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Autonomous materials discovery and manufacturing (AMDM): A review and
perspectives

Satish T.S. Bukkapatnam

’64 Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, USA

ABSTRACT
This article presents an overview of the emerging themes in Autonomous Materials Discovery and
Manufacturing (AMDM). This interdisciplinary field is garnering a growing interest among the sci-
entists and engineers in the materials and manufacturing domains as well as those in the Artificial
Intelligence (AI) and data sciences domains, and it offers immense research potential for the indus-
trial systems engineering (ISE) and manufacturing fields. Although there are a few reviews related
to this topic, they had focused exclusively on sequential experimentation techniques, AI/machine
learning applications, or materials synthesis processes. In contrast, this review treats AMDM as a
cyberphysical system, comprising an intelligent software brain that incorporates various computa-
tional models and sequential experimentation strategies, and a hardware body that integrates
equipment platforms for materials synthesis with measurement and testing capabilities. This
review offers a balanced perspective of the software and the hardware components of an AMDM
system, and discusses the current state-of-the-art and the emerging challenges at the nexus of
manufacturing/materials sciences and AI/data sciences in this nascent, exciting area.
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1. Introduction

Discovery and development of new materials and manufac-
turing process-recipes for societal applications has been a
constant human endeavor, almost since the ancient times
(Sass, 1998; Miodownik, 2014; Wellmann, 2021). Although
the discoveries of many historic materials and manufactur-
ing processes were attributed to serendipity, materials dis-
covery has become a goal-driven pursuit in the modern era.
More recently, goal-oriented discovery and development of
materials and processes have assumed an even greater
impetus, especially towards addressing the following three
important needs. Foremost, the industrial performance enve-
lope and global competitiveness landscape, such as, in
hypersonic systems and energy storage fields, are becoming
increasingly dependent on new high-performance materials
and their processing (Correa-Baena et al., 2018). Second, the
growing climate and sustainability challenges are fueling the
innovations of novel green products and process technolo-
gies that can reduce total energy and carbon footprint
(Tabor et al., 2018; Zimmerman et al., 2020). Additionally,
materials and process discovery has been sought to address
the growing shortage of critical materials, especially for the
new energy and strategic applications (National Research
Council, 2008; Chu, 2011; National Academies of
Sciences, 2019).

A goal-oriented discovery of materials and manufacturing
process-recipes requires the identification of the material
composition and the manufacturing process history with

which a component (i.e., a material sample or a product) is
realized. A material-discovery goal is specified in terms of
the structural features of the material spread over multiple
spatial scales (e.g., morphology and microstructure) and/or
the desired properties (e.g., a specific thermomechanical
response characteristic of a shape-memory alloy) (Olson,
1997; Panchal et al., 2013; Jha et al., 2015). Discovering a
material involves conducting a series of time-consuming and
costly physical and/or computational experiments to search
a high-dimensional Materials Design Space (MDS). The
MDS spans the possible material compositions and process-
ing condition-combinations under which a material can be
synthesized. Each experiment consists of controlled synthesis
of material samples with particular composition(s) under a
certain process history, and subsequent determination of the
structure, constitution, and/or properties of the realized
material. Such a manual and iterative process of materials
discovery and manufacturing, leading to their deployment
takes place over multiple years, often extending beyond two
or more decades.

Consequently, accelerated materials development has emerged
as a major international imperative (National Research Council,
2008; Holdren, 2011; Jarvis, 2012; Schmitz and Prahl, 2014;
Department of Energy, 2018; Hong et al. 2021). The develop-
ment of effective strategies to integrate simulation and experi-
mental data with expert knowledge on materials design is an
active area of research (Drosback, 2014; Kalidindi and Graef,
2015; Agrawal and Choudhary, 2016). This problem of accelerat-
ing materials discovery is considered as one of conducting
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iterative physical and/or simulation experiments to search the
MDS by striking a balance between exploitation, i.e., opportunis-
tically and perhaps locally improving the search solutions, versus
exploration, i.e., searching in the MDS regions that are
‘‘different’’ and have not been considered before. (Lookman,
Alexander and Bishop, 2016; Lookman, Balachandran, Xue,
Pilania, Shearman, Theiler, Gubernatis, Hogden, Barros, and
BenNaim, 2016; Xue et al., 2016) Olson (Olson 1997) made a
pioneering attempt to towards accelerating materials discovery
by combining simulations with experiments to develop quantita-
tive mapping connecting the Process–Structure Properties (PSPs)
of a material. Following this, different methods that incorporate
high-throughput experimentation and computation have been
deployed within conventional, human-centric, materials develop-
ment frameworks (Glamm et al., 2015; Luo, 2015; Robinson,
2015; Howe et al., 2016). These high-throughput experimental
(Chang et al., 1998; Potyrailo et al., 2011) and computational
(Yang et al., 2012; Curtarolo et al., 2013) approaches have severe
limitations for Autonomous Materials Discovery and
Manufacturing (AMDM). First, the experimentation process to
search the MDS, i.e., determining the settings to perform the
experiments, is driven manually, employing human intuition
and prior knowledge, or an a priori developed computational
simulation or simpler statistical surrogate models. Such a search
process is incapable of capturing the high-dimensional MDS
(spanning all possible compositions, configurations, and micro-
structures) and complex causal relationships (e.g., multi-physics)
underlying the MDS. Therefore, the search process invariably
leads to a poor coverage of MDS and suboptimal results
(Panchal et al., 2013). Second, hardcoded workflows are typically
employed to search the MDS, i.e., the choices of the experimen-
tal process chain and the testing methods employed are set a
priori. They lack flexibility to iteratively learn and adapt based
on the streaming measurements as well as knowledge acquired
to assure balanced exploitation versus exploration of the MDS.
Third, the search strategies preclude expansion of the MDS–i.e.,
increasing the dimensionality of the MDS based on mining new
knowledge from literature and human inputs, preferentially
searching in regions likely to contain superior material design
solutions. An expansion can translate to the identification of
alternative material components and extra processing steps as
new information is received. Fourth, the current methods
involve humans for routine analysis and decision making in the
so-called human-in-control mode, limiting the repeatability,
throughput rate, and autonomous capture of expert knowledge
(Baker, 2010). Additionally, the MDS search strategies based on
these methods tend to be suboptimal in resource allocation, as
experimental decisions do not correctly assess the cost and the
time duration of experimentation.

What manufacturing and materials sciences need instead
are systems capable of efficiently navigating complex, multi-
dimensional MDS. Recently, autonomous research systems
have evinced significant interest across various scientific and
engineering domains (Sparkes et al., 2010; Chandran et al.,
2011; Graham et al., 2013; Glauche et al., 2017). Notably,
engineering domains such as autonomous transportation
and smart grids have reported some success in imbibing the
two key elements of autonomy, namely, learning and

adaptation as part of the real-time decision processes
(Åstr€om and Kumar, 2014). However, AMDM remains at a
nascent stage (Nikolaev et al., 2016). This is possibly due to
challenges pertaining to the complex hierarchical nature of
materials microstructure and behavior (Fasolka and Amis,
2007), a strong dependence of microstructure (and resulting
properties) on the manufacturing process chain, as well as
the elevated costs of experiments and simulations to realize
sufficiently precise models, besides the challenges as out-
lined earlier.

Pertaining to the traditional human-driven materials dis-
covery process, a common understanding is that a prospect-
ive discoverer should possess a “mental model” (or a
representation) of the relationships connecting how process
settings with material morphology and microstructure, and
properties. Such PSP relationships constitute the central rep-
resentation frame for materials discovery and manufactur-
ing. A PSP relationship-based mental model is typically
acquired via 5þ years of specialized training and experien-
ces. Any materials discovery system, manual or automated,
that does not encode PSP relationships within its learning
framework will be very limited in its ability to predict the
structure, and hence, the behaviors of the manufactured
material components or samples. Also, as stated earlier,
purely manual and automated approaches to materials dis-
covery are impractical, due to the complexity and high
dimensionality of the MDS, as well as the limitations of
humans to consistently carryout elaborate repetitive tasks.

Although all materials discovery systems involve sequen-
tial experimentation, autonomous systems for materials dis-
covery and manufacturing fundamentally differ from purely
automated systems in that they incorporate at least two
extra elements, namely, learning, i.e., the mental model of
the experimentation system is regularly updated based on
the new data, observations and evidences, and adaptation,
i.e., the workflow of the MDS search process, as well as the
experimentation procedures, can change based on the obser-
vations and updated mental models (Åstr€om and Kumar,
2014). Besides these two elements, these systems can incorp-
orate higher levels of autonomy such as cognition and rea-
soning, as pointed out in an National Academy of
Engineering study (NAE, 2004).

Recent attempts towards developing autonomous materi-
als discovery systems employ AI/machine learning methods
to derive these mental models (Raccuglia et al., 2016; Saal
et al., 2020; Suh et al., 2020). These models are predomin-
antly derived based on supervised learning. Due to the high
costs of experiments in manufacturing and material sciences,
conventional supervised learning would not be feasible.
Alternatively, active learning methods have been attempted
to provide an optimal balance between exploitation to rap-
idly hone in on the most promising regions of the MDS,
and exploration to adequately cover the MDS and search
unusual designs during sequential experimentation
(Balachandran et al., 2016). These active learning methods
are at the heart of the emerging AMDM systems.

Pertinently, the incorporation of PSP relationships as part
of sequential experimentation and active learning
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frameworks is a key challenge that needs to be addressed in
order to make autonomous materials discovery a reality.
This aspect receives a particular attention in this review.
Additionally, AMDM is an interdisciplinary challenge that
connects materials and manufacturing sciences with AI/data
sciences. Although AMDM systems are still in their infancy,
multiple international efforts are underway to address the
discovery of a variety of materials employing diverse AI/ML
methods and synthesis platforms. This article, from this con-
text, presents an overview of this growing volume of work
as relevant to the manufacturing and data science/AI com-
munities in general, and those within the Industrial and
Systems Engineering and Operations Research (ISE/OR)
professions in particular. Also, recent reviews on materials
discovery have focused almost exclusively on the AI and
machine learning efforts (Correa-Baena et al., 2018; Saal
et al., 2020; Juan et al., 2021), and sequential experimenta-
tion methods (Dehghannasiri et al., 2017; Talapatra et al.,
2018a; Talapatra et al., 2019). The current efforts towards
closed-loop material synthesis platforms (Kusne et al., 2020)
largely overlook the critical challenges associated with mate-
rials discovery and manufacturing. Very few, if any, efforts
have reviewed the various materials synthesis and experi-
mentation platforms, together with their integration with AI
and sequential experimentation methods for autonomous
materials discovery.

Comparatively, this article brings a joint perspective that
combines the review of experimentation platforms and

manufacturing machine tools alongside the advances in the
pertinent AI approaches. As such, it also aims to bridge the
terminology across the relevant, well-established domains,
and delineates challenges that can be of specific interest to
the ISE/OR community. The remainder of this article is
organized as follows. Section 2 provides an overview and a
perspective of an AMDM system. Sections 3 and 4 present a
review of the software “brain” and hardware “body” ele-
ments of an AMDM system. Section 5 presents a discussion
of the state-of-the-art as well as possible future directions in
this emerging area.

2. Overview of autonomous materials discovery and
manufacturing systems

An AMDM system enables an iterative and adaptive execu-
tion of active learning of PSP relationships, as well as
sequential experimentation to search an MDS through a
closed loop interaction between a software (brain) and hard-
ware (body) component (Figure 1), all with minimal human
intervention. The software brain essentially consists of two
modules. The first, forward mapping module aims to learn
the PSP relationship based on fusing information from vari-
ous data sources, and to predict the structure and the prop-
erties-of-interest of a material at a specified design and
process setting (i.e., a point in the MDS). The data sources
would include experimental observations and measurements
of the material and the manufacturing process, simulation of
multiple physical processes that capture the PSP relation-
ships over multiple resolutions, as well as the domain
expertise and experiential knowledge. Such multi-fidelity
and multi-modal data sources are used for learning the PSP
relationships. The second, inverse mapping module aims to
prescribe the experimentation settings, and direct the search
of MDS, based on the PSP relationship model, to discover a
material and its manufacturing recipe. In effect, the software
brain offers how to make the best predictions of the PSP
relationship given the data, and at what settings to conduct
the subsequent experiments (and thereby seek the next sets
of data) towards achieving the desired materials discov-
ery goal.

The hardware body is composed of two modules. A syn-
thesis module aims to execute the brain signals (control
input or a process recipe) autonomously to manufacture
material sample(s) and adapt processing workflows based on
the prior outcomes or observations, as with a reflex action.
Additionally, a characterization module aims to probe the
synthesized material, as well as measure and/or quantify the
resulting properties (e.g., material hardness or thermal con-
ductivity) and/or performance (e.g., the holistic indicators,
such as energy efficiency, that depend on the entire struc-
ture of the manufactured component and the process, not
just the material).

The execution of a process recipe in a synthesis module
can be as simple as mixing the specified amounts of differ-
ent chemical species in a test-tube, or as complicated as exe-
cuting an elaborate chain of processes to transform the
input precursors (e.g., raw materials and consumables) into

Figure 1. Schematic of an AMDM system consisting of a software brain and a
hardware body.
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a product. Inherent to a synthesis module are multiple syn-
thesis chambers (e.g., machine tools, reaction beds, test-
tubes), material delivery and storage mechanisms to feed the
desired raw materials into the synthesis chambers, and a
material handling system to transport the material within
and across the synthesis chambers.

The characterization module employs one or more meas-
urement and testing stages to assess the properties and func-
tionality of the synthesized material or part. The test stages
aim to assess the property of interest, such as tensile
strength, magnetic permeability and hardness of a synthe-
sized functional alloy, or the energy conversion efficiency
and rheology of a chemical synthesized in a test-tube or a
petri dish.

It is pertinent to note that the various initiatives were
launched in recent years have largely focused on autono-
mous materials discovery (National Research Council, 2008;
Tabor et al., 2018; Boyce and Uchic 2019; de Pablo et al.
2019; Gomes et al., 2019; National Academies of Sciences,
2019). Several AI methods were developed to search the
MDS, and successful initial experimental platform imple-
mentations have been reported (National Research Council,
2008; Mies et al., 2016; Alberi et al., 2018; Aspuru-Guzik
and Persson, 2018; Tabor et al., 2018; Talapatra et al.,
2018a; Yager, 2018; Boyce and Uchic, 2019; de Pablo et al.
2019; Gomes et al., 2019; Stein and Gregoire, 2019), includ-
ing for digital and topological material structures (Hiller and
Lipson, 2009; Yan and Felser, 2017) . However, manufactur-
ing process planning, i.e., deriving and possibly discovering
the processing recipes to synthesize targeted materials in
bulk and into a product, poses significant additional chal-
lenges (Aspuru-Guzik and Persson, 2018; Tabor et al., 2018;
National Academies of Sciences, 2019). Peculiar to manufac-
turing is that successful recipes require consideration of the
entire processing chain; a mere specification of the “static”
parameter settings would not suffice. In other words, the
evolution of the process state variables in time, space, and
across the multiple stages of the process chain need to be
measured or estimated to correctly predict the structure.

Additionally, process discovery often results from clever,
“out of the box” process improvisations as opposed to just
optimizing the process parameters. Also, a flexible workflow

for searching and discovering manufacturing recipes is
somewhat like a game of chess where we observe the boards
at every step (analogously, from measurements and physical
understandings of a multi-stage process chain), and decide
the moves (here, recipes from among a continuum of possi-
bilities as opposed to finite combinations) to achieve a speci-
fied goal (functionality).

With recent advances in 3D printing, artificial intelligence
(AI)/data science, and materials genomics, success in
AMDM could open an exciting opportunity of material-on-
demand manufacturing (Iquebal et al., 2020a; Zhao et al.,
2020). Here, the material composition and microstructure,
not just the shape and morphology of a 3D-printed compo-
nent, can be controlled to the resolutions that can ensure a
component’s functionality. A new generation of smart
machine tools are being considered to serve as reactor beds
for autonomous, bulk-scale, on-demand manufacturing of
novel materials (Botcha et al., 2020). Such a capability opens
interesting possibilities to manufacture components with
specified functionality via innovative processing recipes,
without relying on expensive and scarce (e.g., rare earth)
materials—thus addressing the critical materials challenge
noted by the National Academy of Sciences (National
Research Council, 2008; National Academies of Sciences,
2019). Advances in AMDM can be discussed in terms of the
advances in computational AI/data science models towards
enabling autonomy and achieving a discovery (brain) as well
as advances in the hardware platforms to execute flexible
workflows for autonomous experimentation for synthesis
and discovery (body).

3. The brain: Computational AI/ML approaches and
multi-fidelity learning

The brain of an AMDM system mainly consists of two types
of computational AI/ML models, constituting a forward and
an inverse mapping loop, respectively (Figure 2). The for-
ward mapping loop focuses on establishing the PSP relation-
ship. It seeks answers to the question: ‘’Given a set of
material descriptors that can be manipulated through materi-
als synthesis and processing, what are the corresponding prop-
erties and performance characteristics?’’ On the other hand,
the MDS search necessitates inversion of this map (Olson,
1997; Olson, 2000). The inverse mapping loop seeks answers
to the question: ‘‘Given the desired property and performance
requirements, what material composition and processing routes
are feasible, and well-suited to realize structures that meet these
requirements?’’ The inverse mapping thus seeks to identify
domains in the process–structure and structure–property
spaces that meet specific property or performance targets.
These targets are often expressed based on the desired func-
tionality and behaviors, such as ductile-to-brittle transition
characteristic of refractory high-entropy alloys to improve
their machinability.

Altogether, the brain embeds a sequential experimenta-
tion and active learning framework. The forward mapping
fuses data from experiments and other sources, such as sim-
ulations, domain expertise and historical conventions to

Figure 2. The overall structure of the brain executing iterative learning and
experimentation process.
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establish a quantitative PSP relationship. The first step is to
derive the models to predict the process state and maps f̂
from the data. Subsequently, the process state predictions
are used to estimate the resulting material (micro)structure
(i.e., P!S mapping) and then the properties (i.e., S!P
mapping). Here, the representation of the process state and
the material structure becomes an important consideration.
Also, the forward mapping effort can provide efficient initial
priors that would be progressively updated as part of a
Bayesian framework-driven sequential experimentation or an
active learning strategy for AMDM.

An inverse mapping aims to optimize the experimental
effort to achieve a specified material discovery objective. The
inverse mapping methods employ an acquisition function
and an acquisition strategy. The acquisition function in
effect ascribes a value earned from conducting an experi-
ment or a sequence of experiments at the specified points x
in the MDS based on the predictions from the forward
models and/or their updates during a sequential experimen-
tation or active learning. A numerical scheme is then
devised to determine a search strategy that optimizes the
acquisition function.

3.1. Forward mapping via advanced representations
and a computational modeling

PSP relationship maps provide a systematic framework to
capture the material–manufacturing process interactions
(Arr�oyave and McDowell, 2019; Ramakrishna et al., 2019).
Any materials discovery system that does not encode PSP
relationships within its learning framework will be very lim-
ited in its ability to discern the underlying causal pathways
and manufacturing recipes to realize targeted materials
response and properties. Although significant efforts have
been made towards developing structure-to-property (S!P)
mapping, the process-to-structure (P!S) mapping efforts
are relatively less developed.

SfiP mapping: In the last two decades significant
advancements have been made in computational models and
simulations towards predicting the properties of synthesized
materials by employing quantum chemical calculations that
consider a material’s electronic structure (Drosback, 2014;
Kirklin et al., 2015, Alberi et al. 2018). These efforts have
led to fast, ab initio, first-principles density functional theory
(DFT) implementation framework efforts such as AFLOW,
MPDS, and JARVIS-DFT projects (Kirklin et al., 2015; de
Pablo et al., 2019). However, these implementations are
often computationally expensive, even for estimating simple
mechanical properties and material behaviors over realistic
scales (Narulkar et al., 2008; Cheng et al., 2012). They also
pose significant issues to capture the effects of processing on
the material structures (Mansouri Tehrani et al., 2018). The
potential functions and correlation functionals employed in
these models do not capture the real-world behavior (e.g.,
elastic response) and can lead to aphysical outcomes (Raff
et al., 2012).

Towards addressing these limitations, various surrogate
models derived based on machine learning approaches have

been employed. These surrogate models can (a) be incorpo-
rated within a computational simulation model, such as for
deriving more realistic interatomic potentials for molecular
dynamics simulations (Raff et al., 2012); (b) serve as a faster,
possibly physics-informed, surrogate for an intensive com-
putational model (Pukrittayakamee et al., 2009, Correa-
Baena et al., 2018); or (c) fuse multiple computational simu-
lation and experimental measurements, each possibly of a
different fidelity and resolution, to enhance prediction accu-
racies (Patra et al., 2020; Greenaway and Jelfs, 2021; Revi
et al., 2021). Saal et al. (2020) note that 70 machine learning
surrogate models were reported in the literature for materi-
als discovery. In parallel, efforts have also been made to
integrate simulations and experimental data with expert
knowledge (Kalidindi and Graef, 2015; Agrawal and
Choudhary, 2016; Ramakrishna et al., 2019). This active
research area has led to the deployment of these integrated
models (e.g., Talapatra et al., 2018a; Talapatra et al., 2018b;
Talapatra et al., 2019; Talapatra et al., 2021) within conven-
tional, human-centric, materials discovery and manufactur-
ing platforms, some of which are reviewed in Section 4.

Data and material structure representation: Towards
ensuring consistency and computational tractability of the
PSP mappings, some prior efforts have addressed the deriv-
ation of a proper representation of the performance, proper-
ties, and the material structure. Representation of the
performance is relatively simpler compared with the repre-
sentation of a material structure or a process. The measure-
ments from various instruments and test platforms, or the
estimates derived from the measurements are used to repre-
sent the property or the performance.

In contrast, representations of a material structure or the
process states are nontrivial. A structure representation
should capture the spatial patterns (and chemistry) to the
resolutions that inform the properties (e.g., hardness and
machinability), and are influenced by the processing condi-
tions (e.g., laser power, scan speed). The contemporary rep-
resentations are largely statistical (e.g., n-point correlation
functions), or simple geometric descriptors (e.g., columnar
dendritic, equiaxial grains) (Parvinian et al., 2020). For
example, microstructure-sensitive design discussed in Fast
et al. (2008) and Fullwood et al. (2010) employs efficient
low-dimensional mathematical representation of microstruc-
tures, and uses homogenization techniques to relate micro-
structure to property/performance. Two major categories of
AI/data science methods have been applied to derive repre-
sentations based on the high-dimensional data in the materi-
als synthesis and manufacturing contexts. A vast majority of
these methods are based on supervised learning models that
relate images and other signals with the physical material
structure (e.g., phase composition) or property (e.g., hard-
ness) (Lee and Yoo, 2008; Yang and Choe, 2010; Le Guen
and Paul, 2014; Zhang et al., 2015). The heterogeneity of the
data sets, as well as the variable sizes and rates at which dif-
ferent data elements are realized pose significant challenges
to the representation and learning of underlying variables
and relationships. Systematic methods are necessary to fuse
the diverse multimodal data streams for representation and
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learning (Beyca et al., 2015; Gahrooei et al., 2021). An
extensive treatment of how to handle various kinds of
images, both snapshot as well as dynamic, can be found in a
research monograph (Park and Ding, 2021). Recently, efforts
have been made to classify and annotate 20,000 Scanning
Electron Microscopy (SEM) images of various material
structures (Aversa et al., 2018). However, the costs to label
large and diverse data sets are prohibitively high. They are
somewhat unwieldy for AMDM applications where previ-
ously unknown and unlabeled structures can occur.
Unsupervised learning methods, such as dynamic time
warping (Baumes et al., 2008), shape and textural features
(Egelandsdal et al., 1999; Xu et al., 2015), and deep learning
(de Vos et al., 2019; Jung et al., 2020) may be attempted to
derive low-dimensional representations of the mater-
ial structures.

PfiS mapping: Prior efforts have attempted three major
types of models to capture the process—material (structure)
interactions. The first type, computational models are used
to capture the effects of spatiotemporal distribution of pro-
cess variables such as temperature and strain on the morph-
ology and microstructure of a manufactured material sample
(Karayagiz et al., 2019; Karayagiz et al., 2020; Yavari, 2020).
Of recent interest is to develop computational models to
determine the thermo-mechanical history in additive manu-
facturing processes for material synthesis under different
process parameter settings (e.g., laser power, scan raster pat-
tern, scan speed), and relate these to the morphology (e.g.,
voids, pores) and the microstructure (Tan et al., 2020). The
thermomechanical models predominantly employ finite-
element or finite-difference schemes (Karayagiz et al., 2019),
or their refinements to simulate the heat flow or the thermal
history without or with mass flow considerations (Tan et al.,
2020). An additional (tandem) computational model which
uses the solution from a thermomechanical model (e.g., the
thermal history) is employed to predict the microstructure.
The microstructure prediction models have been predomin-
antly based on one of phase-field (Karayagiz et al., 2020),
cellular automata (Liu and Shin, 2020; Teferra and
Rowenhorst, 2021), and kinetic Monte Carlo (Mishra and
DebRoy, 2004; Rodgers et al., 2017) (listed in the order of
decreasing computing overhead). All these computational
models invariably require the use of high-performance com-
puting environments. Also, the sharp thermo-mechanical
gradients, such as those prevalent near the laser source in an
additive manufacturing process, or at the shear localization
regions in machining make the microstructure predictions
vulnerable to the settings of the numerical scheme employed
to solve the models.

The second, lumped systems analytical models aim to cap-
ture a specific, narrow aspect of a process multi-physics
(Noori-Khajavi and Komanduri, 1993; Pratt and Nayfeh,
1999; Davies and Burns, 2001; Bukkapatnam and Clark,
2006), and relate certain process signatures extracted based
on these models to specific material structures (Iquebal et
al., 2020a, Zhao et al., 2020). Since 1990, significant efforts
have been made in sensor fusion methods to capture the
dynamics underlying manufacturing processes (Emel and

Kannatey-Asibu, 1989; Dornfeld and DeVries, 1990; Azouzi
and Guillot, 1997). A majority of the seminal methods have
aimed to establish a static mapping between the sensor data
(features) and the properties or the performance. In the past
20 years, research groups have attempted to derive reduced-
order dynamic models that are often referred to as
Process–Machine Interaction (PMI) models, to track the
process state evolution. These models are based on combin-
ing dynamic systems principles with sensor fusion techni-
ques (Bukkapatnam and Clark, 2006; Rao et al., 2014; Beyca
et al., 2015). These low-dimensional analytical models can
capture the active degrees of freedom in a process while
ensuring a certain degree of consistency with the underlying
physical phenomena. Attempts have also been made to cap-
ture the transient and nonlinear dynamics innate to manu-
facturing processes by employing nonparametric statistical
modeling and network science methods (Wang and
Bukkapatnam, 2018; Iquebal et al., 2020a, b). Lumped mass
models offer a promising direction for microstructure pre-
dictions. However, they currently remain at a nascent stage
and offer significant potential for future research.

The third, statistical surrogate models seek to map the
process settings to the structure, property, and performance.
Representing individual linkages along a PSP chain through
parametric or nonparametric statistical surrogate models is
of recent interest. In particular, Bayesian modeling methods
have been employed to learn PSP relationship towards sig-
nificantly accelerating materials design (Ghoreishi et al.,
2018; Ghoreishi et al., 2019; Talapatra et al., 2019;
Couperthwaite et al. 2020; Khatamsaz et al., 2020).
However, current process–structure mapping methods are
insufficient for materials discovery and manufacturing.
These methods make a strong (often unrealistic) assumption
that the process evolution can be determined by the initial
parameter settings and ignore the dynamic nature of the
manufacturing processes.

Perspectives: Evidently, PSP representations are essential
to incorporate materials scientist-like reasoning into materi-
als discovery and material-on-demand manufacturing sys-
tems. Successful materials discovery systems must make full
use of the PSP relationships chains. However, the current
approaches take a rather static view, and overlook the
dynamic aspect of the PSP relationships (Nikolaev et al.,
2014), i.e., how properties of materials are determined by the
underlying (micro)structural features, and how the features,
in turn, are ultimately controlled by pursuing a specified
thermodynamic pathway through a process chain. Significant
information loss occurs while capturing the solutions gener-
ated through the computational simulations and experimen-
tal observations using static surrogate models, especially to
represent the manufacturing processes (Botcha et al., 2021).
Towards this end, it is important to reconcile the recent sig-
nificant advances in computational materials science
(Honarmandi and Arr�oyave, 2020) with sensor fusion and
uncertainty quantification methods to provide a dynamic, as
opposed to the current, largely static representations of pro-
cess conditions (state) for PSP mapping. Such an approach
can capture the thermodynamic pathways (i.e., trajectories)

80 S.T.S. BUKKAPATNAM



that a material undergoes during a process chain. Tracking
the pathway leads to a more consistent PSP mapping as
microstructure represents the end state of this trajectory. It
will also offer the framework to learn the phase changes
especially the influence of the composition, time and tem-
perature variations on the material phases the microstruc-
ture, and hence, the properties.

3.2. Inverse mapping via sequential experimentation
and active learning

A systematic, statistical framework for Design Of
Experiments (DOE) was pioneered by R. A. Fisher (Fisher,
1949), with applications mainly in the biology and agricul-
ture areas. Subsequently, George Box, Jeff Wu, and others,
extended the DOE methodologies and popularized the meth-
ods to other applications and industry sectors (Box et al.,
2005; Wu and Hamada, 2011). In due course, researchers
have realized the importance of sequential experiments, as it
is untenable to understand a complex system fully through
one time “batch” of experiments, even in the high-throughput
execution of parallel experiments. The modern sequential
experiment principles can be traced back to two possible
moorings, one based on the Response Surface Methodology
(RSM) by Box and Wilson (Box and Wilson, 1951), and the
other on the sequential analysis work by Wald (Wald, 1947)
(see Figure 3). In fact, in their formative years, sequential
experiments were attempted to mimic the discovery process
as practiced by a human scientist.

The first branch has its roots in framing the experimental
design problem as an optimization task, in which the experi-
mental platform (physical or simulation) itself serves as the
black-box function to optimize (Myers et al., 2016). Since
experiments are costly, sequential experimentation
approaches that minimize the number of evaluations are
preferred. One classic approach is the RSM of Box and
Wilson (Box and Wilson, 1951). It uses at most second-
order polynomial models to capture the underlying relation-
ships. As such, these models have rather limited capability
to represent and learn the high-dimensional response

surfaces of a MDS from simulations and experimental data
as part of autonomous materials discovery.

The introduction of Gaussian Process Regression (GPR)
in spatial statistics (Cressie, 1991) and their subsequent
adoption to the model the relationships from computer
experiments (Sacks et al., 1989, Santner et al., 2013) brought
a paradigm shift. Gaussian process models are nonparamet-
ric in nature, and they provide a great degree of flexibility
and adaptivity in modeling complex response surfaces.
Subsequently, GPR has emerged as a popular general-pur-
pose method for broad machine learning applications
(Williams and Rasmussen, 2006). A GPR model offers flexi-
bility, numerical stability, and the capability for uncertainty
quantification (Matheron, 1963; McKay et al., 1979;, Shewry
and Wynn, 1987; Sacks et al. 1989; Fang et al., 2005;
Williams and Rasmussen, 2006; Santner et al., 2013; Molina
et al., 2015; Sun et al., 2019). More pertinently, GPR models
with Bayesian Optimization (BO) techniques enable simul-
taneous learning of the complex functional relationship as
well as searching for the best design/process (input) settings
(Mockus, 2012) employing a sequential experimentation
strategy. Every BO algorithm defines a sequential sampling
procedure, which successively generates new input points,
based on optimizing an acquisition function—sort of an
objective function that quantifies MDS search and materials
discovery goal—by employing a specified acquisition search
strategy as noted earlier.

Jones et al. (1998) introduced a sequential experimenta-
tion strategy popularly referred to as Efficient Global
Optimization (EGO) by leveraging GPR. As with other BO
methods, the next sampled point(s) in EGO is also decided
by optimizing an acquisition function by executing an acqui-
sition or a search strategy. They also proposed an acquisi-
tion function, known as Expected Improvement (EI) to guide
where to sample the next data point, as part of EGO. Unlike
a simple Maximum Mean (MM) value criterion that is
adopted to find the maximal or minimal response, the EI
criterion tries to balance between sampling the next data
point with the highest expected value, usually within a speci-
fied local region (exploitation), versus sampling the point
with the highest uncertainty (exploration). The success of
EGO in many applications is attributed to the ability of EI
to balance between exploitation and exploration.

Implementations of a basic EGO method involve the use
of a space-filling design (Santner et al., 2013) to perform an
initial sampling of the design space, GPR for learning using
these samples and predict the response of the system, and
EI as an acquisition function to balance exploitation and
exploration of the MDS. Such a BO approach has been
employed widely for hyperparameter tuning, combinatorial
optimization and reinforcement learning (Greenhill
et al., 2020).

Over the past decade, several variants of EGO have been
developed by advancing the BO principles (MacKay, 1992;
Cohn et al., 1996; Chan et al., 2010). This is because EI, as a
traditional BO acquisition function, is criticized for over-
exploiting the fitted model and under-exploring the design
space (Bull, 2011; Chen et al., 2019). Balancing exploration

Figure 3. Major branches of sequential experimentation.
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and exploitation is an important step for reaching the global
optimum of a continuous function or approximating the
whole response surface using limited samples. The “balance”
should nonetheless be driven by the search or discovery
goal. Such goals can be one of the three kinds: (a) improve
a possibly multivariate response, as in the hysteresis charac-
teristic of a shape memory alloy material, or machinability
of a refractory high-entropy alloy (exploitation); (b) increase
the knowledge of the P!S or S!P relationship connecting
the input design parameters of the MDS and the manufac-
turing recipe, the material structure and the properties
(exploration); or (c) simultaneously understanding the
underlying space while improving the response (balance).

Multiple works have investigated the achievement of this
balance during a sequential design (Bull, 2011; Qin et al., 2017;
Chen et al., 2019; De Ath et al., 2021). Improvements to EI
(Mockus et al., 1978; Jones et al., 1998; Huang et al., 2006;
Picheny et al., 2013), as well as alternative acquisition func-
tions, such as the Probability of Improvement (PI) (Kushner,
1964), Gaussian process Upper Confidence Bound (UCB)
(Srinivas et al., 2009; Azimi et al., 2010; Contal et al., 2013;
Desautels et al., 2014), Predictive Entropy (PE) of search
(Hern�andez-Lobato et al., 2014), Entropy Search Portfolio
(ESP) (Shahriari et al., 2014), and Knowledge Gradient (KG)
(Scott et al., 2011; Wu and Frazier, 2016; Wu et al., 2017)
were considered. Among these, the MM and EI criteria are
typically employed when the goal is to exclusively improve the
response (both under a local and a global sense). Information
theoretic criteria including the Shannon entropy, KL-
Divergence, PE and ESP are employed to enhance exploration
of the input space and reduce the risk of the MDS search pro-
cess from yield suboptimal local optima. Criteria such as PI
and UCB, as well as a few EI improvements (e.g., e-EI) have
been suggested when the goal is to learn the input space while
improving the response.

The second branch, starting with Wald’s sequential ana-
lysis (Wald, 1947), uses random, sequential sampling from
an unknown distribution with the sample size and constitu-
tion decided on-the-fly based on prior observations. This
line of research led to a Multi-Armed Bandit (MAB) frame-
work (Burtini et al., 2015), in which an agent (software
entity) seeks to acquire new knowledge (exploration) and
optimize decisions––i.e., how to carry out new experi-
ments––based on the existing knowledge (exploitation). The
agent balances these tasks by maximizing the expected value
of information in the sequence by choosing the optimal
experiment set. Many MAB problems are formulated into a
reinforcement learning setup where such trade-off between
exploration and exploitation can be quantifiably stated
(Besbes et al., 2019). Reinforcement learning-based
approaches are beginning to be applied for optimizing the
molecular structures for nanomaterials (Whitelam and
Tamblyn, 2020) and certain chemical reactions (Zhou et al.,
2017; Zhou et al., 2018). Unlike MAB or those problems to
which reinforcement learning is typically considered,
autonomous experimentation platforms are constrained by
limited sampling resources (Lovell et al., 2011), rendering
the basic versions of MAB and reinforcement learning

approaches not well-suited. Newer classes of reinforcement
learning methods and algorithms are beginning to be inves-
tigated for high-dimensional design spaces and sparse data
(Hao et al., 2021).

Interestingly, the machine learning community refers to
the sequential data sampling problem as active learning
(Settles, 2009). In actuality, active learning and sequential
experiments have profound connections and they often aim
to address almost identical problems. Although sequential
experimentation and active learning methods have garnered
considerable attention in recent years for advanced manufac-
turing and materials synthesis/discovery, few of the current
approaches target the central challenges in this domain
(Burtini et al., 2015; Wu et al., 2017; Butler et al., 2018;
Besbes et al., 2019; Castillo et al., 2019; Kalidindi, 2020;
Whitelam and Tamblyn, 2020; Zhang et al., 2020).
Nonetheless, a major boost to enhancing the autonomy as
well as the performance of a materials discovery system
would result from developments in the sequential experi-
mentation and active learning approaches.

Perspectives: Prior sequential experimentation methods
rely more on exploitation and less on exploration of design
spaces and can easily be trapped in local optima. Most crit-
ically, they are not autonomous. Instead, they rely heavily
on human experts to steer the direction of the experimental
sequence. A materials scientists’ success hinges on harness-
ing the intuition and expertise to adaptively fuse diverse
data sources, including prior knowledge, materials theories,
experimental observations (which often include surprises),
and simulations; autonomously generate, pivot, and test par-
allel and competing hypotheses; execute complex experi-
ments to discover the materials composition and
manufacturing recipe to meet or enhance the functionality.
Recent developments in active learning promise a totally dif-
ferent approach to impart such an enhanced autonomy.
Here, the learner optimally seeks out experiments in a way
that balances the exploration and exploitation of experimen-
tal spaces.

A key hallmark of many historical scientific discoveries
has been an element of surprise that preceded a discovery by
a scientist. A surprise is noted whenever an outcome defies
what’s considered the realm of possibilities. The ability to
discern the surprise based on fusing information from mul-
tiple data sources and models, and thereby pivot to newer
hypotheses is an innate hallmark of human discoverers. It is
therefore important to endow an autonomous materials dis-
covery system with the capability to be surprised and to
adapt the MDS search process based on the surprise.
Although alternative definitions of a surprise exist, research
into adopting these for materials discovery can pose interest-
ing challenges in terms of how the various quantitative for-
mulations of a surprise affect the exploration–exploitation
balance (Ahmed et al., 2021). Additionally, while reacting to
a surprise, one may need to not just exploit and explore but
expand the MDS itself (think in terms of the MDS dimen-
sions). Such an expansion should draw from the copious
unstructured domain knowledge and intuition available in
the literature, as well as among the domain experts.
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Approaches to combine such unstructured and abstract
domain knowledge can enhance the level of autonomy and
the performance of materials discovery systems.

4. The body: Autonomous discovery platforms

The body of an AMDM system mainly consists of hardware
platforms comprising: (a) one or more manufacturing and
material handling equipment to process and transport
material precursors through a process chain to synthesize
materials; and (b) multiple sensors and measurement instru-
ments to characterize the materials and estimate properties.
The hardware platforms should support the execution of
flexible workflow to synthesize materials per the direction of
the brain. More specifically, the hardware platforms should
be capable of synthesizing materials at conditions that
amount to a comprehensive coverage of the MDS, and they
should accommodate possible expansion of the MDS.
Additionally, they should provide the data needed in a
timely fashion, and to the desired resolution to update the
models in the brain. The state-of-the-art and the emerging
trends in these components are detailed in the following
subsections.

4.1. Autonomous experimentation and
material synthesis

The quest for autonomous experimental systems began in
the 1960s and evolved, rather slowly, in the 1970s and 1980s
(Ritchie and Hanna, 1984; Kulkarni and Simon, 1988). The
early systems had few commonalities with the sequential
experiment research (Figure 4). One of the first platforms
was Dendral, developed in the 1960s (Lindsay et al., 1993).
Subsequently, Automated Mathematician (AM) (Ritchie and
Hanna, 1984) and KEKADA (Kulkarni and Simon, 1988)
platforms were developed in the 1980s. Sparkes et al. (2010)
note they, “… had limited background knowledge when
compared to human scientists, and … needed more heuristics
in order to continue its discoveries.”

Researchers soon realized the drawbacks of heuristics to
handle the ever-increasing complexity of design spaces
(Lindsay et al., 1993; Cassell et al., 2001; Agrafiotis et al., 2002;
Noda et al., 2005). Researchers instead resorted to brute-force
enumerations of design solutions, employing automatic

Figure 4. Evolution of autonomous experimentation setups.
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machines such as computer clusters. The next wave of systems
focused on specifying large parameter-combinations for auto-
mated gene sequencing (Agrafiotis et al., 2002) and combina-
torial search, particularly to discover and synthesize
nanomaterials (Cassell et al., 2001; Noda et al., 2005).

Ever since, automated experimentation systems have
become more sophisticated. Robofurnace developed by the
MIT/Michigan group (Oliver et al., 2013) is a semi-auto-
mated system for nanomaterial synthesis. Lawrence Berkeley
Lab developed WANDA (Chan et al., 2010) to enable high-
throughput synthesis of colloidal nanocrystals.

After 2005, advancements in data science and ML meth-
ods started to influence the automatic or autonomous
material experimentation systems, especially for reducing the
number of experiments and for making the search process
more efficient and effective. These systems have begun to
include data science models that are built based on experi-
mental data and, in some instances, these models could be
updated on-the-fly as experiments and data collection are
carried out sequentially (Chan et al., 2010; Oliver et al.
2013; Nikolaev et al., 2014; Lookman, Alexander and Rajan,
2016; Nikolaev et al., 2016; Xue et al., 2016).

Table 1 summarizes some of the prominent autonomous dis-
covery platforms developed in recent years. Nikolaev et al.
(2014) at AFRL developed an automated experimentation plat-
form for the discovery of carbon nanotubes. Subsequently, they
demonstrated a first of its kind, Autonomous Research
Experiment System (ARES) for materials discovery (Nikolaev
et al., 2016). Contemporaneously, Lookman’s group proposed
an adaptive design framework for materials discovery and
applied the framework to address a demonstration challenge of
discovering shape memory alloys with specified hysteresis char-
acteristic (Balachandran et al., 2016; Lookman, Alexander and
Bishop, 2016, Lookman, Balachandran, Xue, Pilania, Shearman,
Theiler, Gubernatis, Hogden, Barros, and BenNaim, 2016; Xue
et al., 2016).

The efforts in the past 4 years have seen further advance-
ments both in terms of incorporating the elements of
sequential experimentation and workflow adaptation into
the materials discovery loops, as well as in the use of robotic
systems to implement these flexible experimental workflows.
In 2018, Granda et al. (2018) sought to map out the chem-
ical reaction space to predict the reactivity of various reagent
pairs based on learning from a small number of experi-
ments. The experiments were conducted by a wet-lab robot
experimenter and the reactivity was assessed in real-time
using nuclear magnetic resonance and infrared spectroscopy.
In 2020, Epps et al. (Epps et al., 2020) pursued an on-
demand synthesis of quantum dots with specified peak emis-
sion energies. As part of this effort, they investigated a few
contemporary surrogate models to learn the underlying
MDS. In 2021, Burger et al. (Burger et al., 2020) developed
a robotic chemist that operated without human intervention
for 8 days, performing some 688 experiments to discover
photocatalysts for hydrogen production from water by learn-
ing the underlying MDS and the PSP relationships.

These recent efforts have garnered particular attention,
and some of these efforts were published in high-profile

journals like Nature (Granda et al., 2018; Burger et al., 2020;
Epps et al., 2020). However, the data science and machine
learning methods employed for deriving surrogate models in
these systems are mostly well-established, and their applica-
tion is rather straightforward. Advanced machine learning
approaches that can have a transformative potential for both
forward and inverse mapping are yet to be fully explored, if
at all. Among the multiple acquisition functions that have
been considered, the UCB, which aims to promote more
exploration of the MDS space compared with EI, seemed to
perform well in terms of mapping out the underlying rela-
tionships. Nonetheless, most of these implementations use a
rather low-dimensional input space (i.e., MDS), with at
most a few tens of dimensions.

Perspectives: Although the aforementioned systems are
important steps towards autonomous experimentation, they
fall short of the needs of autonomous materials discovery,
and materials-on-demand manufacturing. The complexity
and costs in running experiments, learning the forward and
inverse mappings, as well as conducting the MDS search
increase drastically, as researchers move from wet-chemistry
to materials synthesis, and ultimately to their bulk-scale
manufacturing. Even the successful prototypes, including of
a robotic chemist, are still far distant from making autono-
mous discovery and materials-on-demand manufacturing a
reality, because of the following reasons. First, many of
them are at best semi-automatic. Their human-in-the-loop
framework runs counter to what an autonomous system
should be, since humans are not adept at navigating com-
plex, multi-dimensional manufacturing process spaces.
Second, they use methods that are rather mature and well-
evaluated in the data science communities. However, they
are known to be easily entrapped in local optima when
searching in a design space that embeds a complicated
manifold. Also, none of the previous systems can adaptively
expand and learn MDS by fusing measurements, computa-
tional models, and experiential knowledge innate to manu-
facturing practice. Despite these limitations, these early
experimentation platform implementations offer significant
scope to create truly autonomous platforms for materials
discovery and manufacturing. Another, more practical issue
needs to be considered while leveraging manufacturing
machine tools and other automated systems for materials
synthesis. The architectures of most of the controllers
employed in materials synthesis and manufacturing plat-
forms are often closed. In effect, they may not lend them-
selves to autonomously receive, let alone execute the
instructions and recipes from the “brain.” Although work-
arounds exist in the form of open platform communication
modes, synthesis platforms with an open architecture con-
troller or a more ground up-developed synthesis platforms
should be preferred for AMDM.

4.2. Rapid characterization of material microstructure
and property

Although AMDM has been noted as an exciting grand chal-
lenge (National Research Council, 2008; Tabor et al., 2018;
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de Pablo et al., 2019; Gomes et al. 2019; National Academies
of Sciences 2019), and several significant international
research efforts have been launched in the last 3 years
(Yager, 2018; Gomes et al., 2019; Stein and Gregoire, 2019),
very few of the millions of new materials and structures
identified in computational model predictions and crystallo-
graphic analyses have been synthesized at bulk scales. Far
fewer were characterized, and their properties estimated
(Alberi et al., 2018; Maier, 2019; Iquebal et al., 2020a) .
Despite these international initiatives, characterization and
property estimation remain critical bottlenecks (Ding and
Bukkapatnam, 2015; Alberi et al., 2018; Maier, 2019; Iquebal
et al., 2020a).

Also, as noted earlier, AMDM would evolve from the cur-
rent state of discovering chemical structures through acceler-
ated wet-chemistry experiments, to discovering and
manufacturing bulk-scale material structures on demand. For
example, recent advances in multi-material 3D-printing open
possibilities to synthesize large portfolios of material in bulk-
scales in a single experimental batch; dozens of material sam-
ples can be created with an hour, thereby accelerating the dis-
covery process. Although technology for rapid synthesis of
materials is advancing, characterization now becomes a critical
bottleneck. Typically, it takes several hours to comprehensively
map out the morphology and microstructures of every 3D
printed sample. A 1-3 order speed up is essential for impeding
autonomous materials discovery, and the materials-on-demand
manufacturing paradigm. Characterization of the structure and
properties of the synthesized materials, such as the microstruc-
ture of metallic and ceramic materials and composites over
the desired resolutions (including the crystalline grain struc-
ture) is also important for the qualification of a material, a
manufacturing process, or a product for industrial applications
(Weaver et al., 2016; Boyce and Uchic, 2019; National
Academies of Sciences, 2019). Characterization is equivalent to
the estimation of the relevant subset (subspace) of the process
state (in laser-based 3D printing, the dendritic microstructure
to a specific resolution), which in turn allows the prediction
of the outputs (here, material hardness, machinability, and
similar properties).

Recent advances in instrumentation and imaging technol-
ogies allow quantitative characterization of, not just the
shape and surface morphology, but also the microstructure
and material composition over multiple scales, at short cycle
times. For example, the surfaces were imaged within a few
minutes over an mm-scale field of view via multi-beam SEM
(Burnett et al., 2014; Malloy et al., 2015; Slater et al., 2017),
a material phase diagram was constructed based on X-ray
diffraction (XRD) and fluorescence spectroscopy (Gregoire
et al., 2009) to discover material phases (Xing et al., 2018).
Experimentation platforms that combine sample preparation
with imaging, such as RoboMet.3D of Airforce Research Lab
(AFRL) (Uchic et al., 2012) have been developed to capture
grain microstructure and morphological features (e.g., pores)
in 3D-printed alloy samples over �1mm3 scales. Sandia
Labs’ platform integrates 3D printing with an electromech-
anical load-frame, imaging, and X-ray computed tomog-
raphy capabilities (Boyce and Uchic, 2019) for automated

testing of a large batch of 3D printed tensile specimens, sav-
ing significant transport and staging efforts. However, these
technologies are a few orders of magnitude slower to com-
prehensively map out the underlying microstructures over
bulk scales compared with the rates at which material sam-
ples can be synthesized (Oses et al., 2018; Oertel, 2019).

Alternatively, direct property estimation methods, such as
rapid hardness testing instruments, have been developed,
circumventing the need for elaborate microstructure estima-
tion (Baker, 1991; Baker, 2010). These methods, however,
are confined to post facto analysis and are generally not
suited for in-situ rapid characterization. This is because
most of these methods employ the underlying microstruc-
ture as ground-truth to ensure repeatability (Zhao
et al., 2020).

Novel test protocols and setups that leverage advanced
instruments, computational mechanics techniques, and sam-
ple preparation methods have also been developed. For
example, digital image correlation (DIC) techniques were
used to find the stress–strain characteristic of materials that
were stacked together to form a tensile test specimen (Knoll
et al., 2017). Instrumented indentation techniques have also
garnered notable attention. These techniques open pathways
to compress time scales for estimating the morphological
characteristics, and properties of many microstructures real-
ized from DED and other 3D printing processes
(Bukkapatnam et al., 2018; Jin et al., 2020; Jin et al., 2022).
Recent innovations have also addressed the challenges with
speed (e.g., achieving �100 indents/min rate (Hintsala et al.
2018) of estimating properties over nano- through meso-
scales (Iquebal et al., 2020a)). However, ensuring the con-
sistency of the estimates surmounting the interaction and
sampling effects remain open issues (Weaver et al., 2016).
To address this challenge, multiple research groups advocate
employing data science/AI techniques (Dimiduk
et al., 2018).

Perspectives: Thus far, very few of the current efforts
focus on addressing specific challenges at the nexus of syn-
thesis and characterization, especially leveraging recent
advances in smart 3D-printing and other manufacturing
platforms (Botcha et al., 2020; Kaufmann et al., 2020; Zhao
et al., 2020). In this context, one cannot just “deep learn”
the relationships with the limited data, gathered from expen-
sive experiments. Almost all purely supervised learning
methods suffer from this limitation. A fundamentally new
data science and AI paradigms are necessary (Aspuru-Guzik
and Persson, 2018; Tabor et al., 2018; Boyce and Uchic,
2019; Gomes et al., 2019; Kauffman, 2019; National
Academies of Sciences, 2019). New data science/AI princi-
ples that can combine mechanistic understanding of 3D
printing and other manufacturing processes, and can fuse
manufacturing process signals and images with offline meas-
urements (Wolff et al., 2017; Botcha et al., 2020; Wolff,
Wang, Gould, Parab, Wu, Zhao, Greco and Sun, 2021;
Wolff, Webster, Parab, Aronson, Gould, Greco, and Sun,
2021) are necessary to accelerate characterization and prop-
erty estimation one leap forward. Research in this front is in
early stages. For example, automation of nano-material
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characterization has been discussed in a recent article (Park
and Ding, 2019). Some work has also been reported to con-
nect the in-situ measurements including from acoustic emis-
sion, forces and temperature sensors to morphology,
microstructure and intrinsic material properties (Iquebal et
al., 2020a; Nakkina et al., 2020).

An additional growing trend is the integration of rapid
characterization and property estimation as part of material
synthesis platforms (Carroll et al., 2021). Many offline
instruments, such as surface profilometers and XRD are
being adopted for in-situ measurements so that characteriza-
tion can happen almost concurrently with material synthesis
(Wolff, Wang, Gould, Parab, Wu, Zhao, Greco and Sun,
2021). New class of platforms integrated with these measure-
ment capabilities and can execute complex manufacturing
recipe (workflow), opening interesting possibilities to
enhance the modeling and inferring of PSP relationship, and
probing of MDS (Botcha et al., 2020; Zhao et al., 2020;
Karthikeyan et al., 2022).

5. Discussion and concluding remarks

Materials discovery has traditionally been a highly manual
and iterative endeavor. It had largely relied on the intuition
and experiences of the experimenter. Many of the material
discoveries have taken years, often a couple of decades of
painstaking iterative efforts of material synthesis under vari-
ous design conditions till a qualified material is discovered
and manufactured for an industrial application. Recent
advances in manufacturing technologies, robotics and AI
unlock the possibilities to create autonomous materials man-
ufacturing and measurement platforms endowed with
advanced computing, inference, and control capabilities,
besides capturing human scientists’ high levels of logical rea-
soning, experimentation, and adaptations to shrink these
cycles dramatically.

Additionally, the materials genome initiative has brought
a significant progress since early 2000s towards the identifi-
cation of millions of materials in computational model pre-
dictions and crystallographic analyses. Although very few of
these identified materials and structures have been physically
realized (Alberi et al., 2018; Maier, 2019; Iquebal et al.,
2020a) these model predictions and analyses provide
impetus to discover and manufacture many of these materi-
als for targeted applications. These discoveries can lead to
new products that are optimized not just in terms of the
shape and topology, but also have frugal material structures
that bring enhanced combination of properties previously
thought impossible, and can dramatically reduce mater-
ial footprint.

A few years ago, autonomous materials discovery was
recognized as an exciting grand challenge that is at interdis-
ciplinary confluence of AI/data sciences and manufacturing/
materials sciences (National Research Council, 2008; Tabor
et al., 2018; de Pablo et al., 2019; Gomes et al., 2019;
National Academies of Sciences, 2019). Multiple inter-
national efforts have brought together researchers and
experts from these diverse disciplines to address this grand

challenge. The autonomous discovery initially was a mere
computational exercise that employed purely computational
simulations instead of experimental (hardware) platforms.
As summarized in the foregoing, several hardware platforms
are being developed in recent years. Many of the current
platforms focus on executing wet-chemistry processes.
Significant scope exists for AMDM platforms to manufac-
ture truly bulk-scale materials and parts, and integrate
advanced capabilities for the “brain” and the “body” of an
autonomous materials discovery system. A few additional
trends in autonomous materials discovery and synthesis are
as follows:

1. As data science and machine learning principles evolve,
leading to advancements in and beyond encoding and
learning methods, autonomous materials discovery can
offer the so-called “challenge case studies” to develop,
assess and adopt these newer classes of data-driven sur-
rogate models. These newer classes of surrogate models
should train and predict well by fusing unstructured
domain knowledge and human experiences, and diverse
snapshot and steaming signals and images, albeit with
limited labeling (e.g., material property measurements,
representations of microstructure, thermodynamic pro-
cess states).

2. Recent sequential experimentation systems have shown
some capability to execute flexible workflows (process-
ing and measurement recipes) based on the outcomes
from the earlier experiments and the prescribed MDS
search strategy. In future, these systems should be
endowed with a higher level of autonomy, emulating
more human-like ability to develop and act upon the
intuition, fuse multi-fidelity measurements and unstruc-
tured data, ability to be surprised and accordingly pivot
the hypotheses, adapt the workflow on-the-fly based on
the observations without waiting for the outcomes, syn-
thesize deeper knowledge of the underlying relation-
ships to develop “out of the box” thinking (i.e.,
expansion, not just exploitation and exploration) to
develop recipes and material compositions.

3. The emerging trends also point to the development of
manufacturing machine tools serving as material syn-
thesis platforms. These platforms are being integrated
with in-situ measurement and characterization capabil-
ity, as well as advanced robotic arms to enable the han-
dling of the material precursors and manufacturing tool
heads (Shukla et al., 2020; Thien et al., 2022). Recent
wire-fed hybrid manufacturing platforms are initial
archetypes of these configurations. They can offer
enhanced flexibility and adaptability of the workflow,
i.e., the synthesis and MDS search process and react in
real-time to more efficiently identify, and possibly dis-
cover and manufacture the desired material.

4. The majority of model materials investigated in the lit-
erature for automated and autonomous discovery are
metallic materials, and much fewer are polymeric, or
ceramics. Among metals, multiple research groups
addressed the discovery of shape memory alloys (SMAs)
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with specific thermo-mechanical response characteristic,
as well as high-entropy alloy (HEA) materials with a
specific phase configuration and thermo-mechanical
response (Ko�zelj et al. 2014; Toda-Caraballo and
Rivera-D�ıaz-del-Castillo, 2015; Chaudhary et al., 2017,
Tapia et al., 2017, Solomou et al., 2018; Miracle, 2019;
Vlassak and Arroyave, 2019; Wen et al., 2019;
Kaufmann and Vecchio, 2020; Li et al., 2020;
Meisenheimer and Heron, 2020; Wang et al., 2020; Revi
et al., 2021; Witman et al., 2021; Zhuang, 2021,
Arr�oyave, 2022). These material systems are attractive
from a materials discovery standpoint because the
extreme sensitivity of their microstructure and proper-
ties to the processing conditions and workflow pose
interesting challenges both in terms of learning the
underlying PSP relationships, as well as executing suit-
able MDS search strategies. Among polymeric (Arora
et al., 2016; Audus, 2016; Chandrasekaran et al., 2020)
and ceramic (Roy, 1990; Rajan, 2001; Pullar, Zhang,
Chen, Yang, Evans, and Alford 2007; Pullar, Zhang,
Chen, Yang, Evans, Petrov, Salak, Kiselev, Kholkin, and
Ferreira, 2007; Rajan and Tan, 2011; Pullar, 2012;
Kaufmann et al., 2020) materials, discoveries for energy
storage, high temperature operations, and battery appli-
cations have received notable attention. The future
“challenge case studies” could include the discovery of
material structures that exploit the coupling across the
spatial scales, such as between the microscale (microme-
chanics) and the macroscale (product geometry) fea-
tures to derive enhanced, targeted properties.

5. Consequent to the current growing interest to integrate
the synthesis platforms with a broader variety of testing
and characterization setups (to assess material structure,
property and performance), future autonomous materi-
als discovery systems would open interesting possibil-
ities for the identification and manufacturing of
components with specified functionality via innovative
processing recipes, without relying on expensive and
scarce (e.g., rare earth) materials—thus addressing the
critical materials challenge noted by the National
Academy of Sciences (National Research Council, 2008;
National Academies of Sciences, 2019).

The current trends and imperatives of an AMDM system,
taken together, present some unique challenges that few
other autonomous systems domains can offer. These chal-
lenges make AMDM an attractive area to develop the next
wave of AI, data science, and optimization methodologies to
address the innate unique challenges. Advances to the theory
and methods of data-driven, dynamic decision-making form
a central piece towards the realization of truly closed loop
AMDM systems that can exhibit high levels of autonomy. In
this sense, AMDM would present application challenges of
interest to the ISE/OR fields. For example, the type of bal-
ance one needs to strike between the precision of the under-
lying models and timeliness of the estimates and decisions,
the typically high volumes, velocity and uncertainty associ-
ated with the diverse data streams in an AMDM system,

together with the computational constraints and experimen-
tation costs impose interesting challenges for optimizing the
MDS search process (to conduct experiments and/or simula-
tions) as well as for learning the PSP relationships from the
experiments and data. It is possible to investigate newer
forms of acquisition functions, along with distributed learn-
ing and search strategies that can help achieve a more effi-
cient global optimization in these scenarios.

As noted earlier, recent growing interest in reinforcement
learning, especially to address the computationally efficiency
issue, and also data scarcity in dynamic decision processes
hold immense future potential for AMDM. Additionally, the
PSP relationships of diverse materials and manufacturing
processes are bound by the commonalities among underly-
ing governing physical laws, as reflected in the structure and
responses of the computational models, not just the similar-
ities in the spatio-temporal characteristics of data from
in-situ and ex-situ measurements. This offers some very
interesting avenues to develop methods to distribute and/or
transfer the PSP relationship learning procedures, and
enhance the efficiency of the search process. Recent advan-
ces in distributed learning theory and methods would offer
interesting untapped potential in this regard.

Also, as noted in the foregoing, advancements in AMDM
could open the possibilities for a material-on-demand manu-
facturing paradigm. Newer classes of machine tools that can
customize materials in addition to the geometry and morph-
ology of the products can emerge. These advances provoke a
rethink of the entire edifice of process planning to include
the materials design and discovery on-demand aspects. New
generations of production planning and control systems that
can leverage these advances and are well suited for the
emerging materials-on-demand manufacturing paradigm
would be an important future research direction. The chal-
lenges towards realizing AMDM systems can thereby spur
deep and sustained collaborations among the manufactur-
ing/materials scientists together with AI/data scientists,
including those from the ISE/OR fields, as the challenges
that are precisely at the nexus of these disciplines.
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