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Abstract

We prove that any semi-streaming algorithm for (1−ε)-approximation of maximum bipartite
matching requires

Ω
( log (1/ε)
log (1/β)

)

passes, where β ∈ (0, 1) is the largest parameter so that an n-vertex graph with nβ edge-disjoint
induced matchings of size Θ(n) exist (such graphs are referred to as Ruzsa-Szemerédi graphs).
Currently, it is known that

Ω(
1

log log n
) ⩽ β ⩽ 1−Θ(

log∗n

log n
)

and closing this huge gap between upper and lower bounds has remained a notoriously difficult
problem in combinatorics.

Under the plausible hypothesis that β = Ω(1), our lower bound result provides the first
pass-approximation lower bound for (small) constant approximation of matchings in the
semi-streaming model, a longstanding open question in the graph streaming literature.

Our techniques are based on analyzing communication protocols for compressing (hidden)
permutations. Prior work in this context relied on reducing such problems to Boolean domain
and analyzing them via tools like XOR Lemmas and Fourier analysis on Boolean hypercube.
In contrast, our main technical contribution is a hardness amplification result for permutations
through concatenation in place of prior XOR Lemmas. This result is proven by analyzing
permutations directly via simple tools from group representation theory combined with detailed
information-theoretic arguments, and can be of independent interest.
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1 Introduction

In the semi-streaming model for graph computation, formalized by [FKM+05], the edges of an
n-vertex graph G = (V,E) are presented to the algorithm in some arbitrarily ordered stream. The
algorithm can make one or few passes over this stream and uses Õ(n) := O(n ·polylog(n)) memory
to solve the given problem. The semi-streaming model has been at the forefront of research on
processing massive graphs since its introduction almost two decades ago. In this work, we focus on
the maximum matching problem in this model.

The maximum matching problem is arguably the most studied problem in the semi-streaming
model and has been considered from numerous angles (this list is by no means a comprehensive
summary of prior results):

• single-pass algorithms [FKM+05,GKK12,Kap13,Kap21,ABKL23],

• constant-pass algorithms [KMM12,EHM16,KT17,Kon18,KN21,FS22,KNS23,A22],

• (1 − ε)-approximation algorithms [McG05, AG11, EKMS12, AG18, Tir18, GKMS19, ALT21,
FMU22,AJJ+22,A23],

• random-order streams [KMM12,Kon18,ABB+19,GKMS19,FHM+20,Ber20,AB21,AS23],

• dynamic streams [Kon15,CCHM15,AKLY16,CCE+16,AKL17,DK20,AS22],

• weighted or submodular matchings [FKM+05,CS14,CK14,CGQ15,PS17,BDL21,LW21],

• matching size estimation [KKS14,EHL+15,BS15,MV16,CJMM17,MV18,AKL17,KMNT20,
AKSY20,AN21,AS23],

• and, exact algorithms [FKM+05,GO13,AR20,LSZ20,CKP+21,AJJ+22].

In this paper, we focus on proving multi-pass lower bounds for (1− ε)-approximation of
the maximum matching problem via semi-streaming algorithms, primarily for the regime of small
constant ε > 0 independent of size of the graph.

The question of understanding the approximation ratio achievable by multi-pass semi-streaming
algorithms for matchings was posed by [FKM+05] alongside the introduction of the semi-streaming
model itself. Moreover, [FKM+05] also gave a (2/3 − ε)-approximation algorithm for this prob-
lem in O(1/ε) passes, which was soon after improved by [McG05] to a (1 − ε)-approximation in
(1/ε)O(1/ε) passes. A long line of work since then [AG11,KMM12,Kap13,EKMS12,KT17,AG18,
Kon18,Tir18,ALT21,FMU22,AJJ+22] has culminated in semi-streaming algorithms with poly(1/ε)
passes for general graphs [FMU22] and O(1/ε2) passes for bipartite graphs [ALT21] (there are also
algorithms with pass-complexity with better dependence on ε at the cost of mild dependence on
n, namely, O(log n/ε) passes in [AG18,AJJ+22,A23] or for finding perfect matchings in n3/4+o(1)

passes [AJJ+22]; see also [LSZ20]).

The lower bound front however has seen much less progress with only a handful of results
known for single-pass algorithms [GKK12, Kap13, AKL17, Kap21] and very recently two-pass al-
gorithms [KN21,A22]. But no lower bounds beyond two-pass algorithms are known for constant
factor approximation of matchings in the semi-streaming model (lower bounds for computing exact
maximum matchings up to almost Ω(log n) passes are proven in [GO13]; see also [AR20,CKP+21],
but these lower bounds cannot apply to ε > n−o(1), and we shall discuss them later in more details).
It is worth noting that in the much more restricted setting of polylog(n)-space algorithms, [AN21],
building on [AKSY20], proved an Ω(1/ε)-pass lower bound for estimating the matching size.
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1.1 Our Contribution

We present a new lower bound for multi-pass semi-streaming algorithms for the maximum matching
problem. The lower bound is parameterized by the density of Ruzsa-Szemerédi (RS) graphs [RS78],
namely, graphs whose edges can be partitioned into induced matchings of size Θ(n) (see Section 4.2).
Let βrs ∈ (0, 1) denote the largest parameter such that there exist n-vertex RS graphs with Ω(nβrs)
edge-disjoint induced matchings of size Θ(n). We prove the following result in this paper.

Result 1 (Formalized in Theorem 1). Any (possibly randomized) semi-streaming algorithm for
(1− ε)-approximation of even the size of maximum matchings requires

Ω
( log (1/ε)

log (1/βrs)

)

passes over the stream. The lower bound holds for the entire range of ε ∈ [n−Θ(βrs),Θ(βrs)].

To put this result in more context, we shall note that currently, it is only known that

Ω

(
1

log log n

)
⩽

[FLN+02]
βrs ⩽

[FHS17]
1−Θ

(
log∗n
log n

)
,

and closing this gap appears to be a challenging question in combinatorics (see, e.g. [Gow01,FHS17,
CF13]). Thus, Result 1 can be interpreted as an Ω(log (1/ε)) lower bound on pass-complexity of
(1− ε)-approximation of matchings in the semi-streaming model in two different ways:

(i) A conditional lower bound, under the plausible hypothesis that βrs = Ω(1). It is known
how to construct RS graphs with induced matchings of size n1−o(1) that have

(
n
2

)
− o(n2)

edges [AMS12], but the regime of Θ(n)-size induced matchings is wide open.

(ii) A barrier result ; obtaining such algorithms requires reducing βrs from 1− o(1) to o(1) which
seems beyond the reach of current techniques.

Let us now compare this result with some prior work.

A line of work closely related to ours is lower bounds for constant-approximation of matchings
in one pass [GKK12, Kap13, AKL17, Kap21] or two passes [A22]. Specifically, [Kap21] rules out
single-pass semi-streaming algorithms for finding (0.59)-approximate matchings (see also [GKK12,
Kap13]). And, [AKL17] and [A22] rule out semi-streaming algorithms for approximating size of
maximum matchings to within a (1−ε0) factor for some ε0 > 0, in one and two passes1, respectively
(these two lower bounds, similar to ours, rely on the hypothesis that βrs = Ω(1)).

Another line of closely related work are lower bounds for computing perfect or nearly-perfect
matchings in multiple passes [GO13,AR20,CKP+21], which culminated in the Ω(

√
log n) pass lower

bound of [CKP+21] even for algorithms with n2−o(1) space (an almost Ω(log n) pass lower bound
for semi-streaming algorithms was already known by [GO13]). The lower bound of [CKP+21] can
be further interpreted for (1− ε)-approximate matching algorithms as follows:

Ω(
log (1/ε)√

log n
) pass lower bound when ε ⩽ 2−Θ(

√
logn) for n2−o(1)-space algorithms;

Ω(
log (1/ε)

log log n
) pass lower bound when ε ⩽ (log n)−Θ(1) for Õ(n)-space algorithms.

(1)

1See also [KN21] that give a two-pass lower bound for a restricted family of algorithms that only compute a greedy
matching in their first pass but then can be arbitrary in their second pass.
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Yet, these lower bounds, even under the strongest assumption of βrs = 1− o(1) do not imply any
non-trivial bounds for constant-factor approximation algorithms.

Before moving on from this section, we mention some important remarks about our result.

Constant-factor approximation. Our Result 1 is the first lower bound on pass-approximation
tradeoffs for semi-streaming matching algorithms that applies to constant-factor approximations.
The fact that the approximation can be a constant is critical here as we elaborate on below.

Firstly, in contrast to possibly some other models, in the semi-streaming model, the most
interesting regime for (1 − ε)-approximation is for constant ε > 0 (see, e.g. [FKM+05, McG05,
Tir18,GKMS19,FMU22]). One key reason, among others, is that the cost of each additional pass
over the stream is non-trivially high and thus algorithms that need super-constant number of passes
over the stream (a consequence of sub-constant ε) are prohibitively costly already.

Secondly, many streaming matching algorithms have rather cavalier space-dependence on ε (as
space is typically much less costly compared to passes), even exponential-in-ε, e.g., in [McG05,
GKMS19,BDL21] (although see [ALT21,AJJ+22] for some exceptions with no space-dependence
on ε at all). Yet, the lower bounds of the type obtained by [CKP+21] that require ε to be at
most (log n)−Θ(1) (even assuming βrs = Ω(1)) cannot provide any meaningful guarantees for these
algorithms, as the space of such algorithms for such small ε already become more than size of the
input.2 This however is not an issue for our lower bounds for constant-approximation algorithms.

Role of RS graphs. Starting from the work of [GKK12], all previous single- and multi-pass lower
bounds for semi-streaming matching problem in [GKK12,Kap13,AKL17,AR20,Kap21,CKP+21,
KN21,A22] are based on RS graphs—the only exception is the lower bound of [GO13] for finding
perfect matchings (which is improved upon in [AR20,CKP+21] using RS graphs).

Our Result 1 is also based on RS graphs and relies on the hypothesis that βrs = Ω(1) in order to
be applicable to constant-factor approximation algorithms. While not all prior lower bounds rely
on this hypothesis, assuming it also is not uncommon (see, e.g. [AKL17,A22]). Indeed, currently,
a (1− ε)-approximation lower bound for estimating size of maximum matching that does not rely
on this hypothesis is not known even for single-pass algorithms. Similarly, the space lower bound
in Result 1 is in fact n1+Ω(1); again, such bounds are not known even for finding edges of a (1− ε)-
approximate matching in a single pass without relying on the βrs = Ω(1) hypothesis. This in
fact may not be a coincidence: a very recent work of [ABKL23] has provided evidence that at
least qualitatively, relying on such hypotheses might be necessary. They use RS graph bounds
algorithmically instead and show that if βrs = o(1), then one can find a (1 − ε)-approximate
matching already in a single pass in much better than quadratic space3.

All in all, while we find the problem of proving (even single-pass) streaming matching lower
bounds without relying on RS graphs, or even better yet, improving bounds on the density of RS
graphs, quite fascinating open questions, we believe those questions are orthogonal to our research
direction on multi-pass lower bounds.

Finally, we mention the current lower bound on βrs due to [FLN+02,GKK12] combined with

2To give a concrete example, the state-of-the-art lower bounds before our paper left open the possibility of a
(1−ε)-approximation algorithm in 3 passes and (1/ε)O(1/ε) · Õ(n) space. Obtaining such algorithms would have been
a huge breakthrough and quite interesting. Our Result 1 however now rules out such an algorithm (conditionally)
even in any o(log (1/ε)) passes (or alternatively, identify a challenging barrier toward obtaining such algorithms).

3Quantitatively however, there is still a large gap between upper bounds of [ABKL23] even if βrs = o(1), and
our bounds or those of [AKL17,A22] even if β = 1 − o(1). Yet, this still suggests that the complexity of matching
problem in graph streams is very closely tied to the density of RS graphs from both upper and lower bound fronts.

3



our Result 1 leads the following unconditional result for (1− ε)-approximation of matching size:

Ω(
log (1/ε)

log log log n
) pass lower bound when ε ⩽ (log log n)−Θ(1) for Õ(n)-space algorithms, (2)

which exponentially improves the range of ε (and the denominator) compared to [CKP+21] in Eq (1).

Beyond (log (1/ε)) passes. The pass lower bound in Result 1 (for βrs = Ω(1)) appears to hit the
same standard barrier of proving super-logarithmic lower bounds for most graph streaming prob-
lems including reachability, shortest path, and perfect matching [GO13,AR20,CGMV20,CKP+21]
(see [ACK19] for an in-depth discussion on this topic). Even for the seemingly algorithmically
harder problem of finding a perfect matching, ε = n−1, or nearly-perfect, ε = n−Ω(1), the best
lower bounds are only Ω(log n) = Ω(log (1/ε)) passes [GO13,CKP+21] (in contrast, the best known
upper bounds for perfect matchings are n3/4+o(1) passes [AJJ+22]). Thus, going beyond (log (1/ε))
passes seems to require fundamentally new techniques and the first step would be improving perfect
matching lower bounds beyond (log n) passes, which is another fascinating open question.

1.2 Our Techniques

We follow the set hiding approach of [AR20, CKP+21, A22] and an elegant recursive framework
of [CKP+21] that achieves permutation hiding (a primitive entirely missing from [AR20,A22] and
seemingly crucial for proving more than two-pass lower bounds). At a high level, p-pass permutation
hiding graphs hide a unique permutation of vertex-disjoint augmenting paths—necessary for finding
large enough matchings—, in a way that a semi-streaming algorithm cannot find this permutation
in p passes (see Section 2.2); a set hiding graph roughly corresponds to only hiding the endpoints
of these paths. [CKP+21] shows a way of constructing p-pass set hiding graphs from (p − 1)-pass
permutation hiding graphs (that can be made efficient), and constructing p-pass permutation hiding
graphs from p-pass set hiding graphs rather inefficiently by blowing up the number of vertices by
a Θ(log n) factor. This results in having to reduce ε to ε/Θ(log n) for each application of this idea
in each pass, leading to a lower bound of Ω(log (1/ε)/ log log n) passes eventually.

In a nutshell, we present a novel approach for directly constructing permutation hiding graphs,
without cycling through set hiding ones first and thus avoiding the Θ(log n) overhead of [CKP+21]
in vertices and the approximation factor. Hence, we only need to reduce ε to some Θ(ε) for each
pass, leading to our Ω(log (1/ε)) lower bound. Conceptually, the technical novelty of our paper can
be summarized as working with permutations directly both in the construction and in the analysis.

We first give a novel combinatorial approach for hiding permutations directly inside RS graphs,
instead of only using them for hiding Boolean strings and applying Boolean operators on top of RS
graphs as was done previously (e.g., ∧- or ∨- operators of [CKP+21]). This step uses various ideas
developed in [GKK12,AKL17,AR20,AB21,AS23,A22] (see [A22, Section 1.2] for an overview of
these techniques) that can then be combined with the general framework of [CKP+21] in a non-
black-box way, for instance, by replacing sorting network ideas of [CKP+21] with k-sorter networks
in [PP89,Chv92] with lower depth (and various technical changes in the analysis).

The second and the main technical ingredient of our paper is to introduce and analyze a
“permutation variant” of the Boolean Hidden (Hyper)Matching (BHH) communication problem
of [GKK+07, VY11]. The BHH problem, alongside its proof ideas, has been a key ingredient of
streaming matching lower bounds, among many others, in recent years [AKSY20,CKP+21,AN21,
KMT+22,AS23,A22] (see [AKSY20, Appendix B] for an overview). Roughly speaking, our prob-
lem (see Section 2.1), replaces the hidden Boolean strings in BHH and their XOR operator with
permutations and the concatenation operator. Its analysis then boils down to proving a hardness
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amplification result for the concatenation of permutations, quite similar in spirit to XOR Lemmas
for Boolean strings. While these XOR Lemmas are primarily proven using Fourier analysis on
Boolean hypercube (see, e.g., [GKK+07, VY11, KKS15, KMT+22, AS23, A22]), and in particular
the KKL inequality [KKL88], we prove our results by working with basic tools from representation
theory and Fourier analysis on symmetric groups, combined with detailed information-theoretic
arguments, including a recent KL-divergence vs ℓ1/ℓ2-distance inequality of [CK18].

2 Main Result

We present our main theorem in this section that formalizes Result 1 from the introduction, plus
the key ingredients we use to prove it.

We define a bipartite graph Grs = (Lrs, Rrs, Ers) to be a (2nrs)-vertex bipartite (r, t)-RS graph
if its edges can be partitioned into t induced matchings M rs

1 , . . . ,M rs
t each of size r; here, an

induced matching means that there are no other edges between the endpoints of the matching.
See Section 4.2 for more details on RS graphs.

Theorem 1 (Formalization of Result 1). Suppose that for infinitely many choices of nrs ⩾ 1,
there exists (2nrs)-vertex bipartite (r, t)-RS graphs with r = α · nrs and t = (nrs)β for some fixed
parameters α, β ∈ (0, 1); the parameters α, β can depend on nrs.

Then, there exists an ε0 = ε0(α, β) such that the following is true. For any 0 < ε < ε0, any
streaming algorithm that uses o(ε2 · n1+β/2) space on n-vertex bipartite graphs and can determine
with constant probability whether the input graph has a perfect matching or its maximum matchings
have size at most (1− ε) · n/2 requires

Ω
( log (1/ε)

log (1/αβ)

)

passes over the stream.

Result 1 then follows from Theorem 1 by setting α = Θ(1) and using the bound ε > n−β/6 to
obtain a space lower bound of Ω(n1+β/6) for o(log (1/ε)/ log (1/β)) pass algorithms by Theorem 1.
This is because any (1−ε)-approximation of size of maximum matchings distinguishes between the
two families of the graphs in the theorem. Finally, given that we know by [FLN+02,GKK12] that
β = Ω(1/ log log (n)), the space bound of o(n1+β/6) will always rule out semi-streaming algorithms.

We now go over the two main ingredients in the proof of this theorem, and state our main
results for them. In the next section, we present a proof outline of each of these ingredients, plus
that of Theorem 1. The rest of the paper is then dedicated to formalizing these proof outlines.

2.1 Ingredient I: (Multi) Hidden Permutation Hypermatching

A key to our lower bound constructions is a problem in spirit of the Boolean Hidden Hypermatch-
ing (BHH) problem of [VY11] (itself based on [GKK+07]) that we introduce in this paper. The
definition of the problem is rather lengthy and can be daunting at first, so we build our way toward
it by considering BHH first, and then move from there.

The Boolean Hidden Hypermatching (BHH) problem

The BHH problem can be phrased as follows (this is slightly different from the presentation
in [VY11] but is equivalent to the original problem). We have Alice with a string x ∈ {0, 1}r×k and

Bob who has a hypermatching M over [r]k with size r/2 plus a string w ∈ {0, 1}r/2. The players

5



are promised that the parity of x on hyperedges of M , i.e.,

M · x = (⊕k
i=1xM1,i,i , ⊕k

i=1 xM2,i,i , · · · , ⊕k
i=1 xMr/2,i,i) ∈ {0, 1}

r/2

is either equal to w or w̄. The goal is for Alice to send a single message to Bob and Bob outputs
which case the input belongs to. It is known that Θ(r1−1/k) communication is necessary and
sufficient for solving BHH with constant probability [VY11].

A natural variant of BHH (defined as a direct-sum version of BHH) is also used in [CKP+21]
as one of the main building blocks for constructing their permutation hiding graphs. Roughly
speaking, in that problem, Alice is given several different strings x and Bob’s input additionally
identifies which string to compute the parities of hyperedges of M over.

Nevertheless, the Boolean nature of this problem is too restrictive for the purpose of our con-
structions (and in fact, this Boolean nature is the key bottleneck in the construction of [CKP+21]).
Thus, for our purpose, we define a “permutation variant” of this problem.

The Hidden Permutation Hypermatching (HPH) Problem

We define the Hidden Permutation Hypermatching (HPH) problem as follows. Let b ⩾ 1
and Sb be the set of permutations over [b]. We have a permutation matrix Σ ∈ (Sb)

r×k and a
hypermatching M over [r]k with size r/2, plus a permutation vector Γ ∈ (Sb)

r/2. We are promised:

Γ∗ =
(
◦ki=1σM1,i,i , ◦ki=1 σM2,i,i , · · · , , ◦ki=1σMr/2,i,i

)
∈ (Sb)

r/2

is such that Γ∗ ◦ Γ is either equal to one of the two fixed known permutation vectors ΓYes or ΓNo;
here, ◦ki=1(·) concatenates the given k permutations together. The goal is to distinguish which case
the input belongs to. See Figure 1 for an illustration.

Γ∗

Σ∗,4 Σ∗,3 Σ∗,2 Σ∗,1

Figure 1: An illustration the HPH problem for r = 4, k = 4 and b = 3. We have r/2 = 2 hyper-
matching edges corresponding to the thick edges (red and blue, respectively, for each hyperedge).

One can see that this problem is equivalent to BHH whenever b = 2: we can simply interpret
the identity permutation in S2 as a 0-bit and the cross permutation as a 1-bit; the concatenation
operator in this case will then become XOR naturally and the problem will be identical to BHH.
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Nonetheless, once we move on to larger values of b > 2, this problem becomes much “richer”
than BHH as it can encode b! different “states” per each entry and the concatenation operator
becomes quite different than XOR. Indeed, there are already generalizations of BHH by replacing
Boolean domain with finite fields Fb for b > 2, and the XOR operator with addition in this
field [GT19]; yet, even those generalizations only correspond to very limited types of permutations
and concatenations, and are strict special cases of HPH (which also do not work for our constructions
as they can only hold b “states” per entry as opposed to b!).

There is however an important subtlety in the definition of this problem in our paper that we
need to clarify. While we could have turned HPH into a communication game, exactly as in BHH,
by giving Σ to Alice and M,Γ to Bob, this is not what we do actually. Instead, we partition Σ
column-wise between k different players Q(1), . . . , Q(k) by providing each player Q(i) for i ∈ [k] with
the permutation vector Σ∗,i ∈ (Sb)

r, the i-th column of Σ, and provide (M,Γ) to a referee (identical
to Bob). The communication pattern is also different in that, first, Q(1), . . . , Q(k) can talk with each
other, with back and forth communication, using a shared blackboard visible to all parties. Then,
at the end of their communication, the referee can check the content of the blackboard and output
the answer (think of the final state of the blackboard as the message of players to the referee). We
shall discuss the technical reasons behind this change in our proof outline in Section 3.1.

The Multi Hidden Permutation Hypermatching (Multi-HPH) Problem

We are now ready to present the full version of the problem we study, which can be seen as a
certain direct-sum variant of the HPH (similar in spirit to the way BHH is generalized in [CKP+21]).
Roughly speaking, in this problem, there are t instances of HPH and the referee additionally chooses
which instance of the HPH they should all solve, without the other players knowing this information
at the time of their communication.

We do caution the reader that since this problem involves “tensorizing” the inputs in HPH (e.g.,
Σ becoming a 3-dimensional tensor and each player receiving a permutation matrix), the indices
stated below may not directly map to the ones stated earlier for HPH (which is the t = 1 case).

Problem 1 (Multi-Hidden-Permutation-Hypermatching). For any integers r, t, b, k ⩾ 1,
Multi-HPHr,t,b,k is a distributional (k + 1)-communication game, consisting of k players plus a
referee, defined as:

(i) Let ΓYes,ΓNo ∈ (Sb)
r/2 be two arbitrary tuples of permutations known to all (k + 1) parties.

We refer to ΓYes and ΓNo as the target tuples.

(ii) We have k players Q(1), . . . , Q(k) and for all i ∈ [k] the i-th player is given a permutation
matrix Σ(i) ∈ (Sb)

t×r chosen independently and uniformly at random.

(iii) The referee receives k indices L := (ℓ1, . . . , ℓk) each picked uniformly and independently from
[t] and a hypermatching M ⊆ [r]k with r/2 hyperedges picked uniformly.

Additionally, let the permutation vector Γ∗ =
(
γ⋆1 , γ

⋆
2 , . . . , γ

⋆
r/2

)
∈ (Sb)

r/2 be defined as,

∀a ∈ [r/2] γ⋆a := σ
(1)
ℓ1,Ma,1

◦ · · · ◦ σ(k)
ℓk,Ma,k

,

where Ma,i for a ∈ [r/2] and i ∈ [k] refers to the i-th vertex of the a-th hyperedge in M .

The referee is also given another permutation vector Γ = (γ1, γ2, . . . , γr/2) sampled from

(Sb)
r/2 conditioned on Γ∗ ◦ Γ being equal to either ΓYes or ΓNo (here, the ◦ operator is used

to concatenate each permutation in the vectors individually).
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The players Q(1), . . . , Q(k) can communicate with each other by writing on a shared board visible to
all parties with possible back and forth and in no fixed order (the players’ messages are functions
of their inputs and the board). At the end of the players’ communication, the referee can use all
these messages plus its input and outputs whether Γ∗ ◦ Γ is ΓYes or ΓNo.

The following theorem on the communication complexity of Multi-HPH involves the bulk of
our technical efforts in this paper.

Theorem 2. For any integers t ⩾ 1, b ⩾ 2, and sufficiently large r, k ⩾ 1, any protocol for
Multi-HPHr,t,b,k, for any pairs of target tuples, with at most s bits of total communication for s
satisfying

k · log (r · t) ⩽ s ⩽ 10−3 · (r · t)
can only succeed with probability at most

1

2
+ r ·O

( s

r · t
)k/32

.

In our lower bounds, we use this theorem with parameters k = Θ(1/β), and s = r ·
√
t (where r

and t ≈ rβ will be determined by the underlying (r, t)-RS graph we use). This allows us to prove
a lower bound for protocols that can solve Multi-HPH with advantage as as small as 1/poly(r)
over random guessing, which will be crucial for our constructions.

2.2 Ingredient II: Permutation Hiding Graphs

We now present the definition of permutation hiding graphs, introduced by [CKP+21], that are
also a key building block in our lower bound. To do this, we need some notation.

We call a directed acyclic graph G = (V,E) a layered graph if its vertices can be partitioned
into sets V 1, . . . , V d for some d ⩾ 1, such that any edge of G is directed from some V i to V i+1 for
some i ∈ [d− 1]; we further define FirstG := V 1 and LastG := V d.

We define a layered graph as G = (V,E) as a directed acyclic graph whose vertex set V can
be partitioned into d different sets V1, V2, . . . , Vd where any edge (u, v) is such that u ∈ Li and
v ∈ Li+1 for some i ∈ [d− 1]. We use First(G) and Last(G) to denote the sets V1 (the first layer
of G) and Vℓ (the last layer of G) respectively. We index each layer Vi by the set [|Vi|] for each
i ∈ [d]. We use First[i](G) to denote the first i vertices of First(G) indexed by the set [i] for any
i ∈ [|First(G)|] and similarly for Last[j](G) for j ∈ [|Last(G)|].

We will use layered graphs to represent permutations over [m], denoted by Sm, as follows.

Definition 2.1 (Permutation Graph). For any integer m ⩾ 1, a layered graph G = (V,E) is
said to be a permutation graph for σ ∈ Sm if |First(G)| , |Last(G)| ⩾ m and there is a
path from i ∈ First[m](G) to j ∈ Last[m](G) if and only if σ(i) = j for each i, j ∈ [m].

We use Dm to denote the set of all permutation graphs on Sm. We are now ready to define
the (distribution of) permutation hiding graphs. Our definition is a slight rephrasing of the one
in [CKP+21] and we claim no novelty here.
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Definition 2.2 (Permutation Hiding Graphs; c.f. [CKP+21]). For integers m,n, p, s ⩾ 1 and
real δ ∈ (0, 1), we define a permutation hiding generator G = G(m,n, p, s, δ) as any family
of distributions G : Sm → Dm on permutation graphs satisfying the following two properties:

(i) For any σ ∈ Sm, any permutation graph G in the support of G(σ) has n vertices.

(ii) For any σ1, σ2 ∈ Sm, the distribution of graphs G(σ1) and G(σ2) are δ-indistinguishable
for any p-pass s-space streaming algorithm.

[CKP+21] presented a permutation hiding generator with the following parameters for any
integers m, p ⩾ 1 in terms of the parameters α and β of RS graphs:

n := (
log n

α
)
Θ(p)

·Θ(m); (number of vertices)

s := o(m1+β); (space of streaming algorithm)

δ := 1/poly(n). (probability of success of the algorithm)

In particular, notice that the number of vertices in the graph grows by a factor of log (n) per pass
even when both α and β are constant. As we shall see later in this section, the ratio of m/n
governs the approximation ratio of the algorithms for the maximum matching problem. As such,
the ratio in this construction is too small to provide lower bounds for constant-factor approximation
streaming algorithms, no matter the space of the algorithm.

We present an alternative construction of permutation hiding graphs in this paper, which is
more suited for proving streaming lower bounds for maximum matching.

Theorem 3. For any integers m, p ⩾ 1, there is a permutation hiding generator G = G(m,n, p, s, δ)
with the following parameters:

n := Θ(
1

α · β2
)
p

·Θ(m); (number of vertices)

s := o(m1+β/2); (space of streaming algorithm)

δ := (p/β)Θ(1/β) ·Θ(1/β)2p · 1/poly(m). (probability of success of the algorithm)

Thus, we obtain a different tradeoff than [CKP+21] on the parameters of the permutation hiding
generator. In particular, now, the ratio of n/m is only 2Θ(p) for constant values of α, β, which as
we shall see soon, is sufficient to obtain our Ω(log (1/ε))-pass lower bound.

Our proof of Theorem 3 considerably deviates from that of [CKP+21] both in terms of the
combinatorial construction of the permutation hiding graphs and even more so in the information-
theoretic analysis of their properties. Since the majority of these changes are already apparent even
for single-pass algorithms, in Section 6 we first present the construction for single-pass algorithms
separately as a warm-up to our main construction. Section 7 then contains the construction and
analysis for multi-pass algorithms using the same type of inductive argument as in [CKP+21] by
replacing their induction step with our approach in Section 6 for single-pass algorithms.

3 Proof Outline

We present a proof outline of Theorem 1 and its ingredients in this section. We emphasize that this
section oversimplifies many details and the discussions will be informal for the sake of intuition.
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We will start with the two key ingredients of our main theorem, namely, Theorems 2 and 3, and
then at the end, show how they can easily imply the main theorem as well.

3.1 Proof Outline of Theorem 2: (Multi) Hidden Permutation Hypermatching

We start with the proof outline of Theorem 2. The formal proof is presented in Section 5.

3.1.1 From XOR Lemmas to a “Concatenation Lemma”

Let us focus on the HPH problem wherein the input is a permutation matrix Σ ∈ (Sb)
r×k given to

k players Q(1), . . . , Q(k), and a hypermatching M , and permutation vector Γ ∈ (Sb)
r/2 given to the

referee. The goal is to determine whether for the permutation vector Γ∗ obtained via concatenating
permutations on indices of M , Γ∗ ◦ Γ is equal to a fixed permutation vector ΓYes or another vector
ΓNo. The communication pattern is as specified in Problem 1.

Our starting point is similar to that of [GKK+07,VY11] by breaking the correlation in the input
instance (either all permutations in Γ∗ ◦ Γ are consistent with ΓYes or all are consistent with ΓNo).
Roughly speaking, this corresponds to showing that if we only have a single random hyperedge
e = (v1, . . . , vk) ∈ [r]k, then, the distribution of

γ∗ = σv1,1 ◦ · · · ◦ σvk,k;

is 1/poly(r) close to the uniform distribution in the total variation distance. Having proven this,
one can then essentially do a “union bound” and show that the distribution of the entire vector
Γ∗ ◦ Γ remains so close to uniform that the referee cannot distinguish whether it is consistent with
ΓYes or ΓNo in this case. Formalizing this step is not immediate and requires a hybrid argument
similar to those of [GKK+07,VY11] (see [AN21, Section 4.3] also for a general treatment) but we
shall skip it in this discussion.

Concretely, our task is to prove the following inequality for any low communication protocol π
for HPH, with a transcript Π between its k players Q(1), . . . , Q(k):

E
(Π,e)
∥ (γ∗ | Π, e)− USb

∥tvd ⩽ 1/poly(r), (3)

where USb
is the uniform distribution over Sb and ∥ · ∥tvd is the total variation distance (TVD).

XOR Lemmas. By the equivalence between HPH and BHH for b = 2, proving the equivalent
of Eq (3) in b = 2 case for BHH in all prior work [GKK+07, VY11, KKS15, CKP+21, KMT+22,
AS23, A22] corresponds to proving an XOR Lemma for the Index communication problem: We
have a string x ∈ {0, 1}r×k conditioned on a short message Π, and we are interested in ⊕k

i=1xvi,i
for (v1, . . . , vk) chosen uniformly from [r]k. At an intuitive level, these works rely on the following
two statements: (i) since Π is a short message, each xvi,i should be individually somewhat close to
uniform distribution (by the standard lower bounds for the Index problem [Abl93,KNR95]), and
(ii) since we are taking XOR of multiple close-to-uniform bits, the final outcome should be even
exponentially-in-k closer to uniform4. Formalizing this intuition is done via different tools such as
Fourier analysis on Boolean hypercube [GKK+07,VY11,KKS15,KMT+22,AS23,A22], discrepancy
bounds [CKP+21] or a generic streaming XOR Lemma [AN21].

4This step is easy to see had the message Π was not correlating the values of xvi,i across different i ∈ [k]: the
bias of XOR of independent bits is equal to multiplication of their biases (see, e.g. [AN21, Proposition A.9]). Yet
the message can indeed correlate these values and the main challenge in proving any XOR Lemma is to handle this.
We refer the reader to Yao’s XOR Lemma [Yao82] for the first example of such approaches in circuit complexity,
and [AN21] for a streaming XOR Lemma and [Yu22] for a bounded-round communication XOR Lemma.
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Our approach here is then to extend these XOR Lemmas to a “Concatenation Lemma”
for Eq (3), which we describe in the next part.

3.1.2 A “Concatenation Lemma”

Following the previous discussion, our goal in proving Eq (3) is to show that: (i) since Π is a short
message, each permutation σvi,i should be individually somewhat close to the uniform distribution
(which still follows from a similar argument as for the Index problem [Abl93,KNR95]), and (ii) since
we are taking concatenation of multiple close-to-uniform permutations, the final outcome should
be even exponentially-in-k closer to uniform. This is what we consider a “concatenation lemma”
in this paper, and it is where we start to deviate completely from prior approaches in [GKK+07,
VY11,KKS15,CKP+21,KMT+22,AS23,A22] in this context.

A Conceptual Roadblock. Let us point out an important conceptual challenge in formalizing
step (ii) of this plan. Let ν denote the uniform distribution over all even permutations on Sb,
namely, permutations with an even number of inversions. We have that the TVD of ν from USb

is
1/2, so, roughly speaking, ν is already “not-too-far” from the uniform distribution.

But now consider the distribution ν∗ which is the k-fold concatenation of ν for some k ⩾ 1,
meaning that to sample from ν∗, we sample k independent permutations from ν and concatenate
them together. To be able to implement step (ii) of our plan, at the very least, we should have
that in this purely independent case, TVD of ν∗ from USb

exponentially drops, i.e., becomes 2−Ω(k).
Alas, it is easy to see that ν∗ is in fact the same as ν and thus we have no change in TVD at all!
This is in stark contrast with the XOR and Boolean case where the drop in TVD, at least for purely
independent inputs, is always happening.

3.1.3 Our Proof Strategy for the “Concatenation Lemma”

With the above example in mind, we are now ready to discuss our solution for proving the Con-
catenation Lemma and establishing Eq (3). For now, let us limit ourselves to nice protocols that
do not correlate the outcome of different permutations with each other, meaning that we are still
in this blissful case wherein the permutations σvi,i are independent even conditioned on Π. The
first and easy step of the argument is to show that the distribution of each σvi,i, for a random vi,
is close to uniform not only in TVD but also KL-divergence, namely,

E
Π,vi

[D(σvi,i | Π || USb
)] ⩽ r−1/2. (4)

This step is still not particularly different from the typical Index lower bounds and is an easy
application of the chain rule of KL-divergence. Let us make one further simplifying assumption by
taking Eq (4) to hold, not in expectation, but rather simultaneously for all coordinates of a fixed
(v1, . . . , vk) at the same time.

At this point, one could apply Pinsker’s inequality (Fact A.12) to relate the KL-divergence
bound in Eq (4) to a bound on TVD, but then we may end up in the situation shown in the
roadblock, hence not allowing for further decay in the distance through concatenation.

Another approach, taken for instance in [AKSY20], is to relate Eq (4) to an ℓ2-distance of the
distributions (instead of TVD which is half the ℓ1-distance). But then, the best bound one can
prove on ℓ2-distance will also be r−Θ(1), which again would not suffice for our purpose (using a
“smooth” version of the example in the roadblock; see Appendix C).

Both above cases suggest that we may need a more nuanced understanding of the distribution
of σvi,i | Π. To do so, we consider a combination of TVD and ℓ2-distances in the following way. We
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apply the “KL-vs-ℓ1/ℓ2-inequality” of [CK18] (Proposition A.13)—a generalization of the Pinsker’s
inequality—to decompose the support of the distribution of σvi,i | Π into two parts:

• Ai: A part that does not happen that frequently, meaning σvi,i | Π is only in Ai w.p. r
−1/4;

• Bi: A part that is extremely close to uniform distribution in ℓ2-distance, meaning

∥(σvi,i | Π, Bi)− USb
∥2 ⩽

r−Θ(1)

b!
. (5)

Putting these together, plus our simplifying assumption that σvi,i’s are still independent conditioned
on Π allows us to argue that with probability 1− r−Θ(k), there are at least Θ(k) coordinates i ∈ [k]
that satisfy Eq (5).

This brings us to the last part of the argument. Having obtained Θ(k) coordinates that are
extremely close to uniform, we use basic tools from representation theory and Fourier analysis on
permutations to analyze the distribution of their concatenation. The Fourier basis here is a set
of irreducible representation matrices (see Appendix B), and the convolution theorem allows us to
relate Fourier coefficients of the concatenated permutation via multiplication of Fourier coefficients
of each individual permutation. Finally, the distance to the uniform distribution can be bounded
by Plancharel’s inequality for this Fourier transform (Proposition B.5), similar to the standard
analysis on the Boolean hypercube (see, e.g., [dW08]).

All in all, this step allows us to bound the TVD of the concatenation of the permutation—
conditioned on the case of Θ(k) extremely-close to uniform indices in [k] which happens with
probability 1 − r−Θ(k)—by another r−Θ(k). Putting all these together then gives us the desired
inequality in Eq (3) under all our earlier simplifying assumptions.

Removing simplifying assumptions. The above discussion oversimplified many details, chief
among them, the main challenge that stems from the inputs becoming correlated through the
transcript Π (which is the key challenge in proving XOR Lemmas as well). For the BHH problem
and XOR Lemmas (for the Index problem) in the Boolean setting, a key tool to handle this is the
KKL inequality of [KKL88] for the Fourier transform on Boolean hypercube, which as a corollary,
almost immediately gives an XOR Lemma for the Index problem (see [dW08, Section 4.2]). For
our permutation problem, however, we are not aware of any similar counterpart.

We handle the aforementioned challenge by replacing the role of a single player, Alice, in BHH
with k separate players in HPH and use a detailed information-theoretic argument to analyze how
much these players can correlate their inputs. Roughly speaking, this reduces the problem to
proving that the inputs of players are only correlated through the message Π and not beyond that
(a consequence of the rectangle property of communication protocol), and then making a direct
product argument to show a single message Π, cannot, simultaneously, change the distribution of
multiple coordinates.

3.1.4 From HPH to Multi-HPH: (Not) A Direct-Sum Result

To prove Theorem 2, we need a lower bound for the Multi-HPH problem which is stronger than
the lower bound for HPH by a factor of t. Given that Multi-HPH is effectively a direct-sum
version of HPH—we need to solve one unknown copy out of t given copies—it is natural to expect
the complexity of the problem also increases by a factor t. Moreover, given various direct-sum
results known using information complexity (see, e.g. [CSWY01,JRS03,BBCR10,BR11,BRWY13]
and references therein), one might expect this step to be an easy corollary.
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Unfortunately, this is in fact not the case, due to the crucial reason that we need a lower
bound for protocols with an extremely small advantage of only 1/poly(r) over random guessing. In
general, one should not expect a generic direct sum result to hold in this low-probability regime5.
Moreover, these information complexity approaches typically fail on problems with a low probability
of success, and in our case, they cannot be applied readily.6

Consequently, in our proof of Theorem 2, we directly work with the Multi-HPH problem,
which means all the arguments stated in the previous part should be implemented for this “higher”
dimensional problem. Nevertheless, most of these changes appear in the first part of the argument
that reduces the original problem to proving Eq (3) and Eq (4) (or rather their equivalents for
Multi-HPH), as well as the direct product arguments mentioned at the end of the last subsection
for removing our simplifying assumptions. Thus, these changes do not fundamentally alter our
previously stated plan in the lower bound and we postpone their details to Section 5.

3.2 Proof Outline of Theorem 3: Permutation Hiding Graphs

We now switch to the proof outline of Theorem 3. The formal proof is presented in Section 6 for
single-pass algorithms and Section 7 for multi-pass ones.

Our proof primarily builds on [CKP+21] (for the general framework) and [A22] (for the con-
struction of the graphs used in the framework). Both these papers have excellent overviews of their
technical approach, [CKP+21, Section 2] and [A22, Section 1.2], and we refer the reader to those
parts for further background as well as an overview of prior techniques.

As stated earlier, our main point of departure from the framework of [CKP+21] already appears
for single-pass algorithms. So, in this overview also, we mostly focus on this case. For the simplicity
of exposition, in the following, we assume the parameters α, β of RS graphs are both Θ(1) and ignore
the dependence of our bounds on them.

3.2.1 Permutation Hiding for Single-Pass Algorithms

Recall the definition of permutation hiding graphs from Definition 2.2. Theorem 2 for Multi-HPH
is our main tool for constructing these graphs, so let us see how we can turn an instance (Σ, L,M,Γ)
of Multi-HPH into a permutation graph. We start with each component separately.

Encoded RS graphs and Σ

Recall that Σ consists of k permutation matrices Σ(i) ∈ (Sb)
t×r. Let Grs = (Lrs, Rrs, Ers) be a

bipartite RS graph with nrs vertices on each side and t induced matchings M rs
1 , . . . ,M rs

t each of
size r (for the same parameters as the dimensions of Σ(i)).

We “encode” Σ(i) in Grs via the following “graph product” Grs ⊗Σ(i) (strictly speaking, this is
the product of the graph Grs and the matrix Σ(i)):

• Vertices of Grs ⊗ Σ(i) are the bipartition L(i) = Lrs × [b] and R(i) = Rrs × [b].

• Edges of Grs ⊗ Σ(i) are directed from (u, x) ∈ L to (v, y) ∈ R whenever (u, v) is an edge in

E and y = σ
(i)
c1,c2(x) where (c1, c2) ∈ [t]× [r] is chosen so that e is the c2-th edge of the c1-th

induced matching M rs
c1 .

5A short explanation is based on the equivalence of information complexity and direct sum result [BR11], plus the
fact that information complexity is an “expected” term while communication complexity is a “worst case” measure.

6Concretely, a protocol that with probability 1/poly(r), communicates its input and otherwise is silent has an O(1)
information complexity (albeit large communication complexity) and can lead to the desired advantage of 1/poly(r)
trivially; thus information complexity of HPH in such a low-probability-of-success regime is simply O(1).
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(a) A (3, 3)-RS graph Grs.
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(b) Grs ⊗ Σ for some unspecified 3× 3 permutation matrix Σ.

Figure 2: An illustration of RS graphs and our “graph product”.

In words, we “stretch” each vertex of Grs to become b separate vertices, and replace the edge
e = (u, v) ∈ Ers by a matching of size b between vertices (u, ∗) and (v, ∗) in the product; the choice
of this matching is then determined by the entry of Σ(i) that “corresponds” to this edge, where in
this correspondence we interpret rows of Σ(i) as the induced matchings in Grs, and the columns as
the edges of these matchings. See Figure 2 for an illustration.

It is not hard to verify that Grs⊗Σ(i) is itself an RS graph with t induced matchings of size r · b
on nrs · b vertices. This means that the product has “sparsified” the original RS graph relatively,
but we shall ensure that b is sufficiently small, such that this product graph is also sufficiently dense
still for the purpose of our lower bound.

We can then encode the entirety of Σ into k vertex-disjoint RS graphs Grs⊗Σ(i) for i ∈ [k]. We
refer to the graph consisting of these k disjoint parts as GΣ. We shall review the properties of this
graph after defining the remaining graphs related to Multi-HPH.

Before moving on, a quick remark is in order. RS graphs have been used extensively in the last
decade for streaming lower bounds (see Section 4.2). However, all prior work on RS graphs that
we are aware of has used them for encoding Boolean strings. For instance, [AR20] uses RS graphs
to encode input sets to the set disjointness communication problem, and [CKP+21] uses them for
encoding their direct-sum BHH problem (outlined earlier). To obtain more “complex” structures
such as permutations, [CKP+21] further defined Boolean operations of RS graphs like ∨, ∧, and
⊕ and used them in conjunction with sorting networks (we shall describe this connection shortly
also). This is precisely the source of the Θ(log n) loss in the parameters of permutation hiding
graphs in [CKP+21] that we discussed earlier.

Despite its simplicity, our new construction—inspired by [A22], which still encoded a Boolean
string in the RS graph but in a similar fashion—is directly encoding a permutation matrix inside
the RS graph, which allows for encoding more complex structures, without having to pay too much
on the density of the resulting graph.

Simple permutation graphs and (L,M,Γ)

We will create a new graph H = H(GΣ, L,M,Γ) out of GΣ. For the purpose of this part, we only
care about the vertices of GΣ and not its edges (this will be crucial for the reduction). We shall
not go into the rather tedious definition of the graph H here and instead simply mention its main
properties (see also Figure 3 for an illustration):

• The graph H has asymptotically the same number of vertices as GΣ and in particular includes
an extra set of vertices S = [r/2]× [b] on its “left” most part layer. The extra edges inserted
to H at this step form perm perfect matchings between the layers of H.
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• If we start from the a-th group of vertices in S for a ∈ [r/2], namely, (a, ∗) ∈ S, and follow the
edges of the graph H, we shall be moving according to the hyperedge Ma across matchings
M rs

ℓi
⊗Σ(i) for i ∈ [k] in a way that we will end at the same block of vertices (a, ∗) in the last

layer of H; the mapping between the groups (a, ∗) ∈ S and (a, ∗) in the last layer will now
be equal to γ⋆a ◦ γa.

...

...
...

...
...

...

...
...

...

...

...

...

...

...

...

...
...

...
...

...

G
rs

G
rs

Γ

Σ(1)
Σ(2)

ℓ1 ℓ2

Figure 3: An illustration of the graph H = H(GΣ, L,M,Γ) for some unspecified parameters.

With the properties above, one can see that the graph H is in fact a permutation graph for
the permutation induced7 by the permutation vector Γ∗ ◦ Γ ∈ (Sb)

r/2 in Multi-HPH. Thus,
learning the hidden permutation of the permutation graph H is equivalent to figuring out whether
the answer to Multi-HPH was ΓYes or ΓNo.

We can now conclude the following. Given Σ, the players in Multi-HPH can create the graph
GΣ without any communication (as each player Q(i) will be responsible for creating Grs ⊗ Σ(i)).
The referee can also create the edges of the graph H given the inputs (L,M,Γ) as they do not
depend on Σ. This in turn implies that a single-pass s-space streaming algorithm for learning the
hidden permutation of the permutation graph H can be used as a (k · s)-communication protocol
for Multi-HPH. Given our lower bound in Theorem 2 for Multi-HPH (for appropriate choices
of s), this implies that the resulting distribution we have on the graphs H is a permutation hiding
generator with the important caveat that it can only hide permutation vectors, as opposed to
arbitrary permutations.

7We can interpret each permutation vector in (Sb)
r/2 as a permutation over [r/2 · b], wherein for every a ∈ [r/2],

the elements [(a− 1) · b+1 : a · b] are permuted according to the a-the permutation of the vector. We emphasize that
while every permutation vector leads to a permutation, the converse is not true, and this is in fact going to play an
important role in our arguments.
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From Permutation Vectors to Arbitrary Permutations

At this point, we have already constructed a generator for permutation vectors. This generator can
be seen as a middle ground between the set hiding generators of [CKP+21] (which are considerably
weaker as they can hide limited permutations, roughly corresponding to the b = 2 case) and per-
mutation hiding generators (which are considerably stronger, as they can hide every permutation).

Our last step to permutation hiding generators is inspired by a nice strategy of [CKP+21] for
going from their set hiding graphs to their permutation hiding graphs. They show that one can
use sorting networks (see Section 4.3), and in particular, the celebrated AKS sorters [AKS83] to
compute any arbitrary permutation as concatenation of Θ(log n) “matching permutations”, namely,
permutations that can only change two previously fixed pairs of elements with each other. This
allows them to obtain a permutation hiding generator from Θ(log n) set hiding ones – this is
precisely the source of the factor Θ(log n) loss in the construction of [CKP+21].

For our purpose, we also use sorting networks but this time with larger comparators (typically
called b-sorters), wherein each comparator can sort b wires simultaneously (see Section 4.3). We
can then use an extension of the sorting network of [AKS83] to b-sorter networks due to [Chv92]
with depth O(logb n) instead (see also [PP89] and Appendix D). Finally, we show that our generator
for hiding permutation vectors can “simulate” each layer of this network efficiently and use this
to obtain a generator for every arbitrary permutation, by applying our generator for permutation
vectors O(logb n) times. By taking b to be a sufficiently small polynomial in n, we can ensure
that O(logb n) = O(1) and thus only pay a constant factor overhead when constructing our final
permutation hiding generator for single-pass algorithms. Finally, b is still sufficiently small such
that even though in our encoded RS graph, we essentially make the input graph sparser by a factor
of b, the graph is still sufficiently dense to allow for our desired lower bound. The language used
in Sections 6 and 7 is slightly different for readability. We work with permutations induced by
permutation vectors, which we call simple permutations (see Definition 4.2) directly.

3.2.2 Permutation Hiding for Multi-Pass Algorithms

The last step of our approach is to go from single-pass algorithms to multi-pass algorithms using the
strong guarantee of permutation hiding generators and the power of back-and-forth communication
between the players, but not the referee, in the Multi-HPH problem. While at a technical level
this step still requires addressing several new challenges, at a conceptual level, it more or less mimics
that of [CKP+21] without any particularly novel ideas.

The goal is now to construct a permutation hiding generator for p-pass algorithms, simply
denoted by Gp(·), from a generator for (p − 1)-pass algorithms denoted similarly by Gp−1(·). The
main idea is still based on a reduction from Multi-HPH for inputs (Σ, L,M,Γ). A key point in
our construction of GΣ and H for single-pass algorithms is that the edges added by the referee,
but certainly not the players, to H form different matchings M1,M2, . . . between disjoint sets of
vertices of H. In particular, if we see H as a layered graph, some of these layers are constructed
based on GΣ and the edges the between remaining layers are perfect matchings.

To create our p-pass generator, we start with creating a graph H from (Σ, L,M,Γ) as described
in the previous part. Then, for every one of the perfect-matching layers Mj described above,
we replace those layers with a permutation hiding graph Gp−1(Mj); here, we consider the perfect
matching Mj as a permutation over the vertices of the layer. This will increase the number of
vertices, and the number of layers, in the entire graph by a constant factor. See Figure 4 for an
illustration.

We can now claim that this new family of graphs is in fact a p-pass generator. At an intuitive
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G1 ∼ Gp−1(ρL) G
rs

G2 ∼ Gp−1(ρR)

V 1 V d

Figure 4: An illustration a (subgraph of a) p-pass generator from (p− 1)-pass generator.

level, we can say that the first (p− 1) passes of the algorithm cannot figure (L,M,Γ) as it cannot
determine the identity of each of the matchings M1,M2, . . . , added to H by the referee. This is by
the guarantee of the generator Gp−1 against (p− 1) pass algorithms. Because of this, the problem
“effectively” become the same as the single-pass case again, and we can perform a reduction from
Multi-HPH as before. Making this intuition precise requires quite a lot of technical work, but
as we stated earlier, it follows a similar pattern as that of [CKP+21] (plus certain simplifications
using a similar argument in [AR20]), and we postpone their details to Section 7.

3.3 Proof Outline of Theorem 1: A Multi-Pass Lower Bound for Matchings

The proof is based on a standard reduction, e.g., in [AR20], from finding vertex-disjoint paths to
bipartite matching (a similar reduction also appeared in [CKP+21]). Given the simplicity of this
proof, we more or less provide its full details here for completeness.

Consider any permutation graph G = (V,E) for some σ ∈ Sm. A simple observation is that for
any pairs of vertices s1, s2 ∈ First[m](G), their corresponding paths to σ(s1), σ(s2) ∈ Last[m](G)
should be vertex disjoint. Suppose not, and let v ∈ V be one intersecting vertex; then, s1 ⇝ v ⇝
σ(s1) and s1 ⇝ v ⇝ σ(s2) should be some paths in G, violating the permutation graph property
of G. We use this observation crucially in our proof.

Fix a permutation hiding generator G := Gm,n,s,p,δ for any integers m, p ⩾ 1 and parameters
n, s, δ as in Theorem 3. For any graph G in the support of any of the distributions output by G,
let S = First[m/2](G) and T = Last[m/2](G). Now,

• By taking σ= to be the identity permutation, we can ensure that in any G ∼ G(σ=), there
are m/2 vertex-disjoint paths from S to T in G;

• But, by taking σ× to be the “cross identity”, namely, a one mapping [m/2] to [m/2 + 1 : m]
identically and vice versa, we can ensure that in G ∼ G(σ×), there are no vertex-disjoint
paths from S to T in G.

The next step is to turn this vertex-disjoint path problem into a bipartite matching instance.
Roughly speaking, this is done by turning these paths into augmenting paths for a canonical
matching in the bipartite matching instance.

Consider the following function Bipartite(G) that given a permutation graph G in the support
of any distribution in G creates the following bipartite graph:
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(i) Copy the vertices of G twice to obtain two sets V l and V r. Additionally, add two new sets
S0 and T0 to the graph.

(ii) For every vertex v ∈ G, connect vl ∈ V l to vr ∈ V r ( refer to these edges as a matching M).

(iii) For every edge (u, v) ∈ G, connect ul ∈ V l to vr ∈ V r. Additionally, for every vertex si ∈ S
of G, connect si ∈ S0 to sri ∈ V r and for every vertex ti ∈ T of G, connect ti ∈ T0 to tli ∈ V l.

It is not hard to see that in this graph, any augmenting path for the matching M has to start
from S0 and end in T0. In addition, the structure of the graph, plus the alternating nature of an
augmenting path, forces the path to basically follow the copies of edges in G from S to T . This
will turn imply that:

• When G ∼ G(σ=), the matching M in Bipartite(G) has m/2 vertex-disjoint augmenting
paths, and thus can be augmented to a perfect matching of size n+m/2;

• On the other hand, when G ∼ G(σ×), the matching M in Bipartite(G) has no augmenting
paths and is thus a maximum matching of size n.

Given that streaming algorithms running on G can generate Bipartite(G) “on the fly”, this
is sufficient to prove that any streaming algorithm that can determine whether the input graph
has a perfect matching of size n +m/2 or its largest matching is of size n, would also distinguish
between the distributions G(σ=) and G(σ×). But, by the indistinguishability of these distributions
in Theorem 3, we obtain that no p-pass s-space algorithm can solve the underlying matching
problem. We can now instantiate the parameters of Theorem 3 as follows.

• The parameter ε of Theorem 1 is obtained via:

(1− ε) ·
(
n+

m

2

)
= n,

which implies that ε = Θ(m/n).

• The number of vertices of Bipartite(G) is n+m/2 on each side and thus Θ(n) in general.

• The number of passes of the algorithm needs to be at least

p = Ω
( log ((n+m/2)/m)

log(1/α · β2)

)
= Ω

( log (1/ε)

log (1/αβ)

)
.

• The bound on the space s of the algorithms needs to be

s = o(m1+β/2) = o((α · β2)p·(1+β/2) · (n+m/2)1+β/2) = o(ε2 · (n+m/2)1+β/2).

This then concludes the proof of Theorem 1.

4 Preliminaries

4.1 Notation

Graphs

For any graph G = (V,E), we use n := |V | to denote the number of vertices. For an edge e = (u, v),
we use V (e) to denote the vertices incident on e. When G is a directed graph, for any vertices
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s, t ∈ V , we write s → t to mean there is an edge from s to t and s ⇝ t to mean there is a path
from s to t in G.

We sometimes say that two (or more) disjoint sets S and T of a graph G with size m = |S| = |T |
are identified by the set [m] to mean that any integer i ∈ [m] can be used to refer to both the i-th
vertex of S as well as T , when it is clear from the context (e.g., we say that for any i ∈ [m], connect
vertex i ∈ S to vertex i ∈ T ).

Tuples and matrices

For any m-tuple X := (x1, . . . , xm), and any integer i ∈ [m], we define

X<i := (x1, . . . , xi−1) and X−i := (x1, . . . , xi−1, xi+1, . . . , xm).

We can further define X>i and X⩽i analogously and extend these definitions to vectors as well.

For a A ∈ Rm×n, we use Ai,∗ to denote the i-th row of the matrix A and A∗,j to denote the j-th
column. We denote the sub-matrix of A on rows in S ⊆ [m] and T ⊆ [n] by AS,T , and similarly
use AS,∗ and A∗,T to only limited the rows or and columns to S and T , respectively.

Permutations

We use Sm to denote the symmetric group of permutations over the set [m]. We use σid(m) ∈ Sm to
denote the identity permutation on [m]. For any permutation matrix Σ ∈ (Sb)

t×r, we use σi,j ∈ Sb

to denote the permutation at row i and column j for i ∈ [t], j ∈ [r].

4.2 Bipartite Ruzsa-Szemerédi-Graphs

Let G = (V,E) be an undirected graph, and M ⊆ E be a matching in G. We say that M is an
induced matching iff the subgraph of G induced on the vertices of M is the matching M itself;
in other words, there are no other edges between the vertices of this matching.

Definition 4.1 (Ruzsa-Szemerédi Graphs [RS78]). For any integers r, t ⩾ 1, a bipartite graph
Grs = (Lrs∪Rrs, Ers) is called a bipartite (r, t)-Ruzsa-Szemerédi graph (RS graph for short)
iff its edge-set E can be partitioned into t induced matchings M rs

1 , . . . ,M rs
t , each of size r.

Lrs

Rrs

M rs
1

M rs
2

M rs
3

Figure 5: An illustration of simple RS-Graph construction.

It is easy to construct bipartite (r, t)-RS graphs with n vertices on each side and parameter
t = (n/r)2 for any r ⩾ 1 (see Figure 5). More interestingly, and quite surprisingly, one can create
much denser RS graphs as well; for instance, the original construction of these graphs due to Ruzsa
and Szemerédi [RS78] create graphs with r = n/2Θ(

√
logn) and t = Ω(n). Yet another construction

is that of [FLN+02,GKK12] that shows that already for r < n/2, we can have t = nΩ(1/ log logn).
See [BLM93,FLN+02,Alo02,TV06,AS06,AMS12,GKK12,FHS17,AB19,KKTY21] for various other
constructions and applications of RS graphs. At the same time, proving upper bounds on the density
of RS graphs turned out to be a notoriously difficult question (see, e.g. [Gow01,FHS17,CF13]) and
the best known upper bounds, even for r = Ω(n), only imply that t < n/2O(log∗ n) [Fox11,FHS17].
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A line of work initiated by Goel, Kapralov, and Khanna [GKK12] have used different construc-
tions of RS graphs to prove lower bounds for graph streaming algorithms [GKK12,Kap13,Kon15,
AKLY16,AKL17,CDK19,AR20,Kap21,AB21,CKP+21,KN21,A22] (very recently, they have also
been used in [ABKL23] for providing graph streaming algorithms for the matching problem).

Notation for RS-Graphs. The number of vertices in one partition of the bipartite graph Grs =
(Lrs ∪ Rrs, Ers) is denoted by nrs (the total number of vertices is 2nrs). The two sets Lrs and Rrs

are both identified by the set [nrs]. For each matching M rs
i for i ∈ [t], the edges in the matching

are identified by the set [r]. We also use e to iterate over the edges in Ers, or point to any arbitrary
edge in Ers. Given any e ∈ Ers, we use left(e) ∈ [nrs] and right(e) ∈ [nrs] to denote the vertices
in Lrs and Rrs that edge e is incident on, respectively.

For any (r, t)-Ruzsa-Szemerédi graphGrs, we use α, β ∈ [0, 1] to denote the following parameters.

α :=
r

nrs
β :=

log (t)

log (nrs)
. (6)

That is, Grs has (n
rs)β induced matchings of size α · nrs each.

4.3 Sorting Networks with Large Comparators

Following [CKP+21], we use sorting networks (see, e.g. [Knu97, Section 5.3.4]) in our constructions.
The key difference is that we need sorting networks that work with larger comparators, typically
called b-sorters (i.e., each sorter can sort b > 2 wires in one step as a primitive). We refer the
reader to [PP89,Chv92] for more information on sorting networks with b-sorters (see Figure 6).

Figure 6: A sorting network with b = 4 size sorters, m = 8 wires, and depth d = 3.

We shall use the following result from [Chv92] that is a generalization of the celebrated AKS
sorter of [AKS83] with O(log n) depth to networks with b-sorters with O(logb n) depth instead8.
We present this result directly in the language we shall use later in this paper, but the equivalence
in terms of sorting networks is straightforward.

Definition 4.2. Given an equipartition P of the set [m] into r groups P1, P2, . . . , Pr of size
b = m/r each, a permutation σ ∈ Sm is said to be simple on partition P if for each group Pj

with j ∈ [r], for any element i ∈ [m] belonging to group Pj , we have that σ(i) ∈ Pj also.

Informally, a simple permutation permutes elements only inside the groups in the partition P.
8Although we note that given the range of parameters used in our paper, namely, b = nΩ(1), we can alternatively

use the much simpler O(log2b(n))-depth construction of [PP89] as well to the same effect; see Appendix D.
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Proposition 4.3 ([Chv92]; see also [AKS83]). There exists an absolute constant csort > 0 such
that the following is true. For every pair of integers r, b ⩾ 1 and m = r · b, there exists

dsort = dsort(r, b) = csort · logb(m)

fixed equipartitions of [m] into P1, . . . ,Pdsort, each one consisting of r sets of size b, with the
following property. Given any permutation σ ∈ Sm, there are dsort permutations γ1, . . . , γdsort
where for every i ∈ [dsort], γi is simple on partition Pi so that we have σ = γ1 ◦ · · · ◦ γdsort .

To interpret this result in terms of sorting networks on m wires, think of each Pi for i ∈ [dsort]
as one layer of the sorting network and each b-sorter in this layer as one component of Pi (see
Figure 6). We have provided a proof of a weaker version of Proposition 4.3 when b = 2 with a
larger depth dsort = O(log2(m)) for intuition in Appendix D. The proof of Proposition 4.3 with
dsort = csort logb(m) and b > 2 is quite involved, and the details can be found in [Chv92].

Simple Permutations and Permutation Vectors

In Section 5, we work with permutation vectors from (Sb)
r/2 with r = 2m/b and in Sections 6

and 7, we predominantly work with simple permutations. We will establish the bijection between
the two for any fixed partition here. Let equipartition Lex of [m] be the partition that splits the
elements lexicographically into groups of size b. That is, for each i ∈ [m/b]:

Lexi = {j | (i− 1) · b+ 1 ⩽ j ⩽ i · b} .

Let Ssim
m ⊂ Sm be the set of all permutations which are simple on partition Lex.

Observation 4.4. There is a bijection vec : Ssim
m → (Sb)

m/b.

Proof. We know that partition Lex lexicographically groups the elements of [m] into groups of size
b. For any ρ ∈ Ssim

m , we define vec(ρ) as follows. For i ∈ [m/b], let γi ∈ Sb be,

γi(j) = ρ((i− 1)b+ j)− (i− 1)b

for each j ∈ [b]. As ρ((i− 1)b+ j) belongs to the same partition as (i− 1)b+ j for j ∈ [b], γi is a
permutation in Sb. Then, vec(ρ) = (γ1, γ2, . . . , γm/b).

Note that Observation 4.4 is applicable for any set of simple permutations for a fixed partition,
but we will work mainly with Lex.

Notation. For any permutation ρ ∈ Ssim
m , we use vec(ρ) to denote the corresponding element

from (Sb)
m/b. For any permutation vector Γ = (γ1, γ2, . . . , γm/b) ∈ (Sb)

m/b, we use join(Γ) to
denote the corresponding element of Ssim

m , as the tuple is combined into a single larger permutation.
(This is just the inverse of bijection vec from Observation 4.4.)

4.4 Streaming Algorithms

For the purpose of our lower bounds, we shall work with a more powerful model than what is typi-
cally considered when designing streaming algorithms (this is the common approach when proving
streaming lower bounds; see, e.g. [GM08,LNW14,BGW20]). In particular, we shall define stream-
ing algorithms similar to branching programs as follows and then point out the subtle differences
with what one typically expect of a streaming algorithm.
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Definition 4.5 (Streaming algorithms). For any integers m, p, s ⩾ 1, we define a p-pass
s-space streaming algorithm A working on a length-m stream σ = (σ1, . . . , σm) with entries
from a universe U as follows:

(i) The algorithm A has access to a read-only tape of uniform random bits r from a finite,
but arbitrarily large range R without having to pay for the cost of storing these bits.

(ii) There is a function fA : {0, 1}s×U ×R→ {0, 1}s that updates the state of the algorithm
as follows. The algorithm starts with the state S := 0s, and for i ∈ [m], whenever A reads
σi in the stream during its p passes, it updates its current state S to S ← fA(S, σi, r)
(the algorithm is computationally unbounded when computing its next state).

(iii) At the end of the last pass, the algorithm outputs the answer as a function of its state S
and random bits r.

(We note that this model is non-uniform and is defined for each choice of m, p, s individually.)

Let us point out two main differences with what one may expect of streaming algorithms. Firstly,
we allow our streaming algorithms to do an unbounded amount of work using an unbounded amount
of space between the arrival of each stream element; we only bound the space in transition between
two elements. Secondly, we do not charge the streaming algorithms for storing random bits.

Clearly, any lower bound proven for streaming algorithms in Definition 4.5 will hold also for
more restrictive (and “algorithmic”) definitions of streaming algorithms. We shall note that however
almost all streaming lower bounds we are aware of directly work with this definition and thus we
claim no strengthening in proving our lower bounds under this definition; rather, we merely use
this formalism to carry out the reductions in our arguments formally.

For any p-pass algorithm A, q ∈ [p], and input distribution µ, let memq
A(µ) denote the memory

state of A after q passes plus the content of its random tape on an input sampled from µ. Note
that memq

A(µ) is a random variable depending on randomness of A as well as µ.

Definition 4.6 (δ-Indistinguishable Distributions). For any δ ∈ [0, 1], the two distributions
µ, ν are said to be δ-indistinguishable for p-pass s-space streaming algorithms if for every such
algorithm A,

∥memp
A(µ)−memp

A(ν)∥tvd ⩽ δ.

Finally, we have the following standard hybrid argument for multi-pass streaming algorithms
(see, e.g. [CKP+21,AN21]). We present its short proof for completeness.

Proposition 4.7 (c.f. [CKP+21]). Let ℓ be a positive integer and δ ∈ Rℓ
⩾0 denote ℓ parameters.

Let (µ1, ν1), (µ2, ν2), . . . , (µℓ, νℓ) be ℓ pairs of distributions, such that for every i ∈ [ℓ], µi and
νi are δi-indistinguishable for p-pass s-space streaming algorithms. Then, µ := (µ1, . . . , µℓ) and
ν := (ν1, . . . , νℓ) are ∥δ∥1-indistinguishable for p-pass s-space streaming.

Proof. For any i ∈ [ℓ], define the hybrid distribution:

hi := (ν1, . . . , νi, µi+1, . . . , µℓ).
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This way, h0 = µ and hℓ = ν. Consider any p-pass s-space streaming algorithm A. We prove that
for every i ∈ [ℓ],

∥memp
A(hi−1)−memp

A(hi)∥tvd ⩽ δi,

by turning A into a p-pass s-space streaming algorithm B for distinguishing between µi and νi.
Algorithm B, given a stream σ from either µi or νi, is defined as follows:

(i) Sample the inputs σ1, . . . , σi−1 ∼ ν1, . . . , νi−1 and σi+1, . . . , σℓ ∼ µi+1, . . . , µℓ. This sampling
is free of charge for the algorithm B by Definition 4.5.

(ii) Run A on the input (σ1, . . . , σi−1, σ, σi+1, . . . , σℓ) in p passes and s space.

We thus have,

∥memp
A(hi−1)−memp

A(hi)∥tvd = ∥memp
B(µi)−memp

B(νi)∥tvd ⩽ δi,

by the εi-indistinguishability of µi and νi for p-pass s-space streaming algorithm B. The final result
now follows from triangle inequality.

5 The Multi Hidden Permutation Hypermatching Problem

We prove Theorem 2 on the communication cost ofMulti-HPH in this section. For the convenience
of the reader, we restate the definition of this communication game and our theorem below.

Problem (Restatement of Problem 1). For any integers r, t, b, k ⩾ 1, Multi-HPHr,t,b,k is a
distributional (k + 1)-communication game, consisting of k players plus a referee, defined as:

(i) Let ΓYes,ΓNo ∈ (Sb)
r/2 be two arbitrary tuples of permutations known to all (k + 1)

parties. We refer to ΓYes and ΓNo as the target tuples.

(ii) We have k players Q(1), . . . , Q(k) and for all i ∈ [k] the i-th player is given a permutation
matrix Σ(i) ∈ (Sb)

t×r chosen independently and uniformly at random.

(iii) The referee receives k indices L := (ℓ1, . . . , ℓk) each picked uniformly and independently
from [t] and a hypermatching M ⊆ [r]k with r/2 hyperedges picked uniformly.

Additionally, let the permutation vector Γ∗ =
(
γ⋆1 , γ

⋆
2 , . . . , γ

⋆
r/2

)
∈ (Sb)

r/2 be defined as,

∀a ∈ [r/2] γ⋆a := σ
(1)
ℓ1,Ma,1

◦ · · · ◦ σ(k)
ℓk,Ma,k

,

where Ma,i for a ∈ [r/2] and i ∈ [k] refers to the i-th vertex of the a-th hyperedge in M .

The referee is also given another permutation vector Γ = (γ1, γ2, . . . , γr/2) sampled from

(Sb)
r/2 conditioned on Γ∗ ◦ Γ being equal to either ΓYes or ΓNo.

The players Q(1), . . . , Q(k) can communicate with each other by writing on a shared board
visible to all parties with possible back and forth and in no fixed order (the players’ messages
are functions of their inputs and the board). At the end of the players’ communication, the
referee can use all these messages plus its input and outputs whether Γ∗ ◦ Γ is ΓYes or ΓNo.
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Theorem (Restatement of Theorem 2). For any t ⩾ 1, b ⩾ 2, and sufficiently large r, k ⩾ 1, any
communication protocol for Multi-HPHr,t,b,k, for any choice of target tuples, with at most s bits
of total communication for s satisfying

k · log (r · t) ⩽ s ⩽ 10−3 · (r · t)

can only succeed with probability at most

1

2
+ r ·O

( s

r · t
)k/32

.

When going through the proof, we shall condition on several probabilistic events and properties
at different points, and from thereon continue all our analysis conditioned on them. We will mark
each of these steps clearly in the corresponding subsection as a “conditioning step” (typically as
the conclusion of the subsection), in order to help the reader keep track of them.

5.1 Part One: Setup and the Basic Problem

We begin our proof of Theorem 2 in this subsection by defining the “basic” problem we will need
to focus on to prove this result. This will set up the stage for the main parts of the proof in the
subsequent subsections. We start with some notation.

Notation. We fix t ⩾ 1, b ⩾ 2, and sufficiently large choice of integers r, k ⩾ 1 and consider the
Multi-HPHr,t,b,k problem (henceforth, denoted simply by Multi-HPH) with any two arbitrarily
target tuples ΓYes and ΓNo. We further define

Σ := (Σ(1), . . . ,Σ(k)),

to denote the input to all players Q(1), . . . , Q(k).

From now on, fix a deterministic protocol π for Multi-HPH and let Π = (Π1, . . . ,Πk) denote
the transcript of the protocol, where Πi is the messages communicated the player Q(i) for i ∈ [k].
As per the theorem statement, we assume that π communicates s bits in total.

Finally, throughout this section, we use sans-serif letters to denote the random variables for
corresponding objects, e.g., Σ and Π for the input Σ and messages Π of players, and L,M, Γ for
the input of referee (L,M,Γ). Moreover, we may use random variables and their distributions
interchangeably when the meaning is clear from the context.

5.1.1 Removing the Role of ΓYes,ΓNo, and Γ

We are now ready to start the proof. We can interpret the goal of the referee in Multi-HPH
as follows: Given (Π, L,M), the final input of the referee is the tuple of permutations Γ chosen
uniformly at random from one of the following two distributions:

(Γ∗−1 ◦ ΓYes | Π, L,M) or (Γ∗−1 ◦ ΓNo | Π, L,M);

here, and throughout, Γ∗−1 is interpreted as taking the inverse of each permutation in the tuple.

Thus, given one sample Γ from a uniform mixture of the above two distributions, the referee
needs to determine which distribution Γ was sampled from. This, together with Fact A.8 (on
success probability of distinguishing distributions with one sample), implies that the probability of
success of the referee is equal to:

Pr
Π,L,M,Γ

(π succeeds) =
1

2
+

1

2
· E
Π,L,M

∥(Γ∗−1 ◦ ΓYes | Π, L,M)− (Γ∗−1 ◦ ΓNo | Π, L,M)∥tvd. (7)
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Our plan is to bound the RHS of Eq (7). To do so, we are going to do this indirectly by proving
that both distributions considered in this equation are quite close to the uniform distribution.
Another simple step also allows us to entirely ignore the choice of ΓYes and ΓNo and simply consider
the distribution of Γ∗ itself. These parts are captured in the following claim.

Claim 5.1. For any choice of Π, L,M ,

∥(Γ∗−1 ◦ ΓYes | Π, L,M)− (Γ∗−1 ◦ ΓNo | Π, L,M)∥tvd ⩽ 2 · ∥(Γ∗ | Π, L,M)− U
S
r/2
b

∥tvd,

where U
S
r/2
b

is the uniform distribution over tuples in S
r/2
b .

Proof. By the triangle inequality,

LHS of the claim ⩽ ∥(Γ∗−1 ◦ ΓYes | Π, L,M)− U
S
r/2
b

∥tvd + ∥U
S
r/2
b

− (Γ∗−1 ◦ ΓNo | Π, L,M)∥tvd.

For the first term above, we have,

∥(Γ∗−1 ◦ ΓYes | Π, L,M)− U
S
r/2
b

∥tvd =
1

2
·
∑

Γ∈Sr/2
b

∣∣∣∣∣Pr
(
Γ∗−1 ◦ ΓYes = Γ | Π, L,M

)
−
(
1

b!

)r/2
∣∣∣∣∣

(by the definition of TVD in Eq (30))

=
1

2
·
∑

Γ∈Sr/2
b

∣∣∣∣∣Pr
(
Γ∗ = (Γ ◦ Γ−1

Yes)
−1 | Π, L,M

)
−
(
1

b!

)r/2
∣∣∣∣∣

(each tuple of permutations has a unique inverse by taking inverse of each of its permutations)

=
1

2
·
∑

Γ∗∈Sr/2
b

∣∣∣∣∣Pr (Γ
∗ = Γ∗ | Π, L,M)−

(
1

b!

)r/2
∣∣∣∣∣

(as there is a one-to-one mapping between S
r/2
b and (Γ ◦ Γ−1

Yes)
−1 when Γ ranges over S

r/2
b )

= ∥(Γ∗ | Π, L,M)− U
S
r/2
b

∥tvd.
(again, by the definition of TVD in Eq (30))

Applying the same calculation (by replacing ΓYes with ΓNo) to the second term above concludes
the proof of this claim.

Plugging in the bounds we obtained in Claim 5.1 in Eq (7), we obtain that

Pr
Π,L,M,Γ

(π succeeds) ⩽
1

2
+ E

Π,L,M
∥(Γ∗ | Π, L,M)− U

S
r/2
b

∥tvd. (8)

The rest of the proof is dedicated to bounding the RHS of Eq (8). Notice this at this point, we
have entirely removed the role of ΓYes,ΓNo, and Γ. Thus, from now on, we can solely focus on the
power of players in Multi-HPH in changing the distribution of Γ∗ from its original distribution
which is uniform over (Sb)

r/2.

A remark about the importance of Γ is in order. All the inputs in Problem 1, barring Γ are
chosen uniformly at random and independently from their support sets. This is crucial to our proof,
as we will see in the later parts of this section. Without Γ, (say if we set Γ∗ = ΓYes or ΓNo) the
original distribution of Γ∗ would not be uniform, and we cannot bound the RHS of Eq (8).
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5.1.2 From the Hypermatching to a Single Hyperedge

We now further simplify our task in proving an upper bound on the RHS of Eq (8). Recall that
Γ∗ = (γ⋆1 , . . . , γ

⋆
r/2). By the (weak) chain-rule property of total variation distance in Fact A.9,

E
Π,L,M

∥(Γ∗ | Π, L,M)− U
S
r/2
b

∥tvd ⩽
r/2∑

a=1

E
Π,L,M

E
Γ∗

<a|Π,L,M
∥(γ⋆

a | Π, L,M,Γ∗
<a)− USb

∥tvd. (9)

Our goal is thus to bound each individual term in the RHS of Eq (9). To continue we need the
following definitions. For any choice of Π, L,M , and integers a ∈ [r/2], i ∈ [k], and j ∈ [t], define:

Ma := (Ma,1, . . . ,Ma,k) (the a-th hyperedge in M)

M<a := (M1, . . . ,Ma−1) (the first a− 1 hyperedges in M)

Σ
(i)
j,M<a

:= (σ
(i)
j,M1,i

, . . . , σ
(i)
j,Ma−1,i

) (the a− 1 entries of Σ
(i)
j,∗ indexed by M<a)

Σ
(i)
∗,M<a

:= (Σ
(i)
1,M<a

, . . . ,Σ
(i)
t,M<a

) (the input of Q(i) on hyperedges in M<a)

Σ∗,M<a := (Σ
(1)
M<a

, . . . ,Σ
(k)
M<a

). (the input of Q(1), . . . , Q(k) on hyperedges in M<a)

Notice that this way,

Γ∗
<a = Σ

(1)
ℓ1,M<a

◦ · · · ◦ Σ
(k)
ℓk,M<a

.

The following claim allows us to “over condition” on Σ∗,M<a instead of Γ∗
<a in the RHS of Eq (9).

The purpose of this step is to isolate the dependence on L which is needed for our subsequent
proofs (as Γ∗

<a depends on L but Σ∗,M<a does not).

Claim 5.2. We have:

E
Π,L,M

E
Γ∗

<a|Π,L,M
∥(γ⋆

a | Π, L,M,Γ∗
<a)− USb

∥tvd ⩽ E
Π,L,M,Σ∗,M<a

∥(γ⋆
a | Π, L,M,Σ∗,M<a)− USb

∥tvd.

Proof. For any choice of Π, L,M and Γ∗
<a, we have,

∥(γ⋆
a | Π, L,M,Γ∗

<a)− USb
∥tvd ⩽ E

Σ∗,M<a |Π,L,M,Γ∗

<a

∥(γ⋆
a | Π, L,M,Γ∗

<a,Σ∗,M<a)− USb
∥tvd

(by the over conditioning property of TVD in Fact A.10)

= E
Σ∗,M<a |Π,L,M,Γ∗

<a

∥(γ⋆
a | Π, L,M,Σ∗,M<a)− USb

∥tvd.

(as Σ∗,M<a and L together deterministically fix Γ∗
<a)

Using this in the LHS of the claim gives us,

E
Π,L,M

E
Γ∗

<a|Π,L,M
∥(γ⋆

a | Π, L,M,Γ∗
<a)− USb

∥tvd = E
Π,L,M,Γ∗

<a

∥(γ⋆
a | Π, L,M,Γ∗

<a)− USb
∥tvd

⩽ E
Π,L,M,Γ∗

<a,Σ∗,M<a

∥(γ⋆
a | Π, L,M,Σ∗,M<a)− USb

∥tvd

(by the above inequality)

= E
Π,L,M,Σ∗,M<a

∥(γ⋆
a | Π, L,M,Σ∗,M<a)− USb

∥tvd,

(again, since Σ∗,M<a and L together deterministically fix Γ∗
<a)

concluding the proof.
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The main distribution. For any choice of M<a and Σ∗,M<a , we define,

Distribution µ = µM<a,Σ∗,M<a
: Joint distribution of variables in Multi-HPH conditioned

on this particular choice of M<a and Σ∗,M<a .

For simplicity of notation, and to avoid clutter, we denote the variables in this distribution,
for i ∈ [k] and j ∈ [t] as follows:

L := (ℓ1, . . . , ℓk) (the same input L of the referee as before)

Ri := [r]− {M1,i, . . . ,Ma−1,i} (the set of vertices in layer i not matched by M<a)

Ma := e := (v1, . . . , vk) (the hyperedge e = Ma with vertex vi chosen from Ri)

Σ̄(i) := Σ
(i)
∗,Ri

(the remaining input of player Q(i) not fixed by Σ∗,M<a)

Σ̄ := (Σ̄(1), . . . , Σ̄(k)) (the remaining input of all players Q(1), . . . , Q(k))

γ⋆ := γ⋆a := σ̄
(1)
ℓ1,v1
◦ · · · ◦ σ̄(k)

ℓk,vk
(the permutation in Sb we are interested in)

Π̄ := (Π̄1, . . . , Π̄k). (the messages of players conditioned on M<a and Σ∗,M<a)

We list several useful properties of this distribution in the following claim.

Claim 5.3. For any choice of M<a,Σ∗,M<a, let µ := µM<a,Σ∗,M<a
. We have,

(i) µ(L) is uniform over [t]k;

(ii) Ri is |Ri| = r− (a− 1) ⩾ r/2 and we can use ra := r− (a− 1) to denote the size of every Ri;

(iii) µ(e = (v1, . . . , vk)) picks each vi ∈ Ri independently and uniformly at random;

(iv) µ(Σ̄) is uniform distribution over its support (Sb)
[t]×R1 × · · · × (Sb)

[t]×Rk ;

(v) We have the following independence properties:

µ(Σ̄, Π̄, L, e) = µ(Σ̄, Π̄)×
k∏

i=1

µ(ℓi)×
k∏

i=1

µ(vi).

Proof. In this proof, all random variables are with respect to the original distribution inMulti-HPH
unless explicitly indexed by µ.

Proof of Item (i). We have µ(L) = (L |M<a,Σ∗,M<a). In Multi-HPH, L is chosen independent
of M,Σ and is uniform over [t]k, thus µ(L) is also uniform over [t]k.

Proof of Item (ii). Each hyperedge in M<a uses one vertex in each layer of the graph, thus Ri

has a− 1 matched vertices by M<a and (r− (a− 1)) unmatched vertices. Moreover, since a ⩽ r/2,
we get that ra = (r − (a− 1)) ⩾ r/2 as well.

Proof of Item (iii). We have µ(e) = (Ma | M<a,Σ∗,M<a). In Multi-HPH, Ma is chosen
independent of Σ and is uniform over all hyperedges of the k-layered graph on [r]k that are not
matched by M<a. Given number of unmatched vertices in each layer is exactly r − (a− 1) by the
previous part, such a hyperedge can be chosen by picking one vertex uniformly at random from
unmatched vertices of each level, i.e., from Ri in layer i.
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Proof of Item (iv). We have µ(Σ̄) = (Σ |M<a,Σ∗,M<a). In Multi-HPH, every permutation in
Sb of Σ is chosen independently of the rest (and independent of M). Thus, after conditioning on

Σ∗,M<a , remaining coordinates, i.e., matrices Σ
(i)
∗,Ri
∈ (Sb)

[t]×Ri for i ∈ [k], are chosen independently.

Proof of Item (v). By the chain rule,

(Π,Σ, L,Ma |M<a,Σ∗,M<a) = (Π,Σ |M<a,Σ∗,M<a)× (L,Ma | Π,Σ,M<a,Σ∗,M<a).

We prove that

(L,Ma ⊥ Π,Σ |M<a,Σ∗,M<a) ≡ I(L,Ma ;Π,Σ |M<a,Σ∗,M<a) = 0,

where the equivalence is by Fact A.1-(2). We have,

I(L,Ma ;Π,Σ |M<a,Σ∗,M<a) = I(L,Ma ;Σ |M<a,Σ∗,M<a) + I(L,Ma ;Π | Σ,M<a,Σ∗,M<a)
(by chain rule of mutual information in Fact A.1-(6))

= I(L,Ma ;Σ |M<a,Σ∗,M<a)
(as Π is fixed by Σ |M<a,Σ∗,M<a and thus the second term is zero by Fact A.1-(2))

= 0. (by Fact A.1-(2) as Σ is chosen independent of L,M)

This implies that for every choice of M<a,Σ∗,M<a ,

µ(Σ̄, Π̄, L, e) = (Π,Σ, L,Ma |M<a,Σ∗,M<a) = (Π,Σ |M<a,Σ∗,M<a)× (L,Ma |M<a,Σ∗,M<a)

= µ(Π̄, Σ̄)× µ(L, e) = µ(Π̄, Σ̄)× µ(L)× µ(e | L).

by the definition of variables (Σ̄, Π̄, L, e).

By Item (i), we have µ(L) =
∏k

i=1 µ(ℓi). We also have µ(e | L) = (Ma | L,M<a,Σ∗,M<a)
which is the same as µ(e) as Ma is chosen independent of L. Thus, by Item (iii), we also have
µ(e | L) = µ(e) =

∏k
i=1 µ(vi), concluding the proof.

We can now write the RHS of Claim 5.2 in terms of the distribution µ = µM<a,Σ∗,M<a
as follows:

RHS of Claim 5.2 = E
M<a,Σ∗,M<a

E
Π,L,M⩾a∼µ

∥µ(γ⋆
a | Π, L,M⩾a)− USb

∥tvd
(by the definition of µ as conditioning on M<a,Σ∗,M<a)

= E
M<a,Σ∗,M<a

E
Π,L,e∼µ

∥µ(γ⋆ | Π, L, e)− USb
∥tvd

(by Claim 5.3-Item (v), γ⋆ = γ⋆a is only a function of e = Ma among M⩾a)

= E
M<a,Σ∗,M<a

E
Π̄∼µ

E
L,e=(v1,...,vk)∼µ

∥µ(σ̄(1)
ℓ1,v1
◦ · · · ◦ σ̄(k)

ℓk,vk
| Π)− USb

∥tvd.

(by Claim 5.3-Item (v), Π̄ ⊥ L, e in µ and Σ̄ is only a function of Π̄ after fixing (ℓi, vi) for i ∈ [k])

By plugging in these bounds for the RHS of Claim 5.2 in Eq (9) and then in Eq (8), we get that

Pr (π succeeds) ⩽
1

2
+

r

2
· max
M<a,Σ∗,M<a

µ=µM<a,Σ
∗,M<a


 E
Π̄∼µ

E
ℓ1,...,ℓk
v1,...,vk

∼µ

∥µ(σ̄(1)
ℓ1,v1
◦ · · · ◦ σ̄(k)

ℓk,vk
| Π)− USb

∥tvd


 . (10)

This concludes the basic setup we have for proving the lower bound forMulti-HPH. The remaining
subsections prove an upper bound for the RHS of Eq (10), which is the heart of the proof.
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Conditioning Step: For the remainder of this section, we fix an arbitrary choice of M<a,Σ∗,M<a

and µ = µM<a,Σ∗,M<a
and all random variables are with respect to µ unless specified otherwise.

Problem 2. It is worth explicitly identifying the problem we need to solve when bounding the RHS
of Eq (10) for the distribution µ. The problem we are interested in is as follows:

(i) We have k players Q(1), . . . , Q(k) each getting a matrix Σ̄(i) ∈ (Sb)
t×ra, with each entry being

a permutation in Sb chosen uniformly at random and independently.

(ii) We also have a referee that picks k random and independently chosen entries of this ma-

trix, namely, (ℓi, vi) ∈ [t] × [ra] for i ∈ [k]. We refer to (σ̄
(1)
ℓ1,v1

, . . . , σ̄
(k)
ℓk,vk

) as the hidden

permutations of the players. We also define the target permutation γ⋆ as:

γ⋆ := σ̄
(1)
ℓ1,v1
◦ · · · ◦ σ̄(k)

ℓk,vk
.

We are interested in communication protocols for this problem that follow the same rules as the
ones for Multi-HPH, with the different goal of changing the distribution of the target permutation
from its original uniform distribution as much as possible.

5.2 Part Two: KL-Divergence of Individual Hidden Permutations

In this subsection, we prove that not many players are able to reveal much information about
their hidden permutation, measured as the KL-divergence of their hidden permutation conditioned
on the transcript from the uniform distributions. This is proven using a simple direct-product
style argument to show that not only each player is unable to reveal much about their hidden
permutation, but in fact this is true simultaneously for most players.

To continue, we need the following definition.

Definition 5.4. Set the parameter

θ :=

(
4s+ 4k · log (t · ra)

t · ra

)1/2

. (11)

(Notice that by the bound we have on s in Theorem 2, θ < 1/100).

For any i ∈ [k] and (ℓ, v) ∈ [t]× [ra], we say that a transcript Π̄ is informative for player
Q(i) on the index (ℓ, v) iff:

D(µ(σ̄
(i)
ℓ,v | Π̄) || USb

) > θ.

Moreover, for a transcript Π̄ and input L = (ℓ1, . . . , ℓk), e = (v1, . . . , vk) to the referee, we
define the set of informed indices as:

Info = Info(Π̄, L, e) :=
{
i ∈ [k] | Π is informative for player Q(i) on (ℓi, vi)

}
.

Informally, this definition captures which permutations the referee has a lot of information

about. Conditioned on any transcript and input indices to the referee, if the distribution of σ̄
(i)
ℓi,vi

differs from USb
by θ in KL-Divergence, the referee has a better chance of guessing σ̄

(i)
ℓi,vi

, which in
turn helps with reducing the uncertainty on the target permutation γ⋆.

The following lemma shows that size of Info cannot be too large with high probability.
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Lemma 5.5 (“Informed indices cannot be too many”).

Pr
(Π̄,L,e)

(
|Info(Π̄, L, e)| > k/2

)
⩽ 2 · (16 · θ)k/4.

Proof. The proof consists of two parts. The first part is to show that with high probability over the
choice of Π̄, the KL-divergence of Σ̄(i) conditioned on the transcript from its original distribution
for “most” indices i ∈ [k] is sufficiently “low”. The second part then shows that only a small
fraction of these low KL-divergence indices can become informative, which concludes the proof.

Part I: KL-divergence of Σ̄(i) is “low” for “most” i ∈ [k]. For any transcript Π̄, define:

L(Π̄) :=
{
i ∈ [k] | D(Σ̄(i) | Π̄ = Π̄ || Σ̄(i)) ⩽ 4s+ 4k · log (1/θ)

}
,

namely, the indices in [k] with low KL-divergence conditioned on Π̄ from their original distribution.
We are going to prove that L(Π̄) is going to be large quite likely.

Claim 5.6. PrΠ̄
(∣∣L(Π̄)

∣∣ ⩽ 3k/4
)
⩽ θk.

Proof. Let S be the set of all transcripts Π̄ such that,

D(Σ̄ | Π̄ = Π̄ || Σ̄) > s+ k · log (1/θ).

Note that since Π̄ is a deterministic function of Σ̄, by Fact A.6 (the moreover part), we have

D(Σ̄ | Π̄ = Π̄ || Σ̄) = log
( 1

Pr(Π̄ = Π̄)

)
.

Thus, for each Π̄ ∈ S, we have,

Pr
(
Π̄ = Π̄

)
⩽ 2−s−k·log (1/θ).

At the same time, since there are at most 2s choices for Π̄, by union bound, we have,

Pr
Π̄

(
Π̄ ∈ S

)
⩽
∑

Π̄∈S
Pr
(
Π̄ = Π̄

)
⩽ 2s · 2−s−k·log (1/θ) = θk.

In the following, we condition on Π̄ /∈ S which happens with probability 1− θk.

We now have,

s+ k · log (1/θ) ⩾ D(Σ̄ | Π̄ = Π̄ || Σ̄) (by the definition of Π̄ being not informative)

⩾

k∑

i=1

D(Σ̄(i) | Π̄ = Π̄ || Σ̄(i)).

(Σ̄ is a product distribution (by Claim 5.3-Item (iv)) so we can apply Fact A.5 (moreover part))

A simple Markov bound implies that at most one-fourth of the indices can have KL-divergence
more than 4s+ 4k · log (1/θ). Thus, for any Π̄ /∈ S, L(Π̄) is of size at least 3k/4. The bound of θk

above on the probability of Π̄ being in S concludes the proof.

In the following, we fix any choice of Π̄ with L(Π̄) having size at least 3k/4, which by Claim 5.6
happens with probability at least 1− θk.
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Part II: “Few” indices in L(Π̄) can be informative. We bound the size of informative indices
in L(Π̄) as follows.

Claim 5.7. Pr(L,e)|Π̄
(
⩾ k/4 indices in L(Π̄) are informative

)
⩽ (16θ)k/4.

Proof. For any i ∈ L(Π̄),

D(Σ̄(i) | Π̄ = Π̄ || Σ̄(i)) ⩾
t∑

ℓ=1

∑

v∈Ri

D(σ̄
(i)
ℓ,v | Π̄ = Π̄ || σ̄(i)

ℓ,v).

(Σ̄ is a product distribution (by Claim 5.3-Item (iv)) so we can apply Fact A.5 (moreover part))

Thus, by the KL-divergence bound of the previous part for indices i ∈ L(Π̄),

E
(ℓi,vi)|Π̄

D(σ̄
(i)
ℓi,vi
| Π̄ = Π̄ || σ̄(i)

ℓi,vi
) ⩽

4s+ 4k · log (1/θ)
t · ra

⩽
4s+ 4k · log (tra)

t · ra
= θ2,

where the first inequality is because (ℓ, v) | Π̄ is uniformly distributed over [t]×Ri (by Claim 5.3-
Item (v)), and the second inequality and subsequent equality hold by the choice of θ.

We can now apply Markov bound and obtain that for every i ∈ L(Π̄),

Pr
(ℓi,vi)|Π̄

(
D(σ̄

(i)
ℓi,vi
| Π̄ = Π̄ || σ̄(i)

ℓi,vi
) > θ

)
⩽ θ.

Since σ̄
(i)
ℓi,vi

is distributed as USb
(by Claim 5.3-Item (iv)), this implies that for every i ∈ L(Π̄),

Pr
(ℓi,vi)|Π̄

(
i is informative

)
⩽ θ.

In addition, since the choice of (ℓi, vi) | Π̄ for all i ∈ L(Π̄) (generally in [k]) are independent of each
other (by Claim 5.3-Item (v)), we have that,

Pr
(L,e)|Π̄

(
⩾ k/4 indices in L(Π̄) are informative

)
⩽

∑

S⊆L(Π̄)
|S|=k/4

∏

i∈S
Pr

(ℓi,vi)|Π̄

(
i is informative

)

⩽ 2k · θk/4 = (16θ)k/4.

Conclusion. We can now conclude the proof of Lemma 5.5. By Claim 5.6, with probability 1−θk
over the choice of Π̄, at least 3k/4 indices are in L(Π̄) (and so we can have at most k/4 informative
indices outside L(Π̄)). For any Π̄ with

∣∣L(Π̄)
∣∣ ⩾ 3k/4, by Claim 5.7, at most k/4 indices i ∈ L(Π̄)

can be informative for (Π̄, L, e). Thus, by union bound,

Pr
(Π̄,L,e)

(
|Info(Π̄, L, e)| > k/2

)
⩽ θk + (16 · θ)k/4 ⩽ 2 · (16 · θ)k/4.

This finalizes the proof of Lemma 5.5.

Conditioning Step: For the rest of the proof, we condition on any choice of (Π̄, L, e) such that

Info := Info(Π̄, L, e) ⩽ k/2, (12)

and we know that by Lemma 5.5, this event happens with high probability.
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5.3 Part Three: Total Variation Distance of the Target Permutation

At this point of the argument, we have already fixed the choice of (Π̄, L, e) which, by Eq (12), gives

us that for many indices i ∈ [k], the distribution of the hidden permutation σ̄
(i)
ℓi,vi

is close to uniform
in the KL-divergence. Recall that the target distribution γ⋆ is

γ⋆ = σ̄
(1)
ℓ1,v1
◦ · · · ◦ σ̄(k)

ℓk,vk
.

Our goal is to show that this concatenation is going to make the distribution of γ⋆ exponentially
closer to uniform (albeit in another measure of distance, not KL-divergence). This is proven in the
following three steps:

• Step I:We first prove that even conditioned on (Π̄, L, e), the distribution of hidden permutations
are independent of each other. This is an application of the rectangle property of protocols.

• Step II: We then show that for many (but not all) of the hidden permutations, the KL-
divergence bounds can be translated to bounds on the ℓ2-distance of the distribution from
uniform. A crucial tool we use here is an strengthened Pinsker’s inequality, due to [CK18], that
bounds a mixture of ℓ1- and ℓ2-distance between distributions via KL-divergence. The main
part of the argument here is to handle the ℓ1-distance bounds, and postpone the ℓ2-distances to
the next step.

• Step III: Finally, we use the Fourier analytic tools of Appendix B combined with the ℓ2-distance
bounds of the previous step, to bound the ℓ2-distance of the distribution of γ⋆ from uniform,
and get the desired bound on the total variation distance as well.

5.3.1 Step I: Conditional Independence of Inputs Even After Communication

We prove that players’ inputs remain independent even conditioned on the messages and input
of the referee. The proof is a standard application of the rectangle property of communication
protocols extended to the multi-party setting and two specific parts in the inputs. But, despite its
simplicity, this lemma plays a crucial rule in our arguments in the last step.

Lemma 5.8. For any transcript Π̄ and input L = (ℓ1, . . . , ℓk), e = (v1, . . . , vk) to the referee in µ,

µ(σ̄
(1)
ℓ1,v1

, . . . , σ̄
(k)
ℓk,vk

| Π̄, L, e) =

k∏

i=1

µ(σ̄
(i)
ℓi,vi
| Π̄);

Proof. By the chain rule of probabilities,

µ(σ̄
(1)
ℓ1,v1

, . . . , σ̄
(k)
ℓk,vk

| Π̄, L, e) =
k∏

i=1

µ(σ̄
(i)
ℓi,vi
| Π̄, σ̄

(<i)
L<i,e<i

, L, e) =

k∏

i=1

µ(σ̄
(i)
ℓi,vi
| Π̄, σ̄

(<i)
L<i,e<i

),

where the final equality is by Claim 5.3-Item (v) because (L, e) are independent of (Σ̄, Π̄). Thus,
to prove the lemma, we only need to prove that for every i ∈ [k],

(
σ̄
(i)
ℓi,vi
⊥ σ̄

(<i)
L<i,e<i

| Π̄
)
≡ I(σ̄

(i)
ℓi,vi

; σ̄
(<i)
L<i,e<i

| Π̄) = 0,

where the equivalence is by Fact A.1-(2).
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We have,

I(σ̄
(i)
ℓi,vi

; σ̄
(<i)
L<i,e<i

| Π̄) ⩽ I(Σ̄(i) ; Σ̄(−i) | Π̄)

by the data processing inequality (Fact A.1-(7)), as Σ̄(i) fixes σ̄
(i)
ℓi,vi

and Σ̄(−i) fixes σ̄
(<i)
L<i,e<i

; notice

that here (L, e) are fixed and we are looking at specific indices of σ̄
(i)
ℓi,vi

of Σ̄(i) and σ̄
(<i)
L<i,e<i

of Σ̄(−i),
and as such we can indeed apply the data processing inequality.

With a slight abuse of notation, we denote Π̄ = Π̄(1), . . . , Π̄(s) where for all j ∈ [s], Π̄(j) denotes
the j-th bit communicated by the players. We claim that for every j ∈ [s],

I(Σ̄(i) ; Σ̄(−i) | Π̄(1), . . . , Π̄(j)) ⩽ I(Σ̄(i) ; Σ̄(−i) | Π̄(1), . . . , Π̄(j − 1));

This is because:

• if the j-th bit of the protocol is sent by player Q(i), then it is a deterministic function of Σ̄(i)

and Π̄(1), . . . , Π̄(j − 1) and thus

Π̄(j) ⊥ Σ̄(−i) | Σ̄(i), Π̄(1), . . . , Π̄(j − 1);

hence, the inequality holds by Proposition A.3.

• if the j-th bit of the protocol is sent by any player other than Q(i), then it is a deterministic
function of Σ̄(−i) and Π̄(1), . . . , Π̄(j − 1) and thus

Π̄(j) ⊥ Σ̄(i) | Σ̄(−i), Π̄(1), . . . , Π̄(j − 1);

hence, again, the inequality holds by Proposition A.3.

Applying this inequality repeatedly then gives us

I(Σ̄(i) ; Σ̄(−i) | Π̄(1), . . . , Π̄(j)) ⩽ I(Σ̄(i) ; Σ̄(−i)) = 0,

where the second equality holds by Fact A.1-(2) because of the independence of the parameters (as
shown in Claim 5.3-Item (iv)). This concludes the proof of the lemma.

5.3.2 Step II: From KL-Divergence to “Strong” ℓ2-Bounds

Recall that we already fixed a choice of (Π̄, L, e) that guarantees Info = Info(Π̄, L, e) has size at
most k/2 by Eq (12). We further define the following two sets for every i ∈ [k]:

Ai :=
{
σ ∈ Sb | µ(σ̄(i)

ℓi,vi
= σ | Π̄) > 2/b!

}
;

Bi := Sb \Ai.

In words, Ai is the set of those permutations in Sb whose probability mass under σ̄
(i)
ℓi,vi
| Π̄ is “much

higher” than that of uniform distribution (more precisely, more than twice), and Bi collects the
remaining permutations. We also define two events:

• Event EA(i): the sampled input σ̄
(i)
ℓi,vi

belongs to Ai;

• Event EB(i): the sampled input σ̄
(i)
ℓi,vi

belongs to Bi.
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Note that these two events are complement of each other and only depend on the choice of σ̄
(i)
ℓi,vi

at this point. Finally, we define the set of good indices i ∈ [k] as:

Good := {i ∈ [k] | i is not in Info and EB(i) happens} .

The reason we consider indices in Good as “good” is because we can translate our KL-divergence

bound on σ̄
(i)
ℓi,vi

for i ∈ Good (even conditioned on them being in good) into a “strong” bound on
their ℓ2-distance from the uniform distribution (this is formalized in Lemma 5.10).

We start by showing that EB happens frequently for indices not in Info.

Claim 5.9. For any i /∈ Info:
Pr
(
EB(i) | Π̄

)
⩾ 1−

√
8θ.

Proof. By the definition of i not being in Info and by Pinsker’s inequality of Fact A.12, we have,

∥µ(σ̄(i)
ℓi,vi
| Π̄)− USb

∥tvd ⩽
√

1

2
· D(µ(σ̄(i)

ℓi,vi
| Π̄) || USb

) ⩽

√
θ

2
.

On the other hand,

∥µ(σ̄(i)
ℓi,vi
| Π̄)− USb

∥tvd ⩾
1

2
·
∑

σ∈Ai

∣∣∣∣µ(σ̄
(i)
ℓi,vi

= σ | Π̄)− 1

b!

∣∣∣∣

⩾
1

4
·
∑

σ∈Ai

µ(σ̄
(i)
ℓi,vi

= σ | Π̄),

by the definition of Ai (note that all permutations in Ai have a probability of at least 2/b! in
our distribution, higher than compared to the uniform distribution). Combining the above two
equations gives us:

Pr
(
EA(i) | Π̄

)
=
∑

σ∈Ai

µ(σ̄
(i)
ℓi,vi

= σ | Π̄) ⩽
√
8θ.

As EB(i) is the complement of EA(i), we can conclude the proof.

A simple corollary of Claim 5.9 is the following (probabilistic) lower bound on the size of Good:

Pr (|Good| < k/4) ⩽

(
k/2

k/4

)
· (8θ)k/8 ⩽ (128θ)k/8; (13)

here, we used the fact that for Good to be of size less than k/4, at least k/4 indices from the
first k/2 indices of Info should have EA happen for them; we then used Claim 5.9 to bound this
probability and combined it with Lemma 5.8 to crucially use the independence of the events EA(i)
for different values of i ∈ [k] (the second inequality is by just upper bounding

(k/2
k/4

)
by 2k/2 = 16k/8).

The following lemma now establishes why the indices in Good are “good” for our purpose: on

these indices, the distribution of σ̄
(i)
ℓi,vi

is “quite” close to uniform in ℓ2-distance, much closer than

a θ2-bound that follows from directly applying Pinsker’s inequality to the KL-divergence bound
of indices not in Info; we prove this using the ℓ2/ℓ1-version of Pinsker’s inequality due to [CK18]
mentioned in Proposition A.13.
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Lemma 5.10. For any i ∈ Good:

∥µ(σ̄(i)
ℓi,vi
| Π̄, i ∈ Good)− USb

∥22 ⩽
20
√
θ

b!
.

Proof. Firstly, consider an index i /∈ Info (but we still do not condition on i being in Good or
not). By the definition of Info, we have,

D(µ(σ̄
(i)
ℓi,vi
| Π̄) || USb

) ⩽ θ.

By applying Proposition A.13 to this KL-divergence bound (taking A = Ai and B = Bi in the
proposition), we get

∑

σ∈Ai

∣∣∣∣µ(σ̄
(i)
ℓi,vi

= σ | Π̄)− 1

b!

∣∣∣∣+
∑

σ∈Bi

(
µ(σ̄

(i)
ℓi,vi

= σ | Π̄)− 1

b!

)2

µ(σ̄
(i)
ℓi,vi

= σ | Π̄)
⩽

1

1− ln 2
· θ ⩽ 4θ.

By just taking the second term, and since for all σ ∈ Bi, µ(σ̄
(i)
ℓi,vi

= σ | Π̄) ⩽ 2/b!, we get that

∑

σ∈Bi

(
µ(σ̄

(i)
ℓi,vi

= σ | Π̄)− 1

b!

)2

⩽
8θ

b!
. (14)

We now consider the effect of conditioning on i ∈ Good as well. Define δi ∈ R such that

(1 + δi) := µ(i ∈ Good | Π̄)−1 =
(
µ(EB(i) | Π̄)

)−1
,

which by Claim 5.9 and because θ < 1/100 (see Definition 5.4), leads to

δi ⩽
√
18 · θ. (15)

This gives us, for every σ ∈ Bi,

µ(σ̄
(i)
ℓi,vi

= σ | Π̄, i ∈ Good) =
µ(σ̄

(i)
ℓi,vi

= σ ∧ i ∈ Good | Π̄)
µ(i ∈ Good | Π̄) = (1 + δi) · µ(σ̄(i)

ℓi,vi
= σ | Π̄), (16)

where in the last equality, we used the fact that for σ ∈ Bi, σ̄
(i)
ℓi,vi

= σ also implies i ∈ Good (as
EB(i) happens). We can now calculate the ℓ2-distance of our desired distribution from USb

. For
the simplicity of exposition in the following calculations, we denote,

ν(σ) := µ(σ̄
(i)
ℓi,vi

= σ | Π̄).

We have,

∥µ(σ̄(i)
ℓi,vi

= σ | Π̄, i ∈ Good)− USb
∥22

=
∑

σ∈Bi

(
µ(σ̄

(i)
ℓi,vi

= σ | Π̄, i ∈ Good)− 1

b!

)2

(conditioning on i ∈ Good, implies that only σ ∈ Bi have non-zero probability)

=
∑

σ∈Bi

(
(1 + δi) · ν(σ)−

1

b!

)2

(by Eq (16) and the definition of ν(σ) above)
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=
∑

σ∈Bi

((
ν(σ)− 1

b!

)2

+ δi
2 · ν(σ)2 + 2δi · ν(σ) · (ν(σ)−

1

b!
))

)

⩽
∑

σ∈Bi

((
ν(σ)− 1

b!

)2

+ δi
2 · ν(σ)2 + 2δi · ν(σ) ·

1

b!

)
(as ν(σ) ⩽ 2/b! since σ ∈ Bi)

⩽


∑

σ∈Bi

(
ν(σ)− 1

b!

)2

+

4δi
2

b!
+

4δi
b!

(by the bound of ν(σ) ⩽ 2/b! for σ ∈ Bi, and |Bi| ⩽ b!)

⩽
8θ + 72θ +

√
288 · θ

b!
(by Eq (14) for the first term and Eq (15) for δi-terms)

⩽
20
√
θ

b!
, (as θ < 1/100)

concluding the proof.

Conditioning Step: For the rest of the proof, we further condition on the choice of the set
Good such that

|Good| ⩾ k/4, (17)

and we know that by Eq (13), this event happens with high probability. We then condition on the

entire choice of σ̄
(i)
ℓi,vi
∈ Sb for any i /∈ Good. At this point, the only remaining variables which are

not fixed are σ̄
(i)
ℓi,vi

for i ∈ Good, which are still chosen independently by Lemma 5.8 (although we
have conditioned on i ∈ Good, which influences their individual distribution).

5.3.3 Step III: Amplified ℓ2-Distance for the Target Permutation

We now go over the last step of our proof by analyzing the distribution of the target permutation

γ⋆ = σ̄
(1)
ℓ1,v1
◦ · · · ◦ σ(k)

ℓk,vk
;

in particular, we show that the distribution of γ⋆ is exponentially closer to the uniform distribution
compared to the bounds of Lemma 5.10 as a result of concatenation (namely, that independent
concatenation reduces the “bias”).

To continue, we need some notation. Let g := |Good| and i1, . . . , ig be indices in Good sorted

in increasing order. Define the following g permutations for j ∈ [g] as concatenation of each σ̄
(ij)
ℓij ,vij

with all subsequent permutations which are not in Good until we hit the index ij+1; formally,

σ̃j := σ̄
(ij)
ℓij ,vij

◦ σ̄
(ij+1)
ℓij+1,vij+1

. . . ◦ σ̄
(ij+1−1)
ℓij+1−1,vij+1−1

;

Notice that the distribution of each σ̃j is the same as that of σ̄
(ij)
ℓij ,vij

| Π̄, ij ∈ Good except for a

fixed “shift” (by the fixed permutations indexed between ij , ij+1 ∈ Good). Moreover, define

γ̃ := σ̃1 ◦ . . . ◦ σ̃g;
the distribution of γ̃ is now the same as that of the target permutation γ⋆ | Π̄, ij ∈ Good, again,
except for a fixed shift (by the fixed permutations before i1 ∈ Good). Thus, for j ∈ [g], we have,

∥µ(σ̃j)− USb
∥22 = ∥µ(σ̄(ij)

ℓij ,vij
| Π̄, ij ∈ Good)− USb

∥22 ⩽
20
√
θ

b!
;

∥µ(γ̃)− USb
∥22 = ∥µ(γ⋆ | Π̄,Good)− USb

∥22;
µ(σ̃1, . . . , σ̃g) = µ(σ̃1)× · · · × µ(σ̃g).

(18)
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here, the first inequality of the first equation is by Lemma 5.10 and equality of the last equation is
by Lemma 5.8.

We can now prove the following lemma on the distance of γ̃ from the uniform distribution, using
a basic application of the Fourier analysis on permutations reviewed in Appendix B.

Lemma 5.11 (“Concatenation reduces ℓ2-distances”).

∥µ(γ̃)− USb
∥22 ⩽

(20
√
θ)

g

b!

Proof. Recall the definition of the Fourier transform and the set of irreducible representations for
Sb from Appendix B. For the simplicity of exposition in this proof, we denote,

νj := µ(σ̃j) for every j ∈ [g], and ν := µ(γ̃) = ν1 ◦ · · · ◦ νg.

For the distribution µ, by Plancherel’s identity of Proposition B.5,

∥ν − USb
∥22 =

∑

σ∈Sb

(
ν(σ)− 1

b!

)2

(by the definition of the ℓ2-norm)

=
1

b!
·

∑

ρ∈RepBasis

dρ
∑

i,j∈[dρ]

(
ρ̂(ν)− ρ̂(USb

)
)2
i,j

(by Proposition B.5)

=
1

b!
·


dρ0

(
ρ̂0(ν)− ̂ρ0(USb

)
)2

+
∑

ρ ̸=ρ0

dρ
∑

i,j∈[dρ]

(
ρ̂(ν)− ρ̂(USb

)
)2
i,j




(by splitting the outer sum over ρ0 and remaining representations in RepBasis)

=
1

b!
·


∑

ρ ̸=ρ0

dρ
∑

i,j∈[dρ]
ρ̂(ν)

2

i,j




(as ρ̂0(ν) = ρ̂(USb
) = 1, and ρ̂(USb

) = 0 ∈ Rdρ×dρ for ρ ̸= ρ0 by Fact B.3)

=
1

b!
·
∑

ρ ̸=ρ0

dρ · ∥ρ̂(ν)∥2F , (19)

where ∥ · ∥F denotes the Frobenius norm of the matrix ρ̂(ν) ∈ Rdρ×dρ . Doing the same exact
calculation for each νj for j ∈ [g], we also get,

∑

ρ ̸=ρ0

dρ · ∥ρ̂(νj)∥2F = b! · ∥νj − USb
∥22 ⩽ 20

√
θ, (20)

where the inequality is by Eq (18).

Finally, note that for every ρ ∈ RepBasis, by Fact B.4 (the convolution theorem),

ρ̂(ν) =

g∏

j=1

ρ̂(νj).

Combining all these, we now have,

∥ν − USb
∥22 =

1

b!
·
∑

ρ ̸=ρ0

dρ · ∥ρ̂(ν)∥2F (by Eq (19))
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=
1

b!
·
∑

ρ ̸=ρ0

dρ · ∥
g∏

j=1

ρ̂(νj)∥2F (by the application of Fact B.4 right above)

⩽
1

b!
·
∑

ρ ̸=ρ0

dρ ·
g∏

j=1

∥ρ̂(νj)∥2F (as Frobenius norm is sub-multiplicative)

⩽
1

b!
·
∑

ρ ̸=ρ0

g∏

j=1

dρ · ∥ρ̂(νj)∥2F (as dρ ⩾ 1)

⩽
1

b!
·

g∏

j=1

∑

ρ ̸=ρt

dρ · ∥ρ̂(νj)∥2F (as dρ, ∥ρ̂(νj)∥2F ⩾ 0 for each ρ ∈ RepBasis and j ∈ [g])

⩽
1

b!
·

g∏

j=1

(20
√
θ) (by Eq (20))

=
(20
√
θ)g

b!
,

concluding the proof.

It is worth mentioning that the calculations we have in Lemma 5.11 are tight (see Appendix C
for an example and more discussion).

Plugging back the original variables we had in Eq (18) inside Lemma 5.11, and using the bound
of Eq (17) on the size of Good, we obtain that

∥µ(γ⋆ | Π̄,Good)− USb
∥22 ⩽

1

b!
· (20
√
θ)k/4,

which in turn, by the ℓ1-ℓ2 gap, gives us

∥µ(γ⋆ | Π̄,Good)− USb
∥tvd ⩽ ∥µ(γ⋆ | Π̄,Good)− USb

∥1
(by the definition of total variation distance in Eq (30))

⩽
√
b! · ∥µ(γ⋆ | Π̄,Good)− USb

∥2
(as ∥x∥1 ⩽

√
m · ∥x∥2 for any x ∈ Rm)

⩽ (20
√
θ)k/8. (21)

We have thus finally bounded the TVD of the target permutation from the uniform distribution
(under conditioning on several high probability events), and are now done with the proof.

5.4 Putting Everything Together: Proof of Theorem 2

We are now ready to conclude the proof of Theorem 2 by simply retracing back all the steps of the
proof and accounting for the probability of several events we conditioned on. The rest of this proof
is basically bookkeeping and some tedious calculations.

Recall that π is any deterministic protocol for Multi-HPH that uses s bits of communication
in total. The proof consisted of the following:

• In Eq (10), we proved that,

Pr (π succeeds) ⩽
1

2
+

r

2
· max
M<a,Σ∗,M<a

µ=µM<a,Σ
∗,M<a


 E
Π̄∼µ

E
ℓ1,...,ℓk
v1,...,vk

∼µ

∥µ(σ̄(1)
ℓ1,v1
◦ · · · ◦ σ̄(k)

ℓk,vk
| Π)− USb

∥tvd


 .
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We then fixed any choice of M<a,Σ∗,M<a and µ = µM<a,Σ∗,M<a
for the rest of the proof.

• In Eq (12), we fixed any choice of (Π̄, L, e) that guarantees

Info := Info(Π̄, L, e) ⩽ k/2.

By Lemma 5.5, the probability of (Π̄, L, e) ∼ µ not satisfying this is at most 2 · (64θ)k/4.

• In Eq (17), we fixed any choice of Good that guarantees

|Good| ⩾ k/4.

By Eq (13), the probability that Good does not satisfy this guarantee is at most (128θ)k/8.

• In Eq (21), we proved that for this choice of (Π̄, L, e) and conditioned on the choice of Good,

∥µ(σ̄(1)
ℓ1,v1
◦ · · · ◦ σ̄(k)

ℓk,vk
| Π̄,Good)− USb

∥tvd ⩽ (20
√
θ)k/8 ⩽ 2 · θk/16.

Let us now retrace back.

• For any M<a,Σ∗,M<a , µ = µM<a,Σ∗,M<a
, and (Π̄, L, e) satisfying Info(Π̄, L, e) ⩽ k/2, we have,

∥µ(σ̄(1)
ℓ1,v1
◦ · · · ◦ σ̄(k)

ℓk,vk
| Π̄)− USb

∥tvd
⩽ Pr (|Good| < k/4) + E

Good∼µ|
|Good|⩾k/4

∥µ(σ̄(1)
ℓ1,v1
◦ · · · ◦ σ̄(k)

ℓk,vk
| Π̄,Good)− USb

∥tvd

(by Fact A.10 and since ∥ · ∥tvd ⩽ 1)

⩽ (128θ)k/8 + 2 · θk/16

• This in turn implies that for any M<a,Σ∗,M<a , µ = µM<a,Σ∗,M<a
,

E
Π̄,L,e∼µ

∥µ(σ̄(1)
ℓ1,v1
◦ · · · ◦ σ̄(k)

ℓk,vk
| Π)− USb

∥tvd

⩽ Pr
µ

(∣∣Info(Π̄, L, e)
∣∣ > k/2

)
+ E

(Π̄,L,e)∼µ|
|inf(Π̄,L,e|⩽k/2

∥µ(σ̄(1)
ℓ1,v1
◦ · · · ◦ σ̄(k)

ℓk,vk
| Π̄)− USb

∥tvd

⩽ 2 · (64θ)k/4 + (128θ)k/8 + 2 · θk/16.

• Finally, we can plug in this bound in Eq (10) and have,

Pr (π succeeds) ⩽
1

2
+

r

2
· max

M<a,Σ∗,M<a
µ=µM<a,Σ

∗,M<a

E
Π̄,L,e∼µ

∥µ(σ̄(1)
ℓ1,v1
◦ · · · ◦ σ̄(k)

ℓk,vk
| Π)− USb

∥tvd

⩽
1

2
+ r ·O(θ)k/16

⩽
1

2
+ r ·O

(
8s+ 8k · log (t · r)

t · r

)k/32

(by the definition of θ in Definition 5.4 and since ra ⩾ r/2 by Claim 5.3-Item (ii))

⩽
1

2
+ r ·O

( s

r · t
)k/32

. (by the lower bound on the size of s in Theorem 2)

This concludes the proof for all deterministic protocols π on the distribution induced byMulti-HPH.
The lower bound directly extends to randomized protocols by the easy direction of Yao’s minimax
principle (namely, an averaging argument over the randomness of the protocol on the input distri-
bution). This concludes the proof of Theorem 2.
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6 One Pass Permutation Hiding

In this section, we will construct permutation hiding graphs for 1-pass streaming algorithms. We
repeat the key definitions here (Definition 2.1 and Definition 2.2) for the convenience of the reader.

Definition (Permutation Graph). For any integer m ⩾ 1, a layered graph G = (V,E) is said
to be a permutation graph for σ ∈ Sm if |First(G)| , |Last(G)| ⩾ m and there is a path
from i ∈ First[m](G) to j ∈ Last[m](G) if and only if σ(i) = j for each i, j ∈ [m].

Definition (Permutation Hiding Graphs; c.f. [CKP+21]). For integers m,n, p, s ⩾ 1 and real
δ ∈ (0, 1), we define a permutation hiding generator G = G(m,n, p, s, δ) as any family of
distributions G : Sm → Dm on permutation graphs satisfying the following two properties:

(i) For any σ ∈ Sm, any permutation graph G in the support of G(σ) has n vertices.

(ii) For any σ1, σ2 ∈ Sm, the distribution of graphs G(σ1) and G(σ2) are δ-indistinguishable
for any p-pass s-space streaming algorithm.

We need some further definitions also. Given two layered graphs G1 = (V1, E1) and G2 =
(V2, E2), we define their concatenation, G1 ◦ G2 = (V1 ∪ V2, E) as follows. Let ℓ1 = |Last(G2)|
and ℓ2 = |First(G1)|. The edge set E is made up of E1 ∪ E2 and the identity perfect matching
from the set Last(G2) to the set First[ℓ1](G1) if ℓ1 ⩽ ℓ2 and identity perfect matching from
Last[ℓ2](G2) to First(G1) if ℓ1 > ℓ2.

Concatenating permutation graphs gives us a graph for the concatenated permutation.

Claim 6.1. Given G1, G2 which are permutation graphs for σ1, σ2 ∈ Sm respectively, G1 ◦G2 is a
permutation graph for the permutation σ1 ◦ σ2 ∈ Sm.

Proof. For any vertex i ∈ First[m](G2), there is a path to σ2(i) ∈ Last[m](G2) by Definition 2.1.
There is an edge from σ2(i) ∈ Last[m](G2) to σ2(i) ∈ First[m](G1) by the addition of the identity
perfect matching. Again by Definition 2.1, there is a path from σ2(i) ∈ First[m](G1) to σ1(σ2(i)) ∈
Last[m](G1) for each i ∈ [m].

Thus, the path from i ∈ First[m](G1 ◦ G2) to σ1(σ2(i)) ∈ Last[m](G1 ◦ G2) exists for each
i ∈ [m], and no other path from any vertex in First[m](G1 ◦G2) to Last[m](G1 ◦G2) exists.

The main lemma of this section follows.

Lemma 6.2. There exists a permutation hiding generator G : Sm → Dm for 1-pass streaming
algorithms using space s = o(m1+β/2) such that

n ⩽ 2 · csort · 106 · (m/αβ2)

δ ⩽ 100 · csort · (1/β) ·m−5 · (αβ · β−1)50/β ,

where α, β are from Eq (6).

In the first subsection, we define the constructs required to describe our permutation hiding
graphs and in the next subsection we prove that our graphs can hide simple permutations. In
the final subsection, we extend our graphs to hide any general permutation from one pass semi-
streaming algorithms.
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6.1 Building Blocks for Permutation Hiding

In this section, we will define the constructs needed to describe our permutation hiding graphs.
The main parts are as follows.

• Group layered graphs, encoded RS graphs, and other helper structures: these are
simple permutation graphs needed for our main construction;

• Blocks: These are permutation graphs that “encode” a single permutation inside it;

• Multi-blocks: These are permutation graphs that hide the concatenation of several permu-
tations (via concatenation of several blocks).

Group layered graphs, encoded RS graphs, and other helper structures

The most basic permutation graph consisting of only two layers is defined first.

Definition 6.3 (Basic Permutation Graph). Given a permutation σ ∈ Sm, we define a graph
G = (L ∪ R,E) as a basic permutation graph of σ, denoted by Basic(σ) if |L| = |R| = m
and E = {(i, σ(i)) | i ∈ [m]}.

V 1 V 2

Figure 7: An illustration of Basic(σ) from Definition 6.3 with σ = (2, 3, 4, 1).

We need to define some more structure on layered graphs.

Definition 6.4 (Group-Layered Graph). For integers w, d, b ⩾ 1, we define a group-layered
graph as any directed acyclic graph G = (V,E) satisfying the following:

(i) Vertices of G are partitioned into d equal-size layers V 1, . . . , V d, each of size w · b. We
identify each layer with the pairs in [w]× [b].

(ii) For any layer i ∈ [d] and a ∈ [w], we define the group V i,a := {a} × [b].

(iii) Edges of G can be defined via some tuples (i, a1, a2, σ) ∈ [d]× [w]× [w]× Sb as follows:
We connect (a1, j) ∈ V i to (a2, σ(j)) ∈ V i+1 for all j ∈ [b].

We refer to w as the width of the layered graph, to d as its depth, and b as its group size.
We use Lw,d,b to denote the set of all layered graphs with width, depth, and group size, w, d,
and b, respectively. See Figure 8 for an illustration.
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σ1 σ2 σ3
V 1

V 2

Group 3Group 1 Group 2

(a) A (partially drawn) group layered graph
in L3,2,3 with 2 layers and each layer iden-
tified by [3] × [3] with edges identified by
(1, 1, 1, σ1), (1, 2, 3, σ2), (1, 3, 2, σ3).

V 1

V 2

σ

Group 1

Group 2Group 1

Group 2 Group 3

Group 3

(b) An explicit edge in L3,2,3 identified by
(1, 2, 3, σ2) with σ2 = (1, 3, 2).

Figure 8: An illustration of a group layered graph from Definition 6.4.

While performing concatenation on a group layered graph G ∈ Lw,d,b with any other graph G′,
we treat the vertices in First(G), indexed by [w]× [b], as being indexed by the set [w ·b] by directly
mapping any vertex (i, j) to (i− 1) · b+ j for i ∈ [w], j ∈ [b].

Group-layered graphs allow us to capture two main ideas: (i) Reachability between multiple
groups; and (ii) Permuting within each group. We formalize this in the following.

Consider any tuple (i, a1, a2, σid) ∈ [d] × [w] × [w] × Sb. The edges associated with this tuple
simply connect group V i,a1 to V i+1,a2 with the identity permutation. Such edges allow us to add
paths between the groups of a group-layered graph. We formalize this concept next.

Definition 6.5 (Group Permuting Graph). Given a permutation σ ∈ Sw and any integer
b ⩾ 1, we define the group permuting graph, denoted by Permute(σ, b) = (V,E) as the
group layered graph from Lw,2,b with the edges (1, i, σ(i), σid(b)) for each i ∈ [w] (see Figure 9).

V 1

V 2

Group 3Group 1 Group 2

Figure 9: A group permuting graph from Definition 6.5 with σ = (2, 1, 3) and b = 3.

The second main idea in group-layered graphs is to permute within the groups. Here, for any
edge tuple (i, a1, a2, σ), if a1, a2 are fixed, σ ∈ Sb allows us to permute within the groups. The
following definition is an instance of permuting within the groups.

Definition 6.6 (Encoded RS graph). Given an (r, t)-RS-graph Grs = (Lrs ∪ Rrs, Ers), and a
permutation matrix Σ ∈ (Sb)

t×r, the encoded RS graph, denoted by Encoded-RS(Grs,Σ) =
(V,E) is a group layered graph from Lnrs,2,b with the edges (1, left(j),right(j), σi,j) for edge
j ∈M rs

i , for each i ∈ [t], j ∈ [r] (see Figure 10).

Observe that if the RS-graph Grs is fixed, the tuple (left(j),right(j)) is fixed for edge j ∈M rs
i

for each i ∈ [t], j ∈ [r]. Based on these fixed tuples, we are permuting within the groups based on
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Lrs

Rrs

M rs
1

M rs
2

M rs
3

Lrs

Rrs

M rs
1

M rs
2 M rs

3

Group 1 Group 2 Group 3

Group 1

Group 1

Group 1

Group 2

Group 2Group 2 Group 3

Group 3

Group 3

Figure 10: An illustration of an encoded (r, t) RS-graph with r = 3, t = 3 from Definition 6.6 with
Σ ∈ (Sb)

3×3 and σ1,1 = (1, 2, 3), σ1,2 = (3, 2, 1), σ1,3 = (1, 3, 2) as blue edges; σ2,1 = (2, 1, 3), σ2,2 =
(1, 2, 3), σ2,3 = (3, 1, 2) as green edges; σ3,1 = (3, 1, 2), σ3,2 = (1, 2, 3), σ3,3 = (2, 1, 3) as red edges.

matrix Σ. We combine the two main ideas when we construct blocks. Before we proceed, we need
a few more definitions. The first is that of a permutation that agrees with a given matching.

Definition 6.7 (Match-Aligned Permutation). Given a matching M on G = (L ∪ R,E)
with |L| = |R| = m, σ ∈ Sm is said to be a match-aligned permutation, denoted by
Match-Perm(M) if it is the lexicographically first permutation with σ(u) = v for all (u, v) ∈ M .

In other words, we view any matching as a partial permutation where the edges in the matching
fix certain assignments of the permutation, and Definition 6.7 extends this to a complete permuta-
tion. We also need permutations that pick certain edges from a given RS-graph.

Definition 6.8 (Edge Picking Permutations). Given an (r, t)-RS-graph Grs = (Lrs ∪Rrs, Ers),
an index ℓ ∈ [t] for an induced matching M rs

ℓ in Grs and (r/2) edges E∗ = (e1, e2, . . . , er/2)
from matching M rs

ℓ , define matchings ML,MR on vertices L∪R with |L| = |R| = nrs obeying,

ML = {(i, left(ei)) | i ∈ [r/2]} and MR = {(right(ei), i) | i ∈ [r/2]} .

Then, edge picking permutations (see Figure 11), denoted by Edge-Pick(Grs, ℓ, E
∗) is

an ordered pair (σL, σR) ∈ Snrs × Snrs , where

σL = Match-Perm(ML) and σR = Match-Perm(MR).
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Lrs RrsσL σR

Figure 11: An illustration of edge picking permutations from Definition 6.8. The RS-graph from
Figure 10 is picked with ℓ = 2 and (bold) edges e1, e2 ∈ M rs

2 . The permutation σL and σR are
(1, 3, 2, 4, 5, 6) and (3, 4, 5, 1, 6, 2), respectively.

Blocks

A key gadget in our construction, called a block is built using the preceding definitions. It combines
the two main ideas from group layered graphs.

Definition 6.9 (Block). For any r, t, b ⩾ 1, given

• An (r, t) RS-graph Grs = (Lrs ∪Rrs, Ers) with Lrs = Rrs = [nrs] and t induced matchings
M rs

1 , . . .M rs
t ,

• A permutation matrix Σ ∈ (Sb)
t×r,

• An index ℓ ∈ [t] and (r/2) edge tuple E∗ = (e1, e2, . . . , er/2) with each edge belonging to
M rs

ℓ ,

let (σL, σR) ∈ Snrs×Snrs be Edge-Pick(Grs, ℓ, E
∗). We define a block (see Figure 12), denoted

by Block(Grs,Σ, ℓ, E
∗) as,

Permute(σR, b) ◦Encoded-RS(Grs,Σ) ◦Permute(σL, b).

Let us prove some useful properties of blocks.

Claim 6.10. The graph Block(Grs,Σ, ℓ, E
∗) is a layered graph in Lnrs,6,b.

Proof. The graphBlock(Grs,Σ, ℓ, E
∗) is made of concatenating three group layered graphs, Permute(σR, b),

Encoded-RS(Grs,Σ), and Permute(σL, b). As both σL, σR are permutations from Snrs , Permute(σL, b)
and Permute(σR, b) both belong to Lnrs,2,b. By Definition 6.6, as Encoded-RS(Grs,Σ) ∈ Lnrs,2,b,
the concatenation of all three graphs belongs to Lnrs,6,b.

Next, let us see how the edges in a block between various layers are determined by the inputs.

Claim 6.11. In any graph G = Block(Grs,Σ, ℓ, E
∗) with layers V 1, V 2, . . . , V 6 (see Claim 6.10),

(i) The edges between V 3 to V 4 are determined only by Grs and Σ.

44
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σL σR
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V 1 V 2

V 3
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V 5 V 6

G
rs

e3

Σ

Figure 12: An illustration of block from Definition 6.9 with r = 3, b = 3 showing the choosing of one
induced matching M rs

j∗ with edges e1 (green) and e2 (blue). The dashed light edge in Grs represents

an edge in another induced matching. The edges from V 1 to V 2 are from Permute(σL, b), the edges
from V 5 to V 6 are from Permute(σR, b). The edges from V 3 to V 4 are from Encoded-RS(Grs,Σ).

(ii) The edges from layers V 1 to V 2 and from V 5 to V 6 are fixed by Grs, ℓ and E∗.

(iii) The other edges from V 2 to V 3 and from V 4 to V 5 are fixed perfect matchings.

Proof. The edges from V 3 to V 4 are from Encoded-RS(Grs,Σ), and hence depend only on Grs

and Σ. The edges between V 1 to V 2 and from V 5 to V 6 are based on permutations σL and σR from
Definition 6.8, and depend only on Grs, ℓ and E∗. The other edges are added when concatenating
group-layered graphs, and as the layers have same size [nrs · b], they are perfect matchings.

Let Lex be an equipartition of the set [m] into m/b groups of size b each, partitioning the
elements lexicographically throughout this section. That is, for each i ∈ [m/b], the set Lexi =
{(i− 1)b+ a | a ∈ [b]} is a group in partition Lex. Recall from Definition 4.2 that a simple per-
mutation ρ ∈ Sm on partition Lex is such that for all a ∈ Lexi, ρ(a) ∈ Lexi. Given Σ, ℓ and
E∗ = (e1, e2, . . . , er/2) with r/2 = m/b edges from M rs

ℓ as the inputs from Definition 6.9 , let ρ be
the following simple permutation on partition Lex:

∀i ∈ [m/b], a ∈ [b], ρ((i− 1)b+ a) = (i− 1)b+ σℓ,ei(a). (22)

Claim 6.12. Block(Grs,Σ, ℓ, E
∗) is a permutation graph for ρ defined in Eq (22).

Proof. We know that each vertex (i, a) ∈ V 1 for i ∈ [m/b], a ∈ [b], also indexed by (i−1)b+a ∈ [m]
is connected to (σL(i), a) ∈ V 2 by the edge added from Permute(σL). By Definition 6.8, we
know that σL(i) = left(ei) for i ∈ [r/2] and edge ei ∈ M rs

ℓ . The vertex (left(ei), a) ∈ V 3 is
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connected to (right(ei), σℓ,ei(a)) ∈ V 4 by the edges from Encoded-RS(Grs,Σ). Lastly, the vertex
(right(ei), σℓ,ei(a)) ∈ V 5 is connected to (i, σℓ,ei(a)) ∈ V 6 based on permutation σR. The proof
is complete when we also look at the identity perfect matchings connecting layers V 2 to V 3 and
layers V 4 to V 5.

Multi-blocks

The next step is to combine multiple blocks to get a larger graph and to simulate the concatenation
of multiple simple permutations.

Definition 6.13 (Multi-Block). For any r, t, b, k ⩾ 1, given

• An (r, t) RS-graph Grs = (Lrs ∪Rrs, Ers) with Lrs = Rrs = [nrs] and t induced matchings
M rs

1 , . . .M rs
t ,

• A collection of k permutation matrices Σ = (Σ(1),Σ(2), . . . ,Σ(k)) ∈
(
(Sb)

t×r)k,

• A tuple L = (ℓ1, ℓ2, . . . , ℓk) ∈ [t]k and a hypermatching M on the k-layered hypergraph
[r]k of size r/2,

let E∗
i be (M1,i,M2,i, . . . ,Mr/2,i) be r/2 edges in M rs

ℓi
for i ∈ [k]. We define a multi-block

(see Figure 13), denoted by Multi-Block(Grs,Σ, L,M) as,

Block(Grs,Σ
(1), ℓ1, E

∗
1) ◦Block(Grs,Σ

(2), ℓ2, E
∗
2) ◦ . . . ◦Block(Grs,Σ

(k), ℓk, E
∗
k).

...

...
...

...
...

...

...
...

...

...

...

...

...

...

...

...
...

...
...

...

G
rs

G
rs

Σ(1)
Σ(2)

ℓ1 ℓ2

Figure 13: An illustration of multi-block from Definition 6.13 with 2 blocks. The blue path corre-
sponds to one specific edge in each induced matching, and the green corresponds to the other path.

We can extend the properties we proved about blocks to multi-blocks.

Claim 6.14. The graph Multi-Block(Grs,Σ, L,M) belongs to Lnrs,6k,b.
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Proof. Follows directly from Claim 6.10, and Definition 6.13, as we concatenate k blocks.

Claim 6.15. In any graph G = Multi-Block(Grs,Σ, L,M),

(i) For any i ∈ [k], the edges between layer V (i−1)6+3 to V (i−1)6+4 are determined only by Grs,Σ
(i).

(ii) The edges between V (i−1)6+1 to V (i−1)6+2 and between V (i−1)6+5 to V 6i for any i ∈ [k] are
determined by Grs, L,M .

(iii) All the other edges are fixed identity perfect matchings.

Proof. For any i ∈ [k], the edges between V (i−1)6+3 to V (i−1)6+4 come from edges between layer V 3

to V 4 of Block(Grs,Σ
(i), ℓi, E

∗
i ), and by Claim 6.11, are determined only by Grs,Σ

(i). The edges
between V (i−1)6+1 to V (i−1)6+2 and from V (i−1)6+5 to V 6i are determined by Grs, ℓi, E

∗
i for i ∈ [k],

again by Claim 6.11, and thus depend only on Grs, L,M . Finally, in the concatenations, we add
identity-perfect matchings between the layers.

For i ∈ [k], Σ(i), ℓi and E∗
i = (e1, e2, . . . , er/2) as in Definition 6.13 , let ρi ∈ Sm be the following

simple permutation on partition Lex:

∀j ∈ [m/b], a ∈ [b], ρi((j − 1)b+ a) = (j − 1)b+ σℓi,ej (a). (23)

Let γ⋆ ∈ Sm be another simple permutation on Lex defined as,

γ⋆ = ρ1 ◦ ρ2 ◦ . . . ◦ ρk. (24)

Lemma 6.16. Multi-Block(Grs,Σ, L,M) is a permutation graph of γ⋆.

Proof. By Claim 6.12, we know that Block(Grs,Σ
(i), ℓi, E

∗
i ) is a permutation graph for ρi ∈ Sm

for each i ∈ [k]. By Claim 6.1, Multi-Block(Grs,Σ, L,M) is a permutation graph for γ⋆.

This concludes our subsection for describing the building blocks and constructs needed for our
permutation hiding generators.

6.2 Simple Permutation Hiding in One Pass

In this section, we will construct permutation hiding generators for simple permutations. Let us
start by defining them.

Definition 6.17. For any integers n, p, s ⩾ 1, partition P of [m] into m/b ⩾ 1 blocks of size
b ⩾ 1, and error parameter δ ∈ [0, 1], a simple permutation hiding generator Gsim(n, p, s,P, δ)
is defined as a function Gsim from the set of all simple permutations under partition P to Dm

such that,

(i) For any ρ ∈ Sm which is simple under P, any G ∼ Gsim(ρ) is a permutation graph for ρ
with n vertices.

(ii) For any ρ1, ρ2 ∈ Sm, both simple under P, the two distributions Gsim(ρ1) and Gsim(ρ2)
are δ-indistinguishable for p-pass s-space streaming algorithms.

In this subsection, we will prove that such generators can be constructed for the partition Lex.
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Lemma 6.18. For any b ⩾ 2, there is a simple permutation hiding generator Gsim : Ssim
m → Dm

with respect to partition Lex for 1-pass streaming algorithms using space s = o(
(
m
b

)1+2β/3
) with

parameters n = (2 · 104 ·m/αβ) and δ = (2m/b)−6 · (αβ · β−1)50/β.

We will construct these generators using multi-blocks, and the inputs to the multi-blocks are
from instances of Multi-HPH. By Observation 4.4, it is sufficient to hide multiple smaller per-
mutations from Sb (m/b of them, to be exact) to hide any simple permutation. We will be talking

about one instance of Problem 1 in the construction, and we will use Σ ∈
(
(Sb)

t×r)k , L ∈ [t]k,

hypermatching M ⊂ [r]k and Γ∗,ΓYes,ΓNo,Γ ∈ (Sb)
r/2 to denote the variables in the instance. See

Figure 14 for an illustration of this construction.

Construction of Gsim(n, p, s, Lex, δ) : Ssim
m → Dm on input ρ ∈ Ssim:

(i) Fix an (r, t)-RS graph Grs with r = 2m/b = nrs/α and t = (nrs)β .

(ii) Instantiate k players and the referee in Multi-HPHr,t,b,k (Problem 1) with parameter
k = 1600/β such that the solution to the instance, Γ∗ ◦ Γ is vec(ρ).

(iii) Output Multi-Block(Grs,Σ, L,M) ◦Basic(join(Γ)).
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Γ

Σ(1)
Σ(2)

ℓ1 ℓ2

Figure 14: An illustration of a simple permutation hiding generator with k = 2. Compared
to Figure 13, the basic permutation graph of join(Γ) is added to the left.

Now let us show that our construction possesses the required properties. We begin by proving
that it is indeed a valid permutation graph for ρ with the required number of vertices.

Claim 6.19. For any ρ ∈ Ssim
m , the graph Gsim(ρ) is a permutation graph for ρ with n ⩽ 2·104·m/αβ.

Proof. We know that Multi-Block(Grs,Σ, L,M) is a permutation graph for join(Γ∗), where Γ∗

is defined as in Problem 1 by Lemma 6.16. By Claim 6.1, the output Gsim(ρ) is a permutation
graph for ρ, as join(Γ∗) ◦ join(Γ) = ρ by construction.
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The total number of vertices in Multi-Block(Grs,Σ, L,M) is 6k ·nrs · b by Claim 6.14. When
we concatenate with Basic(join(Γ)), we add 2m vertices, so the total number is 6k ·nrs · b+2m =
6 · 1600β · 2mbα · b+ 2m ⩽ 2 · 104 ·m/αβ.

Next, we will show that any 1-pass streaming algorithm can be run by the players ofMulti-HPH
and the referee on the graph Gsim(ρ).

Claim 6.20. For any ρ ∈ Ssim
m and given any 1-pass s-space streaming algorithm A using space

at most s, the players and the referee of Multi-HPH (Problem 1) can run A on Gsim(ρ) using at
most s bits of communication per player.

Proof. We know that the edges between layers V 6(i−1)+3 to V 6(i−1)+4 depend only on Σ(i) for i ∈ [k]
in Multi-Block(Grs,Σ, L,M) and all other edges are known to the referee, as they either depend
on L,M or are fixed by Claim 6.15. The players and the referee run A on G = Gsim(ρ) as follows.

(i) Player Q(1) runs A on the edges fixed by Σ(1) in G and writes the memory state on the board.

(ii) In increasing order of i ∈ [k] \ {1}, player Q(i) gets the memory state of A as written on the
board by player Q(i−1) and continues to run A on the edges based on Σ(i) in G. Player Q(i),
then writes the memory state back on the board.

(iii) The referee gets the state of A as written by Q(k), and adds all the other edges based on L,M
and Γ to get the final output.

Each player writes on the board exactly once, and the communication per player is s bits.

We will conclude this subsection by proving Lemma 6.18.

Proof of Lemma 6.18. The bound on the number of vertices follows readily from Claim 6.19. Let us
assume that there is a 1-pass s-space streaming algorithm A which distinguishes between Gsim(ρ1)
and Gsim(ρ2) for some ρ1, ρ2 ∈ Ssim

m with s = o((m/b)1+2β/3) and advantage δ more than (2m/b)−6.
We will argue that it can be used to solve an instance of Multi-HPH.

Create an instance of Multi-HPHr,t,b,k with ΓYes = vec(ρ1) and ΓNo = vec(ρ2). We know
from Claim 6.20 that the referee and players can run A using at most s = o((m/b)1+2β/3) =
o(r1+2β/3) bits of communication per player. The total number of bits is k·s = O(1/β)·o(r1+2β/3) =
o(rt), as t = (r/α)β . By Theorem 2, we know that the advantage the referee gains is at most

r ·O(
k · s
r · t )

k/32 = r · o
(
r1+2β/3 · αβ

r1+β · β

)50/β

= o(1/r6) · (αβ · β−1)50/β ,

which is a contradiction.

6.3 General Permutation Hiding in One Pass

In this subsection, we will hide any general permutation from 1-pass streaming algorithms by hiding
multiple simple permutations constructed in Lemma 6.18 and prove Lemma 6.2. We first discuss
how to divide any general ρ ∈ Sm into multiple simple permutations with sorting networks.

The simple permutations we hid in Lemma 6.18 were all under the fixed partition Lex. It is
easy to hide them even if they were under different partitions, as we will show.
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Lemma 6.21. Given any permutation ρ ∈ Sm which is simple under partition P with m/b groups
of size b, there is a simple permutation hiding generator for partition P with the same parameters
as in Lemma 6.18.

Proof. We permute the elements of [m] based on P so that the partition will be Lex. To do so,
let fi : Pi → [b] be the lexicographic bijective mapping from group Pi to [b] for i ∈ [m/b], and let
g : [m] → [m/b] be such that g(j) denotes which group among the m/b groups j ∈ [m] belongs to
under P. Define permutation swap ∈ Sm as,

swap(j) = (g(j)− 1) · b+ fg(j)(j)

for j ∈ [m]. Define permutation ρ′ ∈ Sm as,

ρ′ = swap ◦ ρ ◦ swap−1

Claim 6.22. The permutation ρ′ is simple under partition Lex.

Proof. Let h : [m] → [m/b] be such that h(j) =
⌊
j−1
b

⌋
+ 1. This denotes the group each element

belongs to under partition Lex. We know that for any x ∈ Pg(x), swap(x) ∈ Lexg(x), and for any
y ∈ Lexh(y), swap

−1(y) ∈ Ph(y) by the definition of swap. Thus, for any y ∈ Lexh(y), we know that
ρ(swap−1(y)) ∈ Ph(y) as ρ is simple under P. This implies that swap(ρ(swap−1(y))) ∈ Lexh(y).

Now we can easily construct permutation graphs for ρ, by sampling G ∼ Gsim(ρ′) under partition
Lex from Lemma 6.18, and outputting

Basic(swap) ◦G ◦Basic(swap−1).

We add 4m vertices to G, and the output is a permutation graph for ρ by Claim 6.1.

Refer to Figure 15 for an illustration of the property proved by Lemma 6.21. Now we are ready
to construct our generators.

ρ swap

(a) The permutation ρ = (3, 4, 1, 2) under par-
tition P with P1 = {1, 3} and P2 = {2, 4}, and
permutation swap = (1, 3, 2, 4) based on P, Lex.

ρ’

(b) An illustration of permutation ρ′ =
swap−1 ◦ ρ ◦ swap = (2, 1, 4, 3) which is sim-
ple under partition Lex.

Figure 15: An illustration of Lemma 6.21.

Construction of family G(m,n, 1, s, δ) : Sm → Dm on input ρ ∈ Sm

(i) Get dsort = csort · logb(m) = 100csort/β simple permutations γ1, γ2, . . . , γdsort ∈ (Sm)
under partitions P1,P2, . . .Pdsort from Proposition 4.3 for b = mβ/100.

(ii) Sample Gi ∼ Gsim(γi) for i ∈ [dsort] as in Lemma 6.21 and output G = G1◦G2◦. . .◦Gdsort .
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Proof of Lemma 6.2. We know that G is a permutation graph for ρ by Lemma 6.21 and Claim 6.1.
The total number of vertices in G is,

dsort · 2 · 104 ·m ·
1

αβ
= 2 · csort · 106 ·m ·

1

αβ
.

Let A be a 1-pass streaming algorithm that distinguishes between graphs sampled from G(ρ1) and
G(ρ2) using space s = o(m1+β/2) and advantage more than m−5. That is,

∥mem1
A(G(ρ1))−mem1

A(G(ρ2))∥tvd ⩾ m−5.

Let γ1,i, γ2,i be the simple permutations under partition Pi from step (i) of the construction
for i ∈ [dsort] for ρ1, ρ2 respectively. For any ρ ∈ Sm distribution G(ρ) is fixed by sampling from
Gsim(γi) for all i ∈ [dsort]. By Fact A.11, we know that,

∥mem(G(ρ1))−mem(G(ρ2))∥tvd
⩽ ∥mem(Gsim(γ1,1), . . . ,Gsim(γ1,dsort))−mem(Gsim(γ2,1), . . . ,Gsim(γ2,dsort))∥tvd

⩽

dsort∑

i=1

∥mem(Gsim(γ1,i))−mem(Gsim(γ2,i))∥tvd (by the hybrid argument Proposition 4.7)

⩽ dsort · (r)−6(αβ · β−1)50/β ⩽ (100csort/β) ·m−5 · (αβ · β−1)50/β ,

where in the last inequality, we have used Lemma 6.18 because algorithm A uses s = o(m1+β/2) =

o(
(
2m
b

)1+2β/3
) space. The proof follows as for our choice of b = mβ/100, r−6 < m−5.

7 Multi-pass Permutation Hiding

In this section, we will construct permutation hiding graphs against p-pass semi-streaming algo-
rithms for any general integer p ⩾ 1 with induction. We restate Theorem 3 here and prove it in
this section.

Theorem (Restatement of Theorem 3). There exists a permutation hiding generator G(m,n, p, s, δ)
where p is any positive integer with the following parameters:

• Space s = o(m1+β/2),

• Number of vertices n = Θ(1/αβ2)p ·m,

• Error parameter δ = (p/β)Θ(1)/β ·Θ(1/β)2p · 1/poly(m).

Our overall strategy is the same as that of Lemma 6.2, with the key difference being that we
hide simple permutations from p-pass streaming algorithms instead by using permutation hiding
generators for p− 1-pass streaming algorithms. Our inductive hypothesis is as follows.

Assumption 7.1 (Inductive Hypothesis). When considering p pass algorithms, there exists a
permutation hiding generator G(m,n, p− 1, s, δ) for the following parameters:

n =

(
2.5 · csort · 106

α · β2

)p−1

·m; (number of vertices)

s := o(m1+β/2); (space of streaming algorithm)

δ := ((p− 1)/β)50/β · ((4 · 106 · csort/β2)(p−1)) ·m−5 · α.,
(probability of success of the algorithm)
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Notation. We let Gp−1 refer to the permutation hiding generator in Assumption 7.1. We use
Np−1(m) and ∆p−1(m) to denote the number of vertices and the probability of success for Gp−1

respectively when the size of the permutation is m.

The first step again is to hide simple permutations. For the rest of this section, we will define
some more constructs to hide simple permutations, and then prove Theorem 3.

7.1 Building Blocks for Multi-Pass Hiding

In this subsection, we will adapt the definitions of blocks and multi-blocks based on the number of
passes of the streaming algorithm (denoted by p) which we want to guard against.

First, we want to extend any permutation σ ∈ Snrs to Snrs·b in a specific way.

Definition 7.2 (Extended Permutation). Given a permutation σ ∈ Snrs , and an integer b, the
extended permutation σ′ ∈ Snrs·b, denoted by Extend(σ, b) is defined as,

σ′((x− 1) · b+ j) = (σ(x)− 1) · b+ j

for all x ∈ [nrs], j ∈ [b− 1].

Informally, we picked the lexicographic partition of [nrs ·b] into nrs groups of size b, and used σ to
permute the groups among each other. Permutation σ′ does not permute the elements within each
of the groups. The following observation connects extended permutations to one of the primitives
we constructed in Section 6.1.

Observation 7.3. For any σ ∈ Snrs and integer b ⩾ 1, the graph G = Permute(σ, b) from
Definition 6.5 is a permutation graph for Extend(σ, b) ∈ Snrs·b.

Proof. Let ρ = Extend(σ, b) ∈ Snrs·b. For any i ∈ [nrs], j ∈ [b] element (i − 1)b + j ∈ [nrs · b], we
know that ρ((i − 1)b + j) = σ(i) + j. In the graph Permute(σ, b) (with layers V 1 and V 2), the
vertex identified by (i− 1)b+ j in V 1 is connected to (σ(i)− 1)b+ j by definition.

Definition 7.4 (p-Pass Block Distribution). For any r, t, b ⩾ 1, and inputs (r, t)-RS graph
Grs, permutation matrix Σ ∈ (Sb)

t×r, index ℓ ∈ [t] and edge tuple E∗ = (e1, e2, . . . er/2), let:

(σL, σR) = Edge-Pick(Grs, ℓ, E
∗).

be permutations in Snrs as similar to Definition 6.9. We extend them to σ1, σ2 ∈ Snrs·b as:

σ1 = Extend(σL, b) and σ2 = Extend(σR, b).

We define the p-pass block distribution, denoted by p-Block(Grs,Σ, j
∗, E∗) as follows.

(See Figure 16 for an illustration.)

(i) Let GΣ be the encoded RS-graph of Grs on Σ from Definition 6.6.

(ii) Sample GL ∼ Gp−1(σ1) and GR ∼ Gp−1(σ2) from Assumption 7.1.

(iii) Output the graph G = GR ◦GΣ ◦GL.
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... GL ∼ Gp−1(σ1) G
Σ

...GR ∼ Gp−1(σ2)

V 1 V d

Figure 16: An illustration of a graph sampled from p-Block(Grs,Σ, j
∗, E∗).

Let us compare Definition 7.4 to that of blocks in Definition 6.9. In a block, we concatenate
basic permutation graphs for Extend(σL, b) and Extend(σR, b) to either side of the encoded RS-
graph based on Σ, by Observation 7.3. However, in a p-pass block distribution, we hide the two
permutations Extend(σL, b) and Extend(σR, b) from Snrs·b from p− 1 pass streaming algorithms
inductively. This is the key change that allows us to hide our permutations from p-pass algorithms.

Let us show that graphs sampled from p-pass block distributions are also valid permutation
graphs for some specific permutations, similar to blocks.

Claim 7.5. Any graph G ∼ p-Block(Grs,Σ, j
∗, E∗) is a permutation graph for ρ ∈ Sm defined by

Eq (22) with 2nrs · b+ 2Np−1(n
rs · b) vertices.

Proof. For any graph G sampled from p-Block(Grs,Σ, j
∗, E∗), Claim 6.12 applies because G is also

a concatenation of permutation graphs of the same permutations, by Observation 7.3. The bound
on the total number of vertices follows from Definition 6.6 and Assumption 7.1.

We can show that two different p-pass block distributions sharing the input Σ cannot be dis-
tinguished by (p− 1)-pass streaming algorithms with a high advantage, based on the guarantees in
Assumption 7.1.

Claim 7.6. For any ℓ1, ℓ2 ∈ [t] and two edge tuples E∗
1 , E

∗
2 from M rs

ℓ1
and M rs

ℓ2
respectively, the

two distributions D1 = p-Block(Grs,Σ, ℓ1, E
∗
1) and D2 = p-Block(Grs,Σ, ℓ2, E

∗
2) are 2∆p−1(n

rs · b)-
indistinguishable for (p− 1)-pass streaming algorithms using space at most o((nrs · b)1+β/2).

Proof. Let A be a p− 1 pass streaming algorithm using space o((nrs · b)1+β/2). Define the following
permutations:

(σ1
L, σ

1
R) = Edge-Pick(Grs, ℓ1, E

∗
1)

τ1,1 = Extend(σ1
L, b)

τ1,2 = Extend(σ1
R, b)

(σ2
L, σ

2
R) = Edge-Pick(Grs, ℓ2, E

∗
2)

τ2,1 = Extend(σ2
L, b)

τ2,2 = Extend(σ2
R, b)

where τ1,1, τ1,2, τ2,1 and τ2,2 belong to Snrs·b. Distribution Di is fixed based on samples from
Gp−1(τi,1) and Gp−1(τi,2) for i = 1, 2. By Fact A.11, we have that, .

∥memp−1
A (D1)−memp−1

A (D2)∥tvd ⩽ ∥(Gp−1(τ1,1),Gp−1(τ1,2))− (Gp−1(τ2,1),Gp−1(τ2,2))∥tvd
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⩽
∑

j=1,2

∥Gp−1(τ1,j)− Gp−1(τ2,j)∥tvd (by Proposition 4.7)

⩽ 2∆p−1(n
rs · b). (by Assumption 7.1)

We can extend Definition 6.13 to distributed p-pass multi-blocks as follows.

Definition 7.7 (p-pass Multi-Block Distribution). Given inputs Grs,Σ ∈ (Sb)
t×r , L ∈ [t]k a

hypermatching M ⊂ [r]k of size r/2 with E∗
i defined similar to Definition 6.13 for i ∈ [k], the

p-pass multi-block distribution, denoted by p-Multi-Block(Grs,Σ, L,M) is defined as,

(i) For each i ∈ [k], sample graph Gi ∼ p-Block(Grs,Σ
(i), ℓi, E

∗
i ).

(ii) Output G1 ◦G2 ◦ . . . ◦Gk.

Next, we show that graphs sampled from multi-block distributions are valid permutation graphs.

Claim 7.8. Any graph sampled from p-Multi-Block(Grs,Σ, L,M) is a permutation graph for γ⋆

defined by Eq (24) with k(2nrs · b+ 2Np−1(n
rs · b)) vertices.

Proof. Any graph sampled from p-Multi-Block(Grs,Σ, L,M,Γ) is a permutation graph for γ⋆ by
Claim 6.1 and Claim 7.5. As we concatenate k graphs sampled from p-pass block distributions, the
total number of vertices follows from Claim 7.5.

Next, we will prove the analog of Claim 7.6 for multi-blocks, with a slightly larger advantage.

Claim 7.9. For any L1, L2 ∈ [t]k and two hypermatchings M1,M2, the two distributions

D1 = p-Multi-Block(Grs,Σ, L1,M1) and D2 = p-Multi-Block(Grs,Σ, L2,M2)

are 2k ·∆p−1(n
rs · b)-indistinguishable for (p− 1)-pass streaming algorithms o((nrs · b)1+β/2) space.

Proof. Let A be a p − 1 pass algorithm using space o((nrs · b)1+β/2). For i ∈ [k], let j∗1,i, j
∗
2,i and

E∗
1,i, E

∗
2,i be the corresponding values of j∗i , E

∗
i from Definition 7.7 on inputs Grs,Σ, L1,M1 and

Grs,Σ, L2,M2 respectively. Let the distribution p-Block(Grs,Σ, j
∗
j,i, E

∗
j,i) be referred to by Bj,i for

j = 1, 2 and i ∈ [k]. For j = 1, 2, distribution Dj is fixed based on all samples from Bj,i for i ∈ [k].
By Fact A.11, we have that, .

∥memp−1
A (D1)−memp−1

A (D2)∥tvd ⩽ ∥(B1,1, . . . ,B1,k)− (B2,1, . . . ,B2,k)∥tvd
⩽
∑

i∈[k]
∥B1,i − B2,i∥tvd (by hybrid argument Proposition 4.7)

⩽ 2k∆p−1(n
rs · b). (by Assumption 7.1)

7.2 Permutation Hiding in Multiple Passes

Our approach is similar to the proof of Lemma 6.2, where we hide multiple simple permutations
to hide any σ from Sm. Let us show that simple permutations under partition Lex can be hidden
from p-pass algorithms.

Lemma 7.10. Under Assumption 7.1, there exists a simple permutation hiding generator for par-
tition Lex, Gsim : Ssim → Dm for p-pass streaming algorithms using space s = o((m/b)1+2β/3) when
b = mβ/100 with the following parameters:
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(i) The total number of vertices n = (3200/β) · (nrs · b+Np−1(n
rs · b)) +Np−1(m).

(ii) The advantage gained is at most (3200/β) ·∆p−1(n
rs · b) + ∆p−1(m) + α ·m−5 · (p/β)50/β.

The explicit construction of simple permutation hiding generators for p passes follows.

Construction of Gsim(n, p, s, Lex, δ) : Ssim → Dm (denoted by Gsimp ) on input ρ ∈ Ssim.

(i) Fix an (r, t)-RS graph Grs with r = 2m/b = nrs/α and t = (nrs)β .

(ii) Instantiate k players and the referee in Multi-HPHr,t,b,k (Problem 1) with k = 1600/β
such that the solution to the instance, Γ∗ ◦Γ is vec(ρ). Let the variables in the instance
be Σ, L,M , and Γ.

(iii) Sample graph GΣ ∼ p-Multi-Block(Grs,Σ, L,M) and GΓ ∼ Gp−1(join(Γ)).

(iv) Output GΣ ◦GΓ.

First, let us show that any graph output by the distribution Gsim for p-pass algorithms is a valid
permutation graph.

Claim 7.11. Given any ρ ∈ Ssim
m , any graph G ∼ Gsimp (ρ) is a permutation graph for ρ with

n = 2k(Np−1(n
rs · b) + nrs · b) +Np−1(m) vertices.

Proof. We know that p-Multi-Block(Grs,Σ, L,M) is a permutation graph for join(Γ∗), where Γ∗ is
defined as in Problem 1 by Claim 7.8. Gsimp (ρ) is a permutation graph for ρ by Claim 6.1.

The bound on the total number of vertices in p-Multi-Block(Grs,Σ, L,M) follows from Claim 7.8
and Assumption 7.1.

To prove that the preceding construction is a valid simple permutation hiding generator for
p-pass algorithms, we have to argue that no p-pass algorithm using space s = o((m/b)1+2β/3)
can distinguish between two graphs output from different distributions. Let A be one such algo-
rithm which distinguishes between G(ρ1) and G(ρ2) for some ρ1, ρ2 ∈ Ssim

m . We can assume A is
deterministic by Yao’s minimax principle.

Here our approach will differ from the 1-pass case. To run streaming algorithm A on the input
graph for p-passes the naive way, back and forth communication between the referee and the players
is required, and this is not possible. Instead, the players will run algorithm A for p − 1 passes on
a different graph, assuming some input on behalf of the referee, and the last pass is run on the
original graph. We will show that this will be sufficient to solve Multi-HPH. Before giving the
protocol to run p-passes of A, let us see that one pass of A can be run using the inputs of both the
referee and the players.

Claim 7.12. Suppose we are given an instance of Multi-HPH with inputs Grs,Σ, L,M and Γ.
Let G1 ∼ p-Multi-Block(Grs,Σ, L,M) and let G2 ∼ Gp−1(join(Γ)). The players and the referee can
run any streaming algorithm A using space at most s for one pass on graph G1 ◦G2 using at most
k · s bits of communication.

Proof. For i ∈ [k], in any graph Gi ∼ p-Block(Grs,Σ
(i), ℓi, E

∗
i ), the edges based on Σ(i) can be

added by player Q(i) and the other edges based on L,M and E∗
i can be added by the referee. No

edge depends on both the inputs from the player and the referee.
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Each player Q(i) in increasing order of i ∈ [k], takes the memory state of A after adding all
the edges based on Σ(1),Σ(2), . . . ,Σ(i−1), runs A on the edges based on Σ(i) and then uses s bits
of communication to write the new memory state of A on the board. This is totally k · s bits of
communication. The referee can use the state from Q(k) and add the edges based on L,M , and Γ,
which concludes the proof.

Let us see how the players and the referee can simulate algorithm A for p passes.

Protocol ΠA for Multi-HPH using the p-pass streaming algorithm A

(i) The players Q(i) for i ∈ [k] pick the lexicographically first L ∈ [t]k, Γ ∈ (Sb)
r/2 and a

hypermatching M from [r]k collectively.

(ii) Sample a graph GΣ ∼ p-Multi-Block(Grs,Σ, L,M) and GΓ ∼ Gp−1(join(Γ)).

(iii) Run algorithm A for p− 1 passes on G = GΣ ◦GΓ.

(iv) The players and the referee jointly sample GΣ ∼ p-Multi-Block(Grs,Σ, L,M), and the
referee samples GΓ ∼ Gp−1(join(Γ)).

(v) In the last pass, the players and the referee run algorithm A on G = GΣ ◦GΓ.

Let us argue that running such a protocol ΠA is possible for any p pass streaming algorithm A.

Claim 7.13. There is a way for the players and the referee to run protocol ΠA using at most k ·p ·s
total communication.

Proof. The values of Γ, L and M are known to all players Q(i) for i ∈ [k]. The distribution
in Assumption 7.1 is known to all the players too. Let L = (ℓ1, ℓ2, . . . , ℓk), and let edge tuple
E∗

i = (M1,i,M2,i, . . . ,M r/2,i) be r/2 edges in M rs
ℓi

for i ∈ [k].

In Definition 7.7, we know that graphs are sampled from distribution p-Block(Grs,Σ
(i), ℓi, E∗

i )
for each i ∈ [k]. The graph Grs, index ℓi and edges E∗

i for i ∈ [k] are known to all the players since
they fix graph Grs. Hence, player Q(i) can sample a graph from Gi ∼ p-Block(Grs,Σ

(i), ℓi, E∗
i ) for

each i ∈ [k] privately.

Sampling from Gp−1(Γ) can be done by any player since they all know what Γ is. To execute 1
pass of step (iii) of ΠA on graph G, the player Q(i) can, in order, add the edges from Gi for i ∈ [k]
and then any player can add the edges from GΓ. The players and the referee can execute step (iv)
using Claim 7.12.

Now we argue the correctness of this protocol. We need some extra notation before we proceed.

Notation. We fix the input of the Multi-HPHr,t,b,k instance to be Grs,Σ, L,M and Γ. Let
δA be the advantage gained by p-pass streaming algorithm A that distinguishes between the two
distributions Gsimp (ρ1) and Gsimp (ρ2). Let sA = o((m/b)1+2β/3) denote the space used by A.

Let Πfake be the protocol of running A for p-passes on graph G which is the concatenation of
graphs sampled from distributions p-Multi-Block(Grs,Σ, L,M) and Gp−1(join(Γ)). (Note that Π

fake

is an impossible protocol to run because there is no back and forth communication between the
referee and the players; however, it is a well-defined random variable/distribution.)
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Let memj
A(Π

fake) be the random variable denoting the memory state of A after running j passes

of G in Πfake for j ⩽ p. Let memj
A(ΠA) be the random variable denoting the memory contents of

the board after running j passes of ΠA on graph G for j ⩽ p− 1 and graph G for pass p.

Let graph Gfixed denote the subgraph of G with all the edges added by the players Q(i) for i ∈ [k]
based on Σ(i). This graph is fixed because we have fixed the input to MPHt,r,b,k. Let Grest be the
distribution of the rest of the edges in G.

Claim 7.14. Protocol ΠA solves Multi-HPHr,t,b,k with advantage at least

δA − (2k ·∆p−1(n
rs · b) + ∆p−1(m))

and total communication at most k · p · sA when sA = o(m1+β/2).

Proof. The contents of the last pass are a deterministic function of the contents of pass p− 1 and
the edges added. By Fact A.11, we have that,

∥memp
A(ΠA)−memp

A(Π
fake)∥tvd ⩽ ∥(memp−1

A (ΠA), G
fixed,Grest)− (memp−1

A (Πfake), Gfixed,Grest)∥tvd.

The edges added in the last pass for both protocols are the ones from Gfixed which are fixed, and
the others from distribution Grest. We can write the RHS term as,

∥(memp−1
A (ΠA), G

fixed,Grest)− (memp−1
Πfake

, Gfixed,Grest)∥tvd
⩽ ∥memp−1

A (ΠA)−memp−1
A (Πfake)∥tvd

+ E
π∼memp−1

A (ΠA)

(
∥
(
(Gfixed,Grest) | memp−1

A (ΠA) = π
)
−
(
(Gfixed,Grest) | memp−1

A (Πfake) = π
)
∥tvd

)

(by Fact A.9)

⩽ ∥memp−1
A (ΠA)−memp−1

A (Πfake)∥tvd,

where in the last step, the second term becomes zero, as they are the exact same distribu-
tion. For the first p − 1 rounds, ΠA and Πfake run algorithm A on input graphs sampled from
p-Multi-Block(Grs,Σ, L,M),Gp−1(join(Γ)) and p-Multi-Block(Grs,Σ, L,M),Gp−1(join(Γ)) respec-
tively. As this is a p − 1 pass streaming algorithm using space o(m1+β/2), by Claim 7.9 and
Assumption 7.1,

∥memp−1
A (ΠA)−memp−1

A (Πfake)∥tvd ⩽ 2k ·∆p−1(n
rs · b) + ∆p−1(m).

For any input, by our assumption, we know that protocol Πfake distinguishes between G̃(Γ1) and
G̃(Γ2) with advantage at least δA. However, we have shown that for any input, the total variation
distance between the transcripts of protocols Πfake and ΠA is low. Hence,

Pr
(
Success of Πfake

)
⩽ Pr (Success of ΠA) + ∥memp

A(ΠA)−memp
A(Π

fake)∥tvd

Pr (Success of ΠA) ⩾
1

2
+ δA − (2k ·∆p−1(n

rs · b) + ∆p−1(m)).

We have all we need to prove Lemma 7.10 now.

Proof of Lemma 7.10. The total number of vertices in our construction follows directly from Claim 7.11.

By Claim 7.13 and Claim 7.14, we know that ΠA can solve instances ofMPHt,r,b,k with advantage
at least δA − (2k ·∆p−1(n

rs · b) + ∆p−1(rb/2)) with total communication k · p · sA.
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When p = o(β · rβ/3), we have that k · p · sA = O(1/β) · o((m/b)1+2β/3) · o(β · rβ/3) = o(rt).
Hence Theorem 2 is applicable. We know that the advantage gained by ΠA is at most,

r · o
(
k · p · sA

r · t

)k/32

⩽ r · o
(
αβ · k · p · r1+2β/3

r1+β

)50/β

⩽
1

r15
· (αβ · β−1 · p)50/β

Algorithm A is given o(r1+2β/3) = o((m)1+β/2) when b = mβ/100. So we can lower bound the
advantage of ΠA from Claim 7.14 as,

δA ⩽ (2k ·∆p−1(n
rs · b) + ∆p−1(m)) +m−5 · (p · β−1)50/β · α.

Using Lemma 7.10, we can construct the permutation hiding generator for p-passes similar to
the construction in Section 6 using simple permutation hiding generators for p passes.

Proof of Theorem 3. The base case was proved in Lemma 6.2. We use Assumption 7.1 to infer
the statement of the theorem, completing the proof by induction. We fix b = mβ/100, and we
concatenate csort · 100/β graphs sampled from the simple permutation hiding generator for p-pass
algorithms. Using Lemma 7.10, we can bound the total number of vertices as,

n ⩽ dsort · ((3200/β) · (nrs · b+Np−1(n
rs · b)) +Np−1(m))

⩽ 3.2 · 105 · csort ·
1

β2
·
(
2.5 · csort · 106

αβ2

)p−1

· (6m/α)

⩽

(
2.5 · csort · 106

αβ2

)p

·m.

Using the bound on the advantage in Lemma 7.10, we get that, for any ρ1, ρ2 ∈ Sm,

∥memp
A(G(ρ1))−memp

A(G(ρ2))∥tvd
⩽ dsort ·

(
(3200/β) ·∆p−1(n

rs · b) + ∆p−1(m) + α ·m−5 · (p/β)50/β
)

⩽ dsort ·
(
(3200/β + 1) ·∆p−1(m) + α ·m−5 · (p/β)50/β

)
(as nrs · b > m)

⩽

(
4 · 106 · csort

β2

)p−1

·m−5 · α ·
(
3.2 · 105 · csort

β2

)
· (((p− 1)/β)50/β + (p/β)50/β)

⩽

(
4 · 106 · csort

β2

)p

·m−5 · α · (p/β)50/β ,

completing the proof.

This concludes our construction of permutation hiding generators and their analysis.

8 A Multi-Pass Streaming Lower Bound for Matchings

We are now ready to present the proof of our main result in Theorem 1, restated below for the
convenience of the reader.

Theorem (Restatement of Result 1). Suppose that for infinitely many choices of N ⩾ 1, there
exists (2N)-vertex bipartite (r, t)-RS graphs with r = α ·N and t = Nβ for some fixed parameters
α, β ∈ (0, 1); the parameters α, β can depend on N .
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Then, there exists an ε0 = ε0(α, β) such that the following is true. For any 0 < ε < ε0, any
streaming algorithm that uses o(ε2 · n1+β/2) space on n-vertex bipartite graphs and can determine
with constant probability whether the input graph has a perfect matching or its maximum matchings
have size at most (1− ε) · n/2 requires

Ω
( log (1/ε)

log (1/αβ)

)

passes over the stream.

The proof is based on a standard reduction, e.g., in [AR20], from reachability to bipartite match-
ing (a similar reduction also appeared in [CKP+21]). We present the reduction for completeness.

Let m ⩾ 1 be an even integer and define the following two permutations:

• σ=: the identity permutation over [m/2];

• σ×: the “cross identity” permutation that maps [m/2] to [m/2 + 1 : m] and [m/2 + 1 : m] to
[m/2] using identity permutations.

Let G = Gm,n,p,s,δ be a permutation hiding generator for m and any integer p ⩾ 1 with the
parameters n, s, δ as in Theorem 3. We are going to use the indistinguishability of graphs sampled
from G(σ=) versus G(σ×) to prove Theorem 1. To do so, we need to turn the graphs sampled
from this distribution into bipartite graphs wherein size of the matching, even approximately, is a
distinguisher for the sample. This is done in the following.

The bipartite graph construction

Let G = (V,E) be sampled from G(σ=) or G(σ×). Create the following bipartite graph H from G:

• The vertices of H are (L ∪ S) and (R ∪ T ) on each side defined as follows:

(i) Let L and R be each a separate copy of V . For any vertex vi ∈ V , we use vli and vri to
denote the copy of vi in L and R, respectively.

(ii) Additionally, create two new sets S and T of vertices with size m/2 each.

• The edges of H are EH plus a matching M defined as follows:

(i) For any i ∈ [m/2] and the i-th vertex vi ∈ FirstG (resp. vi ∈ LastG), add the edge
between i-th vertex ui ∈ S and vri ∈ R (resp. ui ∈ T and vli ∈ L) to EH . Moreover, for
any edge (ui, vj) ∈ E, add the edge between uli ∈ L and vrj ∈ R.

(ii) Finally, for every vi ∈ V , add the edge between vli ∈ L and vri ∈ R to M .

This way, we have a bipartite graph H = (L ∪ S,R ∪ T,EH ∪G) associated with G with n+m/2
vertices on each side of the bipartition. The following lemma establishes the key property of H.

Lemma 8.1. Consider a bipartite graph H associated with a graph G defined as above. We have:

(i) if G ∼ G(σ=), then H has a perfect matching of size n+m/2;

(ii) on the other hand, if G ∼ G(σ×), the maximum matching size in H is n.

Proof. The idea in both cases is to start with the matching M in H and consider augmenting it.
We prove each part separately.
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Proof of Item (i). Consider any vertex ui ∈ S in H. These vertices are all unmatched by M .
Moreover, ui only has a single edge to some vertex vri ∈ R. Consider the original copy vi ∈ FirstG
of vri in the original graph G. Since G is a permutation graph for σ=, there is a path P (vi) in G as
follows:

P (vi) := vi ∈ FirstG → w1 → w2 → · · · ⇝ σ=(vi) ∈ LastG.

This path, translates to the following augmenting path in H for the matching M :

ui ∈ S →EH
vri →M vli →EH

wr
1 →M wl

1 →EH
· · · ⇝ σ=(v

l
i ) →EH

ui ∈ T,

using the fact that σ= is the identity matching. Thus, this is a valid augmenting path.

Moreover, for all vertices ui ∈ S, these augmenting paths should be vertex disjoint. This is
because these augmenting paths follow the same paths from vi ∈ FirstG to vi ∈ LastG and
the paths from the first layer of a permutation graph to its last layer are vertex disjoint (if two
paths collide, then starting point of each of these paths, can reach two separate vertices in LastG,
violating the permutation graph property).

This implies that the matching M of size n admits m/2 vertex-disjoint augmenting paths, thus
by augmenting it we obtain a matching of size n+m/2. Given the bound on the number of vertices
of the graph, this is a perfect matching.

Proof of Item (ii). All unmatched vertices by M in L ∪ S in H actually belong to S. Consider
any vertex ui ∈ S then and recall it has a single edge to some vertex vri ∈ R. For ui to be part of
an augmenting path, it needs to reach some vertex wj ∈ T . Such a vertex wj in turn only has one
edge from a single vertex zlj ∈ L by construction.

Using the correspondence between augmenting paths in H and the directed paths in G, we
thus need to have a path from vi ∈ FirstG to zj ∈ LastG. Moreover, by the construction of H,
we additionally need both vi to be in the first m/2 vertices of FirstG and zj to be in the first
m/2 vertices of LastG. But, since G is a permutation graph for σ×, vi ∈ FirstG can only reach
σ×(vi) ∈ LastG which cannot be among the first m/2 vertices.

This implies that in this case, the matching M has no augmenting paths in H and is thus a
maximum matching of size n.

We now use this lemma to conclude the proof of Theorem 1.

Concluding the proof

Let A be any p-pass s-space streaming algorithm for the maximum matching problem on bipartite
graphs with n +m/2 vertices on each side of the bipartition that can distinguish between graphs
with a perfect matching versus ones with maximum matching of size at most n. We turn A into a
p-pass s-space streaming algorithm B for distinguishing between graphs sampled from G(σ=) and
G(σ×). We again use the extra power provided in Definition 4.5 to the streaming algorithms.

Given a graph G in the stream, the algorithm B can first create vertices of H and edges in M
plus edges from S to R and T to L before even reading the edges of G, and pass these edges of H
to A; then, it starts reading the stream of edges of G and each edge (u, v) translates into an edge
(ul, vr) of H by construction, which B passes to A again. This way, B can implement pass of A
and at the beginning of the next pass, it again creates edges of M and edges from S to R and T to
L in H before reading its own stream, and continues as before until all p passes are finished.

We thus have,

δ ⩾ ∥memp
B(G(σ=))−memp

B(G(σ×))∥tvd = ∥memp
A(H(G(σ=)))−memp

A(H(G(σ×)))∥tvd,
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where δ on the left is the maximum advantage because of the indistinguishability guarantee of G
in Theorem 3.

On the other hand, by Lemma 8.1, size of the maximum matching in H(G(σ=))) is always
n + m/2 and in H(G(σ×)) is always n. This, together with Fact A.8 (on probability of success
of distinguishing distributions via a single sample) implies that A also cannot distinguish between
these two cases of perfect matching versus maximum matching of size n with probability better
than 1/2 + δ.

We only now need to instantiate the parameters of A. In the following, let nH := n + m/2
denote the number of vertices on each side of the bipartition of H and ε = m/4n, so that in one
case H has a perfect matching of size nH and in the other case its maximum matching size is at
most (1− ε) · nH . We further have,

nH = n+m/2 = Θ(
1

α · β2
)
p

·Θ(m), (number of vertices)

s := o(m1+β/2), (space of streaming algorithm)

by the guarantees of Theorem 3. By calculating parameters p and s in terms of ε and nH , we get,

p = Ω
( log (nH/m)

log(1/α · β2)

)
= Ω

( log (1/ε)

log (1/αβ)

)
,

s = o(m1+β/2) = o((α · β2)p·(1+β/2) · n1+β/2
H ) = o(ε2 · n1+β/2

H ).

We set our range of ε to be ε = Ω(n−β/4). We just have to see that for this range of ε and p, our
advantage remains low. From Theorem 3,

δ ⩽ (p/β)Θ(1/β) ·Θ(1/β)2p ·m−5

⩽

(
log(1/ε)

log(1/αβ)

)Θ(1/β)

·Θ(1/β)log(1/ε)/ log(1/αβ) ·m−5 · (1/β)Θ(1/β)

⩽ n ·Θ(1)log(1/ε) · (4ε · n)−5 · (1/β)Θ(1/β)

⩽ Θ(n1+β/4 · n(1−β/4)·(−5)) ⩽ 1/poly(n).

This concludes the proof of Theorem 1.

Remark 1. Our lower bound in Theorem 1 can also be extended to some other fundamental
problems including reachability and shortest path studied extensively in the streaming
model in [FKM+08,GO13,CGMV20,AR20,CKP+21], because permutation hiding graphs also
provide a lower bound for those problems; see [CKP+21].

In particular, under the (plausible) hypothesis that β can be Ω(1), by using a parameter
m/n ≈ n−β/6 in the construction of permutation hiding graphs of Theorem 3 (roughly, setting
ε ≈ n−β/6), we obtain a lower bound of Ω(log n) passes for solving directed reachability
or shortest path via semi-streaming algorithms.

This slightly improves the lower bound of Ω(log n/ log log n) passes for these problems
obtained in [GO13, CGMV20, CKP+21] (albeit under the hypothesis that β = Ω(1); using
the current state-of-the-art bound of Ω(1/ log log n) on β leads to asymptotically same bounds
as in [GO13,CGMV20,CKP+21]).
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International Symposium on Theoretical Aspects of Computer Science, STACS 2023,
March 7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages 41:1–41:22. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023. 1

[Knu97] D. E. Knuth. The art of computer programming, volume 3. Pearson Education, 1997.
20, 78

[Kon15] C. Konrad. Maximum matching in turnstile streams. In Algorithms - ESA 2015 -
23rd Annual European Symposium, September 14-16, 2015, Proceedings, pages 840–
852, 2015. 1, 20

[Kon18] C. Konrad. A simple augmentation method for matchings with applications to stream-
ing algorithms. In 43rd International Symposium on Mathematical Foundations of
Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, pages 74:1–74:16,
2018. 1

[KT17] S. Kale and S. Tirodkar. Maximum matching in two, three, and a few more passes over
graph streams. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley,
CA, USA, pages 15:1–15:21, 2017. 1

[LNW14] Y. Li, H. L. Nguyen, and D. P. Woodruff. Turnstile streaming algorithms might as well
be linear sketches. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 174–183, 2014. 21

[LSZ20] S. C. Liu, Z. Song, and H. Zhang. Breaking the n-pass barrier: A streaming algorithm
for maximum weight bipartite matching. CoRR, abs/2009.06106, 2020. 1

[LW21] R. Levin and D. Wajc. Streaming submodular matching meets the primal-dual method.
In D. Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1914–1933.
SIAM, 2021. 1

69



[McG05] A. McGregor. Finding graph matchings in data streams. In Approximation, Ran-
domization and Combinatorial Optimization, Algorithms and Techniques, 8th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization Prob-
lems, APPROX 2005 and 9th InternationalWorkshop on Randomization and Compu-
tation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005, Proceedings, pages
170–181, 2005. 1, 3

[MV16] A. McGregor and S. Vorotnikova. Planar matching in streams revisited. In Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2016, September 7-9, 2016, pages 17:1–17:12, 2016. 1

[MV18] A. McGregor and S. Vorotnikova. A simple, space-efficient, streaming algorithm for
matchings in low arboricity graphs. In 1st Symposium on Simplicity in Algorithms,
SOSA 2018, January 7-10, 2018, pages 14:1–14:4, 2018. 1

[PP89] B. Parker and I. Parberry. Constructing sorting networks from k-sorters. Inf. Process.
Lett., 33(3):157–162, 1989. 4, 16, 20, 77, 78

[PS17] A. Paz and G. Schwartzman. A (2 + ε)-approximation for maximum weight matching
in the semi-streaming model. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,
January 16-19, pages 2153–2161, 2017. 1
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A Background on Information Theory

We now briefly introduce some definitions and facts from information theory that are used in our
proofs. We refer the interested reader to the text by Cover and Thomas [CT06] for an excellent
introduction to this field, and the proofs of the statements used in this Appendix.

For a random variable A, we use supp(A) to denote the support of A and dist(A) to denote
its distribution. When it is clear from the context, we may abuse the notation and use A directly
instead of dist(A), for example, write A ∼ A to mean A ∼ dist(A), i.e., A is sampled from the
distribution of random variable A.

• We denote the Shannon Entropy of a random variable A by H(A), which is defined as:

H(A) :=
∑

A∈supp(A)
Pr (A = A) · log (1/Pr (A = A)) (25)

• The conditional entropy of A conditioned on B is denoted by H(A | B) and defined as:

H(A | B) := E
B∼B

[H(A | B = B)] , (26)

where H(A | B = B) is defined in a standard way by using the distribution of A conditioned on
the event B = B in Eq (25).

• The mutual information of two random variables A and B is denoted by I(A ;B) and is defined:

I(A ;B) := H(A)−H(A | B) = H(B)−H(B | A). (27)

• The conditional mutual information I(A ;B | C) is H(A | C)−H(A | B,C) and hence by linearity
of expectation:

I(A ;B | C) = E
C∼C

[I(A ;B | C = C)] . (28)

A.1 Useful Properties of Entropy and Mutual Information

We shall use the following basic properties of entropy and mutual information throughout.

Fact A.1. Let A, B, C, and D be four (possibly correlated) random variables.

1. 0 ⩽ H(A) ⩽ log |supp(A)|. The right equality holds iff dist(A) is uniform.

2. I(A ;B | C) ⩾ 0. The equality holds iff A and B are independent conditioned on C.

3. Conditioning on a random variable reduces entropy: H(A | B,C) ⩽ H(A | B). The equality
holds iff A ⊥ C | B.

4. Subadditivity of entropy: H(A,B | C) ⩽ H(A | C) +H(B | C).

5. Chain rule for entropy: H(A,B | C) = H(A | C) +H(B | C,A).

6. Chain rule for mutual information: I(A,B ;C | D) = I(A ;C | D) + I(B ;C | A,D).

7. Data processing inequality: for a function f(A) of A, I(f(A) ;B | C) ⩽ I(A ;B | C).

71



We also use the following two standard propositions, regarding the effect of conditioning on mutual
information.

Proposition A.2. For random variables A,B,C,D, if A ⊥ D | C, then,
I(A ;B | C) ⩽ I(A ;B | C,D).

Proof. Since A and D are independent conditioned on C, by Fact A.1-(3), H(A | C) = H(A | C,D)
and H(A | C,B) ⩾ H(A | C,B,D). We have,

I(A ;B | C) = H(A | C)−H(A | C,B) = H(A | C,D)−H(A | C,B)
⩽ H(A | C,D)−H(A | C,B,D) = I(A ;B | C,D).

Proposition A.3. For random variables A,B,C,D, if A ⊥ D | B,C, then,
I(A ;B | C) ⩾ I(A ;B | C,D).

Proof. Since A ⊥ D | B,C, by Fact A.1-(3), H(A | B,C) = H(A | B,C,D). Moreover, since
conditioning can only reduce the entropy (again by Fact A.1-(3)),

I(A ;B | C) = H(A | C)−H(A | B,C) ⩾ H(A | D,C)−H(A | B,C)
= H(A | D,C)−H(A | B,C,D) = I(A ;B | C,D).

A.2 Measures of Distance Between Distributions

We use two main measures of distance (or divergence) between distributions, namely the Kullback-
Leibler divergence (KL-divergence) and the total variation distance.

KL-divergence. For two distributions µ and ν over the same probability space, the Kullback-
Leibler (KL) divergence between µ and ν is denoted by D(µ || ν) and defined as:

D(µ || ν) := E
a∼µ

[
log

µ(a)

ν(a)

]
. (29)

We also have the following relation between mutual information and KL-divergence.

Fact A.4. For random variables A,B,C,

I(A ;B | C) = E
(B,C)∼(B,C)

[
D(dist(A | B = B,C = C) || dist(A | C = C))

]
.

We use the following standard facts about KL-divergence.

Fact A.5 (Chain rule of KL-divergence). Let µ(X,Y) and ν(X,Y) be two distributions for random
variables X,Y. Then,

D(µ(X,Y) || ν(X,Y)) = D(µ(X) || ν(X)) + E
x∼µ(X)

D(µ(Y | X = x) || ν(Y | X = x)).

Moreover, if X ⊥ Y in ν (the second argument of the KL-divergence), then,

D(µ(X,Y) || ν(X,Y)) ⩾ D(µ(X) || ν(X)) + D(µ(Y) || ν(Y)).
Fact A.6 (Conditioning in KL-divergence). For any random variable X and any event E,

D(X | E || X) ⩽ log

(
1

Pr(E)

)
.

Moreover, if E is a deterministic function of X, then this equation holds with equality.
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Total variation distance. We denote the total variation distance between two distributions
µ and ν on the same support Ω by ∥µ− ν∥tvd, defined as:

∥µ− ν∥tvd := max
Ω′⊆Ω

(
µ(Ω′)− ν(Ω′)

)
=

1

2
·
∑

x∈Ω
|µ(x)− ν(x)| . (30)

We use the following basic properties of total variation distance.

Fact A.7. Suppose µ and ν are two distributions for E, then, µ(E) ⩽ ν(E) + ∥µ− ν∥tvd.

Fact A.8. Suppose µ and ν are two distributions with same support Ω; then, given a single sample
from either µ or ν, the best probability of successfully deciding whether s came from µ or ν (achieved
by the maximum likelihood estimator) is

1

2
+

1

2
· ∥µ− ν∥tvd.

We also have the following (chain-rule) bound on the total variation distance of joint variables.

Fact A.9. For any distributions µ and ν on n-tuples (X1, . . . , Xn),

∥µ− ν∥tvd ⩽
n∑

i=1

E
X<i∼µ

∥µ(Xi | X<i)− ν(Xi | X<i)∥tvd.

A simple consequence of this fact gives us the following “over conditioning” property as well.

Fact A.10. For any random variables X,Y,Z,

∥X− Y∥tvd ⩽ ∥XZ− YZ∥tvd = E
Z
∥(X | Z = Z)− (Y | Z = Z)∥tvd.

Proof. By the non-negativity of TVD and Fact A.9,

∥X− Y∥tvd ⩽ ∥X− Y∥tvd + E
X
∥(Z | X = X)− (Z | Y = X)∥tvd = ∥XZ− YZ∥tvd

Applying Fact A.9 again gives us

∥XZ−YZ∥tvd = ∥Z− Z∥tvd +E
Z
∥(X | Z = Z)− (Y | Z = Z)∥tvd = E

Z
∥(X | Z = Z)− (Y | Z = Z)∥tvd,

which concludes the proof.

Similarly, we have the following data processing inequality for total variation distance as a
consequence of the above.

Fact A.11. Suppose X and Y are two random variables with the same support Ω and f : Ω→ Ω is
a fixed function. Then,

∥f(X)− f(Y)∥tvd ⩽ ∥X− Y∥tvd.

73



Connections Between KL-Divergence and Total Variation Distance

The following Pinsker’s inequality bounds the total variation distance between two distributions
based on their KL-divergence,

Fact A.12 (Pinsker’s inequality). For any distributions µ and ν, ∥µ− ν∥tvd ⩽
√

1
2 · D(µ || ν).

We shall also use the following strengthening of Pinsker’s inequality due to [CK18] that allows
to lower bound KL-divergence between two distributions by a combination of ℓ1- and ℓ2-distance
of the two distributions (instead of purely ℓ1-distance in the original Pinsker’s inequality).

Proposition A.13 (Strengthened Pinsker’s Inequality [CK18, KL vs ℓ1/ℓ2-inequality]). Given any
pair of distributions µ and ν over the same finite domain Ω, define

A := {x ∈ Ω | µ(x) > 2 · ν(x)} and B := Ω \A.

Then,

D(µ || ν) ⩾ (1− ln 2) ·
(∑

x∈A
|µ(x)− ν(x)|+

∑

x∈B

(µ(x)− ν(x))2

µ(x)

)
.

B Background on Fourier Analysis on Permutations

We review basics of representation theory and Fourier transform on permutations. We refer the
interested reader to [HGG09] for more details and background.

Representation theory. We can define representations for any (symmetric) group, including
the group of permutations on a fixed domain.

Definition B.1. A representation of a group G is a map ρ from G to a set of invertible
dρ × dρ (complex) matrix operators (ρ : G → Cdρ×dρ) which preserves algebraic structure in
the sense that for all σ1, σ2 ∈ G, ρ(σ1 ◦σ2) = ρ(σ1) · ρ(σ2). The matrices which lie in the image
of ρ are called the representation matrices, and we will refer to dρ as the degree of the
representation.

Two representations ρ1, ρ2 are said to be equivalent if there exists an invertible matrix C such
that for all σ ∈ G,

ρ2(σ) = C−1 · ρ1(σ) · C.
Given two representations ρ1, ρ2, we write the direct sum of ρ1 and ρ2, denoted by ρ1 ⊕ ρ2 as,

ρ1 ⊕ ρ2(σ) =

[
ρ1(σ) 0
0 ρ2(σ)

]
.

The degree of ρ1 ⊕ ρ2 is dρ1 + dρ2 .

Definition B.2. A representation ρ is said to be reducible if it can be decomposed as ρ = ρ1⊕
ρ2. The set of irreducible representations of any group G is the collection of representations
(up to equivalence) which are not reducible.

An example of an irreducible representation is the trivial representation, denoted by ρ0, that takes
every group element to 1 ∈ R.
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Fourier transform over permutations. Fix any integer b ⩾ 1 and let Sb be the set of per-
mutations on [b] in the following. Let RepBasis := RepBasis(b) denote the (finite) set of all
irreducible representations of the symmetric group Sb.

For any function f : Sb → R and representation ρ ∈ RepBasis, the Fourier transform of f at ρ
is a dρ × dρ dimensional matrix defined as,

ρ̂(f) :=
∑

σ∈Sb

f(σ) · ρ(σ). (31)

The set of Fourier transforms at all representations in RepBasis form the Fourier transform of f .

The Fourier Inversion theorem then implies that for any function f : Sb → R,

f(σ) =
1

b!
·

∑

ρ∈RepBasis

dρ ·Trace(ρ̂(f)
⊤
· ρ(σ)). (32)

Fourier Transforms of Distributions Over Permutations

In the following, let U := USb
denote the uniform distribution over Sb and ν be any arbitrary

distribution on Sb, where for σ ∈ Sb, ν(σ) denote the probability of σ under ν. Moreover, ρ0 is the
trivial representation in RepBasis that maps all permutations to 1 × 1 dimensional matrix with
entry 1. The proofs of all following standard results can be found in [HGG09].

Fact B.3 (c.f. [HGG09, Section 4.2]). For the Fourier transform over permutations,

1. For any probability distribution ν over Sb, ρ̂0(ν) = 1.

2. For the uniform distribution U , ρ̂0(U) = 1, and for any ρ ∈ RepBasis \ {ρ0}, ρ̂(U) = 0,
where 0 is the dρ × dρ dimensional matrix of all zeros.

We can also use the Fourier convolution theorem to relate Fourier coefficient of distribution
on concatenated permutations to each other. Given two distributions ν1 and ν2 over Sb, define
ν := ν1 ◦ ν2 as the distribution obtained by sampling σ1 ∼ ν1 and σ2 ∼ ν2 independently and
returning σ1 ◦ σ2 as the sample of ν.

Fact B.4 (c.f. [HGG09, Definition 7 and Proposition 8]). For any distributions ν1 and ν2 over Sb

and ν = ν1 ◦ ν2, and any ρ ∈ RepBasis,

ρ̂(ν) = ρ̂(ν1) · ρ̂(ν2).

Finally, we also have the following Plancherel’s identity for this Fourier transform.

Proposition B.5 ([HGG09, Proposition 13]). For any distributions ν1 and ν2 over Sb,

∑

σ∈Sb

(ν1(σ)− ν2(σ))
2 =

1

b!
·

∑

ρ∈RepBasis

dρ ·
∑

i,j∈[dρ]

(
ρ̂(ν1)− ρ̂(ν2)

)2
i,j

.
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C Tightness of Lemma 5.11

Our proof in Lemma 5.11 can be restated as follows. Let ν1, . . . , νg be g distributions over Sb and
define ν = ν1 ◦ · · · ◦ νg (as defined in Appendix B). Suppose

∥νi − USb
∥22 =

1

b!
· εi,

for all i ∈ [g]. Then,

∥ν − USb
∥22 ⩽

1

b!
·

g∏

i=1

εi.

(the proof is verbatim as in Lemma 5.11). We now argue this bound is actually sharp.

Let νi for i ∈ [g] be the following distribution.

νi(σ) =





1 +
√
εi

b!
if σ has an even number of inversions,

1−√εi
b!

otherwise.

The ℓ2 distance of νi from USb
is εi/b! by construction. Now, consider the distribution ν1 ◦ ν2.

• To get an even permutation, either two even permutations σ1 ∼ ν1 and σ2 ∼ ν2 can be picked,
or two odd permutations can be picked. Thus for an even σ ∈ Sb,

ν1 ◦ ν2(σ) =
b!

2
·
((

1

b!

)2

· (1 +√ε1)(1 +
√
ε2)

)
+

b!

2
·
((

1

b!

)2

· (1−√ε1)(1−
√
ε2)

)

=
1 +
√
ε1ε2

b!
.

• To get an odd permutation, we sample either an odd permutation from ν1 and even from ν2
or vice-versa. Hence for any odd σ ∈ Sb,

ν1 ◦ ν2(σ) =
b!

2
·
((

1

b!

)2

· (1 +√ε1)(1−
√
ε2)

)
+

b!

2
·
((

1

b!

)2

· (1−√ε1)(1 +
√
ε2)

)

=
1−√ε1ε2

b!
.

If we proceed by induction we see that distribution ν = ν1 ◦ · · · νg is as follows:

ν(σ) =





1
b! ·
(
1 + (

∏g
i=1 εi)

1/2
)

if σ has even number of inversions and

1
b! ·
(
1− (

∏g
i=1 εi)

1/2
)

otherwise.

One can then calculate that the ℓ2-distance of ν from USb
is

1

b!
·

ℓ∏

i=1

εi,

exactly matching the bounds in Lemma 5.11.
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D Sorting Networks with Large Comparators

We provide a weaker version of Proposition 4.3 that suffices for the proofs in our paper. The proof
of the following result is adapted from [PP89] and we provide it here only for completeness.

Proposition D.1 ([PP89]). There exists an absolute constant csort > 0 such that the following is
true. For every pair of integers m, b ⩾ 1, there exists

dsort = dsort(r, b) = csort · log2b(m)

fixed equipartitions of [m] into P1, . . . ,Pdsort, each one consisting of m/b sets of size b, with the
following property. Given any permutation σ ∈ Sm, there are dsort permutations γ1, . . . , γdsort
where for every i ∈ [dsort], γi is simple on partition Pi so that we have σ = γ1 ◦ · · · ◦ γdsort .

This is equivalent to proving that there is a sorting network for m elements with b-comparators
with depth O(log2b m). Each partition P of [m] with sets P1, P2, . . . , Pm/b of size b each can be
interpreted as m/b wires as follows: wire i compares elements x1, x2, . . . xb ∈ Pi for each i ∈ [m/b].
The permutation which is simple on P only permutes elements from Pi with each other based on
how wire i arranges them.

D.1 Merge Subroutine with Large Comparators

The proof of Proposition D.1 is based on the merge sort algorithm. We assume m is a power of
b for simplicity. This can be removed by padding the input with dummy elements. We start by
providing a Merge subroutine first that is used in the sorting network. For simplicity of exposition,
we assume we are working with b2-sorters for Merge instead of b-sorters; we will address
this easily by re-parameterizing when proving Proposition D.1.

Input: Array A which is a permutation of [m] such that A[i ·m/b+1] to A[(i+1) ·m/b] is in
increasing order for 0 ⩽ i ⩽ (b− 1).

Output: Array A sorted in increasing order.

Algorithm Merge(A,m, b): (with b2-sorters instead of b-sorters)

(i) If m ⩽ b2, compare all indices directly and sort them using a single sorter.

(ii) Otherwise, write array A into a (m/b) × b matrix B such that B[i][j] = A[(i − 1)b + j]
for 1 ⩽ i ⩽ m/b and 1 ⩽ j ⩽ b.

(iii) Run Merge(B[∗][j],m/b, b) on each column j ∈ [b] of B separately.

(iv) Create matrix C with dimensions (m/b+ b)× b where C[i+ j− 1][j] = B[i][j], the empty
elements in C are filled with −∞ for the top right corner, and +∞ for the bottom left.

For any ℓ ∈ [m/b2 + 1], we define the square ℓ as all C[i][j] with (ℓ− 1)b+ 1 ⩽ i ⩽ ℓ · b
and 1 ⩽ j ⩽ b (see Figure 17.)

(v) Divide C into m/b2 squares of size b× b each, and sort them each using a sorter.

(vi) For each ℓ ∈ [m/b2 − 1], merge the last b2/2 cells of square ℓ with the first b2/2 cells of
square ℓ+ 1 using a single sorter for each one.

We will prove that the depth of Merge is O(logbm), and it works correctly. The proof of
correctness is based on the standard 0-1 principle for sorting networks.
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B

(ℓ− 2)b + 2

(ℓ− 1)b+ 1

ℓb

C

(ℓ− 1)b+ 1

ℓb

Figure 17: An illustration of a square ℓ ∈ [m/b2 + 1] in the matrix C.

Proposition D.2 (c.f. [Knu97, Section 5.3]). Any sorting network which sorts correctly when the
input is from the set {0, 1}m can sort any arbitrary permutation of [m] correctly also.

Thus, from now on we assume the input A consists of only 0’s and 1’s. To continue, we need
a quick definition. We say a region (a region can be a row, a column or a square) good if it is
comprised entirely of 1’s or entirely of 0’s. We call it a bad region otherwise. For any region x, we
use 1(x) and 0(x) to denote the number of 1’s and 0’s in x.

Claim D.3. At the end of step (iii), each row of B is still sorted. Moreover, there are at most b
bad rows in B and they form a contiguous region such that for each row i < j in this region, we
have 1(i) ⩽ 1(j).

Proof. Given that we copy each sorted region of A into m/b2 rows of B, we have that rows of B
are sorted after step (ii). Thus, for columns p, q ∈ [b] with p < q, 1(p) ⩽ 1(q) in matrix B at the
end of step (ii). Moreover, step (iii) does not change the number of 0’s and 1’s in each column.
After step (iii), if some row i ∈ [m/b] of B is not sorted, there will be columns p, q such that p < q
but 1(p) > 1(q), a contradiction. Thus, after step (iii), each row of B will still be sorted.

Let us partition the rows as follows: Pi =
{
j | (i− 1) ·m/b2 + 1 ⩽ j ⩽ i ·m/b2

}
, for i ∈ [b],

namely, contiguous regions of m/b2 rows each. After step (ii), each Pi can only have one bad row
as we copied a sorted region of A into all entries in Pi. Thus, there are at most b bad rows in the
matrix B overall. After step (iii), we get that these b bad rows should appear next to each other
as the columns are now sorted. The sortedness also implies that for each i < j in these bad rows,
1(i) ⩽ 1(j) as desired. Refer to Figure 18 for an illustration.

Now, with standard techniques, it is sufficient to sort every square of dimension b×b in B to get
the final sorted array. However, [PP89] employs a diagonalization technique to reduce the number
of squares we need to sort. The next lemma is the main reason why we do not need to sort every
square of dimension b× b.
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b

b

m/b

1

0

Figure 18: An illustration of matrix B after step (ii). All the cells below the partition are 1, and
all the cells above it are 0.

Lemma D.4. At the end of step (iv), for every ℓ ∈ [m/b2 − 1]: (1) if square ℓ has at least one 1,
then 0(ℓ+ 1) < b2/2, and (2) if square ℓ+ 1 has at least one 0, then 1(ℓ) < b2/2.

Proof. Let square ℓ have at least one 1 in it. We will look at matrix B after step (iii) to upper
bound 0(ℓ+ 1). Each square ℓ in matrix C will be a rhombus in matrix B. It will contain all the
cells B[i, j] such that:

(ℓ− 1)b+ 1 ⩽ i+ j ⩽ ℓ · b and 1 ⩽ j ⩽ b.

Figure 19 gives an illustration of this (and also specifies several key regions needed for the proof).

X

Y

Z
W

U

V

Q
P RT

S

F

G

b

(i1, j1)

(i3, 1)

Figure 19: Upper bounding the number of 0’s in square ℓ+ 1 in Lemma D.4.

Let (i1, j1) be the top most cell in square ℓ with a 1. In case of ties, we pick the left most
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cell. By Claim D.3, we know that all the cells (i, j) with i ⩾ i1 and j ⩾ j1 must be a 1 in B. Let
i2 = i1 + b. Cell (i2, j1) must be present in square ℓ+ 1 if cell (i1, j1) is in square ℓ.

Let (i3, 1) be the point which is the left most and bottom most cell in square ℓ (by our con-
struction, i3 =

⌈
i1
b

⌉
· b). Then, (i3 − j + 1, j) is the last cell in column j which is in square ℓ.

Refer to Figure 19 for the various possible areas in matrix B. We use num(x) to denote the
number of cells in region x. The following regions are defined in the figure, and we make some
simple observations:

• Square ℓ+ 1 is all the cells inside rhombus UYSF.

• The top most and left most 1 in square ℓ is the first cell in region XVW.

• num(XZRP) = b(b− j1 + 1).

• num(XVW) = 1/2 · (i3 − j1 − i1) · (i3 − j1 − i1 + 1). (The boundary of this region is marked by
the cells (i1, j1), (i1, i3 − i1 + 1), (i3 − j1 + 1, j1).)

• num(STR) = 1/2 · (i2 − i3 − 1) · (i2 − i3).

• num(QTF) = 1/2 · (i3 + b− i2) · (i3 + b− i2 + 1).

The total number of cells with 1 in square ℓ+ 1 is lower bounded by,

1(ℓ+ 1) ⩾ num(VWZSTP)+ num(QTF)

= num(XZRP)− num(XWV)− num(SRT)+ num(QTF)

= b(b− j1 + 1)−
1/2 ·

(
(i3 − j1 − i1)(i3 − j1 − i1 + 1) + (i2 − i3 − 1)(i2 − i3)− (i3 + c− i2)(i3 + c− i2 + 1)

)

= b(b− j1 + 1)− 1/2 · ((x− j1)(x− j1 + 1) + (b− x)(b− x− 1)− x(x+ 1))
(by defining x := i3 − i1)

= b2 − bj1 + b− 1/2 ·
(
(x− j1)(x− j1 + 1) + b2 + x2 − 2bx− b+ x− x2 − x

)

= b2 − bj1 + b− 1/2 ·
(
(x− j1)(x− j1 + 1) + b2 − 2bx− b

)

= 1/2 · (b2 + 3b+ (x− j1)(x− j1 + 1 + 2b)).

This quantity is minimized when x = j1. Note that i1 + j1 ⩽ i3 for cell (i1, j1) to belong to
square ℓ, and thus, x ⩾ j1. This proves one part of the lemma, as the number of 0s is upper
bounded by 1/2 · (b2 − 3b) in square ℓ+ 1, whenever there is a cell with 1 in square ℓ.

We can prove that if there is a 0 in square ℓ+1, the number of 1’s in square ℓ is upper bounded
by (b2 − 3b)/2 < b2/2 similarly.

Lemma D.5. The network Merge merges the input array A correctly. Moreover, with b2-size
sorters, it has depth O(logbm).

Proof. By Claim D.3, there are only b contiguous bad rows in B, which implies that there are most
two consecutive bad squares ℓ and ℓ+1 in C. By Lemma D.4, once we merge the last b2/2 cells of
square ℓ with first b2/2 cells of square ℓ+ 1, we will definitely move all the 0’s before the 1’s, thus
making C entirely sorted. This proves the correctness of Merge.
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If we have sorters of size b2, we can perform steps (v) and (vi) easily with 1 layer each. Let
M(m) denote the depth of Merge on input size m. We get the following recurrence:

M(m) = M(m/b) + 2.

The total depth is thus M(m) = O(logbm).

D.2 The Final Sorting Network

We are now ready to give the final sorting network to sort an array of sizem usingMerge primitive.
For this proof, we revert back to using b-sorters as was the original problem.

Input: Array A which is a permutation of [m].

Output: Array A sorted in increasing order.

Algorithm Sort(A):

(i) If m ⩽ b, compare all indices directly using one b-sorter.

(ii) Otherwise, run Sort on (A[ℓ ·m/
√
b+1], . . . , A[(ℓ+1) ·m/

√
b]) for each 0 ⩽ ℓ ⩽

√
b− 1.

(iii) Run Merge(A,m/
√
b,
√
b) (with (

√
b)2 = b-sorters)

Proof of Proposition D.1. The correctness of primitive Sort follows from Lemma D.5, as we have
b-sorters, and we merge

√
b arrays of size m/

√
b each. The depth of Merge is O(log√bm) =

O(logbm). Let S(m) be the depth of the sorting network on input of size m. Then,

S(m) = S(
m√
b
) +O(logbm),

giving us a final depth of S(m) = O(log2b m) as desired.
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