaussians in terms of their covariance matrices.

Then we observe that the covariance matrix of g · S · B(G) is simply the Laplacian matrix of

G(S). The lemma is proved by plugging in the Laplacian matrices of G(S) and G(S) + e,

and applying the connection between effective resistance and Laplacian matrix. The proof is

provided in the full version.

Ingredient two: bounding effective resistances via expanders

Our strategy is now to bound the effective resistance of the edge e∗ in G(S) + e∗. To do

so, we will identify a ŞgoodŤ-expander subgraph H of the graph(S) that contains the edge

e∗, and then primarily focus on the edges of H that appear in G(S) to bound the effective

resistance of e∗ also. The following lemma is the heart of the proof.

▶ Lemma 9. For any sampling matrix S, suppose H is any subgraph of graph(S) which is

an ε-expander with min-degree D for some ε > 0 and D ≥ (ε−8 · nδ) · d for a constant δ > 0.

For any edge e = (u, v) ∈ H,

E
G

[
R

G(S)+e
eff (u, v)

]
= O(ε−4) ·

 d

D
+

d3

D2

)
.

We will use a hierarchical expander decomposition of graph(S) to identify an expander

that contains the edge e∗ and then apply Lemma 9 to this expander and edge e∗. To

prove Lemma 9, we Ąrst observe that adding edges to a graph could only decrease the
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effective resistance, and thus, it suffices to study the effective resistance of (u, v) in G ∩ H.

Note that G ∩ H randomly partitions the vertices into d sets, and only keeps the edges of

H with endpoints in the same set or adjacent sets. We then show that because H is an

expander with large min-degree, G ∩ H restricted to any two adjacent sets must also be an

expander with large min-degree with high probability. Hence, G ∩ H looks like a Şchain of

expandersŤ (which we call a balanced path of expanders), where adjacent expanders have

a constant fraction overlap. Finally, we show that since G ∩ H overall is well-connected,

if we place a unit electric Ćow from u to v, the Ćow will be well-spread across the graph.

Most edges have a small current, i.e., a low potential difference. Therefore, it allows us to

argue that the potential difference between u and v is also small, i.e., the effective resistance

between u and v is small. The detailed proof is provided in the full version.

Putting everything together

We now put these two ingredients together to prove Lemma 7. In order to be able to apply

our second tool in Lemma 9, we need a hierarchical expander decomposition of graph(S),

which shows that the edge e∗ is Şmore likelyŤ to land in ŞbetterŤ expanders of graph(S) for

the purpose of Lemma 9 Ű here, ŞbetterŤ means an expander with a higher minimum degree

(the parameter in Lemma 9 that governs the Ąnal bound).

▶ Lemma 10. For every t ≥ 1, we can partition edges of graph(S) into t sets E1(S), . . . , Et(S)

such that:

(i) For any i ≤ t, deĄne mi(S) := ♣Ei(S)♣; then, m1(S) ≤ m(S) and mi+1(S) ≤ mi(S)/2.

(ii) For any i < t, there is some ki ≥ 1 such that edges in Ei(S) can be partitioned into

ε-expanders Hi
1, . . . , Hi

ki
with minimum degree at least Di for parameters5

ε :=
1

36 log n
and Di ≥ mi(S)

36n
.

Proof. For simplicity of exposition, we drop (S) when denoting Ei(S)Šs in the following. We

construct E1, . . . , Et inductively using an auxiliary set of edges F0, . . . , Ft. Start with F0

being the set of all edges in graph(S) and for i = 1 to t do:

1) Apply the expander decomposition of Proposition 2 to Fi−1 with parameters

ε =
1

36 log n
and dmin = Di =

♣Fi−1♣
36n

,

to get ε-expanders Hi
1, . . . , Hi

ki
each with minimum degree at least Di.

2) Let Ei be the union of edges assigned to the expanders in the decomposition of Pro-

position 2 in the previous step, and Fi be the leftover edges. Continue to iteration

i + 1.

We argue that ♣Fi♣ ≤ ♣Fi−1♣ /4 for all i ≤ t. For i > 0, we have that ♣Fi♣ is the number of

leftover edges of the decomposition and thus by Proposition 2,

♣Fi♣ ≤ 8ε · ♣Fi−1♣ · log n + n · Di =
8 ♣Fi−1♣

36
+

♣Fi−1♣
36

=
♣Fi−1♣

4
.

Now Ąrstly, Ei = Fi−1 \ Fi and so by the above bound, ♣Ei♣ ≥ 2 ♣Fi♣. At the same time,

Ei+1 ⊆ Fi for and thus ♣Ei♣ ≥ 2 ♣Ei+1♣. This proves the Ąrst part.

Secondly, we get property (ii) of the lemma by the choice of ε = 1/36 log n in the

decomposition and since Di = ♣Fi−1♣ /36n ≥ ♣Ei♣/36n as Ei ⊆ Fi−1. ◀

5 Notice that the edges Et(S) admit no such type of expander decomposition in our partitioning.
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We now have all the tools needed to prove Lemma 7. For the rest of the proof, we Ąx a

partitioning (E1(S), . . . , Et(S)) of graph(S) using Lemma 10 for some t ≥ 1 such that:

t is the largest index where: mt−1(S) ≥ n1+δ · d3/2, (2)

where δ > 0 is the absolute constant in Lemma 7. This means that for every e ∈ Ei(S) for

i < t, the edge e belongs to some ε-expander Hi
j for j ∈ [ki] with min-degree Di such that,

ε =
1

36 log n
and Di ≥ mi(S)

36n
. (3)

This also implies that Di ≥ (1/36) · d3/2 · nδ ≥ (ε−10 · nδ′

) · d for some absolute constant

δ′ > 0 which allows us to apply Lemma 9 to each expander Hi
j in the proof.

We now have,

LHS of Lemma 7 = E
G,e∗

[
min¶1,Dg(g · S · B(G) ♣♣ g · S · (B(G) + B(e∗)))♢

]

=
∑

e∈graph(S)

Pr (e∗ = e) · E
G♣e∗=e

[
min¶1,Dg(g · S · B(G) ♣♣ g · S · (B(G) + B(e∗)))♢

]

(whenever e∗ /∈ graph(S), both terms of the KL-divergence will be the same and thus it will be 0)

=

t∑

i=1

∑

e∈Ei(S)

Pr (e∗ = e) · E
G

[
min¶1,Dg(g · S · B(G) ♣♣ g · S · (B(G) + B(e∗)))♢

]

(by the partitioning of edges of graph(S) and since G ⊥ e∗ in µ)

=
1(
n
2

)
t∑

i=1

∑

e∈Ei(S)

[
min¶1,Dg(g · S · B(G) ♣♣ g · S · (B(G) + B(e)))♢

]

(as the marginal distribution of e∗ is uniform over
(

V
2

)
and we conditioned on e∗ = e)

≤ mt(S)(
n
2

) +
1(
n
2

) ·
t−1∑

i=1

∑

e=(u,v)∈Ei(S)

E
G

[
2 · R

G(S)+e
eff (u, v)

]

(using the trivial upper bound of 1 for Et(S) and Lemma 8 for E1(S), . . . , Et−1(S))

=
mt(S)(

n
2

) +
2(
n
2

) ·
t−1∑

i=1

ki∑

j=1

∑

e=(u,v)∈Hi
j

E
G

[
R

G(S)+e
eff (u, v)

]

(as each Ei(S) for i < t is partitioned into expanders Hi
1, . . . , Hi

ki
by Lemma 10)

=
mt(S)(

n
2

) +
2(
n
2

) ·
t−1∑

i=1

ki∑

j=1

∑

e=(u,v)∈Hi
j

O(ε−4) ·
 d

Di
+

d3

D2
i

)

(by Lemma 9 as each Hi
j is an ε-expander with min-degree Di (and by Eq (3) we can use the lemma))

=
mt(S)(

n
2

) +
2(
n
2

) ·
t−1∑

i=1

mi(S) · O(log4 n) ·
 d · n

mi(S)
+

d3 · n2

mi(S)2

)

(as ε = Θ(1/ log n) and Di ≥ mi(S)/12n by Eq (3) and Hi
1, . . . , Hi

ki
have mi(S) edges in total)

=
mt(S)(

n
2

) + O(log5 n · d

n
) + O(log4 n) · d3

mt−1(S)

(as mi(S)Šs decrease (at least) by a geometric series and t = O(log n) by Lemma 10)

≤ n1+δ · d3/2

(
n
2

) + O(log5 n · d

n
) + O(log4 n) · d3

n1+δ · d3/2
(by the choice of t in Eq (2))

= O(
d3/2

n1−δ
).

This concludes the proof of Lemma 7. Due to page limits, we omit the proof of Lemma 8

and Lemma 9 here. They can be found in the full version.
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A Implementing Prior Work Via Random Gaussian Sketches

We now outline implementations of existing works on graph sketching in our model.

A.1 ℓ0-samplers and connectivity sketches

Recall that in the ℓ0-sampling problem one needs to design a sketching matrix A such that

for every x ∈ R
n one can recover a uniformly random element of x from Ax (to within total

variation distance δ) or output FAIL (with failure probability bounded by δ)6. We outline a

construction of an ℓ0-sampler in our model, i.e. where every rows of the sketch A is of the

form g · S, where S is an arbitrary matrix with zeros and ones on the diagonal and zeros on

off-diagonal entries (S is known to the decoder) and g is a vector with i.i.d. unit variance

Gaussian entries (g is not known to the decoder). Note that our ℓ0-sampler only needs to

work for vectors x whose entries are in ¶−1, 0, +1♢, as this is the case in all applications of

graph sketching.

We Ąrst recall the construction of a basic ℓ0 sampler (see [26] for a space-optimal

construction). For integer j between 0 and ⌈log2 n⌉ let xj ∈ R
n denote the restriction of xj

to elements of a subset of the universe [n] that includes every element independently with

probability 2−j . There exists j∗ such that with constant probability xj contains exactly

one nonzero. To determine the value of j∗ or conclude that such an index does not exist, it

suffices to estimate the ℓ2
2 norm of x to within a 1 ± 1/3 factor, for example (since nonzero

entries of x equal 1 in absolute value). The latter can be achieved (with at most inverse

polynomial failure probability) by averaging squared dot products of O(log n) independent

Gaussian vectors with xj , which is allowed by our model. Note that here the decoder indeed

does not need to know the Gaussian vectors, as required. If j∗ exists, one must recover the

identity of the nonzero element. The typical way to do it is to compute the dot product of

xj∗

with the vector whose i-th coordinate equals i, for every i ∈ [n]. This is not available

in our model. To replace this approach, for every j = 0, . . . , ⌈log2 n⌉ and b = 0, . . . , ⌈log2 n⌉
approximate the ℓ2

2 norm of the vector xj restricted to the set of elements in [n] that have

1 in the b-th position in their binary representation using O(log n) dot products with i.i.d.

Gaussians. This allows one to read off the binary representation of the nonzero in xj∗

, and

therefore yields an ℓ0 sampler.

Graph connectivity and spanning trees

Since an ℓ0-sampler is the only sketch used by the connectivity sketch of [1], it follows that a

spanning forest of the input graph can be recovered by a sketch that Ąts our model and has

a polylogarithmic number of rows.

6 Note that these two parameters appear differently in the space complexity of ℓ0-sampling, and are
therefore treated separately in works that obtain optimal space bounds for ℓ0-samplers [1]. We set both
parameters to δ for simplicity.
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Approximate vertex connectivity

The result of [23] uses the spanning tree sketch of [1] black box (the sketch is applied to

random vertex induced subgraphs) to approximate vertex connectivity. Since the sketch

of [1] can be implemented in our model, as described above, the result of [23] also can.

A.2 ℓ2-heavy hitters, spectral sparsiĄers and spanners

Recall that in the φ-heavy hitters problem in ℓ2 one needs to design a sketching matrix A

such that for every x ∈ R
n one can recover a list of elements L ⊆ [n] such that every i ∈ [n]

satisfying x2
i ≥ φ∥x∥2

2 belongs to L and no i ∈ [n] with x2
i < cφ∥x∥2

2 for a constant c > 0

belongs to L.

A basic ℓ2 heavy hitters sketch works by Ąrst hashing elements of [n] to B ≈ 1/φ buckets,

i.e. effectively deĄning xb for b ∈ [B] to be the restriction of x to bucket b, and computing

the sum of elements of xb with random signs. In our model we can replace the random

signs with random Gaussians, so that the resulting dot product is Gaussian with variance

∥xb∥2
2. Fixing any j ∈ [n] and letting b denote the bucket that j hashes to we get that a

single hashing can be used to obtain an estimate of its absolute value that is correct up to

constant factor and an additive O(1/
√

B)∥x∥2 term with probability7 at least 9/10. We can

now repeat the estimator O(log n) times and include in L elements that are estimated as

larger than a c′φ∥x∥2 for a sufficiently small constant c′ > 0 in absolute value. Therefore,

setting B = O(1/φ) achieves the required bounds. This yields an ℓ2-heavy hitters sketch with

decoding time nearly linear in the size n of the universe. The decoding time can be improved

to (1/φ) · poly(log n) using a bit-encoding approach similar to the one from Section A.1

above.

Spectral sparsiĄers and spanners

Spectral sparsiĄcation sketches [30, 33, 31] require graph connectivity sketches, which we

already implemented in Section A.1, as well as ℓ2-heavy hitters sketches, and therefore

can also be implemented in our model. Non-adaptive sketching algorithms for spanner

construction [21] rely on spectral sparsiĄcation sketches that are applied to vertex-induced

subgraphs of the input graph. Thus, these sketches can also be implemented in our model

with at most a polylogarithmic loss in the number of rows.

7 We use the fact that the dot product of xb with a random Gaussian vector will be distributed as
gjxj + N(0, ∥xb

−j∥2
2), and ♣gj ♣ is at least a constant with probability at least 9/10. Here xb

j stands for

the vector obtained from xb by zeroing out entry j.
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