
1.  Introduction
Sporadic E (Es) manifests as regions of enhanced ionization, occurring 90–130 km above Earth's surface (Zeng 
& Sokolovskiy,  2010). At mid-latitudes, the Windshear Theory is commonly accepted as the mechanism for 
Es formation (Mathews, 1998; J. D. Whitehead, 1960, 1989). According to this theory, vertical shears in the 
horizontal neutral wind converge long-lived metal ions from ablated meteors into thin, dense layers. Within a 
few degrees of the magnetic equator and near the auroral regions, the windshear mechanism is inefficient, and 
plasma instabilities contribute to the Es layer formation. Equatorial and Auroral Es in these regions are generally 
linked to the large electric fields associated with the equatorial electrojet and solar winds (Haldoupis, 2011; J. D. 
Whitehead, 1989; D. Whitehead, 1997). These irregularly ionized layers can reflect or degrade radio waves propa-
gating through the ionosphere and impact applications such as satellite and high frequency (HF) communications, 
Global Navigation Satellite System (GNSS) navigation and positioning (Yue et al., 2016), and over-the-horizon 
(OTH) radar (Fabrizi, 2013). In order to effectively operate in these complex electromagnetic environments, a 
global understanding and accurate characterization of Es is critical.

Abstract  In this work, convolutional neural networks (CNN) are developed to detect and characterize 
sporadic E (Es), demonstrating an improvement over current methods. This includes a binary classification 
model to determine if Es is present, followed by a regression model to estimate the Es ordinary mode 
critical frequency (foEs), a proxy for the intensity, along with the height at which the Es layer occurs (hEs). 
Signal-to-noise ratio (SNR) and excess phase profiles from six Global Navigation Satellite System (GNSS) 
radio occultation (RO) missions during the years 2008–2022 are used as the inputs of the model. Intensity 
(foEs) and the height (hEs) values are obtained from the global network of ground-based Digisonde ionosondes 
and are used as the “ground truth,” or target variables, during training. After corresponding the two data sets, 
a total of 36,521 samples are available for training and testing the models. The foEs CNN binary classification 
model achieved an accuracy of 74% and F1-score of 0.70. Mean absolute errors (MAE) of 0.63 MHz and 
5.81 km along with root-mean squared errors (RMSE) of 0.95 MHz and 7.89 km were attained for estimating 
foEs and hEs, respectively, when it was known that Es was present. When combining the classification and 
regression models together for use in practical applications where it is unknown if Es is present, an foEs MAE 
and RMSE of 0.97 and 1.65 MHz, respectively, were realized. We implemented three other techniques for 
sporadic E characterization, and found that the CNN model appears to perform better.

Plain Language Summary  Ionospheric Sporadic E (Es) are cloud-like structures of dense 
ionization in the Earth's upper atmosphere. As radio waves from Global Navigation Satellite System (GNSS) 
satellites propagate through these layers of irregular plasma, phase and amplitude perturbations may be 
introduced into the signals. GNSS radio occultation (RO) missions receive these perturbed signals and can infer 
Es intensity and height characteristics on a global scale. As GNSS-RO missions do not directly measure foEs 
and hEs values, ground-based ionosondes can be used to provide true values on which to train and validate 
models. In this work, data from several GNSS-RO missions and ionosondes between 2008 and 2022 were 
used. While previous approaches have used more traditional signal processing methods, here we use machine 
learning methods to develop the models. These models are trained by ingesting the GNSS-RO data and learning 
the best estimating function that minimizes the error between predicted values and the true values provided by 
the ionosondes. To ensure both the GNSS-RO and ionosondes are measuring the same physical phenomena, 
we use a window of 150 km and 30 min to join the data. The models trained using machine learning methods 
demonstrate improved performance when compared with other methods described in literature.
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Over the years, sporadic E has been measured and monitored using a variety of different instrumentation and 
methods. This list includes sounding rockets (Hall et al., 1971; Mori & Oyama, 1998; Yamamoto et al., 1998), 
incoherent scatter radars (ISR) (Christakis et  al.,  2009; Mathews, 1998), ionosondes (Haldoupis et  al.,  2006; 
Merriman et al., 2021; Oikonomou et al., 2014), and GNSS radio occultations (RO) (Arras & Wickert, 2018; 
Arras et al., 2008; Chu et al., 2014; Gooch et al., 2019; Hocke et al., 2001; Hu et al., 2022; Wu et al., 2005; 
Zeng & Sokolovskiy, 2010). While sounding rockets are able to provide accurate in situ measurements, they are 
generally carried out in campaigns which limited spatial and temporal coverage. ISRs and ionosondes are both 
ground-based instruments that are able to provide Es measurement with good temporal resolution. However, ISR 
locations are very limited and ionosondes, while having much larger global coverage, are still lacking presence in 
some regions and over bodies of water. GNSS-RO, on the other hand, uses satellites in Low Earth Orbit (LEO) 
to receive signals from GNSS satellites in Medium Earth Orbit (MEO) to produce measurements that cover the 
globe with high vertical resolution. However, whereas ionosondes directly measure Es attributes like intensity 
(foEs) and height (hEs), these characteristics must be inferred from RO profiles.

In order to derive Es characteristics from RO measurements, data is needed which can be considered “true” and 
used to validate the inferred values. Since ionosondes can directly measure Es layer intensity and height, and 
are available at many locations across the globe, they are an ideal choice for the task. It should be noted that 
the heights given by the ionosondes are actually a virtual height (h′Es). This is a time-based measurement that 
assumes the signal from the ionosonde travels at the speed of light and reflects off a perfect electrical conductor 
at the virtual height. In reality, however, the ionization in the atmosphere causes the signal to bend and delay the 
return of the signal (i.e., h′Es ≤ hEs). At night and during the daytime below the E region maximum, the influ-
ence of ionization is fairly weak, and the virtual height is roughly equal to the actual height. However, during the 
daytime above the E region maximum, differences of a few km are possible (Haldoupis, 2019). Here, we assume 
that h′Es ≈ hEs.

With inputs (GNSS-RO measurements) and outputs on which to compare against (ionosonde measurements), all 
that is needed is to develop a model that is able to accurately estimate Es parameters from a given RO profile. In 
this work, we turn to a method that is currently absent from much of the literature in this area: machine learning 
(ML). Given a large enough training set under well-suited conditions, ML algorithms are capable of estimating a 
wide variety of functions very well. Although multiple ML algorithms including random forests and multi-layer 
perceptron networks were explored to develop models, convolutional neural networks (CNN) achieved the best 
performance and are the focus of this paper.

CNNs are a type of artificial neural network (ANN) that is traditionally composed of convolutional layers and 
pooling layers, followed by one or more fully connected layers. The convolutional layers act as feature extractors, 
where one or more kernels/filters are “convolved” with the input to learn data specific characteristics. The output 
from the convolution process, often called feature maps, are then sent through an activation function to increase 
non-linearity. These activated feature maps are then generally sent to a pooling layer to downsample the output in 
order to reduce the network computation costs while also make the model more robust to variations in the position 
of the features in the input. The cycle of convolution, activation, and pooling may be repeated several times. The 
learned feature maps generally represent lower (higher) level features in the earlier (later) stages. At the end of the 
convolution and pooling layers, the final feature maps are flattened and sent through one or more fully connected 
layers to learn the complex relationships between the features.

During training, the input is sent through the network and an output produced. This output is then compared with 
the known target variable and a loss, or cost, is calculated. For regression tasks, mean squared error or mean 
absolute error are common loss functions, while cross entropy loss is commonly used for classification tasks. The 
backpropagation algorithm is then used to calculate gradients for all the weights and biases in the network with 
respect to the loss function (Rumelhart et al., 1986). Optimizers such as Adam (Kingma & Lei Ba, 2015) can then 
be used to optimally update the weights in an effort to reduce the loss. During prediction, the input is sent through 
the network of optimized weights and biases to make a prediction.

2.  Data Set Development
In order to train a supervised learning model, input and target variable data sets are needed. For inputs, 
signal-to-noise ratio (SNR) and excess phase profiles from six Global Navigation Satellite System (GNSS) radio 
occultation (RO) missions during the years of 2008–2022 are used. These missions along with the years of data 

 15427390, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023SW

003669 by G
eorgia Institute O

f T
echnology, W

iley O
nline L

ibrary on [01/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Space Weather

ELLIS ET AL.

10.1029/2023SW003669

3 of 19

used, number of measurements considered, and average maximum altitude of 
the occultation measurement are listed in Table 1.

In processing these profiles, only altitudes of 80–150 km are considered. The 
profile must also have a maximum altitude of at least 110 km. The profiles 
filtered based on these criteria are then interpolated to a constant spacing 
of 100 m using cubic interpolation. In order to normalize the SNR meas-
urements, which may have different biases due to satellite geometries or 
sensors, each profile first has its respective mean subtracted and then the 
signal is divided by this mean. For excess phase measurements, the profiles 
are detrended by subtracting a linear least-squares fit of the data in 2  km 
windows. Any profiles that do not span 80–150  km are zero-padded to 
produce 701-point samples that are equally spaced by 100 m. This ensures a 

constant sized sample as input to the CNN. An example of the raw and processed RO measurements are shown 
in Figure 1. When Es is present (top panels), a large perturbation in the signal can be seen at the height of the Es 
layer.

Mission Years # of occultations Average max altitude (km)

COSMIC-I 2008–2020 5,715,522 122

COSMIC-II 2019–2022 5,102,630 121

Spire 2020–2022 1,636,821 150

GeoOptics 2020–2022 322,770 131

TSX 2018–2022 255,980 124

TDX 2019–2022 129,924 121

Table 1 
Radio Occultation Data

Figure 1.  Raw (left column) and processed (right column) L1 SNR and phase profiles. The signals on the top row contain 
sporadic E, while the signals on the bottom row do not.

 15427390, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023SW

003669 by G
eorgia Institute O

f T
echnology, W

iley O
nline L

ibrary on [01/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Space Weather

ELLIS ET AL.

10.1029/2023SW003669

4 of 19

For target variables, Es intensity (foEs) and the height (hEs) values are obtained from the global network of 
ground-based Digisonde ionosondes running the latest Automatic Real-Time Ionogram Scaler with True Height 
(ARTIST) 5 scaling software. If manually scaled parameters are available, they are also considered. For auto-scaled 
parameters, only events with confidence scores of 40 or greater are used. If Es is not detected in a sample, the foEs 
and hEs values are set to zero. This allows for a binary classification (i.e., zero vs. non-zero foEs) that contributes 
to the overall model performance. In total, these criteria yielded 18.8 million ionospheric sounding events between 
the years of 2007–2022 across 61 locations. The distributions of these ionosonde samples are shown in Figure 2.

It should be noted that auto-scaled parameters may contain errors and biases due to the way that ARTIST5 
extracts information. For example, in Stankov et al. (2023), an error analysis was carried out which compared 
ARTIST5 and manually scaled ionosonde parameters obtained from the DB049 station in Dourbes, Belgium 
during the period of 2011–2017. Here it was shown that for hourly foEs parameters at a standard sampling 
cadence, 67.74% of the time there was a perfect match between the scaling methods and 95% of the residual errors 
were found between −0.80 and +0.35 MHz, where a negative value indicates that ARTIST5 underestimated the 
true value and a positive value represents an overestimate by ARTIST5. For hourly h′Es values, the error bounds 
were −18 to +16 km with a perfect match 57.78% of the time. While we do look at model performance on a small 
set of manually scaled data, a more comprehensive analysis across all locations is recommended for future work. 
Additionally, since ARTIST5 confidence scores are primarily concerned with the quality of the overall profile 
inversion, thresholding based on these values may be of limited value for Es purposes. For this work, we note that 
the thresholding did not significantly change the Es parameter distributions (e.g., Es occurrence rate changes by 
less than 1%).

After filtering the RO and ionosonde data sets individually, the two sets are joined together using a 150-km 
and 30-min spatio-temporal window. If a RO profile is matched with multiple ionosonde soundings, only the 
closest in time is used. This process left a total of 36,521 samples available for training, validating, and testing 
the models. The breakdown of these samples based on ionosonde location and years is available in Supporting 
Information S1 (see Table S1).

3.  Methodology
3.1.  Machine Learning Models

Convolutional neural networks (CNNs) are used to develop both binary classification and regression models. The 
binary classification model is used to determine if Es is present (i.e., foEs > 0), while the regression models are 

Figure 2.  foEs and hEs distributions acquired from Digisondes with confidence scores ≥40 and parameters autoscaled with 
the ARTIST 5 software or manually scaled.
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used to estimate values for the intensity and height of the layers. CNNs were chosen as they are able to extract 
features contained in data. As the RO measurements inherently contain data points that are related to those around 
it, it is expected that CNNs will perform better than other model architectures.

As CNNs are commonly used with multiple input channels, both the 701-point L1 SNR and excess phase profiles 
are included as inputs to the model. The L2 profiles were excluded due to noise and more inconsistencies with the 
data. A flowchart describing the start to finish prediction of Es intensity and height from RO profiles is illustrated 
in Figure 3. The classification step here is used in order to remove some of the cases where there is no sporadic 
E to avoid a large class imbalance while performing the regression tasks.

For each model, the data set is randomly split into 85% for training/validation and 15% for testing. As the samples 
are sparse in time and space, and sporadic E conditions are constantly changing, each sample should be inde-
pendent of one another. Hyperparameter tuning is carried out using a random grid search in conjunction with 
five-fold cross validation (i.e., each fold is 80% training and 20% validation). The hyperparameters tuned and the 
values/ranges considered (listed in brackets) include the batch size [8–128 samples], number of fully connected 
(FC) hidden layers [1–3], number of nodes in FC hidden layers [128–1,028], dropout rate [0.3–0.7], non-linear 
activation function [ReLU, LeakyReLU, sigmoid, tanh], optimizer [Adam, RAdam, NAdam, SGD], loss function 
[regression: L1Loss, HuberLoss, MSELoss; classification: CrossEntropyLoss], number of convolutional layers 
[3–7], the convolutional layer kernel size [11–31], the number of kernels for the first convolutional layer (doubles 
each consecutive layer) [8, 16, 32], the pooling layer kernel size [2,3], and the type of pooling layer [MaxPool1d, 
AvgPool1d]. The optimized parameters for each model can be found in Supporting Information S1.

Class imbalance and anomaly detection is explored using cost-function weighting. In binary classification tasks 
where there are just two classes, a simple inverse balanced weighting is used. This makes the weight of each class 
proportional to the inverse of the number of its samples (i.e., the minority class will have larger weights). When 
these weights are multiplied by the cost function, the loss associated with minority class samples will increase. 
As the network will attempt to learn parameters that reduce the loss, the performance of the minority cases should 
improve. A similar approach is taken with rare cases in regression. However, in regression the number of classes 
can be considered infinite since we are dealing with continuous values. To deal with this, the continuous target 
variable space is first divided into a discrete number of bins. This distribution is then smoothed using a symmetric 
kernel to help capture the relationship between nearby bins. Finally, that distribution is used on a sample basis to 
weight the loss function. Both an inverse of the distribution and the square root of the inverse are explored. An 
example of these weightings versus the foEs distribution is shown in Figure 4.

Regularization methods aimed to help generalize models are carried out in the form out dropout regularization 
and early stopping. In dropout regularization, nodes and their connections in fully connected layers are dropped 
from the network with a certain probability, p, during training. This forces the network to learn a more general-
ized and robust representation of the data, since it can not rely on any specific nodes to be available. In early stop-
ping, the validation loss is monitored and training is stopped once the loss does not improve over a certain number 
of epochs (i.e., the number of iterations through a full cycle of the training data). This prevents the network from 

Figure 3.  Flowchart of start to finish prediction using binary classification and regression models.
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overfitting to the training data. A learning rate scheduler is also implemented to fine tune performance as the 
rate  of model learning during training slows down.

3.2.  Model Evaluation

The binary classification model is primarily evaluated by the F1-score, which is the harmonic mean of recall and 
precision and can be expressed as:

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
� (1)

The F1-score is generally a good performance indicator for data sets with a class imbalance, as it considers both 
false positives and false negatives. However, it is not a perfect metric and the best metric will be dependent on 
where one would like the model to succeed (or fail) in a given situation. Accuracy, precision, and recall metrics 
are also included as additional data points.

For regression, the root mean squared error (RMSE) is used to determine the best model during hyperparameter 
tuning. The mean absolute error (MAE) is used when comparing models, as it is the most interpretable. Other 
metrics such as the relative mean absolute error (RMAE), bias, correlation coefficient (r), and coefficient of 
determination (R 2) are also provided as additional performance indicators.

3.3.  Existing Model Comparisons

In addition to analyzing the ML models, it is useful to compare the models with others found in literature. For 
this comparison, we use the methods from Yu et al. (2020), Gooch et al. (2019), and Hu et al. (2022) to make 
predictions using the same testing set as the CNN models.

In Yu et al. (2020), S4, max values are calculated from the COSMIC-I S4 profiles over the years of 2006–2014. 
These S4 values are calculated using the convention described in Briggs and Parkin (1963):

�4 =

√

⟨

(

� − ⟨�⟩
)2
⟩

⟨�⟩
,� (2)

where I is the square of the SNR, 〈 〉 denotes a one-second time average, and 𝐴𝐴 ⟨𝐼𝐼⟩ is average intensity at each 
second calculated by applying a low-pass temporal filter in 〈I〉 (Yu et al., 2022). S4, max is then the maximum S4 
value in the profile. The S4, max values are then compared with foEs values at 25 ground-based ionosonde stations 
to develop the following relationship:

(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 [𝑀𝑀𝑀𝑀𝑀𝑀] − 1.2)
2
= 13.62 𝑆𝑆4,max,� (3)

Figure 4.  Example of inverse (INV) and square root inverse (SQRTINV) weights calculated using LDS.
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The Es layer height is taken as the altitude associated with S4, max. It should be noted that in this work, as with Carmona 
et al. (2022) and Hodos et al. (2022), the S4 profiles are calculated from the L1 SNR profiles retrieved from atmPhs 
and conPhs files instead of using the S4 scintillation profiles provided directly from CDAAC (Syndergaard, 2006). 
Additionally, for this work, rolling variance and mean profiles of SNR 2 are calculated over a one-second window. 
S4 is then taken as the square-root of the rolling variance profile divided by the rolling mean profile. These devia-
tions may cause slight differences in the calculated S4 values versus the profiles obtained from CDAAC.

In Gooch et al. (2019), the total electron content (TEC) profile is calculated using the L1 and L2 excess phase, 
which is then converted into an electron density assuming a constant Es layer thickness. The raw TEC, TECr, is 
calculated using (Hocke et al., 2001):

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 =
1

40.3

(
𝑓𝑓

2

1
𝑓𝑓

2

2

𝑓𝑓
2

1
− 𝑓𝑓

2

2

)

(Δ𝐿𝐿1 − Δ𝐿𝐿2),� (4)

where f1 = 1.57542 GHz and f2 = 1.22760 GHz are the L1 and L2 GPS carrier frequencies and ΔL1 and ΔL2 are the 
excess phase measurements in meters. The TECr is then filtered using a 3rd order Savitzky-Golay filter (Savitzky 
& Golay, 1964) over a 25 km window. A detrended TEC, TECd, is then calculated by subtracting the filtered 
TEC from TECr and applying a 3rd order Savitzky-Golay filter with a 1 km window to reduce noise. The TEC 
perturbation of the layer, ΔTEC is then calculated from TECr using the maximum and base altitudes of the TECd 
profile. An electron density perturbation can then be calculated as:

Δ𝑛𝑛𝑒𝑒 ≈
Δ𝑇𝑇𝑇𝑇𝑇𝑇

2

√
2𝑅𝑅Δ𝑅𝑅

,� (5)

where 𝐴𝐴 2

√
2𝑅𝑅Δ𝑅𝑅 ≈ 176 km is the effective path length through the Es layer, assuming its geometry is that of a cylin-

der centered around the tangent point (Ahmad, 1999). foEs can then be calculated as 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 [𝐻𝐻𝐻𝐻] ≈ 9

√

Δ𝑛𝑛𝑒𝑒

[
𝑚𝑚−3

]
 

and hEs is the altitude of the max perturbation of TECd.

Finally (Hu et al., 2022) uses the TEC profiles from the COSMIC-I and Fengyun-3C over the years of 2006–2019 
to calculate foEs. This is done using the singular spectrum analysis (SSA) method to extract the TEC disturbed 
from the Es layer, TECd. The S index is then calculated as the vertical gradient of the TECd:

𝑆𝑆 =
𝑑𝑑(𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑)

𝑑𝑑𝑑
� (6)

Smax is then taken as the max of the S index, and the Es layer height is the altitude at which Smax occurs.

In the remaining sections, the method from Yu et al. (2020) will be referred to as S4, max, the method from Gooch 
et al. (2019) as TEC, and the method from Hu et al. (2022) as Smax.

3.4.  foμEs

While foEs has generally been used as a measure of Es intensity, Haldoupis (2019) points out that the value provided 
by the Digisondes are in fact the sum of the normal E layer electron density along with the Es layer composed of 
metallic ions. A new value, foμEs, is then recommended as a measure of Es that better reflects the intensity of the 
metallic ion layer by removing the background contribution from the normal E region ionization. This is accom-
plished by first calculating the plasma density (NmEs) from the plasma critical frequency (foEs) using

𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠

[
𝑚𝑚

−3
]
=

(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 [𝑀𝑀𝑀𝑀𝑀𝑀])
2
⋅ 1012

80.6
.� (7)

Next, the electron density of the background E region (NE) is calculated from the International Reference Iono-
sphere model (IRI-2016) (Bilitza et al., 2017) by inputting the height (hEs) and time information associated with 
the foEs measurement. Finally, foμEs is calculated using the difference between the metallic ion density and the 
background E region density:

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 [𝑀𝑀𝑀𝑀𝑀𝑀] =

√
80.6 (𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠 −𝑁𝑁𝐸𝐸) ⋅ 10

−6
.� (8)

It should be noted that the use of values from the IRI may introduce additional uncertainties that aren't physi-
cal, as we are mixing measured values with those from an empirical model. Furthermore, the use of ionosonde 
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derived virtual height as hEs can overestimate the actual height of the layer as discussed in Section 1, which 
introduces an additional altitude uncertainty into the conversion.

Using this method, foμEs was calculated for the entire ionosonde data set. Figure 5 shows the distribution of the 
foμEs values along with its associated height (which will be referred to as hμEs for naming convention consist-
ency). Comparing with the foEs distribution from Figure 2, we see that there is no longer a gap between a zero 
frequency and the minimal detectable frequency by the ionosonde. Maybe not as apparent from the figures is that 
foμEs is non-zero only 22.7% of the time, roughly half of the time that foEs is non-zero. This creates a situation 
where the classes are more imbalanced, which could lead to increased difficulty for the CNN classification model 
to learn a good estimating function. Also, since the μ-variant parameters do have altered distributions, models that 
learn from these data sets may have some performance metrics that are consequently biased. This makes direct 
comparisons between models a little more difficult, and some metrics (e.g., correlations and relative errors) will 
likely be more useful than others.

In Figure 6, Es intensity is viewed as a function of hour (in local time) and solar elevation angle. In plots (a) 
and (c), we see that the global foμEs occurrence rates, and to a lesser extent foEs occurrence rates, using the 
ionosonde data set have peaks at around 0900 and 1600 local time (LT), which is encouraging since both diurnal 
and semi-diurnal behaviors are expected (Hodos et al., 2022; Yu et al., 2022). In plot (e), the geometry of the 
altitude-adjusted solar elevation angle (α) is depicted. If no Es is present in the ionosonde sample, α is calculated 
using an altitude of 110 km. In total, 59% of the ionosonde samples corresponded to α ≥ 0 (i.e., “day” condition 
at Es heights). As seen in plot (b), there is no foμEs seen at negative altitude adjusted solar elevation angles 
(i.e., “night”), whereas plot (d) shows roughly 18% of foEs occurring when α is negative. While much of this 
may be contributed to atmospheric tides, it also raises the question of the importance of photoionization in the 
enhancement of the layers. Alternatively, elevated background E-region electron density estimates from IRI may 
artificially remove the weaker nighttime Es layers, such that layers with foμEs ≥ 0 MHz are only present when 
illuminated by solar radiation.

4.  Results
4.1.  Es Binary Classification Comparisons

We first discuss the binary classification task that determines if Es is present (i.e., the model should return “1” if 
foEs or foμEs is greater than zero, and “0” otherwise). As the non-ML models only consider intensities greater 
than zero, here we look at just the CNN models. We analyze models with and without weighting of the cost 

Figure 5.  Distribution of foμEs and associated hμEs.
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function, as previously described. Table 2 lists the performance of the models on the final evaluation set that was 
unseen during training.

Here we see that the non-weighted foμEs has the highest accuracy, or fraction of predictions that are correct. 
However, this is to be expected, as a foμEs model would achieve almost 80% accuracy by always predicting the 
case of no Es. When comparing the weighted versus non-weighted models, it is apparent that the cost function 
weighting increases the F1-score and recall measures at the cost of decreasing the accuracy and precision. This is 
contributed to the model placing more emphasis on detecting the positive cases, which may introduce additional 
false positives. Finally, the foEs models performed better than foμEs on the F1-score metric, likely due to a more 
favorable class balance. Going forward, only the weighted versions of the models will be used, as they performed 
better on the F1-score.

It should be noted that even with a somewhat low recall for the models, 
roughly 90% of positive cases with intensities over 3  MHz were detected 
for every model except the non-weighted foμEs model, which only detected 
about 50% of those cases. This suggests that most of the errors came from 
low-intensity layers, which may not be as important in a practical setting.

4.2.  Es Height Prediction Comparisons

For the analysis of the height of the Es layers, we start by comparing the 
performance of each model on the final evaluation set when it is known that 

Figure 6.  (a) Plot of global foμEs occurrence rate versus hour in local time. (b) Plot of foμEs versus altitude-adjusted solar elevation angle. (c) Plot of global foEs 
occurrence rate versus hour in local time. (d) Plot of foEs versus altitude-adjusted solar elevation angle. (e) Diagram depicting the geometry of the altitude-adjusted 
solar elevation angle.

Model Accuracy Recall Precision F1-score

CNN (foEs), non-weighted 0.75 0.69 0.69 0.69

CNN (foEs), weighted 0.74 0.76 0.65 0.70

CNN (foμEs), non-weighted 0.80 0.43 0.61 0.51

CNN (foμEs), weighted 0.73 0.82 0.44 0.58

Table 2 
Binary Classification Test Results
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Es is present from the ionosonde data (summarized in Table 3). In each of 
the comparisons, the prediction of the model is compared against the height 
value produced by the ionosonde. It can be seen that the CNN models 
perform similarly and do a better job of fitting to the ionosonde data, achiev-
ing lower RMSE, MAE, RMAE, and bias values along with better R 2 and 
r scores, compared to other models found in literature. Of particular note 
is that the non-ML models have a tendency to underpredict the ionosonde 
height. This may be at least partially explained by the difference in virtual 
height versus actual height of the Es layers, as these models use more of 
a physical indicator whereas the ML models learn what is present in the 
ionosonde data. Additionally, ionospheric irregularities encountered along 
the RO path before or after the tangent point are assigned to the tangent 
point altitude, which introduces an inherent geometry based altitude uncer-

tainty from the RO measurements (Wickert et al., 2004) that generally underestimates the Es altitudes (Gooch 
et al., 2019). Furthermore, using ARTIST5 scaled parameters will also add some uncertainty in the model perfor-
mance as there are errors in the way it extracts height values.

Figure 7 displays normalized heatmaps of the predicted versus true Es height values (as given by the ionosonde) 
for each of the models. Here we see that the CNN models have a tighter prediction window, but struggle to predict 
the heights of the Es layers at the extreme cases from 80 to 90 km and 120–140 km. This is likely due to the rarity 
of these high-hEs or high-hμEs cases. Class imbalance techniques could be implemented to improve prediction 
of these rare cases, but are not done here as most of the extreme height cases corresponded to lower intensity Es 
layers, which may not be as important. The non-ML models on the other hand have a wider prediction window 
but also tend to underestimate the ionosonde virtual height as previously mentioned.

4.3.  Es Intensity Prediction Comparisons

For the intensity analysis, we again look at the performance of each model on the testing set when there is Es 
present in the ionosonde data (summarized in Table 4).

When comparing the CNN (foEs), S4, max, TEC, and Smax models, the foEs values retrieved from the ionosonde 
were used as the ground-truth target variables. For the CNN (foμEs) model, the foμEs values calculated using the 
method in Haldoupis (2019) were considered the true values. The CNN models generally performed better, with 
the foEs model performing better on the error metrics and the foμEs model on the bias, R 2, and r metrics. This 
may be due to CNN models' ability to fit to a wide range of non-linearities in order to more accurately express the 
relationship between the RO and ionosonde data. For the non-ML models, it is interesting to note that while the 
correlation coefficients are reasonable, the R 2 and bias values are much worse. This likely points to the physically 
derived parameters such as S4, max and Smax being good indicators of Es intensity, but the model coefficients (e.g., 
slope and intercept) do not fit the data set used in this work well. This may lead to models with low variance, but 
high bias. Potential sources for these errors when making comparisons to these other models include calculation 
of the S4/TEC profiles versus retrieving them directly from CDAAC, ionosondes with different parameter scaling 
or locations, and different spatio-temporal windows when joining the RO and ionosonde data. Additionally, while 
there are errors in the ARTIST5 ionosonde parameter scaling, the error bounds as shown in Stankov et al. (2023) 
tend to be much tighter than the error bounds produced by the models. For example, the 95% residual error 
bounds of the CNN foEs model were −1.64 to +2.44 MHz, while the bounds of the residual error for the manual 
versus ARTIST5 scaling at the DB049 station was shown to be −0.80 to +0.35 MHz. However, it also should be 
noted that these ionosonde scaling errors may differ by location and is an area that still needs further exploration.

The normalized heatmaps in Figure 8 reinforce the results in 4 and show that the CNN models fit tighter to the 
line of optimum fit, whereas the non-ML models have more variability in their predictions. The large bias in the 
S4, max model is apparent in the predicted foEs values, although the model does show a high density cluster, indica-
tive of good precision. This bias is likely the result of using different ionosondes with different parameter scaling.

It can also be seen in the heatmaps that the CNN models tend to underpredict the high intensity Es layers. This is 
again likely due to the underrepresentation of these rare cases in the training set. Additionally, there is a physical 
restraint on S4 amplitudes from Es induced scintillation (Emmons et al., 2022; Stambovsky et al., 2021), which 
may be a constraint in the CNN models for the stronger layers. In Figure 9, the inverse (INV) and the square root 

Model
RMSE 
(km)

MAE 
(km)

RMAE 
(km)

Bias 
(km) R 2 r

S4, max 12.03 8.66 0.08 −4.16 −0.87 0.22

TEC 12.13 8.91 0.08 −4.87 −0.85 0.19

Smax 14.94 11.55 0.10 −8.53 −1.80 0.11

CNN (hμEs) 8.08 5.99 0.05 −0.77 0.20 0.46

CNN (hEs) 7.89 5.81 0.05 −0.70 0.20 0.46

Table 3 
Es Height Prediction Test Results
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of the inverse (SQRTINV) cost function weighting schemes are applied to the foEs CNN model. The inverse 
weighting is much more aggressive and, while preforming the best on the highest frequencies, does so at the cost 
of the lower intensities. The SQRTINV weighting, on the other hand, strikes a balance between doing well on the 
rare cases while still maintaining respectable performance on the more common cases. The non-weighted model 
will be used in the next section, as the overall performance was better. However, the “best” model will be situa-
tionally dependent and based on if it is more important to get the rare cases correct, or perform better on average.

4.4.  Overall Es Intensity Performance

Section 4.1 discussed the errors of the binary classification of whether or 
not Es is present, whereas Section 4.3 quantified the errors for estimating 
the intensity. In a practical application, the errors of the two will compound 
since it is not generally known in advance whether Es is present, leading to 
the overall model architecture depicted in Figure  3. We now evaluate the 
overall error.

As can be seen in Figure 10, the general trend is that the error for every model 
increases with increased predicted intensities. Both CNN models perform 
well in the 0–2 MHz as expected due to the classification stage. Overall, the 

Figure 7.  Heatmaps of the predicted versus actual Es layer height values for the (a) CNN foEs, (b) CNN foμEs, (c) S4, max, (d) TEC, and (e) Smax models.

Model
RMSE 
(MHz)

MAE 
(MHz)

RMAE 
(MHz)

Bias 
(MHz) R 2 r

S4, max 1.36 1.02 0.34 0.47 −0.19 0.49

TEC 1.45 1.07 0.31 −0.39 −0.32 0.41

Smax 1.80 1.48 0.52 1.36 −1.55 0.48

CNN (foμEs) 1.07 0.78 0.43 −0.06 0.46 0.68

CNN (foEs) 0.95 0.63 0.19 −0.07 0.43 0.66

Table 4 
Es Intensity Prediction Test Results

 15427390, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023SW

003669 by G
eorgia Institute O

f T
echnology, W

iley O
nline L

ibrary on [01/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Space Weather

ELLIS ET AL.

10.1029/2023SW003669

12 of 19

CNN foμEs model achieves the lowest error in the 0–2 MHz range, while the CNN foEs model performs best 
when predicting intensities over 2 MHz.

Figure 11 shows the error of the full CNN foEs model as a function of (a) location, (b) year, (c) hour (local time), 
(d) month (Northern Hemisphere), and (e) month (Southern Hemisphere). The largest errors occur near western 
China, Alaska, and South-East Europe. These locations correspond where the average predicted intensities (and 
therefore intensity errors) are high.

In Figure 11b, it isn't readily apparent if there is any correlation between the average predicted foE and the solar 
cycle (using the yearly averaged sunspot number as a measurement proxy). However, we do find a positive 
correlation of r = 0.39. Although not shown in the figure, when the data is split into day and night at the loca-
tion of the Es layer, we find a positive correlation (r = 0.56) during the day, and almost no correlation at night 
(r = −0.01). This result is reasonable as during the daytime, foEs has a higher contribution from the background 
E layer which is highly solar driven. The number of samples in the daytime is also greater than those at night, 
so we expect to see a bias toward the daytime correlation value. These finding are in line with those reported in 
Zhang et al. (2015) and Zuo and Wan (2002), which noted a positive correlation for foEs during the daytime and 
a negative correlation at night for low and mid-latitude locations. However, when splitting the predicted foEs data 
into high (sunspot number ≥ 50) and low solar activity (sunspot number < 50), we find correlations coefficients 

Figure 8.  Heatmaps of the predicted versus actual Es layer intensity values for the (a) CNN foEs, (b) CNN foμEs, (c) S4, max, (d) TEC, and (e) Smax models.
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of r = 0.46 and r = −0.32, respectively, for day and night. This could be due to the nature of RO profiles, which 
measure the signal perturbation from the background environment (Haldoupis et al., 2020). In times of high solar 
activity, background E layers may be enhanced and thus cause difficulties in accurately measuring and processing 
the relatively less intense perturbed signal (Hodos et al., 2022).

In Figures 11a and 11c solar driven diurnal trend is apparent, with increased intensity in the daytime hours. In 
plot (d), we see that Es intensity peaks in the boreal summer (June–August) and reaches its minimum in the winter 
(December–February). Similarly, in plot (d), we see Es intensity peaking in the austral summer (December–
February) and reaching its minimum in winter (June–August). Although in the Southern Hemisphere, the inten-
sities do not get quite as high as the Northern Hemisphere, which has also been noticed in Hu et al. (2022) and 
Niu et al. (2019). Both the solar driven diurnal behavior and maximum intensity during summer months of the 
respective hemisphere agree with results reported in literature (Hodos et al., 2022; Yu et al., 2022). It should be 
noted that in the plots when the average intensity is low, the relative error is high. This can be attributed to factors 
such as limitations on the minimum detectable intensity of the ionosondes (∼1.5 MHz), the high number of cases 
of no Es, and errors introduced by incorrect classifications.

In Figure 12, examples of the predicted intensity and height from the CNN model are illustrated using ionograms 
along with corresponding radio occultation inputs. In (a), a strong Es layer is present on the ionogram while a large 

Figure 9.  MAE versus binned foEs ranges for CNN models with loss functions that are unweighted, inverse weighted (INV), 
and square root inverse weighed (SQRTINV). The black bars represent the 95% confidence intervals.

Figure 10.  Mean absolute error performance binned by the model predicted intensity (foEs/foμEs) when it is unknown if Es 
is present or not. The black lines on the bars represent the 95% confidence intervals.
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perturbation is also present in the input RO signal. In (b), a less intense layer is present on the ionogram while the 
RO inputs are much weaker and feature more noise-like perturbations. Finally, in (c), there is no Es layer seen on 
the ionogram while again the RO inputs are weak and lack any well-defined large perturbations. In all of these situ-
ations, the CNN model was able to predict the presence, intensity, and height of the Es layer with good accuracy.

Figure 13 shows similar trends for the foμEs model, though as expected, the average predicted values are lower 
since the foμEs occurrence rates and average intensities are lower than foEs. However, when calculating the 
correlation coefficient between the predicted foμEs and yearly sunspot numbers, we see only a slight correla-
tion of r = 0.09. This is reasonable, as the foμEs values attempt to remove the intensity contributions from the 
solar driven background E. In general, the error for the foμEs and foEs models tend to increase (decrease) as 
the  predicted Es intensity increases (decreases).

Figure 11.  Performance of the foEs CNN model, including both the binary classification and foEs regression stage. In (a), the MAE is plotted for each location 
containing test samples. Larger circles represent locations with more data, and the color scale is limited to ±one standard deviation from the mean. (b) Shows the 
predicted intensity, MAE, and average sunspot number as a function of the year. (c) Shows predicted intensity and MAE hour (local time). (d) And (e) show predicted 
intensity and MAE as a function of the month in the Northern and Southern Hemispheres, respectively. The bands around the lines represent the 95% confidence 
intervals.
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4.5.  Additional Result Discussions

Although six different RO missions were used, most prediction errors were similar across the constellations. 
Table 5 lists the average MAE for foEs and hEs predictions across all models. The relative performance for 
each constellation when compared with the average total error across all constellations is listed in parentheses. 

Figure 12.  (a) Ionogram of the ordinary mode return at the EB040 station on 8 July 2022 at 10:00:01 with corresponding 
crossing RO data from Spire. (b) Ionogram of the ordinary mode return at the EI764 station on 14 June 2018 at 01:30:00 with 
corresponding crossing RO data from TSX. (c) Ionogram of the ordinary mode return at the DH224 station on 28 March 2022 
at 01:07:30 with corresponding RO data from COSMIC-II.
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In both intensity and height predictions, it can be seen that the GeoOptics 
satellites fared the worst with relative errors of 151% and 118% for foEs and 
hEs predictions, respectively.

Additionally, in Section 2 it was noted that the ionosonde data set is primar-
ily obtained ARTIST5 auto-scaling software, with a small portion of the data 
set scaled manually. Again, ideally all the data would be manually scaled as 
there may be errors and biases in the way ARTIST5 extracts the parameters 
(Stankov et al., 2023). However, with large amounts of data, that can become 
impracticable. In Table 6, the relative errors for both manual and ARTIST5 
scaled data are listed for each model. Here we find that on average, the relative 
predicted foEs errors on the manually scaled data are slightly higher than those 
of the ARTIST5 scaled data, while the hEs values are very close (note  that both 

Figure 13.  Performance of the foμEs CNN model, including both the binary classification and foμEs regression stage. In (a), the MAE is plotted for each location 
containing test samples. Larger circles represent locations with more data, and the color scale is limited to ±one standard deviation from the mean. (b) Shows the 
predicted intensity, MAE, and average sunspot number as a function of the year. (c) Shows predicted intensity and MAE hour (local time). (d) And (e) show predicted 
intensity and MAE as a function of the month in the Northern and Southern Hemispheres, respectively. The bands around the lines represent the 95% confidence 
intervals.

foEs MAE (MHz) (% of avg MAE)
hEs MAE (km) 
(% of avg MAE)

COSMIC-I 1.10 (95%) 9.04 (101%)

COSMIC-II 1.17 (101%) 8.15 (91%)

GeoOptics 1.75 (151%) 10.55 (118%)

Spire 1.08 (93%) 9.68 (108%)

TDX 1.48 (128%) 8.49 (95%)

TSX 1.33 (114%) 9.14 (102%)

Table 5 
Prediction Errors by RO Mission
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manual and ARTIST5 scaled height values may overpredict the actual heights 
as they represent a virtual height). These differences may in part be due to the 
fact that the manually scaled foEs values are slightly higher than those that are 
scaled by ARTIST5, while the hEs values are very close (<1 km on average). 
Since each model tends to perform worse at predicting foEs on more intense 
layers, an increase in error is reasonable. However, there are many variables that 
come into play and a more comprehensive study of manual versus auto-scaled 
parameters across all ionosonde locations is still recommended for future work.

5.  Conclusion
In this work, CNN models were developed to detect Es along with estimating 
its height and intensity. These models were trained using L1 SNR and excess 

phase profiles from GNSS-RO missions as inputs, along with foEs and hEs values provided by ionosondes as 
the target variables. In total, 36,521 total samples across 45 locations and ranging from the years 2008–2022 
were available after pre-processing for training and testing. Models were  also explored using Es intensity values 
that attempted to remove the background E layer ionization contribution from foEs values (i.e., foμEs). Each of 
the models performed well, although the foμEs CNN classification model struggled more due to a class imbal-
ance and additional uncertainties introduced by the foμEs conversion process, which relies on IRI background 
E-region electron density estimates. However, it was shown that with different loss function weighting schemes, 
improvements can be made. The CNN approach also performed favorably when compared with other models 
found in literature, achieving lower errors when predicting both the Es intensity and height. The Es intensity error 
attained by the model generally grew with the strength of the layers, as these cases occurred less often during 
training. This may be compensated for using techniques to combat class imbalance, but at a potential cost of wors-
ening performance of the commonly occurring cases. It is also noted that while the CNN models performed well 
on height prediction, there are uncertainties associated with the virtual heights calculated by the ionosondes and 
the actual Es layer height. This may cause the ionosonde to overestimate the height of the Es layer. Additionally, 
errors in parameters extracted by ARTIST5 may impact model performance, and a more comprehensive analysis 
of scaling methods across multiple ionosonde locations is recommended. In the end, however, the relatively low 
error in the models makes them a good choice for applying to large RO data sets for Es climatology purposes, or 
even near real-time detection if enough RO sensors become available.

Data Availability Statement
The radio occultation data used in the study is available from the COSMIC Data Analysis and Archive Center 
(CDAAC) (UCAR COSMIC Program, 2019, 2020a, 2020b, 2020c, 2021, 2022). The Digisonde data is avail-
able from the Global Ionospheric Radio Observatory (GIRO) at the Digital Ionogram Database (DIDBase) 
(Reinisch & Galkin, 2011). Pyday-night software was used to calculate the altitude-adjusted solar elevation angle 
(Richardson, 2022).
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