

Open camera or QR reader and
scan code to access this article
and other resources online.

Immunomodulatory Strategies for Cartilage Regeneration in Osteoarthritis

Orlaith Kennedy, MEng,^{1,2} Andrew Kitson, MSE,³ Chiebuka Okpara, BS,¹
Lesley W. Chow, PhD,^{1,3} and Tomas Gonzalez-Fernandez, PhD¹

Osteoarthritis (OA) is the most prevalent musculoskeletal disorder and a leading cause of disability globally. Although many efforts have been made to treat this condition, current tissue engineering (TE) and regenerative medicine strategies fail to address the inflammatory tissue environment that leads to the rapid progression of the disease and prevents cartilage tissue formation. First, this review addresses in detail the current anti-inflammatory therapies for OA with a special emphasis on pharmacological approaches, gene therapy, and mesenchymal stromal cell (MSC) intra-articular administration, and discusses the reasons behind the limited clinical success of these approaches at enabling cartilage regeneration. Then, we analyze the state-of-the-art TE strategies and how they can be improved by incorporating immunomodulatory capabilities such as the optimization of biomaterial composition, porosity and geometry, and the loading of anti-inflammatory molecules within an engineered structure. Finally, the review discusses the future directions for the new generation of TE strategies for OA treatment, specifically focusing on the spatiotemporal modulation of anti-inflammatory agent presentation to allow for tailored patient-specific therapies.

Keywords: osteoarthritis, immunomodulation, anti-inflammatory, cartilage tissue engineering

Impact Statement

Osteoarthritis (OA) is a prevalent and debilitating musculoskeletal disorder affecting millions worldwide. Despite significant advancements in regenerative medicine and tissue engineering (TE), mitigating inflammation while simultaneously promoting cartilage tissue regeneration in OA remains elusive. In this review article, we discuss current anti-inflammatory therapies and explore their potential synergy with cutting-edge cartilage TE strategies, with a special focus on novel spatiotemporal and patient-specific anti-inflammatory strategies.

Introduction

OSTEOPATHY (OA) IS THE most common form of arthritis affecting >10% of the population over age 60 worldwide.¹ OA is a degenerative disease resulting in gradual loss of cartilage and subchondral bone in a joint. These changes in cartilage homeostasis result in reduced

protection and lubrication between the connecting ends of bones. OA progression causes significant joint stiffness and pain, and can lead to loss of function and disability.

Owing to the high incidence of OA and its degenerative nature, disease management represents a significant economic and social burden. In 2013, treatments costed \$18.4 billion in the United States and, although effective in

¹Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA.

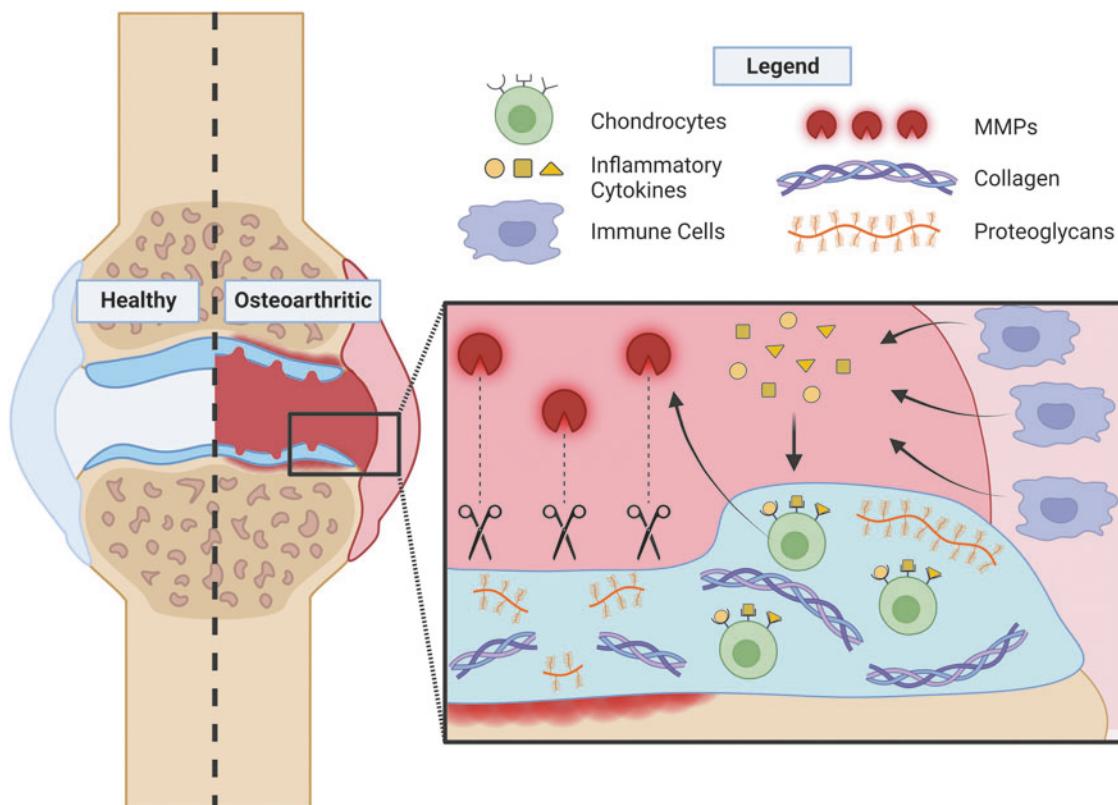
²Department of Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.

³Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA.

reducing pain, they fail to provide cartilage regeneration.² Therefore, regenerative strategies to treat OA are highly sought after to achieve functional healing.

The pro-inflammatory environment plays a key role in OA progression. In early stages, the increased production of inflammatory cytokines shifts the anabolic–catabolic equilibrium within the joint toward catabolism, that is, matrix remodeling and destruction. This shift results in breakdown of aggrecan and collagen type II, the main components of hyaline cartilage (Fig. 1). In addition, hypertrophic differentiation of chondrocytes leads to collagen type X production and calcification of the cartilage matrix. These changes significantly affect the mechanical function of cartilage by increasing stiffness and shear modulus.^{3–5}

The main cytokines involved in inflammation are interleukin-1 β (IL-1 β), tissue necrosis factor α (TNF- α), and interleukin-6 (IL-6). IL-1 β and TNF- α act in a similar manner through the upregulation of matrix metalloproteinases (MMPs), in particular MMP-1 and MMP-13 (Fig. 1). These MMPs cause degradation of collagen type II and aggrecan by binding the catalytic domain of the enzyme to the cleavage site of these matrix components.^{6–8}


IL-1 β and TNF- α also upregulate aggrecanases, such as a disintegrin and metalloproteinase (ADAM) with thrombospondin type I motif 4 (ADAMTS4), which cleave aggrecan more effectively than MMPs.⁹ In addition to direct cartilage degradation, IL-1 β and TNF- α elicit the production of IL-6,¹⁰

which also contributes to type II collagen and aggrecan degradation through the stimulation of MMP-13 production.¹¹

In addition to cartilage extracellular matrix (ECM) degradation, IL-1 and TNF- α also inhibit cell migration by impairing recruitment of chondrogenic progenitor cells from their niches and reducing cell proliferation by over-expressing different factors such as miR-216b.^{12,13} Inflammatory cytokines additionally induce apoptosis of articular cartilage chondrocytes.^{14,15} Reduced cell migration and proliferation and increased chondrocyte apoptosis prevent the secretion of new cartilage ECM, thus aggravating the pathology of OA.

Different therapies have been explored to target the OA inflammatory environment. The most commonly employed treatments include analgesic drugs such as acetaminophen and nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen and cyclooxygenase-2 (COX-2) inhibitors.¹⁶ Although these treatments are able to manage pain and limit disease progression, long-term use can become ineffective and may result in off-target effects.¹⁷

As the disease progresses to late stages, it becomes necessary to carry out surgical treatment such as joint arthroscopy or arthroplasty.¹⁸ Surgical treatments initially appear promising, with patients reporting significant improvements in pain and mobility.¹⁹ However, over time these methods have limitations, with some patients experiencing a significant decline in quality-of-life only 3 years after surgical

FIG. 1. Process osteoarthritis progression in the joint. In the osteoarthritic joint, the inflammatory cytokines secreted by immune cells in the synovium stimulate articular chondrocytes to express catabolic enzymes (i.e., metalloproteinases and matrix metalloproteinases), which degrade the collagen and aggrecan present in the ECM, extracellular matrix.

intervention due to associated comorbidities, musculoskeletal pain in locations other than the implant site, and additional mental health decline due to unmanaged expectations.²⁰

In more recent years, focus has shifted to developing regenerative medicine techniques to treat and prevent OA through the repair of damaged cartilage. Techniques include allogenic chondrocyte transplantation, mesenchymal stromal cell (MSC) implantation, cell-loaded scaffolds, and cell-free scaffolds.^{21–25} However, these techniques fail to address the inflammatory conditions associated with OA that limit regeneration.

For example, OA immune cytokines can cause apoptosis of implanted chondrocytes and MSCs, destruction of ECM in *in vitro* engineered cartilage, limit implant integration with the host tissue, and prevent cell migration into cell-free scaffolds. Addressing the inflammatory environment associated with OA is essential to advance future technologies to effectively treat the condition and achieve full regeneration.

This review outlines current anti-inflammatory strategies to treat OA alongside tissue engineering (TE) strategies that are being developed to provide a regenerative solution to OA. It also discusses future directions in the field of biomaterials and TE to both tackle the problem of inflammatory conditions in OA treatment and promote effective cartilage healing.

Current Anti-Inflammatory Strategies

Anti-inflammatory strategies to treat OA have become a major focus due to the increased understanding of the inflammatory characteristics of OA and their effects on disease progression. Several therapies have been developed to target and counteract the action of the inflammatory cytokines upregulated in OA. This section outlines different anti-inflammatory therapies that have undergone clinical trials and their limitations.

Anti-inflammatory molecules

Owing to the limitations of NSAIDs and analgesic drugs, disease-modifying OA drugs (DMOADs) have been explored to alleviate OA symptoms and improve the disease state (i.e., delay or halt disease progression). Currently, there are several DMOADs in Phase II or III of clinical trials pending FDA approval for clinical use. To receive FDA approval as DMOADs, drugs must be proven to be safe in clinical use, improve physical OA symptoms (i.e., relieve pain and improve function), and slow down progression of joint deterioration.^{26,27}

Although several of the drugs discussed in this section have been proven safe and shown to relieve OA symptoms, none have demonstrated reduction in the loss of joint space width (an indirect measure of cartilage thickness) and, therefore, have not been approved for clinical use in OA treatment.^{28,29}

The most clinically researched DMOADs are anti-inflammatory agents (Table 1).^{30–37} These are drugs that target OA-specific inflammatory cytokines (IL-1, TNF, and IL-6). One of the earliest approved anti-inflammatory agents is Anakinra, which acts as a recombinant receptor antagonist for IL-1 (IL-1RA). This drug was approved to treat rheumatoid arthritis by the FDA in 2001 after efficacy was proven across five clinical trials.^{38–42} Despite safety approval, Anakinra was not shown to be effective for treating OA when delivered intra-articularly to locally target IL-1.³⁰ Similarly, other anti-inflammatory (AI) drugs, such as diacerein, adalimumab, and tocilizumab, have been developed to target IL-1, TNF, and IL-6, but have also failed to meet efficacy requirements.^{32,33,36}

Although there is extensive research focused on the ability of DMOADs to inhibit inflammation, there are several risks associated with suppressing inflammation systemically, such as reducing a patient's ability to fight infection, and developing autoimmune diseases such as

TABLE 1. ANTI-INFLAMMATORY DISEASE-MODIFYING OSTEOARTHRITIS DRUGS STRATEGIES EXPLORED IN CLINICAL TRIALS

Strategy	Target	Delivery method	Clinical trial	References
Anakinra	IL-1 receptor antagonist	IA	Phase II Clinically for RA used but not approved for OA	30
AMG108	Inhibits IL-1	S/C	Phase II	31
Diacerein	Inhibits IL-1 production	Oral	Phase III	32
Adalimumab	Anti-TNF	S/C	Phase II Clinically used but not approved for OA	33
Etanercept	Anti-TNF	S/C	Phase III Clinically used but not approved for OA	34
Infliximab	Anti-TNF	IA	Phase IV Clinically used but not approved for OA	35
Tocilizumab	Anti-IL-6	IV	Phase III	36
GLPG1972/ S201086	ADAMTS5 inhibitor	Oral	Phase II	37

IA, intra-articular; IL, interleukin; IV, intravenous; OA, osteoarthritis; RA, rheumatoid arthritis; S/C, subcutaneous; TNF, tissue necrosis factor.

lupus and vasculitis.⁴³ Furthermore, excess inhibition of these cytokines can interfere with the native tissue regeneration and repair processes.⁴⁴ As an alternative to cytokine inhibition, different DMOADs have been designed to target matrix-degrading collagenases (MMPs) and aggrecanases (ADAMTS) (Table 1).⁴⁵ An example of a protease-inhibiting drug is GLPG1972/S201086, an ADAMTS5 inhibitor; however, it showed no significant improvement in cartilage thickness in a Phase-II clinical trial.³⁷

Clinical trial failure of the discussed strategies can be due to different factors. Efficiency of the drug delivery system has been identified as an important challenge that needs to be addressed for successful clinical translation. The traditional oral delivery of DMOADs can cause systemic effects and failure to locally target the affected joint, resulting in reduced therapeutic effect.⁴⁶ Intra-articular drug delivery increases local drug availability in the joint. However, the short half-life of DMOADs results in low residency times and, therefore, reduced therapeutic effect.⁴⁶

Furthermore, the accurate placement of these injections to the target area and the ability of the drug to penetrate through the dense matrix in the joint represents an additional challenge to achieve optimal effect at the target location.⁴⁷ In addition, the biggest concern with intra-articular drug delivery is infection as repeated injections can lead to sepsis, tissue morbidity, and mortality in severe cases.^{47,48}

Gene therapy

Gene therapy is a promising alternative to the delivery of anti-inflammatory cytokines and factors that mediate cartilage tissue repair and homeostasis.⁴⁹ Gene transfer allows for sustained synthesis of a protein of interest at the injury site for a prolonged period of time, addressing the limitations of drug administration. In addition, local synthesis of gene products with native conformations and true post-translational modifications offers a more physiological option in comparison with the injection of bacteria-produced

recombinant proteins.⁴⁹ Anti-inflammatory inhibitors such as IL-1RA have been overexpressed through viral and non-viral gene delivery to suppress OA inflammation.^{50,51}

Recombinant adeno-associated gene transfer of *IL-1RA* through intra-articular injection is currently in Phase I clinical trials in patients with moderate knee OA.⁵² The overexpression of IL-10 is another focus within OA gene therapy that reduces the production of inflammatory cytokines.⁵³ IL-10 has also been proven to reduce the production of MMPs and prevent chondrocyte apoptosis.⁵⁴ There is currently a Phase II clinical trial surrounding the safety and efficacy of a single injection of XT-150, a nonviral therapy containing plasmid DNA encoding for *IL-10*.⁵⁵

Intra-articular injection of MSCs

MSCs have been a focus of musculoskeletal regenerative medicine due to their ability to differentiate into osteogenic, adipogenic, and chondrogenic lineages and their immunomodulatory and pro-regenerative properties.^{56,57} Recently, local intra-articular delivery of MSCs has been investigated to promote repair and regeneration of cartilage tissue. MSCs secrete cytokines, growth factors, and anti-inflammatory factors that promote chondrocyte proliferation and ECM protection in OA.⁵⁸

In 2018, Zhou et al. reported that direct intra-articular delivery of MSCs reduced the production of pro-inflammatory cytokines and protected chondrocytes from apoptosis.⁵⁹ The paracrine action of MSCs is a promising alternative for OA treatment, and several MSC-based therapies have been tested in clinical trials (Table 2).^{60–63} In all cases described in Table 2, cells were expanded under good manufacturing practice (GMP) conditions and harvested at passages lower than or equal to four. Before harvesting, cells were characterized to confirm phenotype, cell number, and viability, and to ensure no contamination was present.

Unlike the trials surrounding DMOADs, MSC therapies have demonstrated efficacy as well as safety. Despite the

TABLE 2. CLINICAL TRIALS INVOLVING THE INTRA-ARTICULAR INJECTION OF MESENCHYMAL STROMAL CELLS FOR OSTEOARTHRITIS TREATMENT

Cell type	Cell dosage	Clinical trial	Trial outcome	References
Allogenic bone marrow-derived MSCs	Varying doses 25×10^6 , 50×10^6 , 75×10^6 , and 150×10^6	Phase II	Biggest improvement seen in 25×10^6 group. Higher doses caused adverse events such as knee pain and swelling.	60
Autologous bone marrow-derived MSCs	30.5×10^6	Phase I/II	No adverse events observed. Increased knee cartilage thickness.	61
Allogenic umbilical cord-derived MSCs	20×10^6	Phase I/II	No adverse events observed. Treated patients experienced reduced pain and improved function.	62
Autologous adipose-derived MSCs	Varying doses 1.0×10^7 , 5.0×10^7 , and 1.0×10^8	Phase I/II	No adverse events observed. The lower dosage groups appeared promising initially, but improvements deteriorated after 1 year.	63

MSC, mesenchymal stromal cell.

promising results, direct delivery of MSCs raises similar concerns to the limitations with DMOADs. MSC-secreted factors have limited ability to penetrate the dense cartilage matrix, and the injected cells may also rapidly die or migrate to other tissues after delivery, limiting their local therapeutic effect.^{64–66}

The high cell number required presents a further shortcoming of MSC therapy due the extended time and cost associated with cell expansion. It is also important to note that MSCs lose their ability to differentiate as the passage number increases; therefore, a large number of cells must be harvested to expand to the correct number of cells that still express MSC characteristics, further increasing the costs.⁶⁷

Tissue Regeneration Strategies to Treat OA

Anti-inflammatory strategies are critical for mitigating pain and improving mobility in patients with OA. However, these strategies do little to address the lost or damaged cartilage tissue, which negatively impacts joint function.^{68–70} Regenerating native cartilage is difficult because this avascular aneural tissue has limited capacity for self-healing.^{68,71–74} A wide range of approaches, including surgical interventions, biomaterial and/or cell implantation, and immunomodulation, have been explored to treat tissue damage caused by OA.^{69,71,75}

Despite decades of research and clinical studies, these early-intervention treatments still fail to regenerate fully functional durable cartilage when used independently.^{68,70,75–77} The newly formed tissue is typically mechanically inferior compared with native cartilage and integrates poorly with the surrounding tissue.^{76,78} To address these limitations, TE is a promising strategy capable of incorporating multifaceted approaches to restore tissue function by regenerating native-like cartilage tissue through techniques involving the implantation of biomaterial scaffolds into the defect site.^{68,69,79–82} This section describes clinical and state-of-the-art TE approaches to regenerate cartilage to treat OA.

Clinical strategies for cartilage repair and regeneration

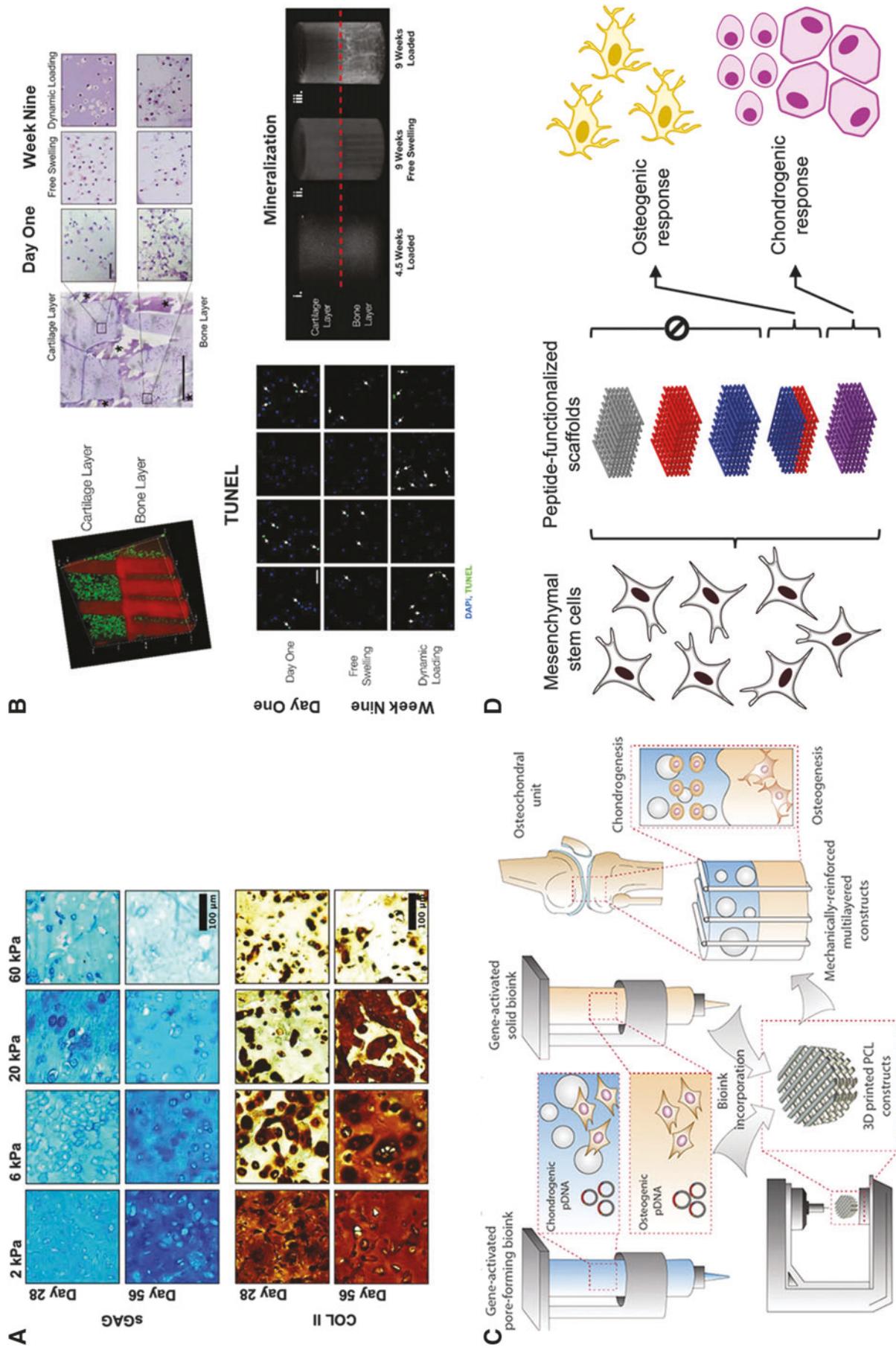
Current clinical regenerative treatments for early-stage OA include microfracture, mosaicplasty, cellular implantation, and biomaterial implantation.^{16,69,71,73} Although microfracture recruits progenitor cells from bone marrow directly into the defect site,⁸³ other techniques such as mosaicplasty transplant healthy tissue from a non-load-bearing site into the affected joint.⁸⁴

Another alternative is autologous chondrocyte implantation (ACI) where patient's cells are harvested, expanded *in vitro*, and then implanted into the defect site several weeks later.⁶⁹ However, sourcing autologous cells and tissues can result in donor site morbidity.⁶⁹ To avoid tissue damage, cells and tissues can be obtained from a cadaveric allogeneic donor, but this approach introduces risk for immune rejection.^{69,71}

Cellular-based strategies can be improved upon by seeding cells onto a biomaterial scaffold, which provides support to the cells during and after implantation. For example, in matrix-induced autologous chondrocyte implan-

tation (MACI), autologous chondrocytes are seeded onto collagen scaffolds before implantation.^{85,86} Biomaterials can also be implanted acellularly, and different options have been approved by the FDA in recent years. Agili-C™ is a porous biphasic aragonite-hyaluronate scaffold designed for off-the-shelf use to treat osteochondral defects.⁸⁷

Similarly, MaioRegen is a triphasic scaffold composed of type I collagen and hydroxyapatite to mimic the composition of chondral and subchondral layers.⁸⁸ Both MaioRegen and Agili-C have demonstrated capacities for reduced adverse events and mild clinical improvements in patients postimplantation in the short term.⁸⁹ However, their ability to regenerate native-like cartilage and complete tissue integration, which is necessary for long-term clinical success, remains to be demonstrated in clinical studies over extended periods of time.^{87,88}


State-of-the-art cartilage TE approaches

State-of-the-art cartilage TE approaches focus on improving the organization and integration of newly regenerated tissue to restore native-like function. It is worth noting, however, that regeneration of functional cartilage tissue is severely hindered by lack of integration with surrounding osteochondral tissue. This necessitates that cartilage TE strategies address recapitulating the osteochondral unit for true regeneration of tissue. These strategies include cell-laden hydrogels,^{90,91} mechanical stimulation of tissue constructs,⁹¹ and biomaterials with spatially organized bioactive cues.^{92–94}

The majority of TE approaches focuses on the use of hydrogels composed of natural and synthetic materials because they mimic the high-water content found in cartilage and their physical and biochemical properties can be easily modified to promote cartilage formation.^{25,91,92,95} For example, the cross-linking density of hyaluronic acid-based hydrogels can be tuned to increase collagen II and glycosaminoglycan (GAG) production (Fig. 2A).⁹⁰ However, hydrogels are relatively soft (0.5–40 kPa) compared with native cartilage (500–900 kPa) and often require mechanical reinforcement to withstand physiological loads.^{91,96–98}

To produce mechanically relevant tissues, hydrogels can be combined with three-dimensional (3D)-printed biocompatible polymeric resins and mechanically loaded, creating spatial mechanical properties that induce stratified tissue formation *in vitro* (Fig. 2B).⁹¹ Hydrogels also allow for easy incorporation of bioactive cues to guide cell responses. For example, MSC-laden alginate hydrogels used for localized gene delivery of chondrogenic and osteogenic growth factors promoted spatial osteochondral tissue formation *in vitro* (Fig. 2C).⁹² Similarly, 3D-printed biomaterials can be spatially functionalized with osteogenic and chondrogenic peptides to influence local MSCs differentiation and matrix formation (Fig. 2D).⁹³

Although these approaches are promising, the proinflammatory environment created by OA has deleterious effects on cell response, tissue formation, and tissue integration. OA inflammation will likely impair the regenerative potential of tissue engineered strategies.^{70,72,74} Effective treatments must, therefore, include strategies that reduce inflammation while simultaneously promoting functional tissue formation.^{70,74,80}

FIG. 2. Current state-of-the-art tissue engineering strategies for osteochondral repair. (A) MSCs seeded in hyaluronic acid-based hydrogels with lower stiffness due to lower cross-linking density produced higher amounts of sGAG and COL II. (A) Adapted with permission from Ref.⁹⁰ Copyright 2021, *Biofabrication*. (B) Dynamic loading of reinforced hydrogels with spatial mechanical properties resulted in stratified tissue formation of cartilage and bone layers. (B) Adapted with permission from Ref.⁹¹ Copyright 2021, *Biofabrication*. (C) Localized delivery of osteogenic and chondrogenic genes to MSCs in PCL-reinforced alginate hydrogels drove spatial tissue formation *in vitro*. (C) Adapted with permission from Ref.⁹² Copyright 2019, *Journal of Controlled Release*. (D) Spatial organization of bone-promoting and cartilage-promoting peptides on the surface of 3D-printed PCL scaffolds influenced MSC differentiation toward osteogenesis and chondrogenesis. (D) Adapted with permission from Ref.⁹³ Copyright 2021, *Biomaterials Science*. 3D, three-dimensional; COL II, collagen II; MSC, mesenchymal stromal cell; PCL, poly(ϵ -caprolactone); sGAG, sulfated glycosaminoglycan.

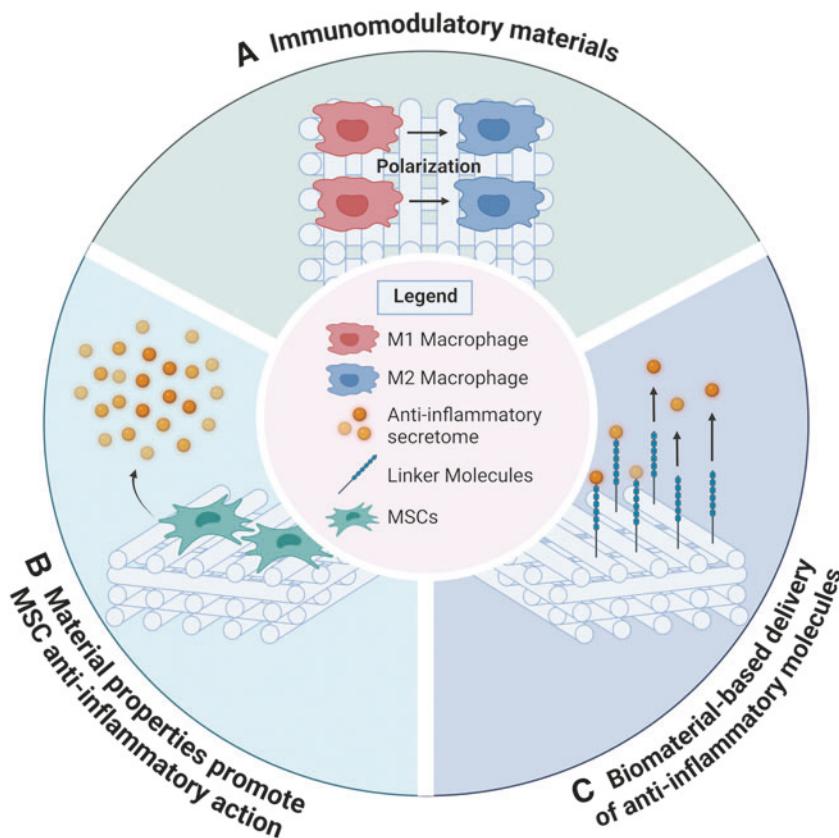
TE Strategies for Immunomodulation

The pro-inflammatory conditions associated with OA compromise the therapeutic success of cellular and cell-free TE strategies. In cell-laden scaffolds, inflammatory cytokines such as IL-1 and TNF- α have been shown to reduce MSC chondrogenesis and to impair the integration of the newly engineered cartilage with native cartilage tissue.⁹⁹ Cell-free scaffolds may have reduced healing potential because inflammatory conditions suppress the migration of MSCs and chondrocytes to the scaffold, therefore reducing its healing potential.¹²

It is essential to regulate the OA inflammatory environment to improve the overall success of TE. Different strategies aiming to modulate inflammation while providing cartilage regeneration have been previously explored.¹⁰⁰ The most prevalent are the use of immunomodulatory materials, promotion of MSC immunomodulatory potential through material properties, and incorporation of anti-inflammatory molecules into biomaterial scaffolds (Fig. 3).

Immunomodulatory materials

Biomaterials can have specific biochemical or physical properties that provide intrinsic immunomodulatory effects, which can be exploited to enhance TE strategies. For example, materials containing sulfated GAGs such as chondroitin sulfate or materials mimicking the cartilage GAG-rich composition such as sulfated alginate have been reported to display anti-inflammatory and anti-catabolic properties.^{101,102} Macrophages have become immune cells of great interest for immunomodulation, especially for cartilage regeneration due to their prominent role in the pathophysiology of OA.


Pro-inflammatory macrophage activation results in the inflammatory environment and tissue destruction associated with OA.^{15,16} Alternatively, pro-regenerative polarization of macrophage phenotype counteracts this inflammation and aids in tissue repair. Stiff biomaterials have been reported to drive macrophage polarization toward a pro-inflammatory (M1) phenotype, whereas softer materials prime cells toward an anti-inflammatory (M2) phenotype.¹⁰³

In contrast, Xue et al. reported that macrophage expression of inflammatory cytokines increased as poly(ϵ -caprolactone) (PCL)/EUG scaffold stiffness decreased.¹⁰⁴ Owing to these conflicting results, the role of material stiffness on macrophage polarization requires further investigation. In addition, research on the effects of collagen scaffold stiffness on macrophage polarization using chemical cross-linkers to vary stiffness suggest that it is not only physical hydrogel properties that determines macrophage polarization but also chemical composition.¹⁰⁵

Material geometry and topography are also key regulators of immune response. Surface topography affects macrophage attachment and phenotype; however, the relationship between the two is not yet fully understood.¹⁰⁶ Aligned fibers promote M2 macrophage phenotype, whereas randomly aligned fibers promote M1 polarization and the production of inflammatory cytokines such as TNF- α and IL-1 β .¹⁰⁷ Fiber and pore dimensions also influence macrophage polarization, with increased pore and fiber size increasing M2 marker expression.¹⁰⁸

Enhancing MSC anti-inflammatory potential through substrate properties

The anti-inflammatory properties of MSCs can be further enhanced by seeding them in biomaterials with specific

FIG. 3. Different material-based strategies for immunomodulation in osteoarthritis. (A) Immunomodulatory materials, (B) promotion of MSC immunomodulatory action through biomaterial properties, and (C) biomaterial-based delivery of anti-inflammatory molecules.

mechanical, physical, and chemical characteristics that are associated with immunomodulatory functions as described in the previous section. The combination of MSCs and hydrogels have reached Phase III clinical trials and perform significantly better than MSCs injected alone.¹⁰⁹ Owing to this, there has been a focus on using hydrogels as MSC carriers to increase cell viability.

Cell viability of 59% associated with cell injection was increased to 89% when cells were loaded in alginate hydrogels, with the increased presence of cells allowing for greater paracrine signaling by MSCs to modulate immune response and inflammation.¹⁰⁹ Although many studies have demonstrated the ability of scaffolds to improve MSC viability, Su et al. demonstrated that electrospun fibrous scaffolds have the ability to improve paracrine signaling of MSCs, with significantly higher levels of anti-inflammatory cytokines produced by the cells seeded on the fibrous scaffolds compared with those seeded on polystyrene 24-well plates.¹¹⁰

Similarly to macrophage polarization, substrate topography can also dictate MSC anti-inflammatory action. Kadir et al. investigated this effect by seeding MSCs on plates with different topographies leading to the production of a pro-regenerative secretome when cells were cultured on aligned fibers, in comparison with randomly oriented fibers.¹¹¹

Biomaterial-based delivery of anti-inflammatory drugs

Although material properties have been shown to direct macrophage polarization and MSC fate, materials alone may not be sufficient to modulate the immune response associated with OA. To successfully suppress inflammation *in vivo*, the combination of tissue engineered constructs and the delivery of anti-inflammatory molecules has been established as a promising strategy. The most common anti-inflammatory molecule used in TE is IL-1RA, which targets IL-1, a key cytokine involved in OA.

Moutos et al. investigated the effect of binding doxycycline (dox)-inducible lentiviral vectors containing *IL-1RA* transgenes to PCL scaffolds.⁹⁸ Cells seeded in these constructs were transduced *in situ* and produced significant quantities of IL-1RA, which reduced MMP activity when treated with IL-1.⁹⁸ Inhibitors of TNF- α , such as etanercept, have also been incorporated into scaffolds to enhance cartilage repair.¹¹² Biomaterials can also be used to deliver pro-regenerative cytokines. Gong et al. demonstrated that an IL-4 loaded 3D-printed osteochondral scaffold led to enhanced MSC improved cartilage and subchondral bone regeneration in an *in vivo* rabbit model of OA by relieving the negative effects associated with inflammation.¹¹³

Future Directions and Conclusive Remarks

Tailoring the properties of biomaterial scaffolds can modulate undesired inflammatory responses. Whether it is incorporating natural biological components (e.g., chondroitin sulfate) into hydrogels, tuning substrate stiffness and topography, or delivering anti-inflammatory molecules, the fabricated substrates yield increased inflammatory suppression and/or pro-regenerative macrophage responses.^{101–104} Despite the potential of these state-of-the-art strategies, there is a dire need to explore novel ways to couple suppression of inflammation with the regenerative action of materials and cells.

Cartilage inflammation and repair is a highly dynamic process controlled by the temporal presentation of inflammatory cytokines. In healthy patients, the inflammatory cascade after injury may resolve physiologically. OA patients experience fluctuating osteoarthritic flares, which exacerbates pain and functional impairs articular cartilage.¹¹⁴ Therefore, it is necessary to temporally modulate drug release kinetics in response to cyclic inflammatory stimuli.

Inflammation-responsive approaches have been explored to address the cyclic nature of OA. For example, Joshi et al. engineered a self-assembling triglycerol monostearate hydrogel sensitive to MMPs and arthritic serum, allowing for the temporal release of an anti-inflammatory corticosteroid and the attenuation of pulsating inflammatory arthritis.¹¹⁵ Another strategy explored by Park et al. is the use of genipin-cross-linked gelatin microspheres.¹¹⁶

The microspheres electrostatically bind anti-inflammatory cytokines and are released in response to the proteolytic enzyme activity in the inflamed synovium.¹¹⁶ This strategy resulted in a concentration-dependent response of anti-inflammatory cytokines and the reduction of inflammation.¹¹⁶ However, these approaches are limited by the use of supraphysiological doses of these anti-inflammatory molecules (i.e., triamcinolone acetonide [10–40 mg/mL],¹¹⁵ IL-1 β [2 ng/mL],¹¹⁶ and TNF- α [10 ng/mL]).¹¹⁶

Alternative to the delivery of recombinant cytokines, the combined used of synthetic biology and gene therapy can control the cell-mediated production of anti-inflammatory molecules. For example, Choi et al. used CRISPR/Cas9 to genetically engineer induced pluripotent stem cells (iPSCs) into autoregulating feedback loops to attenuate inflammation in a stimuli-responsive way.¹¹⁷ This genetic circuit is initiated by the presence of IL-1 and activation of the NF- κ B signaling pathway, which results in downstream expression of IL-1RA.¹¹⁷ However, the difficulty of *ex vivo* production of large numbers of edited cells limits the clinical translation of these approaches.

In addition to the temporal presentation of anti-inflammatory molecules, their spatial presentation is another key aspect that deserves consideration. Articular cartilage is a highly organized tissue that transitions from the superficial zone to the hypertrophic deep zone anchored to the subchondral bone.^{118,119} As OA inflammation deteriorates articular cartilage, the degraded ECM exposes the subchondral bone, leaving it vulnerable to sclerosis, cysts, and bone marrow lesions.^{120,121}

Inflammatory suppression is typically applied onto the cartilage surface due to the tissue's exposure to the synovial fluid, but further research is needed to explore the effects of inflammation suppression in the subchondral bone region due to pathological changes with bone marrow.¹²² Therefore, understanding where to localize inflammatory suppressant molecules remains unclear. Some studies focus on the delivery of anti-inflammatory molecules only on the articular cartilage zone of bilayer scaffolds,^{113,123} whereas others have incorporated anti-inflammatory molecules onto an entire osteochondral construct.¹²⁴

Another limitation hindering the clinical translation of TE and anti-inflammatory strategies is the sexual differences in joint cartilage homeostasis. There is evidence that sex hormone receptors and chondrocyte signaling pathways are different between male and female OA patients.¹²⁵ Despite

women having a higher prevalence of OA, musculoskeletal research primarily emphasizes males in human and vertebrate animal studies.

The sexual dimorphism of cartilage production is evident in murine models; with males undergoing greater chondrogenic differentiation in *in vitro* and *in vivo* models.^{126,127} However, there are limited studies exploring the effects of inflammatory OA and inflammatory suppressant molecules on human female chondrocytes. Therefore, the inclusion of both male and female donors is vital for understanding the pathogenesis of OA and in advancing personalized TE therapies.

Overall, the regeneration of cartilage and subchondral bone has proven to be a significant challenge. Anti-inflammatory agents such as DMOADs and gene transfer therapies are engineered to ameliorate OA inflammation, but further clinical testing is required to meet efficacy standards. Anti-inflammatory strategies involving intra-articular injections relieve joint pain and improve mobility, yet this method provides limited ability to restore osteochondral tissue functionality.

Therefore, TE approaches must design biomaterials to reinforce physiologically relevant mechanical properties and functionalize with biomimetic cues to drive osteochondral tissue regeneration. Ultimately, TE approaches need to enhance the repair of the osteochondral tissue while attenuating inflammation. The new generation of regenerative medicine strategies for OA treatment will have to provide a multifunctional approach with precise spatiotemporal control over pro-regenerative and anti-inflammatory stimuli presentation.

Authors' Contributions

Conceptualization, writing—original draft preparation, and review and editing by O.K. Conceptualization, writing—original draft preparation, review and editing, and visualization by A.K. and C.O. Conceptualization, supervision, and writing—review and editing by L.W.C. Conceptualization, supervision, writing—original draft preparation, and review and editing by T.G.-F. All authors reviewed and approved the final version of the article.

Disclosure Statement

The authors declare no financial/commercial conflict of interest in this study.

Funding Information

T.G.-F. would like to acknowledge the start-up funds provided by the Department of Bioengineering and the P.C. Rossin College of Engineering & Applied Science at Lehigh University. L.W.C. would like to acknowledge the generous support of the National Science Foundation (NSF) through a Faculty Early Career Development (CAREER) award (DMR 1944914) and the National Institutes of Health (NIH) Grant (1R21AR079117). C.O. would like to acknowledge the support provided through the Rossin College Doctoral Dean's fellowship and the Maida's fellowship. A.K. would like to acknowledge funding provided by the NSF through the Graduate Research Fellowship Program (DGE 2234658).

References

- Zhang Y, Jordan JM. Epidemiology of osteoarthritis. *Clin Geriatr Med* 2010;26(3):355–369; doi: 10.1016/J.CGER.2010.03.001
- Leifer VP, Katz JN, Losina E. The burden of OA-health services and economics. *Osteoarthritis Cartilage* 2022; 30(1):10–16; doi: 10.1016/J.JOCA.2021.05.007
- Von Der Mark K, Kirsch T, Nerlich A, et al. Type x collagen synthesis in human osteoarthritic cartilage. indication of chondrocyte hypertrophy. *Arthritis Rheum* 1992;35(7):806–811; doi: 10.1002/ART.1780350715
- Cutcliffe HC, DeFrate LE. Comparison of cartilage mechanical properties measured during creep and recovery. *Sci Rep* 2020;10(1):1–8; doi: 10.1038/s41598-020-58220-2
- Peters AE, Akhtar R, Comerford EJ, et al. The effect of ageing and osteoarthritis on the mechanical properties of cartilage and bone in the human knee joint. *Sci Rep* 2018;8(1):1–13; doi: 10.1038/s41598-018-24258-6
- Wu W, Billingham RC, Pidoux I, et al. Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. *Arthritis Rheum* 2002; 46(8):2087–2094; doi: 10.1002/ART.10428
- Shlopov BV, Lie WR, Mainardi CL, et al. Osteoarthritic lesions: Involvement of three different collagenases. *Arthritis Rheum* 1997;40(11):2065–2074; doi: 10.1002/ART.1780401120
- Wyatt KEK, Bourne JW, Torzilli PA. Deformation-dependent enzyme mechanokinetic cleavage of type I collagen. *J Biomech Eng* 2009;131(5):1–27; doi: 10.1115/1.3078177/397889
- Durigova M, Nagase H, Mort JS, et al. MMPs are less efficient than ADAMTS5 in cleaving aggrecan core protein. *Matrix Biol* 2011;30(2):145–153; doi: 10.1016/J.MATBIO.2010.10.007
- Guerne P-A, Carson DA, Lotz M. IL-6 production by human articular chondrocytes. Modulation of its synthesis by cytokines, growth factors, and hormones *in vitro*. *J Immunol* 1990;144(2):499–505; doi: 10.4049/JIMMUNOL.144.2.499
- Ryu JH, Yang S, Shin Y, et al. Interleukin-6 plays an essential role in hypoxia-inducible factor 2 α -induced experimental osteoarthritic cartilage destruction in mice. *Arthritis Rheum* 2011;63(9):2732–2743; doi: 10.1002/ART.30451
- Joos H, Wildner A, Hogrefe C, et al. Interleukin-1 beta and tumor necrosis factor alpha inhibit migration activity of chondrogenic progenitor cells from non-fibrillated osteoarthritic cartilage. *Arthritis Res Ther* 2013;15(5):1–13; doi: 10.1186/AR4299/FIGURES/7
- He J, Zhang J, Wang D. Down-regulation of microRNA-216b inhibits IL-1 β -induced chondrocyte injury by up-regulation of Smad3. *Biosci Rep* 2017;37(2):1–11; doi: 10.1042/BSR20160588/83030
- Choukair D, Hügel U, Sander A, et al. Inhibition of IGF-I-related intracellular signaling pathways by proinflammatory cytokines in growth plate chondrocytes. *Pediatr Res* 2014;76(3):245–251; doi: 10.1038/pr.2014.84
- Akkiraju H, Nohe A. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. *J Dev Biol* 2015;3(4):177–192; doi: 10.3390/JDB3040177

16. Mora JC, Przkora R, Cruz-Almeida Y. Knee osteoarthritis: Pathophysiology and current treatment modalities. *J Pain Res* 2018;11:2189; doi: 10.2147/JPR.S154002

17. Sarzi-Puttini P, Cimmino MA, Scarpa R, et al. Osteoarthritis: An overview of the disease and its treatment strategies. *Semin Arthritis Rheum* 2005;35(1):1–10; doi: 10.1016/J.SEMARTHRT.2005.01.013

18. Lavernia CJ, Guzman JF, Gachupin-Garcia A. Cost effectiveness and quality of life in knee arthroplasty. *Clin Orthop Relat Res* 1997;345:134–139; doi: 10.1097/00003086-199712000-00018

19. Tsonga T, Kapetanakis S, Papadopoulos C, et al. Evaluation of improvement in quality of life and physical activity after total knee arthroplasty in Greek elderly women. *Open Orthop J* 2011;5(1):343–347; doi: 10.2174/1874325001105010343

20. Rat AC, Guillemin F, Osnowyk G, et al. Total hip or knee replacement for osteoarthritis: Mid- and long-term quality of life. *Arthritis Care Res (Hoboken)* 2010;62(1):54–62; doi: 10.1002/ACR.20014

21. Korpershoek JV, Vonk LA, Kester EC, et al. Efficacy of one-stage cartilage repair using allogeneic mesenchymal stromal cells and autologous chondron transplantation (IMPACT) compared to nonsurgical treatment for focal articular cartilage lesions of the knee: Study protocol for a crossover randomized controlled trial. *Trials* 2020;21(1):1–11; doi: 10.1186/S13063-020-04771-8/TABLES/2

22. Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. *Knee* 2012;19(6):902–907; doi: 10.1016/J.KNEE.2012.04.001

23. Erickson IE, Kestle SR, Zellars KH, et al. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. *Acta Biomater* 2012;8(8):3027–3034; doi: 10.1016/J.ACTBIO.2012.04.033

24. Di Martino A, Kon E, Perdisa F, et al. Surgical treatment of early knee osteoarthritis with a cell-free osteochondral scaffold: Results at 24 months of follow-up. *Injury* 2015;46(Suppl 8):S33–S38; doi: 10.1016/S0020-1383(15)30052-8

25. Moutos FT, Estes BT, Guilak F. Multifunctional hybrid three-dimensionally woven scaffolds for cartilage tissue engineering. *Macromol Biosci* 2010;10(11):1355–1364; doi: 10.1002/MABI.20100124

26. Food and Drug Administration. Osteoarthritis: Structural Endpoints for the Development of Drugs, Devices, and Biological Products for Treatment for Industry. Department of Health and Human Services; United States; 2018; pp. 1–3.

27. Committee for Medicinal Products for Human Use. Guideline on Clinical Investigation of Medicinal Products Used in the Treatment of Osteoarthritis. European Medicines Agency; London; 2010; pp. 1–14.

28. Oo WM, Little C, Duong V, et al. The development of disease-modifying therapies for osteoarthritis (DMOADs): The evidence to date. *Drug Des Devel Ther* 2021;15:2921–2945; doi: 10.2147/DDDT.S295224

29. Neumann G, Hunter D, Nevitt M, et al. Location specific radiographic joint space width for osteoarthritis progression. *Osteoarthritis Cartilage* 2009;17(6):761–765; doi: 10.1016/J.JOCA.2008.11.001

30. Chevalier X, Goupille P, Beaulieu AD, et al. Intraarticular injection of anakinra in osteoarthritis of the knee: A multicenter, randomized, double-blind, placebo-controlled study. *Arthritis Care Res (Hoboken)* 2009;61(3):344–352; doi: 10.1002/ART.24096

31. Cohen SB, Proudman S, Kivitz AJ, et al. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee. *Arthritis Res Ther* 2011;13(4):1–12; doi: 10.1186/AR3430/FIGURES/4

32. Pelletier J-P, Yaron M, Haraoui B, et al. Efficacy and safety of diacerein in osteoarthritis of the knee: A double-blind, placebo-controlled trial. *Arthritis Rheum* 2000;43(10):2339–2348; doi: 10.1002/1529-0131

33. Chevalier X, Ravaud P, Maheu E, et al. Adalimumab in patients with hand osteoarthritis refractory to analgesics and NSAIDs: A randomised, multicentre, double-blind, placebo-controlled trial. *Ann Rheum Dis* 2015;74(9):1697–1705; doi: 10.1136/ANNRHEUMDIS-2014-205348

34. Kloppenburg M, Ramonda R, Bobacz K, et al. Etanercept in patients with inflammatory hand osteoarthritis (EHOA): A multicentre, randomised, double-blind, placebo-controlled trial. *Ann Rheum Dis* 2018;77(12):1757–1764; doi: 10.1136/ANNRHEUMDIS-2018-213202

35. Güler-Yüksel M, Allaart CF, Watt I, et al. Treatment with TNF- α inhibitor infliximab might reduce hand osteoarthritis in patients with rheumatoid arthritis. *Osteoarthritis Cartilage* 2010;18(10):1256–1262; doi: 10.1016/J.JOCA.2010.07.011

36. Richette P, Latourte A, Sellam J, et al. Efficacy of tocilizumab in patients with hand osteoarthritis: Double blind, randomised, placebo-controlled, multicentre trial. *Ann Rheum Dis* 2021;80(3):349–355; doi: 10.1136/ANNRHEUMDIS-2020-218547

37. vanderAar E, Deckx H, Van Der Stoep M, et al. Study design of a phase 2 clinical trial with a disease-modifying Osteoarthritis drug candidate GLPG1972/S201086: The roccella trial. *Osteoarthritis Cartilage* 2020;28(S1):S499–S500; doi: 10.1016/j.joca.2020.02.784

38. Bresnihan B, Maria Alvaro-Gracia J, Cobby M, et al. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. *Arthritis Rheum* 1998;41(12):2196–2204; doi: 10.1002/1529-0131

39. Genovese MC, Cohen S, Moreland L, et al. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. *Arthritis Rheum* 2004;50(5):1412–1419; doi: 10.1002/ART.20221

40. Cohen S, Hurd E, Cush J, et al. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: Results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. *Arthritis Rheum* 2002;46(3):614–624; doi: 10.1002/ART.10141

41. Cohen SB, Moreland LW, Cush JJ, et al. A multicentre, double blind, randomised, placebo controlled trial of anakinra (Kineret), a recombinant interleukin 1 receptor antagonist, in patients with rheumatoid arthritis treated with background methotrexate. *Ann Rheum Dis* 2004;63(9):1062–1068; doi: 10.1136/ARD.2003.016014

42. Fleischmann RM, Schechtman J, Bennett R, et al. Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1 α), in patients with rheumatoid arthritis: A large, international, multicenter, placebo-controlled trial. *Arthritis Rheum* 2003;48(4):927–934; doi: 10.1002/ART.10870

43. Ramos-Casals M, Brito-Zerón P, Soto MJ, et al. Auto-immune diseases induced by TNF-targeted therapies. *Best Pract Res Clin Rheumatol* 2008;22(5):847–861; doi: 10.1016/j.berh.2008.09.008

44. Kimmerling KA, Furman BD, Mangiapani DS, et al. Sustained intra-articular delivery of IL-1Ra from a thermally-responsive elastin-like polypeptide as a therapy for post-traumatic arthritis. *Eur Cell Mater* 2015;29:124–139; doi: 10.22203/ECM.V029A10

45. Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. *Biochim Biophys Acta* 2010;1803(1): 55–71; doi: 10.1016/J.BBAMCR.2010.01.003

46. Karsdal MA, Michaelis M, Ladel C, et al. Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: Lessons learned from failures and opportunities for the future. *Osteoarthritis Cartilage* 2016; 24(12):2013–2021; doi: 10.1016/J.JOCA.2016.07.017

47. Gerwin N, Hops C, Lucke A. Intraarticular drug delivery in osteoarthritis. *Adv Drug Deliv Rev* 2006;58(2):226–242; doi: 10.1016/J.ADDR.2006.01.018

48. Ayral X. Injections in the treatment of osteoarthritis. *Best Pract Res Clin Rheumatol* 2001;15(4):609–626; doi: 10.1053/BERH.2001.0177

49. Gonzalez-Fernandez T, Kelly DJ, O'Brien FJ. Controlled non-viral gene delivery in cartilage and bone repair: Current strategies and future directions. *Adv Ther (Weinh)* 2018;1(7):1–27; doi: 10.1002/ADTP.201800038

50. Zhang P, Zhong ZH, Yu HT, et al. Exogenous expression of IL-1Ra and TGF-β1 promotes in vivo repair in experimental rabbit osteoarthritis. *Scand J Rheumatol* 2015; 44(5):404–411; doi: 10.3109/03009742.2015.1009942

51. Glass KA, Link JM, Brunger JM, et al. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties. *Biomaterials* 2014;35(22):5921–5931; doi: 10.1016/J.BIOMATERIALS.2014.03.073

52. Evans CH, Ghivizzani SC, Robbins PD. Arthritis gene therapy is becoming a reality. *Nat Rev Rheumatol* 2018;14(7):381–382; doi: 10.1038/s41584-018-0009-5

53. Bazzoni F, Tamassia N, Rossato M, et al. Understanding the molecular mechanisms of the multifaceted IL-10-mediated anti-inflammatory response: Lessons from neutrophils. *Eur J Immunol* 2010;40(9):2360–2368; doi: 10.1002/EJI.200940294

54. Mrosewski I, Jork N, Gorte K, et al. Regulation of osteoarthritis-associated key mediators by TNF α and IL-10: Effects of IL-10 overexpression in human synovial fibroblasts and a synovial cell line. *Cell Tissue Res* 2014;357(1):207–223; doi: 10.1007/S00441-014-1868-Y/FIGURES/7

55. Grigsby E, Rickam M, Thewlis D, et al. XT-150- A novel immunomodulatory gene therapy for osteoarthritis pain in phase 2b development. *Osteoarthritis Cartilage* 2021; 29(2):S12; doi: 10.1016/j.joca.2021.05.023

56. Han Y, Li X, Zhang Y, et al. Mesenchymal stem cells for regenerative medicine. *Cells* 2019;8(8):886–908; doi: 10.3390/CELLS8080886

57. Nancarrow-Lei R, Mafi P, Mafi R, et al. A systemic review of adult mesenchymal stem cell sources and their multilineage differentiation potential relevant to musculoskeletal tissue repair and regeneration. *Curr Stem Cell Res Ther* 2017;12(8):601–610; doi: 10.2174/1574888X12666170608124303

58. Kuroda K, Kabata T, Hayashi K, et al. The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression orthopedics and biomechanics. *BMC Musculoskelet Disord* 2015;16(1):1–10; doi: 10.1186/S12891-015-0701-4/FIGURES/7

59. Zhou J, Wang Y, Liu Y, et al. Adipose derived mesenchymal stem cells alleviated osteoarthritis and chondrocyte apoptosis through autophagy inducing. *J Cell Biochem* 2019;120(2):2198–2212; doi: 10.1002/jcb.27530

60. Gupta PK, Chullikana A, Rengasamy M, et al. Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel®): Preclinical and clinical trial in osteoarthritis of the knee joint. *Arthritis Res Ther* 2016;18(1):1–18; doi: 10.1186/S13075-016-1195-7/TABLES/6

61. Al-Najar M, Khalil H, Al-Ajlouni J, et al. Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: A phase I/II study. *J Orthop Surg Res* 2017;12(1): 190; doi: 10.1186/S13018-017-0689-6

62. Matas J, Orrego M, Amenabar D, et al. Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: Repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial. *Stem Cells Transl Med* 2019; 8(3):215–224; doi: 10.1002/SCTM.18-0053

63. Jo CH, Chai JW, Jeong EC, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A 2-year follow-up study. *Am J Sports Med* 2017;45(12):2774–2783; doi: 10.1177/0363546517716641/ASSET/IMAGES/LARGE/10.1177_0363546517716641-FIG4.JPG

64. Kim YS, Kwon OR, Choi YJ, et al. Comparative matched-pair analysis of the injection versus implantation of mesenchymal stem cells for knee osteoarthritis. *Am J Sports Med* 2015;43(11):2738–2746; doi: 10.1177/0363546515599632/ASSET/IMAGES/LARGE/10.1177_0363546515599632-FIG3.JPG

65. Hyun JS, Tran MC, Wong VW, et al. Enhancing stem cell survival in vivo for tissue repair. *Biotechnol Adv* 2013;31(5):736–743; doi: 10.1016/J.BIOTECHADV.2012.11.003

66. Wei P, Bao R. Intra-articular mesenchymal stem cell injection for knee osteoarthritis: Mechanisms and clinical evidence. *Int J Mol Sci* 2022;24(1):59–82; doi: 10.3390/IJMS24010059

67. Bonab MM, Alimoghaddam K, Talebian F, et al. Aging of mesenchymal stem cell in vitro. *BMC Cell Biol* 2006;7: 14; doi: 10.1186/1471-2121-7-14

68. Wei F, Liu S, Chen M, et al. Host response to biomaterials for cartilage tissue engineering: Key to remodeling. *Front Bioeng Biotechnol* 2021;9:368; doi: 10.3389/FBIOE.2021.664592/BIBTEX

69. Escobar Ivirico JL, Bhattacharjee M, Kuyinu E, et al. Regenerative engineering for knee osteoarthritis treatment: Biomaterials and cell-based technologies. *Engineering* 2017;3(1):16–27; doi: 10.1016/J.ENG.2017.01.003

70. Sun ARJ, Uddutula A, Li J, et al. Cartilage tissue engineering for obesity-induced osteoarthritis: Physiology, challenges, and future prospects. *J Orthop Translat* 2021; 26:3–15; doi: 10.1016/J.JOT.2020.07.004

71. Bernhard JC, Vunjak-Novakovic G. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration?

ation? *Stem Cell Res Ther* 2016;7(1):56; doi: 10.1186/s13287-016-0314-3

72. Sen R, Hurley JA. *Osteoarthritis*. StatPearls Publishing: United States; 2023.

73. Lesage C, Lafont M, Guihard P, et al. Material-assisted strategies for osteochondral defect repair. *Adv Sci (Weinh)* 2022;9(16):e2200050; doi: 10.1002/ADVS.202200050

74. van der Kraan PM. The interaction between joint inflammation and cartilage repair. *Tissue Eng Regen Med* 2019;16(4):327–334; doi: 10.1007/S13770-019-00204-Z

75. Jo Y, Hwang SH, Jang J. Employing extracellular matrix-based tissue engineering strategies for age-dependent tissue degenerations. *Int J Mol Sci* 2021;22(17):9367; doi: 10.3390/ijms22179367

76. Huang H, Xu H, Zhang J. Current Tissue Engineering Approaches for Cartilage Regeneration. In: *Cartilage Tissue Engineering and Regeneration Techniques*. (Nikolopoulos DD, Safos GK, Dimitrios K. eds.) IntechOpen: United Kingdom; 2019; pp. 79–98.

77. Song Y, Zhang J, Xu H, et al. Mesenchymal stem cells in knee osteoarthritis treatment: A systematic review and meta-analysis. *J Orthop Translat* 2020;24:121–130; doi: 10.1016/J.JOT.2020.03.015

78. Davis S, Roldo M, Blunn G, et al. Influence of the mechanical environment on the regeneration of osteochondral defects. *Front Bioeng Biotechnol* 2021;9:603408; doi: 10.3389/FBIOE.2021.603408/FULL

79. Le H, Xu W, Zhuang X, et al. Mesenchymal stem cells for cartilage regeneration. *J Tissue Eng* 2020;11: 2041731420943839; doi: 10.1177/2041731420943839

80. Im GI. Current status of regenerative medicine in osteoarthritis. *Bone Joint Res* 2021;10(2):134–136; doi: 10.1302/2046-3758.102.BJR-2020-0517.R1

81. Larson BL, Yu SN, Park H, et al. Chondrogenic, hypertrophic, and osteochondral differentiation of human mesenchymal stem cells on three-dimensionally woven scaffolds. *Tissue Eng Regen Med* 2019;13(8):1453–1465; doi: 10.1002/term.2899

82. Francis SL, di Bella C, Wallace GG, et al. Cartilage tissue engineering using stem cells and bioprinting technology—Barriers to clinical translation. *Front Surg* 2018;5:70; doi: 10.3389/FSURG.2018.00070/BIBTEX

83. Erggelet C, Vavken P. Microfracture for the treatment of cartilage defects in the knee joint—A golden standard? *J Clin Orthop Trauma* 2016;7(3):145–152; doi: 10.1016/J.JCOT.2016.06.015

84. Robert H. Chondral repair of the knee joint using mosaicplasty. *Orthop Traumatol Surg Res* 2011;97(4):418–429; doi: 10.1016/J.OTSR.2011.04.001

85. Solheim E, Hegna J, Inderhaug E. Long-term survival after microfracture and mosaicplasty for knee articular cartilage repair: A comparative study between two treatments cohorts. *Cartilage* 2020;11(1):71–76; doi: 10.1177/1947603518783482

86. Nixon AJ, Rickey E, Butler TJ, et al. A chondrocyte infiltrated collagen type I/III membrane (MACI® implant) improves cartilage healing in the equine patellofemoral joint model. *Osteoarthritis Cartilage* 2015;23(4):648–660; doi: 10.1016/J.JOCA.2014.12.021

87. D'Ambrosi R, Valli F, de Luca P, et al. Maioregen osteochondral substitute for the treatment of knee defects: A systematic review of the literature. *J Clin Med* 2019;8(6): 783; doi: 10.3390/JCM8060783

88. Borsøe B, Casper C, Foldager B, et al. Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. *Knee Surg Sports Traumatol Arthrosc* 2016;24:2380–2387; doi: 10.1007/s00167-015-3538-3

89. Boffa A, Solaro L, Poggi A, et al. Multi-layer cell-free scaffolds for osteochondral defects of the knee: A systematic review and meta-analysis of clinical evidence. *J Exp Orthop* 2021;8:56; doi: 10.1186/s40634-021-00377-4

90. Galarraga JH, Locke RC, Witherel CE, et al. Fabrication of MSC-laden composites of hyaluronic acid hydrogels reinforced with MEW scaffolds for cartilage repair. *Biofabrication* 2021;14(1):014106; doi: 10.1088/1758-5090/AC3ACB

91. Schoonraad SA, Fischennich KM, Eckstein KN, et al. Biomimetic and mechanically supportive 3D printed scaffolds for cartilage and osteochondral tissue engineering using photopolymers and digital light processing. *Biofabrication* 2021;13(4):044106; doi: 10.1088/1758-5090/ac23ab

92. Gonzalez-Fernandez T, Rathan S, Hobbs C, et al. Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. *J Control Release* 2019;301: 13–27; doi: 10.1016/J.JCONREL.2019.03.006

93. Camacho P, Fainor M, Seims KB, et al. Fabricating spatially functionalized 3D-printed scaffolds for osteochondral tissue engineering. *J Biol Methods* 2021;8(1):146; doi: 10.14440/jbm.2021.353

94. Camacho P, Behre A, Fainor M, et al. Spatial organization of biochemical cues in 3D-printed scaffolds to guide osteochondral tissue engineering. *Biomater Sci* 2021;9: 6813–6829; doi: 10.1039/d1bm00859e

95. Barthold JE, McCreery KP, Martinez J, et al. Particulate ECM biomaterial ink is 3D printed and naturally cross-linked to form structurally-layered and lubricated cartilage tissue mimics. *Biofabrication* 2022;14(2):025021; doi: 10.1088/1758-5090/AC584C

96. Gonzalez-Fernandez T, Sikorski P, Leach JK. Bioinstructive materials for musculoskeletal regeneration. *Acta Biomater* 2019;96:20–34; doi: 10.1016/j.actbio.2019.07.014

97. Eschweiler J, Horn N, Rath B, et al. The biomechanics of cartilage—An overview. *Life (Basel)* 2021;11(4):302; doi: 10.3390/life11040302

98. Moutos FT, Glassb KA, Compton SA, et al. Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing. *Proc Natl Acad Sci U S A* 2016;113(31):E4513–E4522; doi: 10.1073/PNAS.1601639113

99. Saleh LS, Bryant SJ. The host response in tissue engineering: Crosstalk between immune cells and cell-laden scaffolds. *Curr Opin Biomed Eng* 2018;6:58–65; doi: 10.1016/j.cobme.2018.03.006

100. Liu S, Deng Z, Chen K, et al. Cartilage tissue engineering: From proinflammatory and anti-inflammatory cytokines to osteoarthritis treatments (review). *Mol Med Rep* 2022; 25(3):1–15; doi: 10.3892/MMR.2022.12615/HTML

101. Iovu M, Dumais G, du Souich P. Anti-inflammatory activity of chondroitin sulfate. *Osteoarthritis Cartilage* 2008; 16(Suppl 3):S14–S18; doi: 10.1016/j.joca.2008.06.008

102. Arlov Ø, Öztürk E, Steinwachs M, et al. Biomimetic sulphated alginate hydrogels suppress IL-1 β -induced inflammatory responses in human chondrocytes. *Eur Cell Mater* 2017;33:76–89; doi: 10.22203/eCM.v033a06

103. Sridharan R, Cavanagh B, Cameron AR, et al. Material stiffness influences the polarization state, function and migration mode of macrophages. *Acta Biomater* 2019;89: 47–59; doi: 10.1016/j.actbio.2019.02.048

104. Xue YZB, Niu YM, Tang B, et al. PCL/EUG scaffolds with tunable stiffness can regulate macrophage secretion behavior. *Prog Biophys Mol Biol* 2019;148:4–11; doi: 10.1016/J.PBIOMOLBIO.2019.05.006

105. Sridharan R, Ryan EJ, Kearney CJ, et al. Macrophage polarization in response to collagen scaffold stiffness is dependent on cross-linking agent used to modulate the stiffness. *ACS Biomater Sci Eng* 2018; doi: 10.1021/acsbiomaterials.8b00910.

106. Vassey MJ, Figueiredo GP, Scurr DJ, et al. Immune modulation by design: Using topography to control human monocyte attachment and macrophage differentiation. *Adv Sci (Weinh)* 2020;7(11):1903392; doi: 10.1002/advs.201903392

107. Schoenenberger AD, Tempfer H, Lehner C, et al. Macromechanics and polycaprolactone fiber organization drive macrophage polarization and regulate inflammatory activation of tendon in vitro and in vivo. *Biomaterials* 2020;249:120034; doi: 10.1016/j.biomaterials.2020.120034

108. Garg K, Pullen NA, Oskeritzian CA, et al. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. *Biomaterials* 2013;34(18):4439–4451; doi: 10.1016/j.biomaterials.2013.02.065

109. Gonzalez-Fernandez P, Rodríguez-Nogales C, Jordan O, et al. Combination of mesenchymal stem cells and bioactive molecules in hydrogels for osteoarthritis treatment. *Eur J Pharm Biopharm* 2022;172:41–52; doi: 10.1016/j.ejpb.2022.01.003

110. Su N, Gao P-L, Wang K, et al. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: A new dimension in cell-material interaction. *Biomaterials* 2017;141:74–85; doi: 10.1016/j.biomaterials.2017.06.028

111. Kadir ND, Yang Z, Hassan A, et al. Electrospun fibers enhanced the paracrine signaling of mesenchymal stem cells for cartilage regeneration. *Stem Cell Res Ther* 2021; 12(1):100; doi: 10.1186/s13287-021-02137-8

112. Li H, Hu C, Yu H, et al. Chitosan composite scaffolds for articular cartilage defect repair: A review. *RSC Adv* 2018; 8(7):3736–3749; doi: 10.1039/c7ra11593h

113. Gong L, Li J, Zhang J, et al. An interleukin-4-loaded bilayer 3D printed scaffold promotes osteochondral regeneration. *Acta Biomater* 2020;117:246–260; doi: 10.1016/j.actbio.2020.09.039

114. Thomas MJ, Neogi T. Flare-ups of osteoarthritis: What do they mean in the short-term and the long-term? *Osteoarthritis Cartilage* 2020;28(7):870–873; doi: 10.1016/j.joca.2020.01.005

115. Joshi N, Yan J, Levy S, et al. Towards an arthritis flare-responsive drug delivery system. *Nat Commun* 2018;9(1): 1275; doi: 10.1038/s41467-018-03691-1

116. Park E, Hart ML, Rolauffs B, et al. Bioresponsive microspheres for on-demand delivery of anti-inflammatory cytokines for articular cartilage repair. *J Biomed Mater Res A* 2020;108(3):722–733; doi: 10.1002/jbm.a.36852

117. Choi Y-R, Collins KH, Springer LE, et al. A genome-engineered bioartificial implant for autoregulated anti- cytokine drug delivery. *Sci Adv* 2021;7(36):eabj1414; doi: 10.1126/sciadv.abj1414

118. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: Structure, composition, and function. *Sports Health* 2009;1(6):461–468; doi: 10.1177/1941738109350438

119. Du X, Cai L, Xie J, et al. The role of TGF-beta3 in cartilage development and osteoarthritis. *Bone Res* 2023; 11(1):2; doi: 10.1038/s41413-022-00239-4

120. Li G, Yin J, Gao J, et al. Subchondral bone in osteoarthritis: Insight into risk factors and microstructural changes. *Arthritis Res Ther* 2013;15(6):223; doi: 10.1186/ar4405

121. Tateiwa D, Yoshikawa H, Kaito T. Cartilage and bone destruction in arthritis: Pathogenesis and treatment strategy: A literature review. *Cells* 2019;8(8):818; doi: 10.3390/cells8080818

122. Murakami T, Ishida T, Tanaka S, et al. Inflammation and subsequent nociceptor sensitization in the bone marrow are involved in an animal model of osteoarthritis pain. *Life Sci* 2023;324:121736; doi: 10.1016/j.lfs.2023.121736

123. Hachim D, LoPresti ST, Yates CC, et al. Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration. *Biomaterials* 2017;112:95–107; doi: 10.1016/j.biomaterials.2016.10.019

124. Xu B, Ye J, Fan B-S, et al. Protein-spatiotemporal partition releasing gradient porous scaffolds and anti-inflammatory and antioxidant regulation remodel tissue engineered anisotropic meniscus. *Bioact Mater* 2023;20: 194–207; doi: 10.1016/j.bioactmat.2022.05.019

125. Black AL, Clark AL. Sexual dimorphism in knee osteoarthritis: Biomechanical variances and biological influences. *J Orthop* 2022;32:104–108; doi: 10.1016/j.jor.2022.05.016

126. Matsumoto T, Kubo S, Meszaros LB, et al. The influence of sex on the chondrogenic potential of muscle-derived stem cells: Implications for cartilage regeneration and repair. *Arthritis Rheum* 2008;58(12):3809–3819; doi: 10.1002/art.24125

127. Corsi KA, Pollett JB, Phillipi JA, et al. Osteogenic potential of postnatal skeletal muscle-derived stem cells is influenced by donor sex. *J Bone Miner Res* 2007;22(10): 1592–1602; doi: 10.1359/jbmr.070702

Address correspondence to:
Tomas Gonzalez-Fernandez, PhD
Department of Bioengineering
Lehigh University
27 Memorial Drive West
Bethlehem, PA 18015
USA

E-mail: tog221@lehigh.edu

Received: September 8, 2023
Accepted: December 6, 2023
Online Publication Date: January 26, 2024