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Imbalanced data, a common challenge encountered in statistical analyses of
clinical trial datasets and disease modeling, refers to the scenario where one class
significantly outnumbers the other in a binary classification problem. This
imbalance can lead to biased model performance, favoring the majority class,
and affecting the understanding of the relative importance of predictive variables.
Despite its prevalence, the existing literature lacks comprehensive studies that
elucidate methodologies to handle imbalanced data effectively. In this study, we
discuss the binary logistic model and its limitations when dealing with
imbalanced data, as model performance tends to be biased towards the
majority class. We propose a novel approach to addressing imbalanced data
and apply it to publicly available data from the VITAL trial, a large-scale clinical
trial that examines the effects of vitamin D and Omega-3 fatty acid to investigate
the relationship between vitamin D and cancer incidence in sub-populations
based on race/ethnicity and demographic factors such as body mass index (BMI),
age, and sex. Our results demonstrate a significant improvement in model
performance after our undersampling method is applied to the data set with
respect to cancer incidence prediction. Both epidemiological and laboratory
studies have suggested that vitamin D may lower the occurrence and death rate
of cancer, but inconsistent and conflicting findings have been reported due to
the difficulty of conducting large-scale clinical trials. We also utilize logistic
regression within each ethnic sub-population to determine the impact of
demographic factors on cancer incidence, with a particular focus on the role of
vitamin D. This study provides a framework for using classification models to

understand relative variable importance when dealing with imbalanced data.
KEYWORDS

25-hydroxyvitamin D, cancer incidence, imbalanced data, randomized controlled
trial, undersampling
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I Introduction

In public health, it is often of interest to understand the
significance of explanatory variables with respect to a particular
phenomenon. For example, one may wish to quantify the relative
importance of smoking tobacco versus diet on cancer incidence, the
likelihood of drug resistance as a function of chemotherapy
protocol, or the significance of air pollution on infant mortality
compared with socioeconomic status. These questions are often
addressed by the analysis of large data sets, which are often collected
from clinical trials or extended surveillance studies. One method
incorporating such data that may be utilized to compare the
contribution of explanatory variables is multivariate logistic
regression. Indeed, the goal of regression is often twofold: to
make accurate predictions for unobserved data, and to
understand the extent to which each variable influences the
prediction. When interested in the latter, there exist a number of
techniques which can be utilized to assess the relative importance of
predictor variables; for example, see Tonidandel and LeBreton (1).

An issue which frequently prevents the calibration of logistic
regression models, and hence obstructs conclusions regarding
variable importance, is that of imbalanced (also known as
unbalanced) data sets, especially with regards to discrete
classification problems (2-5); we note that methods to classify
continuous target variables in imbalanced data sets are also being
developed Yang et al. (6). Imbalanced data refers to a highly skewed
data set, which for simplicity we assume can be partitioned into
majority (non-event) and minority (event) classes with respect to
the classifier label (i.e. we consider a discrete, binary classification
problem). Imbalanced data sets are those for which the number of
observations are heavily skewed towards the majority class, with a
common benchmark being a two-to-one ratio or more for the
majority class (3). When presented with imbalanced data, many
classical statistical and machine learning methods fail to accurately
identify the minority class, which is often the class of interest in
biological applications. For example, ANOVA models inherently
assume a balanced data set (7). More precisely, such methods often
converge to models that are highly accurate, but have a very low
specificity; note that specificity is often a more applicable metric
when predicting and understanding disease prevalence.

As an example, consider the case of understanding the role of
different explanatory variables in cancer incidence. Specifically, we
may be interested in determining the relative influence of these
variables on the probability of developing cancer by a certain age.
Motivated by the discussion above, we construct a multivariate
logistic binary classification model with outcomes corresponding to
positive and negative cancer diagnoses, and explanatory variables
corresponding to demographic and biometric data, such as age, sex,
body mass index (BMI), and race. This model is then calibrated to
publicly available surveillance data, such as the VITAL data set
discussed below. However, such data will generally be highly
imbalanced, with a majority of the data points corresponding to a
negative cancer diagnosis for the duration of the surveillance
period. Thus, classical model fitting techniques will heavily bias
the model towards this majority class (a negative cancer diagnosis),
and while being highly accurate, will be ineffective with regards to
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cancer diagnosis (true positives), and thus possess a sensitivity of
approximately zero. Such a model thus provides no information
with regards to explanatory variables, as an ideal cancer incident
model should exhibit consistent performance across both majority
and minority classes; it is from such a model that the relative
importance of risk factors can be inferred. We note that despite
significant research in cancer statistics, minimal work exists
addressing the specific problem of imbalanced data in cancer data
sets. Studies in fields such as ecology and credit scoring have shown
that dealing with imbalanced data prior to fitting a model can
improve model predictions for response variables (4, 5, 8).

To address the aforementioned issue of imbalanced data, several
strategies exist. One of the most well understood methods is that of
resampling the data sets to remove the disparity between the
majority and minority class sample sizes. Two approaches are
possible: oversample the minority class, or undersample the
majority class. Note the goal of both of these strategies is to
manipulate the original data set so that classical statistical
techniques can be applied, as discussed previously. In general,
such sampling is performed to maintain the original (i.e. marginal
with respect to each class) distributional characteristics of both
classes, so that the new data set is indeed representative of the
original sample. Many techniques for oversampling exist, such as
simple sample with replacement, or synthetic minority
oversampling technique (SMOTE) (9), which creates new
minority class samples from k-nearest neighbors. Similarly,
undersampling the majority class can be performed in a number of
ways, including a simple random sample from the majority class, or
implementing heuristic near-miss rules for selecting the majority
sub-sample (10). Other than data manipulation, other techniques
for dealing with imbalanced data include modifying the loss
function associated to the statistical model (11) and hybrid
approaches that combine both data set and algorithmic
approaches. For a more detailed discussion of such methods, as
well as their relative merits, we refer the reader to Johnson and
Khoshgoftaar (12) for a detailed review.

In this work, we propose a systematic method for comparing
the relative importance of explanatory variables for large
imbalanced data sets arising in public health. Specifically, we
develop a method which combines a novel undersampling
technique with binary logistic regression to determine relative
importance of biometric and socioeconomic variables in disease
incidence. We emphasize that our goal is not derive a fully
predictive model, but rather to develop a framework which can be
used to extricate the contributions of different confounding risk
factors with respect to phenomena in biomedical sciences. We note
that our method utilizes undersampling, as recent studies suggest
that undersampling techniques may be more effective in addressing
the skewness of a data set and can thus outperform oversampling
techniques compared to oversampling techniques (13-15).
Furthermore, undersampling techniques do not synthesize
artificial data, but instead utilize only existing (i.e. real) values in
the original data set. In this way, we view our approach as involving a
minimal amount of data manipulation, and relies entirely on
actual, as opposed to synthetic, data. As a case study, we apply our
method to understand the role vitamin D plays in cancer incidence
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and prevention with respect to other classical risk factors, such as
age, sex, BMIL, as well as how the relative importance of these risk
factors changes as a function of ethnicity.

1.1 Cancer and vitamin D

Cancer is a collection of genetic diseases which are
characterized by uncontrolled cellular growth and the ability to
metastasize to distal locations in the body (16, 17). In the United
States of America, 1,918,030 new cancer cases and 609,360 cancer
deaths are projected to occur in the year 2022, where it is the second
leading cause of death (18); worldwide, it accounts for
approximately one out of every six deaths every year (19). There
are over 100 different types of cancer, which are generally
characterized by the type of the cell where the disease initiates.
The most common cancer sites include lung and bronchus, breast
(women), prostate (men), colon and rectum, ovarian (women),
lymph nodes, and skin (18). Extensive epidemiological data reveal
that sex, ethnicity, and socioeconomic status substantially impact
both cancer incidence and mortality rates (20).

Several potential risk factors for cancer, including tobacco use,
obesity, and diet, have been identified through both epidemiological
and experimental studies (21). Sex and age can also significantly
impact an individual’s risk for various types of cancer, with sex
playing a large role in many types of cancer and older age generally
increasing the risk of a positive cancer diagnosis (22, 23).
Additionally, race has been shown to impact cancer risk. For
example, research has shown that, in breast cancer, the age of
diagnosis was younger in nonwhite patients (24). While many risk
factors have been identified, the relative importance and interaction
of various risk factors have yet to be fully characterized, and remains
one of the most important questions in cancer research (25). It is
also known that external factors, such as diet, can considerably
contribute to the development of cancer (26).

Vitamin D is a group of fat-soluble prohormones which assist the
body in the utilization of calcium, phosphate, and magnesium (27). It
appears both naturally and as an additive to some foods, is available
as a dietary supplement, and can be synthesized endogenously via
exposure to ultraviolet (UV) sunlight (28). Although primarily
associated with the health of bones and teeth, many early (i.c.
before 2004) epidemiological studies suggested low 25-
hydroxyvitamin D [25(OH)D] concentration were positively
associated with many types of cancer incidence, including
colorectal, breast, ovarian, and prostate cancers (29, 30).
Specifically, both incidence and death rates for certain cancers have
been observed to be lower for equatorial locations which experience a
higher concentration of UV radiation, leading many researchers to
hypothesize that vitamin D concentrations may be causally linked to
this association (29-31). There is also experimental evidence that
vitamin D may negatively regulate cellular processes associated with
carcinogenesis. For example, murine models have shown that vitamin
D receptors reduce cell proliferation and differentiation (32, 33), and
similar results have also been observed for colon cancer in humans
(34). Anti-angiogentic properties of vitamin D have also been
observed in cell culture and murine models (35).
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Recent evidence has further suggested that vitamin D may play
a role in cancer prevention and management. Such research efforts
underscore the significance of continued investigations to
elucidate the efficacy of vitamin D in reducing cancer risk and
improving patient outcomes. For example, investigators in Zhou
et al. (36) conducted a prospective evaluation, revealing an inverse
linear relationship between 25-hydroxyvitamin D (25(OH)D)
concentrations and colorectal cancer (CRC) risk. These findings
align with Munoz and Grant (37), which highlighted ecological and
observational evidence supporting vitamin D’s anticancer actions
and a wide range of experimental studies describing various
anticancer effects of vitamin D compounds. Further supporting
the significance of vitamin D, Arayici et al. (38) utilized a meta-
meta-analysis method to examine the effects of vitamin D intake
and serum 25(OH)D concentrations on cancer incidence and
mortality. Their findings concluded that increased vitamin D
intake and serum 25(OH)D concentrations were associated with
reduced cancer risk and mortality. Significantly, they emphasized
the importance of evaluation based on specific cancer types. The
association between 25(OH)D concentrations and cancer risk in
individuals with metabolic syndrome was explored in (39), where
the authors identified an inverse correlation between 25(OH)D
concentrations and the risk of colon, lung, and kidney cancer,
providing further support for the potential role of vitamin D in
cancer prevention. Complementing these findings, Kuznia et al.
(40) conducted a systematic review and meta-analysis of
randomized controlled trials (RCTs) to assess the effect of vitamin
D3 supplementation on cancer mortality. While the main meta-
analysis of 14 RCTs did not demonstrate a statistically significant
reduction in cancer mortality, subgroup analyses suggested a
potential benefit with daily dosing of vitamin D3, particularly
among adults aged at least seventy years and those initiating
vitamin D3 therapy before cancer diagnosis. Additionally, it is
known that clinical trials involving vitamin D ignore baseline
concentrations of the subjects, which can have confounding
impacts on the outcome (41-43). As an example, cancer may
have been present but undiagnosed prior at the onset of the
clinical trial, as well as the fact that it takes certain amount of
time for vitamin D supplementation to increase serum 25(OH)D
concentrations (44). For an extensive literature review on earlier
epidemiological, clinical, and experimental data relating vitamin D
and cancer, we refer the interested reader to (45).

Building on the foundational findings and collective research
efforts regarding the associations between vitamin D and cancer risk
and survival, in this work we analyze the VITamin D and OmegA-3
Trial (VITAL) to investigate the relative importance of vitamin D
in cancer incidence and mortality. The VITAL data was a clinical
trial to provide a publicly-available data set for investigating the
effects of vitamin D on disease incidence. Since its completion in
2018, a number of studies have been published analyzing the results
of the VITAL data set; however, findings from such studies are often
inconsistent and even conflicting due to the complexity and
challenges of conducting large-scale clinical trials (46—49). Here,
we are interested in understanding the role of vitamin D in cancer
prevention. However, it is well known that the effect of vitamin D is
highly variable. For examples, BMI plays a role in an individual’s
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response to vitamin D supplementation as a result of immune
dysfunction (50, 51) due to increased systemic inflammation (52),
vitamin D deficiency is more common among older men than in
other populations (53), and black adults have a higher prevalence of
vitamin D deficiency due to reduced skin vitamin D synthesis (54,
55). Leveraging data from the VITAL study, we will analyze how
these variables individually influence cancer outcomes and explore
the unique contribution of vitamin D in the context of cancer
prevention and management. The goal of this work is to use our
proposed framework to understand the relative importance of
vitamin D in cancer incidence/mortality with respect to the other
well-known cancer risk factors of ethnicity, BMI, age, smoking, and
sex utilizing the data provided by the VITAL study.

2 Methods

10.3389/fonc.2023.1227842

interest; see Section 2.4. Step 3 then involves ranking predictor
importance with respect to outcome, as in (56, 57), and is discussed
in Section 2.4.

A diagram depicting the above steps as a paradigm for
determining the relative importance of predictors from imbalanced
data sets is provided in Figure 2. We emphasize that although this
method is applied to a study of the effect of vitamin D on cancer
incidence and mortality, it is generally applicable to a wide array of
diseases, where one is interested in understanding the relative
importance of specific variables on a desired outcome.

2.1 Data collection

The VITAL trial aimed to evaluate the potential advantages of

The proposed framework for understanding the relative

importance of predictors from clinical trial data can be
summarized in the following three-step procedure:

Step 1: Undersampling
Step 2: Logistic regression

Step 3: Predictor importance

In general, we begin with a highly imbalanced data set, which

contains skewed data with respect to outcomes of interest (e.g.
positive cancer diagnosis); see Sections 2.1- 2.3 for a discussion of
the data analyzed in this manuscript, as well as pre-processing
techniques and methods of quantification. In Step 1, we

consuming daily supplements of Vitamin D3 (2000 IU) and omega-3
fatty acids in preventing cancer, heart disease, and stroke. The trial
was designed as a randomized, double-blind, factorial study, so that
individuals were randomly assigned to one of four groups: receiving
vitamin D3, omega-3 fatty acids, a combination of both, or a
placebo. Neither participants nor researchers were aware which
treatment a participant received, so results of the study were as
unbiased as possible. From a pool of 401,605 potential participants,
25,871 were chosen to take part in the 5-year intervention phase of
the study, which ended on December 31, 2017. Participants were
given a fresh supply of pills every year, along with follow-up
inquiries about adherence, potential negative effects, and the
occurrence of endpoints. The VITAL data was collected from
men at least 60 years of age, and women at least 65 years of age.
Participants were selected specifically who did not have a prior
history of cancer and cardiovascular disease from the entirety of the

undersample the majority class to create a balanced data set. The
proposed method of undersampling is novel, and is discussed in
detail in Section 2.5 (see also Figure 1). Once a balanced and
representative subsample is obtained, in Step 2 a multivariate
logistic regression model is calibrated to the balanced data to
understand disease outcome as a function of predictors of

United States. Men and women were selected in equal proportion,
and the study included at least 5000 nonHispanic Black individuals,
as this was a target demographic for understanding the role of
vitamin D supplementation. Throughout the study, several
clinically significant variables were monitored, such as the

VITAL Data (2012-2017)
n= 25871

Available data
n= 24,339

Filter NHW, NHB, Hispanic Patients
n= 23,245

]

l

Patients with cancer
n= 1464

Patients without cancer
n= 21,781

l l

Kolmogorov-Smirnov test
for continuous variables

discrete variables

| Chi-squared test for l

l }

p-value of tests are summed up to
represent a sample’s grade

!

Generate 1,000 random samples from patients without

cancer. Return the sample with highest grade.

]

n = 1,464 patients with cancer and
n = 1,464 patients without cancer

FIGURE 1

Outline of data manipulation performed in the analysis of the VITAL data set.

diagnosis response variables.
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Total: n = 2,928

Details on undersampling method (Step 1) performed to balance cancer
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Step 1: Undersampling

VITAL

Imbalanced data

Cancer  Nocancer
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Cancer No No  Cancer
cancer  cancer

FIGURE 2

Balanced data

10.3389/fonc.2023.1227842

Step 2: Logistic regression  Step 3: Predictor importance

Variables

e
mmoom»

General procedure for determining the relative importance of risk factors in an imbalanced data set. For details on the undersampling technique

(Step 1), see Figure 1.

incidence of cancer and related mortality, the onset of diabetes, and
the number of strokes. The main focus of the analysis presented
here is on cancer diagnosis to gain better insight into the role of
vitamin D on prevention. At the time of writing, the data used for
this study can be accessed at https://data.projectdatasphere.org/
projectdatasphere/html/access.

2.2 Data pre-processing

As discussed in the Introduction, cancer incidence and
mortality rates vary greatly among different racial and ethnic
groups. The primary focus of this study determining the relative
importance of age, sex, BMI, smoking, and vitamin D intake in
relation to cancer incidence in the non-Hispanic Black (NHB), non-
Hispanic White (NHW), and Hispanic ethnic groups. For the
remainder of the work, we refer to these individual characteristics as
variables. Other ethnic groups, such as Asian (388 participants,
1.5% of total population), Native American (388 participants, 0.9%
of total population), and other races (523 participants, 2% of total
population) were not included in the analysis presented here due to
the limited number of participants which prevented any statistically
significant conclusions from being ascertained.

To investigate the distribution of each variable in each ethnic
group, we define the relative proportion of variables in each
ethnic group. For a given variable i with k distinct values and
ethnic group j, the relative proportion of i in j at value k is
formally defined as

RP. . — #of participants with variable value i = k in ethnic group j
G.k)

total # of participants in variable i in ethnic group j

The use of relative proportion allows us to compare the
distribution of variable proportions between ethnic groups. As an
example, consider the NHW ethnic group, i.e. let j = NHW. After
removing missing values, there are a total number of 17,451
participants in the NHW ethnic group. Suppose that we are
interested in the proportion of NHW individuals participating in
the VITAL data set who smoke, so that we fix i = smoking. The
variable i = smoking has two values, “Yes” and “No”, so that k
B{smk=Yes, smk=No}. Among all NHW participants, 16,541
smoke, while the remaining 910 do not. Thus, the relative
proportion for nonsmokers in the NHW ethic group is RPnuw,
smk=No) = 16541/17451 = 0.95 and the relative proportion of those
who smoke is RP(nHwW, smk=ves) = 910/17451 = 0.05; this example is
also visualized in Figure 3C. The relative proportion may be
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similarly calculated for all other variables among the NHW,
NHB, and Hispanic ethnic groups.

2.3 Statistical analysis

2.3.1 Data summary

Among the total 25,871 randomized participants, 71% were
reported as NHW, 20% as NHB, 4% as Hispanic, with the remainder
labeled as other or unclassified races. Males made up 12,786 of the
participants, with a mean age of 65.6 years, and 13,085 were females
with a mean age of 67.6 years. The mean age of all participants was 66.6
years. Among all participants, 7,843 possessed a BMI of at most 25, and
17,411 participants had a BMI higher than 25. Table 1 summarizes
screening, randomization, and patient characteristics. More details
about the VITAL data set can be found in Manson et al. (58).

2.4 Logistic regression

To investigate the association between invasive cancer (of any
type) and individual variables, a multivariate logistic regression
(59) was utilized. Logistic regression is a statistical technique
utilized to examine the relationship between a binary outcome
(in this case, the presence or absence of a positive cancer
diagnosis) and one or more independent variables (here age,
sex, BMI, ethnicity, smoking status, and vitamin D protocol).
The logistic regression model outputs the probability of an
individual experiencing a particular outcome, as a function of
the patient variables. These variables can be either discrete (e.g.
categorical variables) or continuous (e.g. BMI). Logistic regression
is widely used in the medical field to estimate the likelihood of
developing diseases, such as diabetes, heart disease, or cancer,
based on patient data (60, 61).

We aim to understand the relationship between various
characteristics and the likelihood of developing cancer by using
logistic regression. The outcome variable in this analysis is binary,
indicating whether or not a participant developed cancer during the
study. The predictor variables we are considering include age, BMI,
sex, vitamin D or placebo use, and smoking status. By analyzing these
variables, we seek to identify which factors may increase or decrease
the risk of cancer and develop strategies for prevention or early
detection. The objective of this study is not to predict cancer, but
rather to investigate the connections between inter-person
explanatory variables and cancer, and to assess the degree to which
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Distributions all of variables of interest for all participants (A, C, E, G) and for participants who were diagnosed with cancer (B, D, F, H) during the

five-year VITAL study period.

these characteristics may play a role in causing cancer. To evaluate the
importance of each characteristic in this context, we used a model-
based method for calculating variable importance, as described in (56,
57). Briefly, this method ranks predictors based on standard
deviations of the partial-dependence plots (PDPs), which serve as
an indicator of “flatness” of PDPs; a greater degree of “flatness” in
PDPs implies less influence on the response variable. This ranking
then allows us to determine the degree to which predictor variable is
associated with a positive cancer diagnosis in the logistic model.

Since most of individuals in the VITAL data set were not
diagnosed with cancer (21,781/23,245 = 93.7%), a logistic
regression model calibrated to the entire data set will be biased
towards this majority class. In order to utilize the logistic regression
model to understand the role of vitamin D with respect to other risk
factors (i.e. variables), we developed a novel undersampling method
to correct for this imbalance prior to fitting the logistic model. As
there existed 1,464 positive cancer diagnosis in the three ethnic
groups of interest (NHW, NHB, and Hispanic), we first
undersampled the negative cancer diagnosis class (21,781
individuals) as described in Section 2.5, and then fit the binary
logistic regression to this sub-sampled data set.

2.5 A novel undersampling method
To prevent bias in the logistic regression model towards the

majority class (negative cancer diagnosis), we generated a sub-
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sample of this class equal in size to the number of cancer-diagnosed
participants (1,464). That is, we undersampled the negative cancer
diagnosis class so that both cancer and non-cancer outcomes were
represented equally in the data set which was subsequently utilized
to fit the logistic regression model. Two approaches were employed
for undersampling, each with a goal of maintaining the
distributional properties of the negative cancer diagnosis class.
The first method aimed to reflect the distribution of the non-
cancer population and involved taking 1,000 random samples, each
of 1,464 individuals without replacement, from the majority class.
To determine if the sample of non-cancer participants accurately
reflected the distribution of the non-cancer population, we applied
chi-squared and Kolmogorov-Smirnov tests to compare the
sample’s distribution of all variables of interest (BMI, sex,
treatment arm, current smoking, and age) with that of the
population. If the p-value of these tests is high, it suggests that
there is not a significant difference between the sample and the
population with respect to this variable. For each variable, we thus
obtain a p-value, which measures (inversely) the discrepancy of the
distribution of the sample with respect to the population. From
1,000 random samples, we then select the one with the highest
summed p-values, as it is the most similar to the population in terms
of all of the variables tested. The algorithm for balancing non-
cancer and cancer populations is shown in Figure 1.

The second method is similar, except that it selects non-cancer
participants to control for age and sex by ensuring that the age and
sex distribution of the sub-sample matches that of the cancer-
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TABLE 1 Participant characteristics and basic summary statistics of the VITAL clinical trial evaluating the effects of vitamin D supplementation.

# of participants Age (+ SD) BMI (+ SD)
Patients completed initial screening 401, 605
Patients willing and eligible to participate 39,430
Patients did not adhere to trial regimen or became unwilling to participate 13, 559
Randomized participants 25,871
Participants received active vitamin D 12, 927
Participants received placebo vitamin D 12, 944
Alive participants at end of intervention 24, 893 66.4 (59.5, 73.4) 28.1 (224, 33.7)
Dead participants at end of intervention 978 71.2 (62.3, 80.1) 28.6 (214, 35.8)
Males 12, 786 65.6 (584, 72.7) 27.8 (23.0, 32.5)
Females 13, 085 67.6 (60.8, 74.4) 284 (218, 349)
Age < 65 11, 533 60.6 (56.8, 64.3) 289 (22.8,35.1)
Age > 65 14, 338 71.5 (66.4, 76.6) 274 (22.1,32.7)
BMI < 25 7, 843 67.8 (60.6, 75.1) 22.6 (20.8, 24.4)
BMI > 25 17, 411 66.0 (59.2,72.9) 30.6 (254, 35.7)
Smoking 1, 836 63.7 (572, 70.2) 27.8 (21.6, 34.1)
non-smoking 23, 649 66.8 (59.8, 73.9) 28.1 (224, 33.8)
NHW 18, 046 67.6 (60.8, 74.3) 274 (22.1, 32.6)
NHB 5, 106 62.8 (55.0, 69.7) 30.6 (23.8,37.3)
Hispanic 1,013 66.8 (60.2, 73.5) 28.6 (23.1, 34.2)
Vitamin D 12,927 66.6 (59.6, 73.7) 28.1 (224, 33.8)
Placebo 12, 944 66.6 (59.6, 73.7) 28.1(223,33.8)

The table presents the number of participants at each stage, including initial screening, eligibility, randomization, and intervention assignment. The summary statistics include age (mean +
standard deviation) and BMI (mean + standard deviation) for various subgroups. The trial enrolled a total of 401,605 participants, and 25,871 were chosen to take part in the 5-year intervention

phase of the study, which ended on December 31, 2017.

positive population. This approach allows the impact of other
factors on the outcome to be observed more clearly. To balance
the age and sex distribution of the cancer population, the data were
divided into subgroups based on age and sex, and random samples
were picked from each subgroup as discussed in the
previous paragraph.

2.6 Software
The statistical software R version 4.1.2 was used for analyzing

the data and utilizing the methods, along with the following
libraries in our coding: readxl, dplyr, tidyr, ggplot2, viridis, vip.

3 Results
3.1 Statistical analysis
To investigate the impact of vitamin D on cancer incidence,

data was analyzed from 25,871 participants in the VITAL study.
Figure 4A shows that the distribution of individuals receiving
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vitamin D and placebo was identical among all ethnic groups.
Figure 4B displays the vitamin D intake of participants who were
diagnosed with cancer during the 5-year period of the study. There
are substantial disparities between the vitamin D and placebo
groups for NHB participants (VitD-proportion = 0.56, placebo-
proportion = 0.44, p = 0.02) and Hispanic participants (VitD-
proportion = 0.37, placebo-proportion = 0.63, p = 0.02). However,
there is no significant difference between NHW participants who
received a positive cancer diagnosis (VitD-proportion = 0.495,
placebo-proportion = 0.505, p = 0.68) during this 5-year period.
From this, we may initially conclude that vitamin D is effective in
reducing cancer incidence among NHB participants, but not among
NHW or Hispanic participants. However, by not considering the
influence of other confounding variables, such as age, BMI, sex,
and/or smoking which are known to have a significant impact in
cancer incidence, it is difficult to infer the causal effect of vitamin D
directly (62—65). For example, endometrial cancer has been linked
with decreased age of diagnosis in obese individuals (64). Similarly,
the risk of lung cancer is higher in NHB individuals who smoke (62,
63), and studies on breast cancer have revealed that age and BMI are
important factors in cancer incidence rates (65). Thus, we examined
the impact of vitamin D on cancer incidence in the context of other
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FIGURE 4

Distribution of vitamin D and placebo as a function of a race for (A) all participants, and (B) for participants who were diagnosed with cancer at some

point during the VITAL study.

risk factors (variables), instead of concentrating solely on vitamin D
intake. For example, compared to NHW and Hispanic participants,
a higher percentage of NHB participants have a BMI above 25 (85%
for NHB, compared to 65% and 75% for NHW and Hispanic,
respectively) and smoke (14% for NHB, compared to 5% and 6% for
NHW and Hispanic, respectively); the NHB ethnic group also has a
younger (70% below 65 years old for NHB, compared to 38% and
45% for NHW and Hispanic, respectively) and more female
population (62% for NHB, compared to 48% and 35% for NHW
and Hispanic, respectively). Biologically, a high BMI and high
smoking rate will increase the risk of cancer in the NHB group,
while a higher proportion of younger females is expected to
decrease this risk. The variation in risk factors between ethnic
groups thus obscures any clear conclusions that can be made with
respect to vitamin D and cancer prevention, and a more detailed
analysis is required beyond descriptive statistics. Thus, we develop a
systematic method for quantifying the relative importance of risk
factors, as outlined in Section 2 (Steps 1 -3). For a complete
description of variable proportions for the ethnic groups of
interest, see Figure 3.

3.1.1 Distributional differences in positive cancer
diagnosis individuals

To quantify the previous statement regarding statistical
differences in risk factors between ethnic groups for cancer
positive individuals, we perform proportion tests; Table 2
summarizes the results of these proportion tests for each variable of
interest. In the NHW ethnic group, 38% of all participants were
under 65 years old and 29% of participants who developed cancer
were also under 65. The first row of Table 2 indicates that the 95%
confidence interval for the difference between the two proportions is
(0.06,0.12) and the chi-squared test statistic value of 37.7, with a p-
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value of less than 0.001, confirms that the difference between 38%
and 29% is statistically significant. Table 2 demonstrates that there
are significant proportion differences for age, smoking, and sex in
both NHW and NHB groups between the entire data set and the
positive cancer diagnosis (minority) class (p < 0.001, p < 0.01, p <
0.001 respectively). However, no proportion differences are
statistically significant for the Hispanic group, which could be due
to the small sample size (110 observations with a positive cancer
diagnosis). We note that in the Hispanic sample, sex has the highest
test statistic value and the smallest p-value.

3.2 Logistic regression

To quantify how successful the logistic regression model is with
respect to predicting cancer incidence, various performance measures
may be utilized, as discussed in Section 1. Common metrics include
measures of sensitivity (the probability that the test will identify the
disease, assuming the patient does have the disease), specificity (the
probability that the test will indicate the absence of the disease,
assuming the patient does not have the disease), precision (the
probability that the patient has the disease, given that the test has
identified the presence of the disease), negative predictive value
(NPV; the probability that a person who tests negative for the
disease does not have the disease), and accuracy (probability that
the test correctly detect patients with and without disease). Ideally, it
would be desirable to have all these measures equal to one; however
this is generally not achievable, particularly in cancer prediction
where there are various latent and immeasurable factors. With
respect to cancer prediction, a critical metric is that of sensitivity,
i.e. a model with low sensitivity will generally not be
scientifically useful.
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TABLE 2 Proportion test results, as well as the 95% confidence interval, for each risk factor within each ethnic group.

NHW NHB Hispanic
95% CI Chi-squared 95% CI Chi-squared 95% CI Chi-squared
Age (0.06, 0.12) 37700k (0.06, 0.20) 15554k (-0.06, 0.25) 13
Smoking (0.00, 0.03) 7.1 (0.02, 0.14) 9.5%% (-0.09, -0.04) 2.1
BMI (-0.01, 0.04) 1.4 (-0.10, 0.02) 22 (-0.10, 0.17) 0.1
Sex (-0.10, -0.04) 2118k (-0.19, -0.03) 12.3%8% (-0.27, -0.00) 29
VitD (-0.03, 0.03) 0.05 (-0.13, 0.01) 26 (-0.03, 0.28) 22

#H*p<0.001; **p<0.01; *p<0.05.
Here we analyze the difference between the distributional differences between the entire VITAL population data set and the subset with a positive cancer diagnosis in each variable (row) and in each
ethnic group (column). The results here suggest that there are significant statistical differences between a number of predictive variables (including, but not limited to only vitamin D) in the cancer

positive individuals. We thus apply the method outlined in Figure 2 to understand the relative importance of predictors to quantify their importance in cancer diagnosis.

Initially, we applied logistic regression to each of the three
ethnic groups, utilizing cancer incidence as the response variable;
recall that data is heavily imbalanced, with the majority class (no
cancer diagnosis) containing approximately 93.7% of the data. The
aim was to assess the model’s ability to accurately predict cancer
incidence based on the available predictors. Furthermore, once the
model is successfully calibrated to each ethnic group, our goal is to
compare the relative importance of each risk factor between ethnic
groups as discussed in Section 2.4 and more broadly in Figure 2.
More specifically, we want to understand the variation in the
efficacy of vitamin D as a cancer prophylactic as a function of
ethnicity. The prediction metrics of the model are presented in
Table 3. The findings show that the model (fit to the imbalanced
data set) had a sensitivity of zero, a specificity of one, and an
undefined precision, as the model predicts that no individual will
develop cancer during the study. Note that despite the high degree
of accuracy (between 93% and 96%), the model’s predictions with
respect to those patients developing cancer were extremely poor, so
that the model could not be used to provide information with
respect to the explanatory variables relating to cancer incidence.

To address this issue, we employed the undersampling
technique as outlined in Section 2.5 (Step 1); distributional
properties of the obtained sample are shown in (a) and (b) of
Figure 1, and are provided to verify that it does indeed form a
representative statistical sample of the entire cancer negative
(majority) class. Utilizing this sample, we then performed the
logistic regression analysis on the undersample, together with the
positive cancer diagnosis groups (minority class), and obtained
generally improved prediction metrics (Step 2). Specifically, we
observed a significant improvement in sensitivity and positive
predictive value across all groups. The sensitivity improved to

60% for all participants, 69% for NHW, 24% for NHB, and 26%
for the Hispanic group. Similarly, the precision also improved to
57% for all groups, 58% for NHW, 58% for NHB, and 48% for the
Hispanic group. This suggests that to obtain a logistic regression
model applicable for disease instance, we must first balance the
majority and minority classes. These findings have implications for
cancer research and public health policy, as accurate prediction of
cancer incidence can aid in early detection and prevention of the
disease. A summary of all performance measurements for the
balanced data is presented in Table 4.

After obtaining a representative sample for the negative cancer
diagnosis class and demonstrating that logistic regression can be
utilized as a tool for understanding variable importance in cancer
diagnosis, a more detailed logistic regression analysis is performed; a
summary of is provided in Table 5. In the first column (labeled
“All”), age, sex, BMI, smoking, vitamin D, and race (ethnicity) are
used as explanatory variables. Note that here all ethnic groups are
combined in the initial model, as we want to understand if ethnicity
has any explanatory effect in cancer diagnosis. We find that sex (p <
0.001), age (p < 0.001), smoking (p < 0.01), and race (p < 0.05) are
significant, however, BMI and vitamin D are not significant (p
0.05). Since the variables “raceNHW” and “raceHispanic” are both
significant, this suggest that additional analysis should be
performed to examine the overall effect of race. We utilized the
Wald test to assess the significance of the three levels of race (NHW,
NHB, Hispanic). The Wald test with output c? ~ 22, df =2, p < 0.05
indicates that the effect of race is indeed significant. To further
examine the significance of other variables within each racial group,
we filtered the balanced data by race and conducted logistic
regression analyses for each race as in Table 4. The variables age,
sex, and smoking were found to be significant in the NHW group,

TABLE 3 Performance measures of logistic regression on full (imbalanced) VITA data set.
Sensitivity Specificity Precision NPV | Accuracy
All 0.00 1.00 NA 0.94 0.94
NHW 0.00 1.00 NA 0.93 0.93
NHB 0.00 1.00 NA 0.96 0.96
Hispanic 0.00 1.00 NA 0.95 0.95
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TABLE 4 Performance measures of logistic regression (Step 2) on undersampled VITA data set.

Sensitivity Specificity Precision Accuracy
All 0.60 0.56 0.57 0.58 0.58
NHW 0.69 0.43 0.58 0.55 0.57
NHB 0.24 0.89 0.58 0.65 0.64
Hispanic 0.26 0.80 0.48 0.60 0.57

Compare to results in Table 3.

with p-values less than 0.001, 0.001, and 0.01 respectively. Similarly,
age, sex, and smoking were significant in the NHB group with p-
values of less than 0.01, 0.05, and 0.05 respectively. However, none
of the variables were found to be significant in the Hispanic group
due to the small number of positive cancer diagnosis cases.

We then utilized the logistic regression models to assess the
relative variable importance of each variable (risk factor) in our
study (Step 3). The results of this analysis are illustrated in
Figure 5, where age and sex were identified as the most
significant contributing factors for the “All”, NHW, and NHB
models. When race was disregarded in Figure 5A, smoking
emerged as the third most important factor across all three
models. We note that vitamin D intake held the lowest
importance rank in the “All” and NHW models, while in the
NHB model, it held the second-lowest rank (above BMI). That is,
it appears that vitamin D does play a role in cancer incidence for

the NHB population, although it is not as significant as more
classical risk factors such as age, sex, and smoking. Moreover, the
importance of BMI and vitamin D were found to be relatively
small and similar in the NHB group. Overall, these findings
suggest that age, sex, and smoking are important factors to
consider when studying the human characteristics that may
influence our health outcomes. Nonetheless, additional research is
necessary to understand the complex interplay between these
variables and their impact on cancer incidence.

3.3 Comparison of undersampling
with SMOTE

We provide a comparison of our undersampling technique
introduced in Section 2.5 to a standard oversampling technique,

TABLE 5 Logistic regression summary for all participants, and for NHW, NHB, and Hispanic participants.

All NHW NHB Hispanic
age>63 0.5%#% 049 0.61%* 0.47
(0.08) (0.09) (0.19) (0.45)
sexF -0.438 =0.40%** —0.44* -0.85
(0.08) (0.09) (0.18) (0.47)
bmi>25 0.09 0.13 -0.20 0.28
(0.08) (0.09) (0.23) (0.49)
vitDYes -0.05 -0.05 -0.09 0.57
(0.08) (0.09) (0.18) (0.41)
smkYes 047H#* 0.49%* -0.46* -14.64
(0.14) (0.19) (0.23) (1030)
raceNHB —0.44%%*
(0.11)
raceHispanic -0.48*
(0.20)
AIC 3960 3110 713 153
BIC 4010 3140 739 169
Log Likelihood -1970 -1550 =350 =71
Deviance 3950 3100 701 141
Num. obs. 2930 2280 542 110

BEpE 0.001; @ @ < 0.01; Bp < 0.05

Numbers in parenthesis represent standard errors for each coefficient. This summary is based on the balanced data set including 2,928 participants (equal between positive and negative cancer

diagnosis).
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Synthetic Minority Oversampling Technique (SMOTE) (9). SMOTE
works by generating new samples from the minority class by selecting a
k-nearest neighbor in feature (variable) space, and then using a convex
combination of features to generate additional samples; it is one of the
most popular methods for handling class imbalance in data science and
machine learning applications (66). To validate the distributional
properties of the sampled data presented in Section 3.2 and
investigate how well the undersampled data agreed with the SMOTE
oversample, we compared the distribution of the undersampled data
with the balanced SMOTE data. Results are provided in Figures 6C, D,
and demonstrate that both SMOTE and the undersampling method
exhibited distributions consistent with the original VITAL data,
effectively achieving class balance. However, the key distinction lies

A Histogram of age — VITAL vs. undersampled
0.08%
0.06%
H Data
g'o‘M% l undersampled
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0.02%
0.00%
50 60 70 80 90
age
C Histogram of age - VITAL vs. SMOTE
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5 Data
i
S 0.04% l SMOTE
<
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FIGURE 6

A visual comparison of the age and BMI distributions between the original VITAL dataset and the transformed datasets, which include the upsampled
SMOTE dataset, and the undersampling technique outlined in Section 2.5 (Step 1). Plot (A) shows the comparison of the distribution of age in the
original VITAL data set compared to the undersampled data. Plot (B) makes the comparison for BMI in the original VITAL data set compared to the
undersampled data. Plots (C) and (D) make the same comparisons, as (A) and (B) respectively, but for the VITAL data and SMOTE.
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in the fact that we the proposed undersampling technique utilizes only a
subset of authentic data, avoiding the generation of any synthetic
instances. This aspect highlights the strength and appeal of the
undersampling method, as it maintains the overall distribution of the
original dataset while adhering to the principle of using real data for
model validation and inference.

4 Discussion and conclusion

Imbalanced data is a frequent problem that occurs in many
applications, including disease modeling. In this work, we utilized
the VITAL data as a case study to test our method of balancing the
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data together with logistic regression to understand the relative
importance of classical risk factors in cancer incidence. To
overcome biases associated with imbalanced data, we developed a
novel undersampling technique, which we applied to the VITAL
data to balance the majority and minority classes. We also
compared the sample’s distribution of BMI, sex, current smoking,
and age with that of the population using the Chi-square and
Kolmogorov-Smirnov tests to ensure that the sample was a fair
representation of the population. Our study found that balancing
data is crucial in the development of accurate models for the
prediction of cancer incidents.

Moreover, we used various evaluation metrics to assess the
performance of our model before and after balancing the data. The
results showed that balancing the data led to a significant
improvement in the model’s performance. The model trained on
the undersampled data had a higher sensitivity, precision, and
balanced specificity compared to the imbalanced data models. We
also tested our model on an independent data set to validate its
performance, and the results were consistent with the training data.

By utilizing logistic regression analysis, we examined the
confounding relationships between human risk factors and cancer
incidence. Specifically, the goal of this work it to introduce a
“pipeline” by which clinical data can be used to extrapolate the
relative risk factors on disease incidence. A primary question of
interest is how effective a treatment is, when compared to other risk
factors inherit in the data set. We note that the answer to such a
question is not immediately clear from descriptive statistics alone,
as clinical data sets often present non-equivalent distributions with
respect to risk factors between sub-populations.

Using VITAL data as a case study, we investigated the impact of
vitamin D on reducing cancer risk among three different ethnic
groups. Previous research (e.g. Sakamoto et al. (54)) has shown that
the NHB populations tends to have lower vitamin D levels, which
may increase their risk of cancer. It is also important to note that
NHB individuals are more likely to have other risk factors for
cancer, such as obesity and smoking, which may also contribute to
their higher cancer risk. We examined the association between
vitamin D intake and cancer incidence and how it may be affected
by other risk factors. We specifically took into account the potential
confounding variables of age, BMI, smoking, and sex.

Exploratory data analysis of the VITAL data set reveals mixed
results on the relationship between vitamin D intake and cancer
incidence. This could be due to complex interactions among human
characteristics or a lack of significant association between vitamin D
and cancer incidence. Though we found positive correlation
between vitamin D intake and cancer incidence in NHB
individuals, a closer examination revealed that the majority of the
NHB sample was under the age of 65, while the majority of
individuals in other ethnic groups were older. The same situation
can be observed with respect to sex. According to the National
Cancer Institute (NCI), men have a 50% chance of getting cancer
during their lifetimes, while for women, the chance is around 33%
Kim et al. (67). In this study, the majority of NHB participants were
female, which may have contributed to a lower likelihood of cancer
diagnosis among the NHB group. This raises doubts whether the
observed cancer prevention in the NHB group is a result of vitamin
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D intake or simply a result of the majority of participants being
female and younger. Furthermore, it should be noted that the
VITAL clinical trial did not consider basal vitamin D levels and
BMI, which could have contributed to the variation in cancer
incidence (68-70).

Using our proposed statistical framework, the results of our
analysis did not reveal a significant association between vitamin
D intake and cancer incidence, at least with respect to classical
risk factors. We were particularly interested in the role of
vitamin D with respect to the NHB ethnic group, and
although vitamin D did have an increased relative importance
compared to the NHW population, it was still not as significant
as age or sex. Additionally, the analysis revealed that the
relationship between vitamin D intake and cancer incidence
was not independent of other factors. Our findings did not
support the notion that individuals with higher vitamin D intake
have a lower risk of cancer compared to those with lower
vitamin D intake when other human characteristics were
taken into account. These results were consistent when race
was considered as a factor and when each ethnic group was
analyzed separately.

In conclusion, our suggested framework provides a modeling
approach for understand the relative importance of risk factors in
clinical data sets. With respect to vitamin D and the VITAL data
set, it appears that although vitamin D could play a significant role
in maintaining overall health by helping the body absorb and
retain calcium and phosphorus, it does not play a significant role
in cancer prevention. The inconsistent results from previous
studies emphasize the need for more research to clarify the
relationship between vitamin D and cancer incidence. To fully
understand this relationship, it is essential to conduct further
studies using large, diverse samples and considering the potential
interactions and causality between vitamin D and other
confounding factors.
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