- 1 Prolonged Flooding followed by drying increase greenhouse gas emissions differently
- 2 from soils under grassland and arable land uses
- 3 Yafei Guo ^{a#}, Ernesto Saiz ^{b#}, Aleksandar Radu ^{b, c}, Sameer Sonkusale^d, Sami Ullah ^{a*}
- 4 a School of Geography, Earth and Environmental Sciences, University of Birmingham,
- 5 Birmingham, B15 2TT, UK
- 6 b Lennard-Jones Laboratories, Keele University, Keele, ST5 5BG, UK
- ^c School of Chemistry, University of Lincoln, Lincoln, LN6 7TS, UK
- 8 d School of Engineering, Tufts University, Medford, MA, 02155, USA
- 10 * Corresponding author at: School of Geography, Earth and Environmental Sciences,
- 11 University of Birmingham, B15 2TT, UK
- 12 E-mail addresses: s.ullah@bham.ac.uk
- 13 # These authors contributed equally: Yafei Guo and Ernesto Saiz
- Email addresses: y.guo.8@bham.ac.uk (Yafei Guo), e.saiz.val@keele.ac.uk (Ernesto Saiz) and
- ARadu@lincoln.ac.uk (Aleksandar Radu), sameer@ece.tufts.edu(Sameer Sonkusale)
- 16 Highlights

- 1. Climate extreme impacts were investigated for arable and grassland soils
- 2. Arable soil emitted more N₂O under prolonged flooding/saturation
- 19 3. Grassland soil emitted more N₂O following drying
- 4. Overall, flooding-drying increased the GHG emissions from grassland compared to arable

Abstract

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Under the predicted climate change scenarios, heavy precipitation could result in prolonged flooding (PF) and flooding-drying (FD) of soils under agriculture. The influence of PF and FD on soil greenhouse gas fluxes and NH₄⁺-N and NO₃⁻-N dynamic of arable and grassland soils, which are the dominant land use types in UK soil are still unclear. A two months soil incubation experiments were conducted to find out the impact of PF and FD on soil nitrogen dynamic and greenhouse gas fluxes from arable and grassland soil. The result showed that there were less N₂O-N emissions in grassland and arable soil when soil moisture was higher than 100% waterholding capacity (WHC). Arable soil had more N₂O-N emissions when soil moisture was higher than 100% WHC compared to grassland soil due to a low pH. Grassland soil had more N₂O-N emissions when soil moisture was lower than 100% WHC compare to arable soil due to a high carbon and nitrogen. When soil moisture was greater than 100% WHC, the available NO₃-N in the soil controlled N₂O-N emissions of grassland more effectively. The N₂O-N emissions of grassland soil were more controlled by soil stable NH₄⁺-N and NO₃⁻-N when soil moisture was lower than 100% WHC. The emissions of N₂O-N and CO₂-C were increased with the time of FD. FD significantly increased N₂O-N, CO₂-C, and CH₄-C emissions in grassland soil compared to arable soil by 0.93, 2.15, and 37.29 times, respectively. The greenhouse gas (GHG) emissions need to be consider in the future when try to converting arable land use to grassland in order to increase the soil organic matter under climate change (heavy rain). Further research needs to be done to find out how to reduce the GHG emissions under climate change after transfer arable to grassland.

43

44 Keywords: prolonged flooding, flooding-drying, arable soil, grassland soil, greenhouse gas

1. Introduction

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) are the primary greenhouse gases (GHG) present in the Earth's atmosphere (IPCC, 2022). The atmospheric CO₂ concentration has increased to approximately 420 ppm and future rapid increase is expected to reach 550 ppm by mid-century and 1000 ppm by the end of this century (IPCC, 2022). N₂O is a long-lived GHG with a long-term global warming potential of 300 times greater than CO₂ (Carneiro et al., 2010) and is a major strong stratospheric ozone-depleting substance (Thompson et al., 2019). N₂O concentration in the atmosphere has also risen steadily since the mid-twentieth century (IPCC, 2022), from approximately 290 ppb in 1940 to 330 ppb in 2017 (Park et al., 2012). Atmospheric CH₄ continues to rise at a rate of approximately 22 Tg every year, as global sources are larger than sinks (IPCC, 2001). Agricultural soils are important source of GHG (Liu et al., 2019) which is the main source of non-CO₂ anthropogenic GHG and is responsible for 78.6 % of N₂O and 39.1 % of CH₄ emissions worldwide (IPCC, 2022). Nitrogen (N) is a necessary nutrient in agricultural ecosystems (Fixon and West, 2002) for plant to use (Gilsanz et al., 2016), but the effectiveness of applied fertilizer N by plants is less than 40% (Chen et al., 2008). Most of applied fertilizer N is contribute to emitted N₂O. N₂O can be produced from several biological processes, including nitrification, denitrification, code nitrification, dissimilatory nitrate reduction to ammonia, nitrate assimilation, and chemo denitrification, which involve different microbial groups in soil (Harter et al., 2014). The two main microbial processes that produce N₂O are nitrification and denitrification (Hu et al., 2015; Sgouridis and Ullah, 2017). Nitrifying microbes' undertake biological oxidation of ammonium (NH₄⁺) to nitrite (NO₂⁻) and further to nitrate (NO₃⁻), and can produce N₂O by nitrification under aerobic soil conditions (Wrage et al. 2001). Denitrifying microbes reduce NO₃⁻ to NO₂⁻, nitric oxide (NO⁻), N₂O, and molecular nitrogen (N₂) by denitrification under anaerobic conditions (Köster et al., 2013). The majority of naturally occurring emissions of CH₄ can be

attributed to the biogenic processes of methanogens (methane-emitting microorganisms) as a final step in the anaerobic decomposition of organic matter (Gütlein et al., 2018) which are predominant in anaerobic areas rich in organic carbon (Conrad, 2009). CO₂ emissions come from the soil mineralization of soil organic carbon (Guo et al., 2019). In intact soil system where plants are present, CO₂ emissions originates both from microbial and plant respiration.

Soil CO₂, N₂O and CH₄ exchange are driven by aerobic and anaerobic microbial processes (Gütlein et al., 2018) which are influenced by soil properties and environmental factors such as temperature, precipitation, soil physical and chemical properties, texture, pH, oxygen concentration and nutrient availability (Miller et al., 2020). Soil pH manipulates the microbial community structure, and therefore, the decomposition or accumulation of soil organic carbon (SOC) (Malik et al., 2018) to influence the GHG emissions.

Land-use change affects soil GHG emissions due to changes in vegetation, soil hydrology and nutrient management (Gütlein et al., 2018). Grassland dominates the landscape in the United Kingdom (40%) (Caroline et al., 2017). 56506 km² of land is classed as arable and 96949 km² is classed as grasslands (improved, neutral, calcareous and acid) in the UK (Rowland et al., 2017). GHG emissions from soils are also linked to the hydrological conditions with deep water tables favouring CO₂ emissions, shallow water tables (less than ~20 cm) favouring CH₄ emissions, and fluctuating water tables potentially being conducive of N₂O emissions (Petersen et al., 2012; Poyda et al., 2016; Wilson et al., 2016).

Climate change is predicted to cause major changes in precipitation patterns with increased frequency and intensity of large rainfall events (IPCC, 2007). Flooding-drying cycle of soil may expose unavailable (physically protected) soil organic matter to microbes through breakdown of soil aggregates (Zhang et al., 2020) as well as chasing the redox conditions in soils with implications for shifts in net N₂O, CH₄ and CO₂ emissions into the atmosphere.

Changes in flooding frequency of soils following future climate change will likely affect the timing and magnitude of N₂O emissions from the soil to the atmosphere (Jørgensen and Elberling, 2012). GHGs production and emissions may vary depending on soil physical properties, soil moisture status as influenced by precipitation under climate change extremes (Fay et al., 2010), and fertilization (Mazza et al., 2018). Therefore, changes in soil saturation following extreme precipitation events in future are likely to change the timing and extent of greenhouse gas emissions from soils and soil saturation is more likely to be severe in agricultural soil where precipitation interception is low compared to forest soils.

In this study, therefore, we conducted an incubation experiment to find out the effect of prolonged flooding/saturaiton and flooding-drying (extremely soil moisture condition) of soils on soil N₂O-N, CO₂-C and CH₄-C emissions and nitrogen dynamic under two grassland and arable land uses. We hypothesized that: (1) arable soil will lead to a high N₂O-N emission under prolonged flooding due to a high fertilization before soil sample; (2) flooding-drying will lead to a high N₂O-N emission in grassland and arable soil due to a mineralization of soil organic matter. The object of this study was to find out the influence of prolonged flooding and flooding-drying on soil N₂O-N, CO₂-C and CH₄-C emissions and ammonium (NH₄⁺), nitrate (NO₃⁻) and total dissolved nitrogen (TDN) under fertilized grassland and arable soil in UK.

2. Materials and methods

2.1. Study site description and soil collection

Soil samples were taken from a demonstration farm at Honeydale Farm (51° 51'N, 1° 35'W) which is located in the Evenlode Valley, in the heart of the Cotswolds, OX7 6BJ, United Kingdom. Honeydale Farm is a 107-acre (43ha) farm in the Cotswolds. It is the home of FarmED. The nearest climate station is Little Rissington (51°51'N, 1°41'W) which is 8 miles

away. The annual monthly maximum temperature (°C) is 13.41, monthly minimum temperature (°C) is 5.89. Days of air frost (days) is 46.14. Sunshine (hours) is 1631.53. Rainfall (mm) is 809.63. Monthly mean wind speed at 10 m (knots) is 10.30. General cropping is over chalk, spring and autumn cereals can be grown but the soils are especially vulnerable to nitrate leaching and attract stricter fertiliser limits. Suitable only for grassland where there is hard limestone. Lack of soil moisture is most likely limiting factor to yields (Cranfield soil and agrifood institute).

Grassland soil was restored for 4 years with 'HERBAL' Grazing Ley and used for grazed. Previous was used for arable cultivation (Wheat and Oats) over years before grass. This all-round mixture (20 species) provides wholesome and substantial forage for grazing and occasional cutting. It can provide grazing for early turnout and continues to produce forage right through the summer and autumn. Containing deep-rooting ingredients, this ley not only improves soil structure but also draws up essential vitamins and minerals for the ruminant animal (https://www.cotswoldseeds.com/products/542/herbal-grazing-ley-four-year-drought-resistant-ley). Arable soil was a control plot with winter wheat planted in October. It has been wheat or barley for thirty years. The soil parent material of grassland and arable soil is Oolitic limestone.

Soil were careful collected from 0-20 cm soil depth from the grassland and arable plots in May 18, 2022 (we were taking around 20 sample spots under both grassland and arable plots, and mix them as grassland and arable soil sample). Fresh soil samples were retained under a refrigerator of 4 °C after the removal of visible plant residues and stones and passed through a 2 mm sieve and homogenized. The soil properties are given in Table 1.

Table 1: Selected soil physical and chemical properties before experiment. TOC means total dissolved organic carbon. TDN means total dissolved nitrogen. TC means total carbon. TN means total nitrogen. WHC means water-holding capacity. (means with same index and indicated by same lower-case letter are not significantly different at $P \le 0.05$ on the basis of Tukey HSD).

Soil type	NH ₄ ⁺ -N	NO ₃ -N	TOC-C	TDN-N	TC	TN
	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	g kg ⁻¹	g kg ⁻¹
Grassland	0.63a	10.03a	88.67b	22.82a	69.81b	4.22b
	(0.07)	(0.76)	(1.10)	(0.26)	(0.95)	(0.13)
Arable	0.34a	277.28b	61.49a	254.19b	53.88a	3.71a
	(0.06)	(4.65)	(1.76)	(4.24)	(0.58)	(0.21)
Soil type	Clay (%)	Silt (%)	Sand (%)	рН	WHC (%)	C/N
Grassland	46.54a	33.23a	20.23b	7.36b	72.42a	16.66a
	(0.47)	(0.70)	(1.01)	(0.04)	(0.44)	(0.39)
Arable	46.12a	39.45b	14.43a	6.90a	70.52a	14.95a
	(0.74)	(0.86)	(0.80)	(0.01)	(0.21)	(0.98)

Note: Average value (relative standard deviation), n=4.

2.2. Incubation experiment

Grassland soil and arable soil were packed into 1 L Mason Jar pot to achieve a bulk density of 0.9 g cm⁻³ (field bulk density) with a 10 cm high. Three replications were set for each land use soil type.

All pot was fertilized with 100 mg NH_4^+ -N kg⁻¹ soil (180 kg NH_4^+ -N ha⁻¹) using ammonium sulphate salt ((NH_4)₂SO₄) in order to find out the response of fertilized soils to soil saturation.

Denoised water were added to keep soil moisture as 110% water-holding capacity (WHC) and incubated for 4 weeks. Soil moisture were kept by weighting the pot for each of the day to simulate prolonged flooding (PF) (Figure 1).

All pots were fertilized with 100 mg NH₄⁺-N kg⁻¹ soil again using ammonium sulphate salt ((NH₄)₂SO₄) after 4 weeks incubation of PF. Followed by adjustment of moisture 130% WHC for 4 weeks to mimic another intense precipitation event. Water loss through evaporation drawn down was not replaced over time to simulate drying following flooding (flooding-drying (FD) (Figure 1).

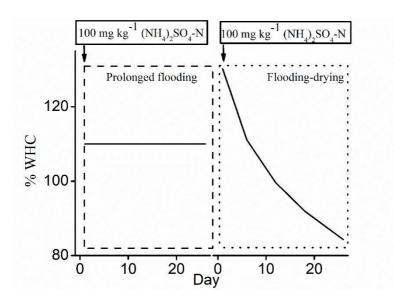


Figure 1. Soil water content of percentage water holding capacity (WHC) during prolonged flooding and flooding drying incubation.

2.3. Collection and measurement of emitted CO₂-C, N₂O-N and CH₄-C

The CO₂-C, N₂O-N and CH₄-C emissions were calculated by measuring the concentration of these gases in the headspace of closed pots at different times. The CO₂-C, N₂O-N and CH₄-C samples were collected once a day during the first week, once per two days during the second week and one sampling per three days during the last 2 weeks (Guo et al., 2021a). The pots

were first closed by placing lids and gases were mixed and then samples were collected from the headspace every 30 min for one hour (i.e., at 0, 30 and 60 min) (Guo et al., 2021b). A 20-ml syringe and hypodermic needle was used to collect the gas samples and inject them into pre-evacuated 12-ml glass headspace exetainer vials fitted with a chloro-butyl rubber septum (Chromacol) (Guo et al., 2022a). Gas sampling was carried out between 09:00 and 10:00 a.m. The pots were then left open outside of the sampling periods. The concentrations of CO₂-C, N₂O-N and CH₄-C in the 12-ml glass exetainer vials were measured by gas chromatography (Agilent 7890A GC, Agilent, CA, USA). An electron capture detector (ECD) was used to detect the N₂O, with a temperature of 350 °C and an N₂ carrier gas. A flame ionization detector (FID) was used to detect the CH₄ and CO₂ concentration, with a temperature of 250 °C and an N₂ carrier gas. CH₄ is eluted and analysed first before the whole sample passes through a methanizer to convert the CO₂ to CH₄.

Total CO₂-C, N₂O-N and CH₄-C emissions during the experimental period were calculated from the daily emissions of the gases (Guo et al., 2022b). We used the fluxes of CO₂-C, N₂O-N and CH₄-C multiplied by the number of hours during sampling (24 hr in the first week, 48 hr in the second week and 72 hr in the last six weeks) and added all of them together to obtain the total emissions (mg kg-1 or μg kg-1). The global warming potential (GWP) was used to quantitatively assess the relative impacts of N₂O, CH₄ and CO₂ on climate change by summing the 100-year radiative forcing associated with each of the three measured GHG (Hawthorne et al., 2017). The conversion factors for the assessment of GWP for soil N₂O, CH₄ and CO₂ are 298, 25 and 1 respectively (IPCC, 2021). GWP was calculated by the following equation:

$$GWP = Total_{CO_2} \times 1 + Total_{CH_4} \times 25 + Total_{N_2O} \times 298$$
 (1)

- Where $Total_{CO_2}$ means total emissions of CO₂, $Total_{CH_4}$ means total emissions of CH₄,
- $Total_{N_2O}$ means total emissions of N_2O .

2.4. NH₄⁺-N and NO₃⁻-N measurement

2.4.1. Soil pore water collection

10 ml of soil pore water were collected once a day during the first week, once per two days during the second week and one sampling per three days during the last 2 weeks under PF. 10 ml of soil pore water were collected once a day during the first week and once per two days during the first 2 weeks under FD (the pore water was possible in the FD treatment when soil moisture was higher than 100% WHC (SM>100%WHC). Pore water was collected via a fibre microfluidic thread, which was set up in the soil.

2.4.2. Ion exchange resin membranes

Anion-exchange membranes sorb NO₃⁻-N and cation-exchange membranes sorb NH₄⁺-N from soil pore water through diffusion. These membranes were inserted into a 7.5 cm depth of the soil for passive sensing of the mineral N during the course of the incubation. The cation exchange membrane (CEM) and anion exchange membrane (AEM) (SNOWPURE, San Clemente, CA, USA) were put in the deionized water for 48 hours at 90 °C, followed by drying the membrane. The CEM was saturated with H⁺ by leaving CEM strips overnight in 2 M HCl. The AEM was saturated with HCO₃⁻ by leaving the AEM strips overnight in 1M NaHCO₃. The ion exchange resin membranes (IERM) are rinsed free of excess HCl and NaHCO₃ with deionized water. A further 24 h equilibration and remove the chemical with deionized water is required for the CEM and AEM. Prepared strips are kept moist in sealed plastic bags prior to installation. CEM and AEM were inserted into soil and replace per each of week. Membranes

are carefully rinsed with deionized water until all traces of soil are removed. Desorption of ions is achieved by shaking each strip (cations and anions separated) for 2 hours in 17.5 ml 0.5 M HCl for 200 rpm shake.

222

223

219

220

221

2.4.3. Soil extraction

- Subsoil samples were collected with a depth of 10 cm on days 5, 12, 19, and 26 of incubation.
- 225 For soil mineral N analysis, 2 g fresh soil was extracted with 20 mL of 2 M KCl solution (1:10)
- for 1 h on a reciprocating shaker. The suspensions so obtained were centrifuged for 10 min,
- 227 filtered through 0.45um Syringe Filter PES, and stored at 4 °C.
- The concentrations of NH₄⁺-N and NO₃⁻-N in 0.5 M HCl (INH4 and INO3), pore water
- 229 (WNH4 and WNO3) and 2 M KCl solution (SNH4 and SNO3) were measured by AQ400
- 230 Discrete Analyzer (SEAL Analytical Ltd, Wrexham, United Kingdom).

231

- 2.5. Soil total dissolved organic carbon, total dissolved nitrogen, total carbon, total nitrogen,
- pH and soil particle size measurement
- 234 10 g air dried soil was mixed with 25 mL deionized water (1:2.5) and shaken for 30 minutes
- in 200 rpm for pH measurement. The pH of the upper clear liquid was measured using a pH
- meter (Mettler Toledo, FiveEasyTM, FE20). Soil total dissolved organic carbon (TOC) and soil
- total dissolved nitrogen (TDN) were extracted with 2 M KCl solution (1:10) and measured by
- 238 TOC-L CPH with ASI-L (Shimadzu, Kyoto, Japan). Soil particle size were measured by
- Mastersizer 2000 particle analyzer (Malvern Panalytical, Malvern, United Kingdom). Soil total
- 240 carbon (TC) and total nitrogen (TN) were measure by a Flash Smart elemental analyzer
- 241 (Thermoscientific, Massachusetts, US).

243	2.6. Statistical analysis
244	The Tukey's HSD test was used to compare the means of soil total CO ₂ -C, N ₂ O-N, CH ₄ -C
245	emissions and soil GWP under different treatments if the treatment effects were significant at
246	the $P = 0.05$ level. Difference for soil initial index were compared between grassland soil and
247	arable soil under Tukey's HSD test.
248	All statistical analyses were performed using R statistical language (R 2.0.1, R Development
249	Core Team 2005). Correlation analysis were performed using the R statistical language
250	Principal component analysis (PCA) and variance decomposition of CO ₂ -C, N ₂ O-N and CH ₄ -
251	C emissions were computed using the "RDA" and "VARPART" function of the "vegan'
252	library for R (Oksanen and O'Hara, 2005).

- 3. Results
- 3.1. Soil moisture changes with time during flooding-drying
- Soil moisture were decreasing with time and decreasing to 100% WHC in the 10 days under
- 257 flooding-drying (Figure 2). Arable soil decreased faster compare with grassland soil (Figure
- 258 2).

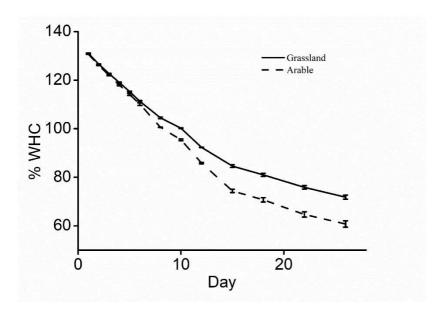


Figure 2. Soil moisture changes with time under grassland and arable soil during flooding-drying treatment. The data values are means of three independent pot replicates and error bars represent the standard error of the means (n=3)

3.2. Soil CO₂-C, N₂O-N and CH₄-C emissions

3.2.1. Rate of CO₂-C, N₂O-N and CH₄-C emissions

Rate of N₂O-N, CO₂-C and CH₄-C emissions in grassland and arable soils did not change with time under PF, N₂O-N and CH₄-C emissions in arable soil did not change with time under FD (Figure 3). Arable soil had a higher rate of N₂O-N emissions than grassland soil under PF (Figure 3).

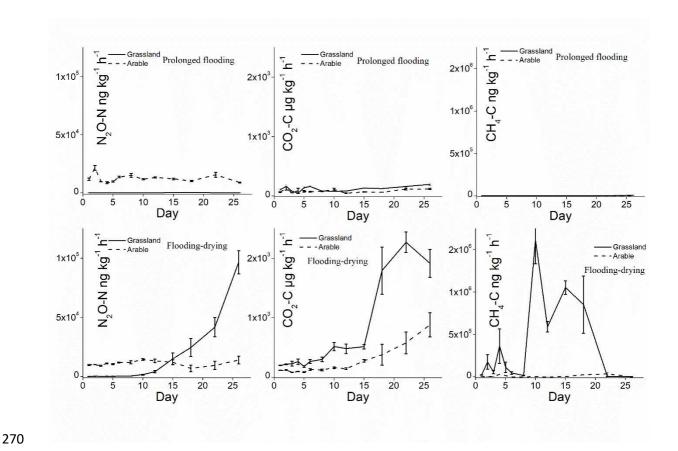


Figure 3. Rate of soil CO₂-C, N₂O-N and CH₄-C emissions with time under grassland and arable soil. The data values are means of three independent pot replicates and error bars represent the standard error of the means (n=3)

Rate of N₂O-N emissions in grassland soil under FD were increasing with time, especially after 10 days when moisture level started to drop below 100% WHC. Arable soil had a higher rate of N₂O-N emissions than grassland soil at the first 15 days under saturated conditions, but arable soil had a lower rate of N₂O-N emissions than grassland soil after 15 days when moisture started to fall below 80% WHC at day 15 (Figure 3). Thus, arable sustained high N₂O emission under saturation and grassland enhanced N₂O production following a decline in soil moisture below 80% WHC at day 15 onwards. Rate of CO₂-C emissions in arable and grassland soil under FD were increasing with time (Figure 3). Grassland soil had a higher rate of CO₂-C emissions than arable soil under FD (Figure 3). Rate of CH₄-C emissions in grassland soil

under FD were increasing and then decreasing with time (Figure 3). Arable soil had a lower rate of CH₄-C emissions than grassland soil under FD (Figure 3).

3.2.2. Total CO₂-C, N₂O-N and CH₄-C emissions

The grassland soil under FD had the significantly highest total N₂O-N, CO₂-C and CH₄-C emissions (Table 2). The grassland soil under PF had the significantly lowest total N₂O-N emissions (Table 2). The grassland and arable soil under PF had the significantly lowest total CO₂-C emissions (Table 2). The arable soil under FD, grassland and arable soil under PF had the significantly lowest total CH₄-C emissions (Table 2).

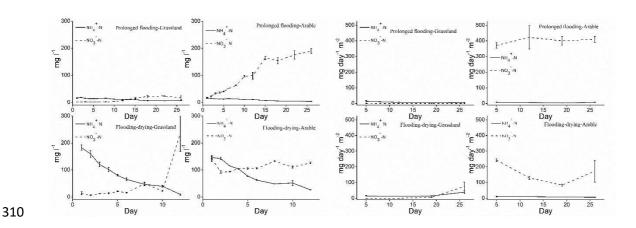
Table2: Soil total CO₂-C, N₂O-N and CH₄-C emissions. (means with same gas and indicated by same lower-case letter are not significantly different at $P \le 0.05$ on the basis of Tukey HSD).

	Soil type	N ₂ O-N mg kg-1	CO ₂ -C mg kg-1	CH ₄ -C mg kg-1
Prolonged	Grassland	0.08(0.02) a	79.50(1.50) a	0.70(0.05) a
flooding	Arable	7.82(0.21) b	53.72(2.82) a	0.02(0.01) a
Flooding-	Grassland	13.31(0.72) c	623.40(30.01) c	278.02(43.91) b
drying	Arable	6.89(0.76) b	197.89(21.91) b	7.26(1.24) a

Note: Average value (relative standard deviation), n=3.

3.2.3. Global warming potential

Grassland soil had significantly highest GWP under FD (Table 3). Grassland soil had significantly lowest GWP under PF (Table 3). Arable soil had middle GWP under both PF and FD (Table 3).


Table 3: Global warming potential. (means indicated by same lower-case letter are not significantly different at $P \le 0.05$ on the basis of Tukey HSD).

GWP g CO ₂ kg ⁻¹	Prolonged flooding	Flooding-drying
Grassland	0.39(0.02) a	24.02(2.25) c
Arable	7.52(0.21) b	7.42(0.84) b

Note: Average value (relative standard deviation), n=3.

3.3. Soil NH₄⁺-N and NO₃⁻-N concentrations dynamic

The WNH4 of grassland was decreasing and WNO3 of grassland were increasing with time under PF and FD (Figure 4 a). WNH4 of grassland were decreasing heavily under FD (Figure 4 a). The WNH4 of arable were decreasing and WNO3 of arable were increasing with time heavily under PF (Figure 4 a). The WNH4 of arable were decreasing heavily and WNO3 of arable were increasing slightly with time under FD (Figure 4 a).

a

b

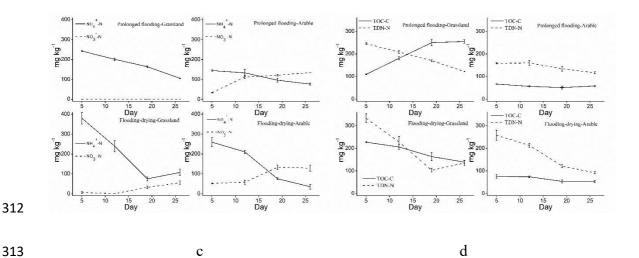


Figure 4. Soil NH₄⁺-N and NO₃⁻-N concentrations from soil pore water (a), ion exchange resin membranes (b), soil extraction by KCl (c) and extracted total dissolved organic carbon and total dissolved nitrogen concentrations (d) with time under grassland and arable soil. The data values are means of three independent pot replicates and error bars represent the standard error of the means (n=3)

The INH4 and INO3 of grassland, and INH4 of arable were very small and not changed with time under PF and FD (Figure 4 b). The INO3 of arable soils were not changing with time under PF, and INO3 of arable were highest under PF compare with other soil and treatment (Figure 4 b). INO3 of arable were decreasing in the first 20 incubation day and then increasing after 20 day with time under FD (Figure 4 b).

The SNH4 of grassland were decreasing and SNO3 of grassland were stable with time under PF (Figure 4 c). The SNH4 of grassland were decreasing heavily and SNO3 of grassland were increasing slightly with time under FD (Figure 4 c). The SNH4 of arable were decreasing slightly and SNO3 of arable were increasing slightly with time under PF (Figure 4 c). The SNH4 of arable were decreasing heavily and SNO3 of arable were increasing slightly with time under FD (Figure 4 c).

The TDN-N of grassland were decreasing and TOC-C of grassland were increasing with time under PF (Figure 4 d). The TDN-N and TOC-C of grassland were decreasing with time under FD (Figure 4 d). The TDN-N of arable were decreasing and TOC-C of arable were keeping stable with time under PF and FD (Figure 4 d).

3.4. Principal component analysis (PCA)

Principal component 1 (PC1) had explained 37.2% of our factors. Principal component 2 (PC2) had explained 26.3% of our data (Figure 5). Samples of Grassland and Arable soil which SM>100%WHC, and Grassland and Arable soil with SM<100%WHC were clearly separated from each other (Figure 5). Grassland and arable soils, with soil moisture SM>100%WHC had small correlation with soil N₂O-N emissions rate. Grassland or Arable soil which SM<100%WHC had a big correlation with N₂O-N emissions rate, which varied overall and peaked on different days in the two land use types (Figure 5). WHC had a big and negative correlation with soil N₂O-N emissions rate (increase % of WHC would decrease soil N₂O-N emissions rate). Soil CO₂-C emissions rate had a positive and big correlation with soil N₂O-N emissions rate (Figure 5).

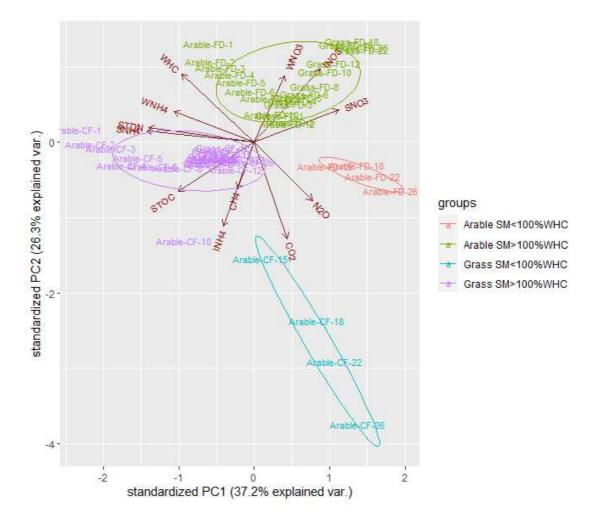


Figure 5. Principal component analysis. N2O, rate of soil N₂O-N emissions; CO₂, rate of soil CO₂-C emissions; CH₄, rate of soil CH₄-C emissions; WHC, % of soil water holding capacity; INH₄, soil NH₄⁺-N concentrations from ion exchange resin membranes; INO₃, soil NO₃⁻-N concentrations from ion exchange resin membranes; WNH₄, soil NH₄⁺-N concentrations from soil pore water; WNO₃, soil NO₃⁻-N concentrations from soil pore water; SNH₄, soil NH₄⁺-N concentrations from soil extraction by KCl; SNO₃, soil NO₃⁻-N concentrations from soil extraction by KCl; STOC, soil total dissolved organic carbon-carbon; STDN, soil total dissolved nitrogen-nitrogen; SM, soil moisture.

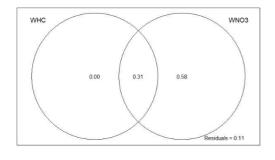
3.5. Correlation analysis

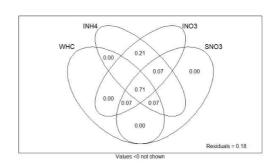
Rate of soil N₂O-N emissions in grassland soils under SM>100%WHC showed significant correlation with % of soil WHC and WNO3 (Table 4). While rate of soil N₂O-N emissions from grassland soils under SM<100%WHC had significant correlation with % of soil WHC, INH4, INO3 and SNO3 (Table 4).

Table 4: Correlation analysis. N₂O-N, rate of soil N₂O-N emissions; CO₂-C, rate of soil CO₂-C emissions; CH₄-C, rate of soil CH₄-C emissions; WHC, % of soil water holding capacity; INH4, soil NH₄⁺-N concentrations from ion exchange resin membranes; INO3, soil NO₃⁻-N concentrations from ion exchange resin membranes; WNH4, soil NH₄⁺-N concentrations from soil pore water; WNO3, soil NO₃⁻-N concentrations from soil pore water; SNH4, soil NH₄⁺-N concentrations from soil extraction by KCl; SNO3, soil NO₃⁻-N concentrations from soil extraction by KCl; TOC, soil total dissolved organic carbon; TDN, soil total dissolved nitrogen; SM, soil moisture.

Soil Type		SM>100%WHC			SM<100%WHC		
		N_2O-N	CO ₂ -C	CH ₄ -C	N ₂ O-N	CO_2 - C	CH ₄ -C
	N ₂ O-N	1	0.78**	0.59**	1	0.65	-0.73
	CO_2 - C	0.78**	1	0.81**	0.65	1	-0.69
	CH ₄ -C	0.59**	0.81**	1	-0.73	-0.69	1
	WHC	-0.59**	-0.36	-0.37	-0.89*	-0.86	0.66
	INH4	0.01	0.13	0.1	0.97**	0.67	-0.86
Grassland	INO3	-0.39	-0.54**	-0.34	0.97**	0.68	-0.86
	WNH4	-0.09	0.22	0.07			
	WNO3	0.95**	0.64**	0.32			
	SNH4	-0.02	0.26	0.12	-0.52	-0.86	0.28
	SNO3	-0.07	0.27	0.07	0.89*	0.89*	-0.69
	TOC	0.22	0.43*	0.2	-0.86	-0.91*	0.65
	TDN	-0.05	0.21	0.09	-0.47	-0.84	0.23
	N_2O-N	1	0.29	-0.17	1	0.15	-0.84
	CO_2 - C	0.29	1	-0.02	0.15	1	0.1
	CH_4 - C	-0.17	-0.02	1	-0.84	0.1	1
	WHC	-0.34	-0.31	0.3	0.16	-0.93*	-0.36
Arable	INH4	-0.14	0.43*	0.41	0.12	-0.96**	-0.33
	INO3	0.01	-0.61**	-0.32	0.77	0.68	-0.43
	WNH4	-0.31	0.26	0.52*			
	WNO3	-0.18	0.31	0.07			
	SNH4	-0.21	0.34	0.51*	0.32	-0.88*	-0.47
	SNO3	-0.09	0	-0.1	-0.53	0.74	0.6

 TOC	-0.09	0.39	0.38	0.5	-0.77	-0.58
TDN	-0.24	0.34	0.53*	0.31	-0.89*	-0.46


* Significant at p < 0.05.


** significant at p < 0.01.

Rate of soil CO₂-C emissions in grassland soil under SM>100%WHC showed significant correlation with INO3, WNO3 and TOC (Table 4). While rate of soil CO₂-C emissions from grassland soil under SM<100%WHC showed significantly correlation with SNO3 and TOC (Table 4). Rate of soil CO₂-C emissions in arable soil under SM>100%WHC showed significantly correlation with INH4 and INO3 (Table 4). While rate of soil CO₂-C emissions from arable soil under SM<100%WHC showed significantly correlation with % of soil WHC, INH4, SNH4 and TDN (Table 4). Rate of soil CH₄-C emissions in arable soil under SM>100%WHC showed significantly correlation with WNH4, SNH4 and TDN (Table 4).

3.6. Variation partitioning

WNO3 of grassland soil had the highest contribution to N_2O -N emissions (58%) when SM>100%WHC (Figure 6 a). The combinate effect of SNO3 and INH4 had the highest contribution to N_2O -N emissions (71%) when SM<100%WHC in grassland soil (Figure 6 b).

386 (a) (b)

Figure 6. Variation partitioning of N₂O-N emissions for soil moisture larger than 100% water-holding capacity (a) and soil moisture lower than 100% water-holding capacity (b) in grassland soil. WHC, % of soil water holding capacity; INH4, soil NH₄⁺-N concentrations from ion exchange resin membranes; INO3, soil NO₃⁻-N concentrations from ion exchange resin membranes; WNO3, soil NO₃⁻-N concentrations from soil pore water; SNO3, soil NO₃⁻-N concentrations from soil extraction by KCl.

4. Discussion

4.1. The GHG emissions and NH₄⁺-N and NO₃⁻-N dynamic under prolonged flooding

The SNH4 of grassland and arable were decreasing and SNO3 of grassland and arable were stable or increasing slightly with time under PF while the WNH4 of grassland and arable was decreasing and WNO3 of grassland and arable were increasing with time under PF (Figure 4). The possible reason is that a small amount of NH₄⁺-N that were absorbed by soil particle (stable) slowly released to soil pore water (available) with time, the available NH₄⁺-N and TDN-N seem to have been key substrates for nitrification for NO₃⁻-N production in our grassland and arable soil. Combine with the lower emission of N₂O and GWP under PF (Figure 3 and Table 3). There for, we think a small amount of NO₃⁻-N were denitrified to N₂O-N and most of NO₃⁻-N were denitrification to N₂ under 110%WHC of PF. Same with Wu et al. (2017) that excessive moisture condition can suppress emissions of N₂O through its reduction to N₂ because of complete denitrification. Previous studies reporting low N₂O emissions from flooded fields (Shaaban et al., 2018; Song et al., 2021; Xu et al., 2022), which is commensurate with our findings that PD has lower N₂O emissions compare with FD. Flooding conditions generally induce soil anaerobic conditions, which consequently limiting mineralization of organic C and N, ultimately resulting in less substrates for N₂O production via nitrification and

denitrification (Li et al., 2022; Neubauer and Megonigal, 2021) and favourable for complete denitrification producing N₂ rather than N₂O, and therefore low N₂O emissions (Cai et al., 2013; Mazza et al., 2018). N₂O emissions decreased during continuous flooding soil is also more rapid NO₃⁻ depletion and entrapment within the micropores, possibly limiting further denitrification to produce N₂O and N₂ gases (McNicol and Silver 2014).

Arable soil had a higher rate of N₂O-N emissions than grassland soil under PF (Figure 3), and the arable soil had significantly higher total N₂O-N emissions and GWP than grassland soil under PF (Table 2 and table 3) with a higher INO3 concentration (Figure 4 b) and decomposition of TDN-N (Figure 4 d). The possible reason is that arable soil had a smaller pH compare with grassland soil and arable soil had more nitrate compared with grassland soil from the beginning (Table 1). Čuhel et al. (2010) found that the relative importance of N₂O as product of denitrification is higher at low pH. The functionality of nosZ gene for synthesizing N₂O-reducing enzyme (N₂O reductase) is limited under low pH indicating higher N₂O emissions (Shaaban et al. 2018). High soil pH values also typically shift the denitrification end product ratio towards N₂ instead of N₂O (Šimek et al. 2002) and also lower N₂O formation during nitrification (Mørkved et al. 2007). Bell et al., (2015) also found that the annual emissions factor for the Scottish arable soil was 3 to 5 times higher than grassland sites elsewhere in a field trials of UK, which is commensurate with our findings that arable soil had more emissions than grassland.

There was only a small emission for CO₂ and CH₄ in both grassland and arable soil under PF (Figure 3 and Table 2). The highly possible reason is that the high-water content limits the decomposition of soil organic matter and dissolved the CH₄. Provided by Devüvre and Horwáth (2000) that mineralization of soil organic carbon was restrained under the waterlogged conditions by restricted microbial growth and activities, and thereby impeded CO₂ production

(Khalid et al., 2019). Another reason is that permanent flooding also favoured the amount of dissolved CH₄ (Mazza et al., 2018).

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

435

436

4.2. The GHG emissions and NH₄⁺-N and NO₃⁻-N dynamic under flooding-drying

The WNH4 of grassland and arable was decreasing and WNO3 of grassland and arable were increasing with time under FD while the SNH4 of grassland and arable were decreasing heavily and SNO3 of grassland and arable were increasing slightly with time under FD (Figure 4 c). When SM>100%WHC, less emissions of N₂O were detective under FD in grassland and arable soil (Figure 3). Same condition with the PD (described before). When SM<100%WHC, there were a lot of emissions of N2O-N under FD in grassland soil and N2O-N emissions was increasing with the decreasing of soil moisture to end of the day (Figure 3). The mostly reason for that is the nitrification-denitrification and denitrification were increasing with time in grassland soil. Same with Freibauer et al. (2004) and Goldberg et al. (2010) that degradation of soil organic matter as a result of drainage and cultivation will stimulate net N mineralization and N transformations via nitrification and denitrification which can then lead to N2O production. At the capillary fringe above the water level, the soil was characterised by having close to sub-saturated soil moisture degrees and mixed aerobic/anaerobic conditions, promoting the environmental conditions favourable for both N₂O production via denitrification and NO₃ reduction via DNRA (Megonigal et al., 2003). A lot of researcher (Congreves et al., 2019; Miller et al., 2020) found that the product of N₂O by denitrification increasing with decreasing water-filled pore space from 90% to 60% and peak at optimum water filled pore space of 65%-70% (Pärn et al. 2018; van Lent et al., 2015; Werner et al., 2007). At higher water contents, denitrification becomes more prevalent leading to maximum emissions at around 80% WFPS (Shepherd, 2009). In agricultural soils, the total N₂O emissions in a season are strongly related to the episodes of large N₂O pulses observed after irrigation and rainfall events which are primarily derived from denitrification (Trost et al. 2013). Consistency with our result that N₂O-N emissions was increasing with the decreasing of soil moisture to end of the day (which soil moisture still higher than 60% WHC).

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

The TDN-N and TOC-C of grassland were decreasing with time under FD (Figure 4 d). but, the TDN-N of arable were decreasing and TOC-C of arable were keeping stable with time under FD (Figure 4 d). Arable soil also had a lower N₂O-N emissions rate than grassland soil when soil moisture smaller than 80% WHC under FD (Figure 3) and the grassland soil had a higher total N₂O-N emission and GWP than arable soil under FD (Table 3 and table 4). The possible reason is that the nitrogen, carbon and microbial in arable soil limited the nitrification and denitrification, and therefore lower the production of N₂O-N under SM<100%WHC. Csubstrate availability and N2O emissions from denitrification and nitrification are always positively related to each other (Li et al., 2005; Wan et al., 2009) due to nitrification being primarily an autotrophic process and heterotrophic nitrification only accounting for 20% or less mostly under low pH conditions (Liu et al., 2015). Gütlein et al. (2018) also found that N₂O emissions correlated positively with soil moisture and total soil nitrogen content. Short and temporary drying-rewetting frequency enhanced denitrifier activity by availing physically protected organic matter (Fierer and Schimel, 2002). N₂O derived from soil organic matter decomposition dominate overall fluxes (Maljanen et al., 2010). Abbasi et al. (2011) also found that the process of denitrification and production of N₂O be smaller in arable soil deficient in organic matter compared to grassland soil due to less availability of organic C. Another reason is that Grassland soil has a higher pH (Table 1), and then lead to a bigger N₂O-N emission (Figure 3 and Table 2) when SM<100%WHC. Fan et al. (2018) reported significantly higher N₂O emissions rates from three alkaline soils (pH 7.6–8.2) as compared to an acidic soil with a pH of 5.6. Oxidation of NH₄⁺ is completely inhibited at pH 5 and increases with a higher pH (Wang et al., 2018) through a pH-driven shift in the microbial community structure and/or microbial activities (Ottosen et al., 2009).

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

The soil total carbon and TOC were mainly anaerobic digestion to CH₄ before 15 days (especially when soil moisture between 110%WHC and 80%WHC) (Figure 3), and were mainly aerobic digestion to CO₂ after 15 days in grassland soil under flooding-drying when soil moisture lower than 80%WHC (Figure 3). CH₄ production is expected to mainly occur below the groundwater table (Segers, 1998). Anaerobic conditions at flooding stage of the experiment promoted methanogenic activities while suppressed methanotrophic activities leading to CH₄ production (Shaaban et al., 2022). Drainage will limit the production of CH₄ due to highest oxidation potentials near the oxic/anoxic interface (Petersen et al., 2012), but also increase the potential for CH₄ oxidation during passage through the unsaturated zone to the atmosphere (Petersen et al., 2012). CO₂ fluxes were dominant at drained sites (Kandel et al., 2018) and showed a decreasing trend following an increase of soil water content as commonly observed in previous studies (Smith et al. 2003; McNicol and Silver 2014) due to a lower O₂ availability and the consequent inhibition of aerobic respiration when a large proportion of pores are saturated under flooding (Mazza et al., 2018). CO₂ emissions were significantly larger in the flooding converted to wet soil treatment as compared with the continuous flooding and wet soil treatments owing to increased mineralization and C contents (Khalid et al., 2019). The emissions of CH₄ after 100% WHC (Figure 3) maybe were due to the gas entrapment into microaggregates and a delayed release (either as emissions or leaching) (Mazza et al., 2018). CH₄ emissions increased during the 2nd flooding event (FD) instead of PF at the first time (Figure 3) maybe was caused by a possible mechanism of adaptation of microbial communities (Lagomarsino et al., 2016).

The grassland soil had a higher rate of CO₂-C and CH₄-C emissions than arable soil under FD (Figure 3). The grassland soil under FD had the significantly higher total CO₂-C and CH₄-

C emissions and GWP than arable soil (Table 3 and 4). The organic matter and total N contents are higher in grassland soils than in arable soils (Table 1) which caused the potential for mineralisation is higher after disturbances (drainage) (Eickenscheidt et al., 2014). (Volpi et al. (2017) found that CO₂ emissions is positively linked to soil organic carbon content and denitrification activity which increased denitrification activity also increases CO₂ efflux (Groffman and Crawford, 2003). Therefor, grassland soil under FD had the significantly higher total CO₂-C and CH₄-C emissions and GWP than arable soil. Thomson et al. (2010) detected significantly higher respiration rates in dried and rewetted microcosms. When soil moisture content changed from flooding to 60% WFPS, CH₄ emissions decreased, but N₂O and CO₂ substantially increased due to flooded soil released N and C and triggered C and N cycling (Shaaban et al., 2022). Same with us that higher GHG emissions and GWP under FD than PF were found in grassland soil (Table 2 and 3).

4.3. The influence of different type of soil NH₄⁺-N and NO₃⁻-N on GHG emissions

NH₄⁺-N and NO₃⁻-N in pore water (WNH4 and WNO3) are available for soil microbial to use since they are existing in the pore water. NH₄⁺-N and NO₃⁻-N in 0.5 M HCl from IERM (INH4 and INO3) are labile for soil microbial to use. NH₄⁺-N and NO₃⁻-N in 2 M KCl from soil extraction (SNH4 and SNO3) are stable for soil microbial to use.

Grassland and arable soil sample of N₂O-N emissions were clearly separate between SM>100%WHC and SM<100%WHC (Figure 5). Senbayram et al. (2009) found that the availability of a high level of NO₃⁻ as a result of nitrification together with labile C under anaerobic soil conditions serves as a driving force for N₂O emissions. Same with our result that the N₂O-N and CO₂-C emissions was more controlled by soil available NO₃⁻-N when soil moisture higher than 100% WHC while N₂O-N emissions was more controlled by soil stable

533	NH ₄ ⁺ -N and NO ₃ ⁻ -N when soil moisture lower than 100% WHC in grassland soil (Figure 6 a
534	and b).
535	
536	5. Conclusion
537	More N ₂ O-N emissions and large GWP were found in arable soil under PF. But more N ₂ O-
538	N, CO ₂ -C, CH ₄ -C emissions and large GWP were found in grassland soil under FD. The GHG
539	emissions of grassland soil were more controlled by soil available NO ₃ -N when soil moisture
540	was higher than 100% WHC. The N ₂ O-N, CO ₂ -C and CH ₄ -C emissions of grassland soil were
541	more controlled by soil stable NH ₄ ⁺ -N, NO ₃ ⁻ -N and TOC when soil moisture was lower than
542	100% WHC.
543	The GHG emissions also need to be consider when we try to converting arable land use to
544	grassland, although grassland sequester more soil C than arable and thus the balance between
545	GHG emission and C capture need consideration in these critical land use changes under future
546	climate. Further research needs to forces on how to reduce the GHG emissions under climate
547	change (heavy rain) after convert arable to grassland to meet human need.
548	
549	Declaration of Competing Interest
550	The authors declare that they have no known competing financial interests or personal
551	relationships that could have appeared to influence the work reported in this paper.
552	
,,,	
553	Data availability

Data will be made available on request.

Acknow	ledgements
--------	------------

- This research was supported by the UKRI-NERC under the joint "Signals in the Soils". 557
- Large Area Distributed Real Time Soil (DiRTS) Monitoring and BBSRC (BB/R021716/1). 558

559

560

569

References

- Abbasi, M.K., Hina, M., Tahir, M.M., 2011. Effect of Azadirachta indica (neem), sodium 561 thiosulphate and calcium chloride on changes in nitrogen transformations and inhibition 562 of nitrification in soil incubated under laboratory conditions. Chemosphere, 82, 1629-563 1635. https://doi.org/10.1016/j.chemosphere.2010.11.044 564
- Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, 565 566 C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T., Chadwick, D. R., 2015. Nitrous oxide emissions from fertilised UK arable 567 soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and 568 Environment, 212, 134-147. https://doi.org/10.1016/j.agee.2015.07.003
- Cai, Y., Ding W., Luo, J., 2013. Nitrous oxide emissions from Chinese maize-wheat rotation 570 systems: a 3-year field measurement. Atmospheric Environment, 65, 112-122. 571
- https://doi.org/10.1016/j.atmosenv.2012.10.038 572
- Carneiro, J., Cardenas, L.M., Hatch, D.J., Trindade, H., Scholefield, D., Clegg, C.D., Hobbs, 573 P., 2010. Effect of the nitrification inhibitor dicyandiamide on microbial communities 574 and N₂O from an arable soil fertilized with ammonium sulphate. Environ. Chem. Lett. 575 8, 237-246. https://doi.org/10.1007/s10311-009-0212-3. 576

577	Caroline B., Reinhard W., Mirjam H., Roland F., Manfred K., Andreas G., Matthias B., Heinz
578	F., 2017. Soil mineral N dynamics and N2O emissions following grassland renewal
579	Agriculture, Ecosystems and Environment, 246, 325-342
580	https://doi.org/10.1016/j.agee.2017.06.013
581	Chen, D.L., Suter, H.C., Islam, A., Edis, R., Freney, J.R., Walker, C.N., 2008. Prospects of
582	improving efficiency of fertiliser nitrogen in Australian agriculture; a review of
583	enhanced efficiency fertilisers. Australian Journal of Soil Research, 46, 289-301
584	https://doi.org/10.1071/SR07197
585	Congreves, K.A., Phan, T., Farrell, R.E., 2019. A new look at an old concept: using ¹⁵ N ₂ C
586	isotopomers to understand the relationship between soil moisture and N2O production
587	pathways. Soil, 5, 265-274. https://doi.org/10.5194/soil-5-265-2019.
588	Conrad, R., 2009. The global methane cycle: Recent advances in understanding the microbial
589	processes involved: Global methane cycle. Environmental Microbiology Reports, 1
590	285-292. https://doi.org/10.1111/j.1758-2229.2009.00038.x
591	Cranfield soil and agrifood institute
592	https://www.landis.org.uk/soilscapes/index.cfm?panel=search#
593	Čuhel, J., Šimek, M., Laughlin, R.J., Bru, D., Chèneby, D., Watson, C.J. and Philippot, L.
594	2010. Insights into the effect of soil pH on N2O and N2 emissions and denitrifier
595	community size and activity. Applied and Environmental Microbiology, 76, 1870-
596	1878. https://doi.org/10.1128/AEM.02484-09
597	Devüvre, O.C., Horwáth, W.R., 2000. Decomposition of rice straw and microbial carbon use
598	efficiency under different soil temperatures and moistures. Soil Biology and
599	Biochemistry, 32, 1773-1785. https://doi.org/10.1016/S0038-0717(00)00096-1

- 600 Eickenscheidt, T., Heinichen, J., Augustin, J., Freibauer, A., Drösler, M., 2014. Nitrogen
- mineralization and gaseous nitrogen losses from waterlogged and drained organic soils
- in a black alder (Alnus glutinosa (L.) Gaertn.) forest. Biogeosciences 11, 2961-2976.
- 603 https://doi.org/10.5194/bg-11-2961-2014
- Fan, C., Li, B., Xiong, Z., 2018. Nitrification inhibitors mitigated reactive gaseous nitrogen
- intensity in intensive vegetable soils from China. Science of The Total Environment,
- 606 612, 480-489. https://doi.org/10.1016/j.scitotenv.2017.08.159
- Fay, P.A., Kaufman, D.M., Nippert, J.B., Carlisle, J.D., Harper, C.W., 2010. Changes in
- grassland ecosystem function due to extreme rainfall events: implications for responses
- to climate change. Global Change Biology, 14, 1600-1608.
- 610 https://doi.org/10.1111/j.1365-2486.2008.01605.x
- Fierer, N., Schimel, J.P., 2002. Effects of drying-rewetting frequency on soil carbon and
- nitrogen transformations. Soil Biology and Biochemistry, 34, 777-787.
- 613 https://doi.org/10.1016/S0038-0717(02)00007-X
- Fixon, P.E., West, F.B., 2002. Nitrogen fertilizers: meeting contemporary Challenges. Ambio;
- A Journal of the Human Environment, 31, 169-176. https://doi.org/10.1579/0044-7447-
- 616 31.2.169.
- Freibauer, A., Rounsevell, M.D.A., Smith, P., Verhagen, J., 2004. Carbon sequestration in the
- 618 agricultural soils of Europe, Geoderma, 122, 1-23, 2004.
- https://doi.org/10.1016/j.geoderma.2004.01.021
- 620 Gilsanz, C., Báez, D., Misselbrook, T.H., Dhanoa, M.S., Cárdenas, L.M., 2016. Development
- of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP.
- 622 Agriculture, Ecosystems and Environment, 216, 1-8.
- http://dx.doi.org/10.1016/j.agee.2015.09.030.

- 624 Goldberg, S.D., Knorr, K.-H., Blodau, C., Lischeid, G., Gebauer, G., 2010. Impact of altering 625 the water table height of an acidic fen on N₂O and NO fluxes and soil concentrations, 626 Global Change Biology, 16, 220-233. https://doi.org/10.1111/j.1365-
- 627 2486.2009.02015.x
- 628 Groffman, P.M., Crawford, M.K., 2003. Denitrification potential in urban riparian zones.
- 629 Journal of Environmental Quality, 32, 1144-1149.
- https://doi.org/10.2134/jeq2003.1144
- Guo Y.F., Becker-Fazekas S., Mühling K.H., 2022a. Impact of different chloride salts and their concentrations on nitrification and trace gas emissions from a sandy soil under a controlled environment. Soil Use and Management, 38, 861-872.
- https://doi.org/10.1111/sum.12713
- Guo Y.F., Naeem A., Becker-Fazekas S., Pitann, B., Mühling K.H., 2022b. Efficacy of four
 nitrification inhibitors for the mitigation of nitrous oxide emissions under different soil
 temperature and moisture. Journal of Plant Nutrition and Soil Science, 185, 60-68.
- https://doi.org/10.1002/jpln.202000367
- Guo Y.F., Naeem A., Mühling K.H., 2021a. Comparative effectiveness of four nitrification inhibitors for mitigating carbon dioxide and nitrous oxide emissions from three
- different textured soils. Nitrogen, 2, 155-166. https://doi.org/10.3390/nitrogen2020011
- 642 Guo, Y.F., Anjum, A., Khan, A., Naeem, A., Mühling K.H., 2021b. Comparative Effectiveness
- of Biogas Residue Acidification and Nitrification Inhibitors in Mitigating CO_2 and N_2O
- emissions from Biogas Residue Amended Soils. Water, Air, and Soil Pollution, 232,
- 345. https://doi.org/10.1007/s11270-021-05282-1
- 646 Guo, Y.F., Liang, A.Z., Zhang, Y., Zhang, S., Chen, X., Jia, S., Zhang, X., Wu, D., 2019.
- Evaluating the contributions of earthworms to soil organic carbon decomposition under

different tillage practices combined with straw additions. Ecological Indicators, 105, 648 516-524. https://doi.org/10.1016/j.ecolind.2018.04.046 649 Gütlein, A., Gerschlauer, F., Kikoti, I., Kiese, R., 2018. Impacts of climate and land use on 650 N₂O and CH₄ fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania. 651 Global Change Biology, 24, 1239-1255. https://doi.org/10.1111/gcb.13944 652 Gweon, H.S., Peyton, J.M., Mason, K.E., van Agtmaal, M., Blaud, A., Clark, J., Whitaker, 653 I.M., Pywell, R.F., Ostle, N., Gleixner, G., Griffiths, R.I., 2018. Land use driven change 654 655 in soil pH affects microbial carbon cycling processes. Nature Communications, 9, 3591. https://doi.org/10.1038/s41467-018-05980-1 656 Harter, J., Krause, H.M., Schuettler, S., Ruser, R., Fromme, M., Scholten, T., Kappler, A., 657 Behrens, S., 2014. Linking N₂O emissions from biochar-amended soil to the structure 658 and function of the N-cycling microbial community. The ISME Journal, 8, 660-674. 659 https://doi.org/10.1038/ismej.2013.160 660 Hawthorne, I., Johnson, M.S., Jassal, R.S., Black, T.A., Grant, N.J., Smukler, S.M., 2017. 661 Application of biochar and nitrogen influences fluxes of CO₂, CH₄ and N₂O in a forest 662 soil. Journal of Environmental Management, 192. 203-214. 663 https://doi.org/10.1016/j.jenvman.2016.12.066 664 665 Hu, H.W., Chen, D., He, J.Z., 2015. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS 666 Microbiology Reviews, 39(5), 729-749. https://doi.org/10.1093/femsre/fuv021 667 IPCC, 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press. 668 IPCC, 2007. Climate Change 2007: The Physical Science Basis. Cambridge University Press. 669 670 IPCC, 2021. Climate Change 2021: The Physical Science Basis. Cambridge University Press.

671	IPCC, 2022. Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming
672	of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate
673	Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge
674	University Press. https://doi.org/10.1017/9781009157940
675	Jørgensen, C.J., Elberling, B., 2012. Effects of flooding-induced N ₂ O production, consumption
676	and emission dynamics on the annual N2O emission budget in wetland soil. Soil
677	Biology and Biochemistry, 53, 9-17. https://doi.org/10.1016/j.soilbio.2012.05.005.
678	Kandel, T.P., Lærke, P.E., Elsgaard, L., 2018. Annual emissions of CO ₂ , CH ₄ and N ₂ O from a
679	temperate peat bog: Comparison of an undrained and four drained sites under
680	permanent grass and arable crop rotations with cereals and potato. Agricultural and
681	Forest Meteorology, 256-257, 470-481.
682	https://doi.org/10.1016/j.agrformet.2018.03.021
683	Khalid, M.S., Shaaban, M., Hu, R., 2019. N ₂ O, CH ₄ , and CO ₂ Emissions from Continuous
684	Flooded, Wet, and Flooded Converted to Wet Soils. Journal of Soil Science and Plant
685	Nutrition, 19, 342-351. https://doi.org/10.1007/s42729-019-00034-x
686	Köster, J.R., Well, R., Dittert, K., Giesemann, A., LewickaSzczebak, D., Mühling, K. H.,
687	Herrmann, A., Lammel, J., Senbayram, M., 2013. Soil denitrification potential and its
688	influence on the N_2O reduction and N_2O isotopomer ratios. Rapid Communications in
689	Mass Spectrometry, 27, 2363-2373. https://doi.org/10.1002/rcm.6699
690	Lagomarsino, A., Agnelli, A.E., Pastorelli, R., Pallara, G., Rasse, D.P., Silvennoinen, H., 2016.
691	Past water management affected GHG production and microbial community pattern in
692	Italian rice paddy soils. Soil Biology and Biochemistry, 93, 17-27.
693	https://doi.org/10.1016/j.soilbio.2015.10.016

- 694 Li, C., Frolking, S., Butterbach-Bahl, K., 2005. Carbon Sequestration in Arable Soils is Likely
- to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative
- Forcing. Climatic Change, 72, 321-338. https://doi.org/10.1007/s10584-005-6791-5
- 697 Li, Z., Tang, Z., Song, Z., Chen, W., Tian, D., Tang, S., Wang, X., Wang, J., Liu, W., Wang,
- Y., Li, J., Jiang, L., Luo, Y., Niu, S., 2022. Variations and controlling factors of soil
- denitrification rate. Global Change Biology, 28, 2133–2145.
- 700 https://doi.org/10.1111/gcb.16066
- Liu, R., Suter, H., Hayden, H., He, J., Chen, D., 2015. Nitrate production is mainly
- heterotrophic in an acid dairy soil with high organic content in Australia. Biology and
- Fertility of Soils, 51, 891-896. https://doi.org/10.1007/s00374-015-1026-z
- Liu, Y., Tang, H., Muhammad, A., Huang G., 2019. Emission mechanism and reduction
- 705 countermeasures of agricultural greenhouse gases a review. Greenhouse Gases:
- Science and Technology, 9, 160-174. https://doi.org/10.1002/ghg.1848
- Malik, A.A., Puissant, J., Buckeridge, K.M., Goodall, T., Jehmlich, N., Chowdhury, S.,
- Maljanen, M., Sigurdsson, B.D., Guðmundsson, J., Óskarsson, H., Huttunen, J.T., Martikainen,
- P.J., 2010. Greenhouse gas balances of managed peatlands in the Nordic countries –
- present knowledge and gaps, Biogeosciences, 7, 2711-2738,
- 711 https://doi.org/10.5194/bg7-2711-2010
- Mazza, G., Agnelli, A.E., Andrenelli, M.C., Lagomarsino, A., 2018. Effects of water content
- and N addition on potential greenhouse gas production from two differently textured
- soils under laboratory conditions. Archives of Agronomy and Soil Science, 64, 654-
- 715 667, https://doi.org/10.1080/03650340.2017.1373184

- McNicol, G., Silver, WL., 2014. Separate effects of flooding and anaerobiosis on soil
- greenhouse gas emissions and redox sensitive biogeochemistry. JGR Biogeoscience,
- 718 119, 557-566. https://doi.org/10.1002/2013JG002433
- Megonigal, J.P., Hines, M.E., Visscher, P.T., 2003. Anaerobic metabolism: linkages to trace
- gases and aerobic processes. Treatise on Geochemistry. 8, 317-424.
- 721 https://doi.org/10.1016/B0-08-043751-6/08132-9
- Miller, G.A., Rees, R.M., Griffiths, B.S., Cloy, J.M., 2020. Isolating the effect of soil properties
- on agricultural soil greenhouse gas emissions under controlled conditions. Soil Use and
- 724 Management, 36, 285-298. https://doi.org/10.1111/sum.12552
- Mørkved, P.T., Dörsch, P., Bakken, L.R., 2007. The N₂O product ratio of nitrification and its
- dependence on long-term changes in soil pH. Soil Biology and Biochemistry, 39, 2048-
- 727 2057. https://doi.org/10.1016/j.soilbio.2007.03.006
- Neubauer, S.C., Megonigal, J.P., 2021. Biogeochemistry of Wetland Carbon Preservation and
- Flux. Wetland Carbon and Environmental Management, Geophysical Monograph
- 730 Series. https://doi.org/10.1002/9781119639305.ch3
- Oksanen, K.J.R., O'Hara, R.B., 2005. Vegan: Community Ecology Package. R package
- 732 version 1.6–9.
- Ottosen, L.D.M., Poulsen, H.V., Nielsen, D.A., Finster, K., Nielsen, L.P., Revsbech, N.P.,
- 734 2009. Observations on microbial activity in acidified pig slurry. Biosystems
- Engineering, 102(3), 291-297. https://doi.org/10.1016/j.biosystemseng.2008.12.003
- Park, S., Croteau, P., Boering, K.A., Etheridge, D.M., Ferretti, D., Fraser, P.J., Kim, K.R.,
- Krummel, P.B., Langenfelds, R.L., van Ommen, T.D., Steele, L.P., Trudinger, C.M.,

- 738 2012. Trends and seasonal cycles in the isotopic composition of nitrous oxide since
- 739 1940. Nature Geoscience, 5, 261-265. https://doi.org/10.1038/ngeo1421
- Pärn, J., Verhoeven, J.T.A., Butterbach-Bahl, K., Dise, N.B., Ullah, S., Aasa, A., Egorov, S.,
- Espenberg, M., Järveoja, J., Jauhiainen, J., Kasak, K., Klemedtsson, L., Kull, A.,
- Laggoun-Défarge, F., Lapshina, E.D., Lohila, A., Lõhmus, K., Maddison, M., Mitsch,
- W.J., Müller, C., Niinemets, Ü., Osborne, B., Pae, T., Salm, J.O., Sgouridis, F., Sohar,
- K., Soosaar, K., Storey, K., Teemusk, A., Tenywa, M.M., Tournebize, J., Truu, J.,
- Veber, G., Villa, J.A., Zaw, S.S., Mander, Ü., 2018. Nitrogen-rich organic soils under
- warm well-drained conditions are global nitrous oxide emission hotspots. Nature
- 747 Communications, 9, 1135. https://doi.org/10.1038/s41467-018-03540-1
- 748 Petersen, S.O., Hoffmann, C.C., Schäfer, C.M., Blicher-Mathiesen, G., Elsgaard, L.,
- Kristensen, K., Larsen, S.E., Torp, S.B., Greve, M.H., 2012. Annual emissions of CH₄
- and N₂O, and ecosystem respiration, from eight organic soils in Western Denmark
- managed by agriculture, Biogeosciences, 9, 403-422, https://doi.org/10.5194/bg-9-403-
- 752 2012
- Poyda, A., Reinsch, T., Kluß, C., Loges, R., Taube, F., 2016. Greenhouse gas emissions from
- fen soils used for forage production in northern Germany. Biogeosciences 13, 5221-
- 755 5244. https://doi.org/10.5194/bg-13-5221-2016
- Rowland, C.S., Morton, R.D., Carrasco, L., McShane, G., O'Neil, A.W., Wood, C.M., 2017.
- Land Cover Map 2015 (25m raster, GB). NERC Environmental Information Data
- 758 Centre. https://doi.org/10.5285/bb15e200-9349-403c-bda9-b430093807c7
- 759 Segers, R., 1998. Methane production and methane consumption: a review of processes
- underlying wetland methane fluxes, Biogeochemistry, 41, 23-51.
- 761 https://doi.org/10.1023/A:1005929032764

- Senbayram, M., Chen, R., Mühling, K.H., Dittert, K., 2009. Contribution of nitrification and
- denitrification to nitrous oxide emissions from soils after application of biogas waste
- and other fertilizers. Rapid Communications in Mass Spectrometry, 23, 2489-2498.
- 765 https://doi.org/10.1002/rcm.4067
- Sgouridis, F., Ullah, S., 2017. Soil greenhouse gas fluxes, environmental controls, and the
- partitioning of N₂O sources in UK natural and seminatural land use types. Journal of
- Geophysical Research: Biogeosciences, 122, 2617-2633.
- 769 https://doi.org/10.1002/2017JG003783
- Shaaban, M., Khalid, M.S., Hu, R., Zhou, Mi., 2022. Effects of water regimes on soil N₂O,
- 771 CH₄ and CO₂ emissions following addition of dicyandiamide and N fertilizer.
- Environmental Research, 212, 113544. https://doi.org/10.1016/j.envres.2022.113544
- Shaaban, M., Wu, Y., Khalid, M.S., Peng, Q.A., Xu, X., Wu, L., Younas, A., Bashir, S., Mo,
- Y., Lin, S., Zafar-ul-Hye, M., Abid, M., Hu, R., 2018. Reduction in soil N₂O emissions
- by pH manipulation and enhanced nosZ gene transcription under different water
- regimes. Environmental Pollution, 235, 625-631.
- 777 https://doi.org/10.1016/j.envpol.2017.12.066
- 578 Shepherd, T.G., 2009. Visual Soil Assessment. Volume 1. Field guide for pastoral grazing and
- cropping on flat rolling country, 2nd ed. (p.119). Horizons Regional Council:
- 780 Palmerston North, New Zealand.
- 781 Šimek, M., Jíšová, L., Hopkins, D.W., 2002. What is the so-called optimum pH for
- denitrification in soil? Soil Biology and Biochemistry, 34, 1227-1234.
- 783 https://doi.org/10.1016/S0038-0717(02)00059-7
- Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J., Rey, A., 2003. Exchange of
- greenhouse gases between soil and atmosphere: interactions of soil physical factors and

- biological processes. European Journal of Soil Science, 54, 779-791.
- 787 https://doi.org/10.1111/ejss.12539
- 788 Song, K., Zhang, G., Yu, H., Huang, Q., Zhu, X., Wang, T., Xu, H., Lv, S., Ma, J., 2021.
- Evaluation of methane and nitrous oxide emissions in a three-year case study on single
- rice and ratoon rice paddy fields. Journal of Cleaner Production, 297, 126650.
- 791 https://doi.org/10.1016/j.jclepro.2021.126650.
- Thompson, R.L., Lassaletta, L., Patra, P.K., Wilson, C., Wells, K.C., Gressent, A., Kof, E.N.,
- Chipperfeld, M.P., Winiwarter, W., Davidson, E.A., Tian, H., Canadell, J.G., 2019.
- Acceleration of global N₂O emissions seen from two decades of atmospheric inversion.
- 795 Nature Climate Change, 9, 993-998. https://doi.org/10.1038/s41558-019-0613-7
- Thomson, B.C., Ostle, N.J., McNamara, N.P., Whiteley, A.S., Griffiths, R.I., 2010. Effects of
- sieving, drying and rewetting upon soil bacterial community structure and respiration
- rates. Journal of Microbiological Methods. 83, 69-73.
- 799 https://doi.org/10.1016/j.mimet.2010.07.021
- 800 Trost, B., Prochnow, A., Drastig, K., Meyer-Aurich, A., Frank E., Baumecker, M., 2013.
- 801 Irrigation, soil organic carbon and N₂O emissions. A review. Agronomy for Sustainable
- Development, 33, 733-749. https://doi.org/10.1007/s13593-013-0134-0
- van Lent, J., Hergoualc'h, K., Verchot, L.V., 2015. Reviews and syntheses: Soil N₂O and NO
- emissions from land use and land-use change in the tropics and subtropics: A meta-
- analysis. Biogeosciences, 12, 7299-7313. https://doi.org/10.5194/bg-12-7299-2015
- Volpi, I., Laville, P., Bonari, E., o di Nasso, N.N., Bosco, S., 2017. Improving the management
- of mineral fertilizers for nitrous oxide mitigation: The effect of nitrogen fertilizer type,
- urease and nitrification inhibitors in two different textured soils. Geoderma, 307, 181-
- 809 188. https://doi.org/10.1016/j.geoderma.2017.08.018

- Wan, Y., Ju, X., Ingwersen, J., Schwarz, U., Stange, C.F., Zhang, F., Streck, T., 2009. Gross
- Nitrogen Transformations and Related Nitrous Oxide Emissions in an Intensively Used
- 812 Calcareous Soil. Soil Science Society of America Journal, 73, 102-112.
- 813 https://doi.org/10.2136/sssaj2007.0419
- Wang, J., Zhang, B.B., Tian, Y., Zhang, H., Cheng, Y., Zhang, J., 2018. A soil management
- strategy for ameliorating soil acidification and reducing nitrification in tea plantations.
- 816 European Journal of Soil Biology, 88, 36-40.
- 817 https://doi.org/10.1016/j.ejsobi.2018.06.001
- Werner, C., Kiese, R., Butterbach-Bahl, K., 2007. Soil-atmosphere exchange of N₂O, CH₄ and
- 819 CO₂ and controlling environmental factors for tropical rain forest sites in western
- 820 Kenya. Journal of Geophysical Research, 112, D03308.
- 821 https://doi.org/10.1029/2006JD007388
- Wilson, D., Farrell, C.A., Fallon, D., Moser, G., Müller, C., Renou-Wilson, F., 2016. Multiyear
- greenhouse gas balances at a rewetted temperate peatland. Global Change Biology, 22,
- 4080-4095. https://doi.org/10.1111/gcb.13325
- Wrage, N., Velthof, G.L., van Beusichem, M.L., Oenema, O., 2001. Role of nitrifier
- denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 33,
- 827 1723-1732. https://doi.org/10.1016/S0038-0717(01)00096-7
- 828 Wu, L., Tang, S., He, D., Wu, X., Shaaban, M., Wang, M., Zhao, J., Khan, I., Zheng, X., Hu,
- 829 R., 2017. Conversion from rice to vegetable production increases N₂O emission via
- increased soil organic matter mineralization. Science of The Total Environment, 583,
- 831 190-201. https://doi.org/10.1016/j.scitotenv.2017.01.050
- 832 Xu, X., Yuan, X., Zhang, Q., Wei, Q., Liu, X., Deng, W., Wang, J., Yang, W., Deng, B., Zhang,
- L., 2022. Biochar derived from spent mushroom substrate reduced N₂O emissions with

834	lower water content but increased CH ₄ emissions under flooded condition from
835	fertilized soils in Camellia oleifera plantations. Chemosphere, 287, 132110.
836	https://doi.org/10.1016/j.chemosphere.2021.132110
837	Zhang, S., Yu, Z., Lin, J., Zhu, B., 2020. Responses of soil carbon decomposition to drying-
838	rewetting cycles: A meta-analysis. Geoderma, 361, 114069.
839	https://doi.org/10.1016/j.geoderma.2019.114069
840	