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Preface

Wait! What does an article on ‘multi-pass graph streaming’ has anything to do with a
column for ‘distributed computing’?

Let us answer this important question before getting to our main topic.

In recent years, there has been a wonderful cross-pollination of ideas between (multi-pass)
graph streaming algorithms and various distributed models such as LOCAL/CONGEST or Mas-
sively Parallel algorithms. It is now quite common to see techniques that transcend the boundaries
of individual models and address a problem in a single sweep across all these models simultane-
ously. The reader is referred to, say, [KMVV13, BDH+19, ABB+19, ACK19b, ACKP21, FMU22,
HKNT22, HS23, FGH+23] (this list by no means is a comprehensive or even a representative of
these large family of results). On top of this, we now have many researchers who are quite active
in both these areas of research simultaneously and thus share interest between these traditionally-
disjoint areas. This has made graph streaming algorithms, even if not exactly part of the family,
at least a close friend to the distributed computing community.

On top of this, a natural consequence of the close connection between these models is that lower
bounds in each model have important consequences for other ones as well—for instance, even if a
streaming lower bound does not formally extend to a distributed one, it can still informs us that a
general technique that is oblivious to key differences of streaming vs distributed algorithms cannot
provably work for the problem in question; this in turn often helps in finding the “right” approach for
addressing the problem. An even more important factor is the fact that streaming lower bounds are
almost exclusively proven via communication complexity. As a result, streaming lower bounds can
often be seen equivalently as communication complexity lower bounds (for bounded-round protocols
– more on this later in the article). Given the central role that communication complexity plays
also within the distributed computing community, the results here and techniques behind them
can be independent interest to researchers working on communication complexity and distributed
computing, even if we entirely ignore their implications to the streaming model.

This gives the motivation for this article. Finally, please note that we do not assume any prior
knowledge of streaming algorithms or lower bounds. As such, the article can hopefully be enjoyed
by a wide range of audiences and in particular the readers of the distributed computing column,
and act as a gentle introduction to the rapidly growing body of work on multi-pass graph streaming
lower bounds.

1 Background

Graph streaming algorithms process their input graphs presented as a sequence of edges under the
usual constraints of the streaming model of [AMS96], i.e., by making one or a few passes over the
input and using a limited memory. Since their introduction by [FKM+05] almost two decades ago,
graph streaming algorithms have been at the forefront of the research on processing massive graphs.
We refer the reader to [McG14] for an excellent survey of origins and earlier work and to [BFK+21]
for practical aspects of this model.

While in certain cases one can only afford single-pass streaming algorithms—say, in network
monitoring applications when the data is passing through a router in a streaming fashion—there are
also many scenarios wherein it is perfectly acceptable to work with streaming algorithms that make
a few more passes over the input—say, when ensuring I/O efficiency in processing data that does not
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fit in the main memory1. This is particularly important as in many cases allowing even a few more
passes over the stream can greatly enhance the power of streaming algorithms. As a result, there is
a vast and growing body of work, since [FKM+05] itself, on multi-pass graph streaming algorithms
(see these illustrating work [McG05, AG11, KMVV13, CW16, BC17, MN20a, ALT21, FMU22] and
references therein for a starting point).

One of the most interesting aspects of the streaming model in general is our ability in proving
unconditional lower bounds (or impossibility results) for algorithms with limited resources
in this model, primarily using tools from communication complexity. These lower bounds can
provide invaluable insights into the problems at hand and guide us in designing better algorithms
or adjusting our expectations by making more realistic assumptions2.

When it comes to the graph streaming model in particular, the state of the art in single-pass
graph streaming algorithms and lower bounds shows a perfect illustration of this synergy. We
now have lower bounds that rule out any non-trivial single-pass algorithms for various problems
(say, reachability, shortest path, or perfect matching [FKM+05]), non-trivial algorithms and lower
bounds that precisely match each others’ performance (say, dominating set [AKL16], approximate
shortest path [FKM+08], or maximum cut [KK19]), or algorithms and lower bounds that are rapidly
“converging” toward each other (say, approximate matching [Kap21]). Indeed, we now have a large
set of tools and techniques that allows us to attack single-pass graph problems from both upper and
lower bounds simultaneously and often we can turn barriers in designing algorithms into formal
lower bounds and vice versa; see, e.g., [AKM22] for an example that illustrates this whole process.

The state of the art for multi-pass graph streaming lower bounds however lags considerably
behind. For most problems of interest, there are still significant gaps between current algorithms
and lower bounds, and in many cases we effectively do not have any techniques that allow us to
prove lower bounds that are even remotely close to the current algorithms. The goal of this article
is to highlight these shortcomings and review the current landscape of multi-pass graph streaming
lower bounds and hopefully act as a gentle introduction to this beautiful area of research.

2 Preliminaries and Definitions

We formalize some basic definitions related to graph streaming algorithms. While a reader familiar
with the notion might skip ahead, we recommend checking the precise definition of streaming
algorithms and communication complexity as in certain cases, we need to deviate slightly from the
more “standard” definitions.

Notation. For any integer m ⩾ 1, we let [m] := {1, 2, . . . ,m}. For a graph G = (V,E), we denote
the number of vertices by n := |V | and number of edges by m := |E|. Throughout, we use Õ and Ω̃
notation to hide poly-log factors, namely, Õ(f) := O(f · polylog(f)) and Ω̃(f) = Ω(f/polylog(f)).

2.1 Streaming Algorithms

In this article, we work with a more powerful model than what is typically considered of streaming
algorithms (a common approach in proving lower bounds; see, e.g. [GM08, LNW14, BGW20]).

1The idea of multi-pass processing of inputs predates the streaming model itself by a couple of decades and goes
(at least) all the way back to the influential work of [MP78] on order statistics in 70’s.

2An illustrative example is streaming CSPs (see the survey of [Sud22]) wherein not only the algorithms and lower
bounds precisely match each other, but in fact, they are obtained from each other. E.g., [CGS+22] turn the counter
examples to a certain “biased-based” algorithm into lower bounds for all streaming algorithms in a systematic way.
See also follow-up work in [SSSV23, SSSV22] that shows how more relaxed assumptions such as random-order arrival
or two-pass algorithms allows for improving upon the single-pass lower bounds using insights from them.
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Definition 2.1 (Streaming algorithms). For any integers p, s ⩾ 1, a deterministic p-pass
s-space streaming algorithm A working on an n-vertex graph G = (V,E) presented as a stream
E = (e1, . . . , em) (in some arbitrarily chosen order) is defined as follows:

(i) There is a function updateA : {0, 1}s × (V × V )→ {0, 1}s that updates the state of the
algorithm: The algorithm starts with the state S := 0s, and for i ∈ [m], whenever A reads
ei = (ui, vi) in the stream, it updates its current state S to S ← updateA(S, (ui, vi)) (the
algorithm is computationally unbounded when computing its next state).

(ii) At the end of the p-th pass, A outputs the answer as a function of its state S.

A randomized p-pass s-space streaming algorithm is simply a distribution over deterministic
p-pass s-space streaming algorithms.

(We note that this model is non-uniform and is defined for each choice of n individually.)

Let us point out two main differences with what one may expect of streaming algorithms. Firstly,
we allow our streaming algorithms to do an unbounded amount of work using an unbounded amount
of space between the arrival of each stream element; we only bound the space in transition between
two elements. Secondly, we do not charge the streaming algorithms for storing their random bits.
Clearly, any lower bound proven for streaming algorithms in Definition 2.1 will hold also for more
restrictive definitions of streaming algorithms.

2.2 Communication Complexity

We use standard definitions of the two-party communication model of [Yao79] (sometimes, with
some slightly non-standard aspects which will be mentioned later). The reader is referred to
textbooks by [KN97] and [RY20] for more information.

Let P : X ×Y → Z be a relation. Alice and Bob receive inputs X,Y , respectively, chosen from a
joint distribution over X×Y. The players have access to both private and public randomness3. They
communicate by exchanging messages according to some protocol π. Communication happens in
rounds. In each round, one of the players communicates a message to the other, which is a function
of the input and private randomness of the sender, the already communicated messages, and public
randomness. At the end, one of the players outputs an answer Z ∈ P (X,Y ).

Definition 2.2. Communication cost of a protocol π, denoted by CC(π), is the worst-case
length of the messages communicated by players in π.

Communication complexity of a problem is the minimum communication cost of a
protocol for solving the problem with randomization and with probability of success 2/3 (unless
specified otherwise, e.g., by focusing on protocols with limited number of rounds).

When it comes to graphs, we often consider the following types of communication problems:
edges of an n-vertex graph G = (V,E) are partitioned between Alice and Bob, and the goal is to
solve a given problem over the entire graph G, say, decide if G has is connected.

The following well-known proposition—already observed by [AMS96] while defining the stream-
ing model itself—relates communication complexity and streaming algorithms.

3Allowing both types of randomness—despite sounding counter-intuitive at first—is necessary when one uses tools
from information complexity (and in particular direct-sum style arguments); see [Wei15, Section 2.3] for more details.
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Proposition 2.3 (c.f. [AMS96]). Let P : X × Y → Z. For any integer p ⩾ 1, any p-pass s-
space streaming algorithm A that computes P on streams X ◦Y (where ◦ denotes the concatenation
operator on two consecutive parts of the stream) implies a (2p− 1)-round communication protocol
πA for P with communication cost O(p · s) and the same probability of success.

We conclude this section with the following important remark.

Remark 2.4. In principle, one can consider streaming algorithms with any number of passes as
a form of bounded-space computation (e.g., LOG-SPACE). Yet, such algorithms may deviate too
much from the spirit of the model in processing inputs with “few” passes (both in terms of practicality
and the theory behind them). As such, in this article—and, to our knowledge, the entirety of graph
streaming literature with only few exceptions—we consider graph streaming algorithms “interesting”
only when their (space × passes) is o(n2) (and generally o(m) for m-edge graphs). This choice of
parameters is not arbitrarily and corresponds to the regime wherein communication complexity lower
bounds can still prove something non-trivial for streaming algorithms (see Proposition 2.3).

3 Earlier Results and Techniques Behind Them

We first provide a summary of earlier work on graph streaming lower bounds. Given that our main
focus in this article is to cover more recent advances, the description of earlier work will be less
comprehensive. These “earlier” results4 can be partitioned into the following two broad categories:

• “Super strong” lower bounds with “minimal” pass-dependency: Various results—almost
all based on the communication complexity of set intersection [KS92, Raz90, BJKS02]—that rule
out all “interesting” multi-pass algorithms (in spirit of Remark 2.4) for some NP-hard problems
like maximum clique [HSSW12] or some other “hard” problems such as triangle detection [PS84,
BKS02, BOV13]. These results almost always imply an Ω(n2/p) space lower bound for p-pass
algorithms (for sparse graphs, the lower bounds are Ω(n/p)-space as expected; see, e.g. [SWY12]).

• Logarithmic-pass lower bounds on “random” graphs: Several results—all based on (limited-
round) communication complexity of multivalued pointer chasing [NW91, JRS03, FKM+08]—that
prove lower bounds of n1+Ω(1/p) space for p-pass algorithms for solving “easier” problems (com-
pared to the class of problems mentioned above) such as directed reachability, undirected shortest
path, or bipartite matching [FKM+08, GO13, CGMV20].

3.1 “Super Strong” Lower Bounds

In general, as a community, we have been quite successful in proving “super strong” lower bounds
that can rule out any “interesting” (as in Remark 2.4) multi-pass algorithms for certain problems,
namely, prove that Ω(n2/p) space is needed for p-pass streaming algorithms5 (or tradeoffs of sim-
ilar nature wherein the space decays linearly in the number of passes). Examples of such lower
bounds hold for problems such as: maximum clique or independent set [HSSW12], dominating
set [Ass17], Hamiltonian path [BCD+19], maximum cut [BCD+19, KPSY23], vertex cover and col-
oring [ACKP21], exact Boolean CSPs [KPSY23], triangle detection [PS84, BKS02, BOV13], and
diameter/girth computation [FKM+08, FHW12], among others.

4Some of these results are actually quite recent but the techniques behind them follow the (truly) earlier ones
closely and so in this article, we bundle these results together.

5Being able to prove such lower bounds may sound at odds with our message on lack of techniques to prove
strong multi-pass lower bounds. We shall clarify shortly why this is not the case but a quick analogy might help:
in computational complexity also, we are generally good at proving super strong lower bounds even unconditionally,
e.g., by proving a given problem is undecidable...
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A quick glance at the list of problems above may suggest an intuitive reason why we could prove
such lower bounds: the above list consists of problems that are computationally hard in a classical
sense, suggesting that we are dealing with a “hard” class of problems in their case. While this
intuition should not be taken in any way as a formal evidence—classical computational hardness
does not imply streaming lower bounds which are unconditional and information-theoretic—one can
formalize it instead using the language of communication complexity: All these problems admit an
Ω(n2) communication complexity lower bound irrespective of the number of rounds of the protocols
(thus, their streaming lower bound is just an immediate corollary of this and Proposition 2.3).

These lower bounds are proven almost exclusively using reductions from the set intersection
problem in communication complexity [KS92, Raz90, BJKS02] (or problems of similar nature such
as inner product [KN97, RY20] or gap hamming distance [IW03, CR11]); see, e.g., [BCD+19] for a
collection of such reductions. The important point to emphasize here is that since set intersection
is a hard problem regardless of the number of rounds of the communication, the communication
lower bounds obtained this way are not sensitive to the rounds of protocols (although, since unlike
communication, space is reusable, the space lower bound still decays (linearly) in the number of
passes in Proposition 2.3).

A main shortcoming of this technique is its limited applicability: while it can prove super
strong lower bounds, it also only applies to “super hard” problems with not much room for any
non-trivial tradeoffs in between. Conceptually, to use this technique, one needs to prove a lower
bound in a model which is much stronger (algorithmically) than the streaming model. As such, this
technique provably does not apply to the majority of the problems of interest in graph streaming,
since those problems admit low-communication protocols (for instance, reachability, shortest path,
and bipartite matching, three of the most fundamental problems in this area, all admit Õ(n)
communication protocols—the first two trivially and the latter by a result of [BvdBE+22]).

3.2 Pointer Chasing on “Random” Graphs

The next step in proving graph streaming lower bounds in the literature has been to consider
a communication model “closer” to streaming: protocols with limited rounds of communication.
By Proposition 2.3, such communication lower bounds continue to imply streaming lower bounds
for algorithms with similar number of passes.

The prototypical example of a problem here is pointer chasing : We have two sets A and B of
size w and Alice is given a function f : A → B, while Bob has a function g : B → A. Let z0 be a
fixed element of B and define the “pointers”:

z1 := g(z0) z2 := f(z1) z3 := g(z2) · · ·

The goal in this problem is to compute zk for some fixed integer k ⩾ 1 (see Figure 1).

Pointer chasing can be easily solved with O(k · logw) communication in k + 1 rounds by Alice
skipping the first round of communication and from thereon the players iteratively computing the
pointers using their inputs and commcitepng them. But, a series of work initiated by [NW91],
culminated in the optimal lower bound of [Yeh20] that proves that solving pointer chasing in k
rounds, namely, just shaving a single round from the trivial protocol, requires Ω(w/k) communica-
tion (whenever k ≪ √w, a necessary condition by Birthday Paradox).

It turns out that pointer chasing, on its own, does not lead to that many interesting reductions
for proving graph streaming lower bounds6. However, [FKM+08] proposed an interesting reduction

6A notable exception is the elegant reduction of [CW16] for multi-pass semi-streaming algorithms for hypergraph
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Figure 1: An illustration of the pointer chasing problem with w = 10 and k = 4. The edges from A to B
(blue edges) are determined by f and the edges from B to A (red edges) are determined by g. The pointers
are also highlighted (in green).

from a direct-sum version of this problem7—whose lower bound was established by [JRS03]—to
prove lower bounds for finding undirected shortest paths or directed reachability paths: any p-pass
streaming algorithm for either problems requires n1+Ω(1/p) space whenever p = o(log n/ log log n);
in particular, semi-streaming algorithms require Ω(log n/ log log n) passes.

These lower bounds were later improved by [GO13] by defining the set chasing problem: roughly
speaking, this problem corresponds to solving OR and other aggregate functions of multiple in-
stances of pointer chasing (instead of solving all of them as in the direct-sum version of [JRS03]).
The lower bound for set pointer chasing then allowed for extending the results of [FKM+08] from
search problems to decision problems, namely, for computing the value of distances or solving the
decision version of s-t reachability. More recently, [CGMV20] extended the lower bounds of [GO13]
to various other problems in directed graphs and even to random-order streams. An even more
recent take on these types of lower bounds is by [CKP+21b] that prove multi-pass lower bounds
for random-walk generation in directed graphs.

The lower bounds obtained via these reductions from independent instances of pointer chasing
so far typically have not led to optimal bounds (e.g., [FKM+08, GO13, CGMV20] already deviate
from optimal bounds from their second pass, and [CKP+21b] (seemingly) from its third pass). A
simple explanation is the following: the graphs created in these reductions are typically “random
graphs”—in a sense that each vertex is independently connected to “many” other vertices chosen
at random—and algorithmically such random graphs are often among the “easiest” instances for
underlying graph problems (see, e.g., the classical work of [Mot89] on classical algorithms for
bipartite matching on random graphs, or [CGMV20] for more directly related algorithms in the
semi-streaming model). As a result, the tradeoffs obtained by these bounds, namely, n1+Ω(1/p)-space
for p-pass algorithms, do not imply any non-trivial lower bounds for semi-streaming algorithms
beyond logarithmic passes.

Finally, before moving on from this section, let us highlight that in the light of our discussions
here, proving lower bounds beyond O(log n) passes has become a (weak) “barrier” in the graph
streaming literature lower bounds. This is in the sense that we generally lack techniques for proving
such lower bounds whenever the problem at hand is “not too hard”, i.e., has Õ(n) communication
complexity. See the work of [ACK19a] that discusses this in more details.

edge-cover (equivalent to set cover) from the tree pointer chasing problem which is an even a simpler variant of
pointer chasing, using a sophisticated combinatorial construction of a set-system for the reduction.

7As in any other direct-sum version, the goal here is to solve multiple independent instances of pointer chasing on
the same sets A,B, namely, output multiple pointers, one corresponding to each instance.
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4 Recent Advances

We are now ready to discuss the more recent advances that have happened in the last few years.
These results can be partitioned into the following three main frontiers, that will be discussed at
length throughout this section:

• Parameter estimation and property testing in o(n)-space: The results in [AKSY20, AN21]
that proved multi-pass lower bounds for ε-approximation of various parameters and property
testing problems in o(n)-space, as well as those of [CKP+23] that made progress toward proving
multi-pass lower bounds for the maximum cut problem.

• Semi-streaming lower bounds above logarithmic passes: The lower bounds of [ACK19a]
that bypass the limitations of previous techniques in proving super-logarithmic pass lower bounds
for semi-streaming algorithms for some graph problems and its follow-up work in [AGL+23] that
strengthened and broadened the range of this technique.

• “Strong” lower bounds below logarithmic passes: The n2−o(1)-space lower bounds of [AR20]
and [CKP+21a] for two-pass and O(

√
log n)-pass algorithms, respectively, for canonical problems

such as reachability, shortest path, and bipartite matching, and follow-up work in [Ass22, AS23]
on proving multi-pass lower bounds for constant approximation of bipartite matching.

4.1 Frontier I: Sublinear-in-n Space Regime

It has been known since the introduction of the semi-streaming model [FKM+05] that finding
solutions to graph problems, say, finding a minimum spanning tree or a large matching, or checking
a property, say, connectivity or bipartiteness, is often times impossible in the o(n)-space regime. For
former problems we do not even have enough space to store the answer, and for the latter there are
typically simple lower bounds (via reductions from set intersection) that rule out p-pass algorithms
with o(n/p)-space on sparse graphs (ruling out all “interesting” algorithms in Remark 2.4).

Consequently, the main focus in the o(n)-space regime has been on the following problems:

• Parameter estimation, e.g., estimate the size of maximum cut, maximum matching, weight of
MST, number of triangles and other small subgraphs, etc;

• Property testing, e.g., deciding if a graph has a certain property or is “far from” having that
property8, say, for connectivity, cycle freeness, bipartiteness, etc.

See, e.g. [KKS14, EHL+15, MV18, HP16, PS18, MV20, KMNT20, FP22] and references therein for
some algorithmic work here.

Gap Cycle Counting Problems

Pioneered by [VY11], there is a large body of work on lower bounds for single-pass algorithms in
the o(n)-space regime at this point. This for instance includes optimal lower bounds for estimating
maximum cut value [KKS14, KKSV17, KK19] and various related CSPs (say, maximum directed
cut) [CGV20, CGSV21, CGS+22], lower bounds for (1+ε)-approximation of matching size [EHL+15,
BS15], or property testing lower bounds [HP16]. The starting point for all these lower bounds is
the gap cycle counting problem: distinguish between graphs consisted of vertex-disjoint unions

8For instance, an ε-tester for connectivity decides if G is connected or requires at least ε ·n more edges to become
connected; see [HP16] for a streaming algorithm for this and other related problems.

ACM SIGACT News 55 September 2023, vol. 54, no. 3



of either k-cycles versus 2k-cycles (although in particular cases like maximum cut, recent work, say,
in [KK19], significantly deviated from this approach to obtain optimal bounds).

While it was conjectured by [VY11] that gap cycle counting requires Ω(k) passes in polylog(n)
space, no multi-pass lower bounds were known for this problem. Thus, none of the aforementioned
lower bounds in this line of work based on this problem applied beyond single pass algorithms.

In 2020, [AKSY20] proved the first multi-pass lower bound for the gap cycle counting problem:
distinguishing between k-cycles and 2k-cycles in polylog(n)-space requires Ω(log k) passes (this
holds even k-cycles versus one Hamiltonian cycle). As a corollary, [AKSY20] could simply rely on
the myriad of reductions known from gap cycle counting in the literature for proving single-pass
lower bounds, to obtain the following multi-pass lower bounds as well:

Theorem 1 ([AKSY20]). Any p-pass streaming algorithm for any of the following problems on n-

vertex graphs requires n1−εO(1/p)
space (the references below list the most closely related single-pass

lower bounds for the corresponding problem):

• (1 + ε)-approximation of maximum cut (cf. [KK15, KKS15]), maximum matching size (cf.
[EHL+15, BS15]), maximum acyclic subgraph in directed graphs (cf. [GVV17]), or the weight
of a minimum spanning tree (cf. [FKM+05, HP16]);

• ε-property testing of connectivity, bipartiteness, and cycle-freeness (cf. [HP16].

In particular, any polylog(n)-space algorithm requires Ω(log (1/ε)) passes.

An important aspect of Theorem 1 is that these lower bounds for the most part apply to
extremely simple families of sparse graphs like constant degree planar graphs. This is particularly
relevant because majority of algorithmic work in the o(n)-space regime is also targeted to “simpler”
families of sparse graphs which are more amenable to efficient algorithms (the o(n)-space regime
is also uniquely suited for studying sparse graphs as in the Ω(n)-space regime, there is always the
trivial algorithm that stores the entire graph in the input and solves the problem offline).

Prior to Theorem 1, it was conceivable that all problems mentioned in this theorem admit
O(log n) space algorithm in just two passes!9 Theorem 1 on the other hand showed that at least
some dependence on the approximation ratio in the number of passes is necessary for polylog(n)
space algorithms, namely, they need at least Ω(log (1/ε)) passes.

Nevertheless, the Ω(log (1/ε))-bound of Theorem 1 is an artifact of the techniques of [AKSY20]
and was not tight for any of the aforementioned problems. This was addressed subsequently
by [AN21] who improved the lower bound of [AKSY20] for the gap cycle counting problem to an
optimal Ω(k) pass lower bound (albeit for a slightly different, and “algorithmically harder”, version
of the problem wherein the graph may also contain Θ(n/k) paths of length k in both cases). As a
result, and by minor modification of previous reductions (to account for the extra “noise” in form
of k-paths added to the input), [AN21] obtained the following lower bounds.

Theorem 2 ([AN21]). Any p-pass streaming algorithm for any of the problems listed in Theorem 1
on n-vertex graphs requires n1−O(ε/p) space. In particular, any polylog(n)-space algorithm requires
Ω(1/ε) passes.

9Although this seemed like an extremely unlikely outcome and in some cases certainly at odds with known
conditional lower bounds, say for instance an O(log n) space algorithm for (1+ ε)-approximation of maximum cut in
any number of passes despite the NP-hardness of such a strong approximation, which (almost) implies RL ̸⊆ NP.
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Similar to Theorem 1, the lower bounds in Theorem 2 also continue to hold for the same
very simple families of graphs like constant degree planar graphs. For almost all these problems,
no better pass lower bounds are yet known since [AN21] even on any general families of graphs.
Moreover, Theorem 2 is now strong enough to establish optimal lower bounds for at least some
of these problems such as estimating the weight of minimum spanning tree (on bounded-weight
graphs) or property testing of connectivity and cycle-freeness (on any families of graphs).

The lower bounds in Theorems 1 and 2 exclusively targeted (1 + ε)-approximation algorithms
for small values of ε > 0. Subsequent to [AN21], [ACL+22] used the results in Theorem 2 to prove a
lower bound for (almost) o(log n)-approximation of hierarchical clustering (HC) value in polylog(n)-
passes. However, this stronger approximation lower bound happens because the HC value tends
to deviate quite significantly based on the length of the cycles in (a variant of noisy) gap cycle
counting problems (much more than the (1 + ε)-factor for previously mentioned problems), and so
this does not fundamentally alter the aforementioned aspect of these multi-pass lower bounds.

Beyond Gap Cycle Counting

While the lower bounds in Theorems 1 and 2 are optimal in certain cases, for most other problems
the obtained bound seems quite far from the right answer. This is in particular because these
theorems are all for progressively weaker approximations in terms of number of passes—meaning
that the approximation ratio decays (rather significantly) with the number of passes—even though
this does not seem like even qualitatively the right tradeoff for many problems. At a more technical
level, while gap cycle counting can capture “something” about the difficulty of various problems,
it is usually not “as hard as” those problems in their most general sense.

A particularly illustrative example here is the maximum cut problem. Distinguishing between
k-cycles versus 2k-cycles when k is an odd number is indeed a necessary condition for obtaining a
(1+Θ(1/k))-approximation of maximum cut, but it is certainly not a sufficient one. In single-pass
streams, it is trivial to 2-approximate maximum cut in O(log n) space by returning the number of
the edges, and a series of work in [KKS15, KKSV17] culminated in the breakthrough of [KK19]
that proves better than 2-approximation is not possible in o(n) space. Yet, even for two-pass
algorithms, Theorems 1 and 2 can only rule out some 1.001-approximation even though we are not
aware of any no(1)-space and no(1)-pass streaming algorithms with better than 2-approximation.
This leaves the complexity of this problem for multi-pass streaming algorithms wide open.

Addressing this question requires going beyond the gap cycle counting approach and studying
a different families of hard input graphs. A natural candidate, motivated by single-pass lower
bounds of [KKS15, KK19], is to consider the task of distinguishing between random bipartite
graphs with some large-constant degree versus general random graphs of the same degree (which
are going to be “far” from bipartite with high probability). Such graphs admit a factor two
gap between their maximum cut value and proving indistinguishability of these distributions for
streaming algorithms implies optimal-approximation lower bounds for the maximum cut problem
(this is the approach taken in [KKS15] and [KK19] in their o(

√
n)-space and o(n)-space single-pass

lower bounds, respectively).

Proving such indistinguishability results for multi-pass streaming algorithms appears to be a
challenging problem. However, very recently, [CKP+23] made an important progress on this front
by providing a strong evidence in favor of a lower bound for multi-pass streaming algorithms.

Theorem 3 ([CKP+23]). Any no(1)-space streaming algorithm for outputting a cycle from a random
graph on n vertices with (large) constant degree requires Ω(log n) passes (the exact distribution of
input graphs is slightly different from truly random graphs; see [CKP+23] for the precise definition).

ACM SIGACT News 57 September 2023, vol. 54, no. 3



To put Theorem 3 in some context, notice that arguebly the most natural algorithmic strat-
egy for distinguishing between bipartite random graphs versus general ones is to try to find an
odd cycle in the input (the latter family has Ω(n) odd cycles, while the former has none). But
now Theorem 3 establishes the impossibility of this task (for any cycle not only odd ones). In other
words, Theorem 3 is effectively proving that outputting a certificate that ‘maximum cut is small’
is impossible in small space and number of passes (although this is not formal as there might be
other ways of certifying maximum cut size on this distribution as well). This provides a strong
evidence in favor of a lower bound for any algorithm that can distinguish between these families.

4.2 Frontier II: Semi-Streaming Lower Bounds Beyond Logarithmic Passes

Let us now switch to the Ω(n)-space regime and in particular semi-streaming algorithms that use
Õ(n) space. There is a large body of work on multi-pass semi-streaming algorithm already since
their introduction in [FKM+05]. See [FS22, AD21, CKP+21b, FMU22, MN20b, AG18, AJJ+22,
CFHT20] and references therein for some pointers to the algorithmic work in this area.

The lower bound front however has been significantly less explored. In 2019, [ACK19a] observed
that at this stage, we even do not know super-logarithmic lower bounds for any problem which is
“not too hard” namely, has Õ(n) communication complexity (recall our discussion in Sections 3.1
and 3.2). In other words, it seems that there is at least a weak barrier for going beyond logarithmic
passes. Thus, they put forward the following natural plan: Proving super-logarithmic (ideally
polynomial) pass lower bounds for “not too hard” graph problems in the semi-streaming model.
This in turn led to the following theorem.

Theorem 4 ([ACK19a]). Any semi-streaming algorithm for finding the lexicographically-first max-
imal independent set (LFMIS) of a given graph requires Ω̃(n1/5) passes.

Here, a maximal independent set (MIS) is an independent set which is not a proper subset
of another one, and the LFMIS is the MIS with the smallest ordering of vertices according to
their IDs. Alternatively, LFMIS can be seen as the output of this algorithm: pick the vertex with
minimum ID, remove all its neighbors, recurse. LFMIS is indeed a “not too hard” problem as its
communication complexity is Õ(n) by Alice and Bob simulating the previous algorithm10.

The importance of this result is not in the choice of LFMIS—which is admittedly not an
interesting problem in the semi-streaming model—but rather the techniques behind it. As discussed
in Sections 3.1 and 3.2, neither family of techniques in earlier work in graph streaming lower bounds
applies to this problem, and thus one needs to develop a new approach for proving Theorem 4.
This was obtained in [ACK19a] via defining a new communication problem, called the hidden
pointer chasing (HPC) problem which was a natural “interpolation” between the two techniques
discussed in Sections 3.1 and 3.2. At a high level, this is a communication problem which is “easy”
with unlimited number of rounds of communication (unlike the approach in Section 3.1), but
remains “hard” even with some (small) polynomial rounds of communication (unlike the approach
in Section 3.2).

The techniques in Theorem 4 also allowed for proving lower bounds for a much more well-studied
problem in the graph streaming model, s-t maximum flow, albeit with a strong caveat. Any semi-
streaming algorithm that can find the value of s-t maximum flow (or equivalently minimum cut)
in undirected graphs with capacities as large as sub-exponential in n requires Ω̃(n1/5) passes. The
caveat is in the assumption of such large capacities on the edges which is a non-standard assumption

10However, technically speaking, LFMIS is not a graph problem as it is not invariant under the labeling of vertices
as a graph property should be. The author is thankful to Madhu Sudan for bringing this up.
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in this context11.

Very recently, [AGL+23] continued this plan by targeting the problems of computing k-cores
and degeneracy of a given graph. For any integer k ⩾ 1, a k-core of an undirected graph G is a set
of vertices K such that the minimum degree of G induced on K is at least k, namely, all vertices
in K have k other neighbors in K. The degeneracy of a graph G is then the largest integer k
such that G admits a non-empty k-core. k-cores and degeneracy provide natural notions of “well
connectedness” and “uniform sparsity” in input graphs and as such are studied extensively in the
literature; in particular, both problems admit (1 + ε)-approximation semi-streaming algorithms in
just a single pass [ELM18, GLM19, FT14, MTVV15, FT16]. On the other hand, [AGL+23] proves
that solving either of these problems exactly is significantly harder:

Theorem 5 ([AGL+23]). Any semi-streaming algorithm for computing the degeneracy of a given
graph exactly requires Ω̃(n1/3) passes. The same lower bound also applies to any algorithm that
given any integer k ⩾ 1, can output whether the input graph contains a non-empty k-core.

Both problems in Theorem 5 are also again “not too hard” problems, although unlike LFMIS,
this relies on a non-trivial protocol which was also developed in [AGL+23]. The lower bounds
in Theorem 5 now apply to some problems in the semi-streaming model that one could have ideally
hoped to be able to solve prior to this lower bound (and also for problems that are truly graph
problems in the sense of Footnote 10 without any non-standard assumptions).

The lower bound of Theorem 5, similar to its precursor in Theorem 4, is proven via a reduction
from the hidden pointer chasing problem of [ACK19a] (albeit in the former case, the reduction
is quite more intricate than the rather direct reduction of the latter). En route to proving The-
orem 5, [AGL+23] also improved the lower bound of [ACK19a] for the hidden pointer chasing
problem and further generalized it to a more “suitable” problem for performing reductions, which
in turn meant that the previous approach of [ACK19a] now in fact would imply Ω̃(n1/3) pass lower
bounds for the corresponding problems instead of their original Ω̃(n1/5) passes.

4.3 Frontier III: “Strong” Lower Bounds in Small Number of Passes

The final frontier we review also concerns the Ω(n) space. When it comes to multi-pass graph
streaming lower bounds in this regime, the three main problems at the center of attention are: (i)
s-t directed reachability, (ii) s-t unweighted undirected shortest path, and (iii) maximum bipartite
matching. The search version of these problems, namely, finding the paths or the matching, was first
addressed by [FKM+08] who proved that n1+Ω(1/p) space is needed for p-pass algorithms. These
results were then extended to the decision problem by [GO13] and subsequently strengthened and
generalized to random-order streams by [CGMV20]. This remained the state-of-the-art for quite
some time until the new developments that are the focus of this subsection.

New Space-Pass Tradeoff Lower Bounds in Graph Streams

The lower bound on space-pass tradeoff of n1+Ω(1/p) space for p passes in [FKM+08, GO13,
CGMV20] is reminiscent of a common upper bound tradeoff of the same form in the graph stream-
ing literature for various problems such as (1 + ε)-approximate matching in [AG18] or the general
algorithmic techniques of filtering [LMSV11] and sample-and-prune [KMVV13] that give algorithms
with such bounds for different problems.

11One implication of this non-standard assumption is that it is not clear whether this version of the problem is
even a “not too hard” problem, meaning that it might very well admit an Ω(n2) communication lower bound; in that
case, the techniques in Section 3.1 will imply much stronger semi-streaming lower bounds for this problem already.

ACM SIGACT News 59 September 2023, vol. 54, no. 3



Nevertheless, the lower bound tradeoffs established for these three problems in [FKM+08, GO13,
CGMV20] seems quite different from the best known upper bounds in [LJS19] for reachability
(see [AJJ+22, Proposition 4]), in [CFHT20] for shortest path, and in [AJJ+22] for bipartite match-
ing, suggesting that the “right” tradeoff might be something else. In particular, these lower bounds
already leave open the possibility of algorithms with much better than n2 space—the trivial bench-
mark corresponding to storing the entire input in a single-pass and solving the problem offline—
already even in two passes (more accurately, Ω(n4/3) space algorithms in [FKM+08] and Ω(n7/6)
space algorithms in [GO13, CGMV20]).

In 2020, [AR20] made the first progress on this question by proving that (almost) quadratic
space is indeed necessary for solving these problem even in two passes.

Theorem 6 ([AR20]). Any two-pass streaming algorithm for (the decision version of) either of
directed reachability, undirected shortest path, or bipartite matching requires a space of

Ω(
n2

exp
(
Θ(
√
log n)

)).

The lower bounds in Theorem 6 were primarily targeted to the reachability problem and the
other results for shortest path and bipartite matching (plus similar ones for related problems)
followed as a corollary of known reductions. These results now suggest that, similar to single
pass streams, a wide range of graph problems admit essentially no non-trivial two-pass streaming
algorithms (modulo, possibly, the no(1) term).

Ruzsa-Szemerédi graphs. It is worth taking a quick detour here. The exp
(
Θ(
√
log n)

)
-term

in Theorem 6 comes from the use of Ruzsa-Szemerédi (RS) graphs in [AR20] for constructing their
lower bound instances. These are a beautiful family of graphs that were first constructed by [RS78]
with the following property: their edges can be partitioned into t = Θ(n) induced matching of
size r = n/ exp

(
Θ(
√
log n)

)
each; here, an induced matching is a matching with no other edges

between its endpoints inside the graph. In general, one can be interested in different choices of
parameters for r and t; see, e.g., [BLM93, FLN+02, AMS12, FHS17] for different constructions (see
also Figure 2). The magical property of RS graphs is that they are “locally sparse” (an induced
matching creates a sparse induced subgraph), and yet “globally dense” (for large r and t).

In the streaming model, RS graphs were first used by [GKK12] to prove semi-streaming lower
bounds for approximating matchings in a single-pass and has since become a staple for proving
graph streaming lower bounds; see, e.g. [Kap13, AKL17, CDK19, Kap21, KN21] and references
therein (very recently, they have even been used to design algorithms for approximating matchings
in a single pass [ABKL23]). The use of RS graphs for proving lower bounds for the reachability
problem and their applications in [AR20] however was new in this context as it was used primarily
as a “medium” for lifting lower bounds from the o(n)-space regime to almost n2 space.

Let us now get back to our main topic. Subsequent to [AR20], [CKP+21a] provided an elegant
and vastly more general recursive construction of the approach in [AR20], again based on RS graphs,
to rule out n2−o(1) space algorithms even in any o(

√
log n) passes.

Theorem 7 ([CKP+21a]). Any p-pass streaming algorithm for (the decision version of) either of
directed reachability, undirected shortest path, or bipartite matching requires a space of

Ω(
n2

exp
(
p ·Θ(

√
log n)

)).

In particular, any o(
√
log n) pass algorithm requires n2−o(1) space.
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Figure 2: A hypercube on {0, 1}3 is an RS graph with t = 6 induced matchings of size r = 2 edges each. For
each index i ∈ [3], we have two different induced matchings, one that connects every parity-0 vertex x to the
corresponding parity-1 vertex x+ ei, and another that connects every parity-1 vertex x to the corresponding
parity-0 vertex x + ei (in the figure, each induced matching is shown with a different color). Generalizing
this to larger hypercubes on n vertices (when n is a power of two), gives RS graphs with t = 2 log n induced
matchings of size r = n/4 edges each; see [FHS17].

These results now suggest that a the “right” space-pass tradeoff for reachability, shortest path,
and bipartite matching should be quite different from n1+Ω(1/p) bounds of earlier work in [FKM+08,
GO13, CGMV20], although it is still not clear (and safe to say unlikely) that the new tradeoff is
also the correct one. In particular, even these new bounds are still stuck at the so-called logarithmic
barrier, i.e., do not apply any non-trivial space bound beyond O(log n) passes (again, even ignoring
poly log log n factors in the denominator).

Approximate Matching Lower Bounds

The final family of results we shall discuss is the semi-streaming lower bounds for approximating
matchings, one of the most studied problems in the graph streaming model; we refer the interested
reader to the introduction sections of [FS22, ABKL23, Ass23] for a summary of state-of-the-art.

In particular, the problem of (1+ ε)-approximation of matchings has a rich history in the semi-
streaming model. It was first posed in [FKM+05] alongside the introduction of the model and
soon after [McG05] provided the first algorithm with (1/ε)O(1/ε) passes. The dependence on ε was
improved in a series of work [AG11, EKMS12, Kap13, Tir18, GKMS19] and culminated in two
incomparable tradeoffs:

• O(1/ε2) passes by [ALT21] on bipartite graphs and poly(1/ε) passes by [FMU22] on general
graphs;

• O(log (n)/ε) passes by [AG18] on general graphs (see also [AJJ+22, Ass23]) with a better de-
pendence on ε at the cost of a relatively mild dependence on n.

On the lower bound front, 3/2-approximation lower bound was proved by [GKK12] which was
further improved by [Kap13, Kap21] to a 0.59-approximation. However, no multi-pass lower bound
for approximate matchings were known since the question was posed in [FKM+05].

The first multi-pass lower bound for this problem was proved by [CKP+21a] as a corollary of
their proof of Theorem 7, although it still only applies to very accurate approximation ratios with
ε < n−o(1). There is however some silver lining here when we consider the reliance of these lower
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bounds on RS graphs: What happens to these lower bounds if even denser RS graphs exist? At
this point, we are aware of the following bounds:

• For linear size induced matchings of size Θ(n), the best construction of [FLN+02] (see also [GKK12])
creates an RS graph with n1+Ω(1/ log logn) edges. Yet, the best upper bound only rules out RS
graphs with density n2/2Θ(log∗n) [Fox11] (see [FHS17] for more details).

• For slightly smaller induced matchings of size r = n1−o(1), the construction of [AMS12] already
creates an extremely dense RS graph with

(
n
2

)
− o(n2) edges.

In light of this, we can consider the following assumption:

Assumption 4.1. For infinitely many integers n ⩾ 1, there exists an RS graph on n vertices and
n1+Ω(1) whose edges can be partitioned into induced matchings of size Θ(n).

This assumption is consistent with the current state of knowledge and at the same time vali-
dating or refuting it seems to be a challenging question in combinatorics (see [FHS17, Section 5]).
Regardless, for the purpose of our discussion, this assumption has a very important consequence
as it allows one to strengthen the result of [CKP+21a] considerably12:

Theorem 8 ([CKP+21a]). Under Assumption 4.1, any semi-streaming (1 + ε)-approximation al-
gorithm for bipartite matching requires

Ω(
log (1/ε)

log log n
)

passes as long as ε < (log n)−Θ(1).

While Theorem 8 still only applies to sub-constant values of ε > 0, under Assumption 4.1, this
range is dramatically closer to the focus of current semi-streaming algorithms for matchings. For
instance, we can interpret this result as follows: there cannot be any semi-streaming algorithm that
for all choices of ε > 0 has poly(1/ε)-space dependence13 and uses an absolute constant number
of passes. This is by setting ε equal to (log n)−Θ(b) for some large constant b to get an Ω(b)-pass
lower bound from Theorem 8 which can go to infinity with b.

A main open question in light of Theorem 8 was to obtain a pass-approximation tradeoff for
matchings on constant ε > 0, which will be applicable to all semi-streaming algorithms with no
extra qualifications (e.g., poly(1/ε)-space dependence or absolute constant number of passes). This
question was very recently addressed by [AS23] in the following theorem.

Theorem 9 ([AS23]). Under Assumption 4.1, any semi-streaming (1+ε)-approximation algorithm
for bipartite matching requires

Ω(log (1/ε))

passes as long as ε < ε0 for some absolute constant ε0 > 0.

Theorem 9, assuming Assumption 4.1, provides the first pass-approximation tradeoff for semi-
streaming algorithm that can approximate matchings to arbitrarily good constant approximation.

12We note that this consequence is not entirely black-box and requires some very minor modifications to the proof
of [CKP+21a] but this is primarily through some re-parameterizing of different parts of the argument.

13This is a property satisfied by many semi-streaming algorithms (and even a few like [ALT21, AJJ+22] have no
space-dependence on ε), although there are also several standard algorithms with exp(1/ε) space-dependence as well.
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A couple of remarks about the role of Assumption 4.1 in Theorems 8 and 9 is in order. Firstly,
one can consider these theorems as “conditional” lower bounds under the plausible hypothesis
that Assumption 4.1 holds—this is for instance similar-in-spirit to the line of work on spanner lower
bounds that are conditioned on “Erdos’s Girth Conjecture” (see, e.g. [ABS+20]). Alternatively, one
can also consider these theorems as “barrier” results: obtaining semi-streaming algorithms with
performance better than the bounds of these theorems, at the very least, requires improving the
current upper bounds on density of RS graphs from n2/2Θ(log∗n) down to n1+o(1). Finally, [ABKL23]
indicates that some assumption on density of RS graphs for lower bounds might be necessary as
non-existence of such graphs implies (1 + ε)-approximation algorithms even in one pass14.

Finally, we end this part by mentioning a line of work that were so far not covered in this article,
a series of elegant results in [bKK20, KN21, KNS23] that focus on proving lower bounds for special
families of algorithms. For instance, [bKK20] proved that the class of deterministic algorithms that
run greedy matching on a vertex-induced subgraph in each pass, need Ω(1/ε) passes for a (1 + ε)-
approximation to bipartite matching, and [KN21] proves that semi-streaming two-pass algorithms
that only pick a greedy matching in their first pass but are arbitrary in their second pass, cannot
achieve a better than 3/2-approximation. These results are both technically and conceptually apart
from the lower bounds in this article that hold for arbitrary algorithms, and hence were not covered
here; we refer the interested reader to these references for more information.

5 Future Directions

There are many natural open questions related to the topics of this article at this point. For
concreteness, we list one central open question for each of the frontiers discussed in Section 4.

• Multi-pass lower bounds for approximating MAX-CUT: Prove that any (random-
ized) no(1)-space streaming algorithm for better-than-2 approximation of maximum cut requires
Ω(log n) passes. This corresponds to generalizing Theorem 3 to the original decision problem
(instead of the search one).

• Super-logarithmic pass lower bounds for reachability, shortest path, or matching:
Prove that any semi-streaming algorithm for reachability, shortest path, or maximum matching
requires ω(log n) (or perhaps even polynomial) passes. This corresponds to strengthening The-
orem 7 and prior results of [GO13].

• (Near)-optimal lower bounds for approximate matching: Prove (with or without relying
on Assumption 4.1) that any semi-streaming for (1 + ε)-approximation of maximum matching
(bipartite or non-bipartite) requires Ω(1/ε) (or some at least some (small) poly(1/ε)) passes.
This corresponds to strengthening Theorem 9.

We emphasize that for all these questions, it is also entirely plausible at this point to disprove
the given statement instead by designing improved algorithms; such a result will also be an equally
interesting contribution to this line of work.

A more general, and much less concrete, open question is on the nature of current techniques
for proving multi-graph streaming lower bounds. At this point, it is fair to say that all current
lower bounds are relying on the hardness of local exploration in the graph streaming model (and are

14We shall however emphasize that at this stage this connection is more qualitative than quantitive as there are
still large quantitive gaps between the performance of algorithms obtained if Assumption 4.1 does not hold, versus
the given lower bounds if it holds.
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primarily based on various versions of pointer chasing arguments). However, many of the current
algorithmic techniques rely on iterative optimization methods, say, multiplicative weight update
(MWU) or gradient descent, which are based on a more “global” view of the problem at hand. Can
we also design lower bound techniques that target such algorithmic approaches?
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Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022,
pages 413–425. ACM, 2022. 7

[FS22] Moran Feldman and Ariel Szarf. Maximum matching sans maximal matching: A
new approach for finding maximum matchings in the data stream model. In Amit
Chakrabarti and Chaitanya Swamy, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022,
September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual Con-
ference), volume 245 of LIPIcs, pages 33:1–33:24. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022. 10, 13

[FT14] Martin Farach-Colton and Meng-Tsung Tsai. Computing the degeneracy of large
graphs. In Alberto Pardo and Alfredo Viola, editors, LATIN 2014: Theoretical Infor-
matics - 11th Latin American Symposium, Montevideo, Uruguay, March 31 - April 4,
2014. Proceedings, volume 8392 of Lecture Notes in Computer Science, pages 250–260.
Springer, 2014. 11

[FT16] Martin Farach-Colton and Meng-Tsung Tsai. Tight approximations of degeneracy
in large graphs. In LATIN 2016: Theoretical Informatics - 12th Latin American
Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings, pages 429–440, 2016.
11

[GKK12] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and
streaming complexity of maximum bipartite matching. In Proceedings of the Twenty-
third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, 2012. 12,
13, 14

[GKMS19] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted
matchings via unweighted augmentations. In Proceedings of the 2019 ACM Sympo-
sium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada,
July 29 - August 2, 2019, pages 491–500, 2019. 13

[GLM19] Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrovic. Improved parallel algo-
rithms for density-based network clustering. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pages 2201–2210. PMLR, 2019. 11

[GM08] Sudipto Guha and Andrew McGregor. Tight lower bounds for multi-pass stream
computation via pass elimination. In Automata, Languages and Programming, 35th

ACM SIGACT News 70 September 2023, vol. 54, no. 3



International Colloquium, ICALP 2008, July 7-11, 2008, Proceedings, Part I: Tack
A: Algorithms, Automata, Complexity, and Games, pages 760–772, 2008. 2

[GO13] Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass
graph processing. In Proceedings of the 28th Conference on Computational Complex-
ity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 287–298, 2013. 4,
6, 11, 12, 13, 15

[GVV17] Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy. Streaming
complexity of approximating max 2csp and max acyclic subgraph. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, pages 8:1–8:19,
2017. 8
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