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Abstract—We consider probabilistic models for sequential
observations which exhibit gradual transitions among a finite
number of states. We are particularly motivated by applications
such as human activity analysis where observed accelerometer
time series contains segments representing distinct activities,
which we call pure states, as well as periods characterized
by continuous transition among these pure states. To capture
this transitory behavior, the dynamical Wasserstein barycenter
(DWB) model of (Cheng et al., 2021) associates with each pure
state a data-generating distribution and models the continuous
transitions among these states as a Wasserstein barycenter of
these distributions with dynamically evolving weights. Focus-
ing on the univariate case where Wasserstein distances and
barycenters can be computed in closed form, we extend (Cheng
et al., 2021) specifically relaxing the parameterization of the pure
states as Gaussian distributions. We highlight issues related to
the uniqueness in identifying the model parameters as well as
uncertainties induced when estimating a dynamically evolving
distribution from a limited number of samples. To ameliorate
non-uniqueness, we introduce regularization that imposes tem-
poral smoothness on the dynamics of the barycentric weights.
A quantile-based approximation of the pure state distributions
yields a finite dimensional estimation problem which we numer-
ically solve using cyclic descent alternating between updates to
the pure-state quantile functions and the barycentric weights. We
demonstrate the utility of the proposed algorithm in segmenting
both simulated and real world human activity time series.

Index Terms—Wasserstein barycenter, displacement interpola-
tion, dynamical model, sequential data, time series analysis, slid-
ing window, non-parametric, quantile function, human activity
analysis.
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I. INTRODUCTION

WE consider a probabilistic model for sequentially ob-
served data where the observation at each point in time

depends on a dynamically evolving latent state. We are particu-
larly motivated by systems that continuously move among a set
of canonical behaviors, which we call pure states. Over some
periods, the system may reside entirely in one of the pure states
while over other periods, the system is transitioning among
these pure states in a temporally smooth manner. There are
many applications where such a model is appropriate including
climate modeling [2], sleep analysis [3], simulating physical
systems [4], as well as characterizing human activity from video
[5] or wearable-derived accelerometry [6] data. Using the last
case as an example, there will be periods when the individual
will be engaged in a well-defined activity such as standing or
running. During these intervals, the data can be modeled as
drawn from a probability distribution specific to that canonical
state. Given the high sampling rates of modern sensors, there
also may be intervals where multiple consecutive observations
reflect the gradual transition between or among pure states.
Over these periods the distribution of the data is given by a suit-
able combination of the pure state distributions. Therefore, one
possible model for these types of systems consists of three com-
ponents: a set of distributions containing the data-generating
distribution for each pure state, a continuously evolving latent
state which captures the transition dynamics of the system as it
moves among these pure states, and a means of interpolating
among these pure state distributions to characterize the data
distribution in the transition regions.1

These types of systems pose some unique considerations
that are not sufficiently addressed by prior work in time series
modeling. The two most common methods for modeling latent
state systems are continuous and discrete state-space models.
Continuous state-space models [7], [8], [9] have no natural way
to identify those pure states in which the system may persist for
periods of time. In discrete state-space models such as hidden
Markov models [10], [11], [12], the dynamics are captured
by a temporally varying state vector whose elements represent
the probability that the system resides in each of a countable
number of discrete (or in our terminology, pure) states. For
these models, the data-generating distribution associated with
this latent state vector is given as a convex combination, i.e.

1Code repository: https://github.com/kevin-c-cheng/DWB_Nonparametric
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Fig. 1. Comparison of convex combination vs Wasserstein barycenter for modeling human activity transitions. The beep test (BT) dataset consists of a
subject running back-and-forth between two points, stopping at each point (see Section V-B for more details). (a) The probability distribution functions (PDF)
of the vertical acceleration of the system’s two pure states (stand, run) are estimated using a KDE with a Gaussian kernel whose mean corresponds to the
observed data when the system resides in these pure states. Modeling a transition from stand to run via the time-varying weights (b) for t= 1, .., 5, we show
the resulting data distributions during this transition region according to a convex combination (c) and Wasserstein barycenter (d) interpolation model.

a linear mixture, of the pure state distributions. As argued in
[1] this is also an insufficient model for the problems which
interest us. As an example, for modeling human activity, the
data distribution illustrated in Fig. 1 produced by a convex
combination of the underlying “standing” and “running” pure
state distributions can be interpreted as “sometimes standing”
and “sometimes running,” which is not a proper description of
the gradual transition that actually occurs.

A better model for interpolating the data distribution dur-
ing the transition period between standing and running would
smoothly shift probability mass between the two pure state
distributions. As illustrated in Fig. 1, such blending can be
achieved through displacement interpolation [13] between two
pure states or, for more than two pure states, as a Wasserstein
barycenter of the associated distributions [14]. Using this per-
spective, Dynamical Wasserstein Barycenters (DWB) [1] were
recently proposed to model a dynamically evolving distribution
as a sequence of Wasserstein barycenters constructed as a time-
varying convex combination of the pure state distributions. The
dynamical weights, which lie on the probability simplex, are
taken to be the latent state of the model. A Bayesian model is
proposed in [1], whose parameters were determined via maxi-
mum a posteriori estimation.

Here we expand on [1] by highlighting two challenging
characteristics of the DWB model and two improvements that
address certain limitations of the original DWB approach.
The first characteristic relates to uniqueness in DWB model
identification, where multiple combinations of pure state distri-
butions and barycentric weights can produce the same Wasser-
stein barycenter. Although this is true for multidimensional
distributions, here we use a univariate formulation to more
transparently demonstrate how this non-uniqueness is captured
in an inverse-scaling relationship between the model’s latent
state and pure state parameters. The second characteristic is
related to a tradeoff in tracking and estimating an evolving
data distribution from a single instance of a time series using a
windowed approach to collect samples. Smaller windows lack
the number of samples to ensure small statistical error in the
estimation of the data distribution at a given point in time.
On the other hand, larger windows span longer periods during
which, under relatively faster dynamics, the data distribution
can change significantly again increasing the estimation error.
In a simulated example, where the dynamics consist of constant

rate transitions between two Gaussian states, we show that there
exists an optimal window size that balances these two effects
and discuss the dependency of this window size tradeoff on
the temporal dynamics of the latent state and pure states of the
system.

Our first improvement addresses the limitations of the choice
in [1] in using a probabilistic prior for the dynamics of the DWB
weight vector. That approach may introduce additional unnec-
essary or potentially undesirable probabilistic properties on the
latent state process such as a limiting distribution [15] which
fails to adequately regularize the DWB estimation problem.
Instead, we propose here a regularization scheme that imposes
temporal smoothness by penalizing the difference between the
simplex-constrained, latent state vectors at adjacent points in
time. Drawing from the field of compositional analysis [16],
the Bhattacharya-arccos distance [17] proves to be well-suited
to our needs. As a consequence of the aforementioned inverse-
scaling relationship, introducing this latent state regularizer im-
pacts the model’s pure state distribution in a manner that causes
them to diverge from the data. Therefore, we also introduce a
regularizer to counteract this effect to ensure that the learned
pure state distributions are representative of data while the
system resides in each pure state.

Our second improvement removes the restriction in [1] where
a parametric approach to model pure states with multivariate
Gaussians was employed. Here we adopt a non-parametric ap-
proach and focus on the univariate case where the Wassertein-2
distance between distributions is equivalent to the 2-norm be-
tween their respective quantile functions [18]. Using a discrete
approximation to the pure state quantile functions leads to a
convenient finite dimensional, regularized linear least squares
problem for estimating the pure states.

Our numerical experiments empirically validate our analy-
sis and improvements to the DWB model. Using simulated
data, we demonstrate in a controlled setting how we ef-
fectively regularize our model parameters with proper con-
sideration of the inverse-scaling analysis and the impact of
window size on the accuracy of the model parameters. Addi-
tionally, using real world human activity data, we show how
our non-parametric approach leads to improved estimation of
the system’s pure state distributions as well as improved fit of
the time-evolving distribution of the observed data compared
to [1].

Authorized licensed use limited to: TUFTS UNIV. Downloaded on February 01,2024 at 17:41:48 UTC from IEEE Xplore.  Restrictions apply. 



3166 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

In summary, the primary contributions of this work consist
of the following:

1. We highlight the non-uniqueness of the parameters cor-
responding to a Wasserstein barycenter by detailing the
inverse-scaling relationship between the pure state distri-
butions and the simplex-valued barycentric weights.

2. We explore the impact of the window size on the ability
to accurately estimate a dynamically evolving data distri-
bution by exploring the tradeoff between the errors asso-
ciated with large and small windows and the dependency
of this tradeoff on the dynamics and pure states of the
system.

3. We propose regularizers for the model parameters that
impose temporal smoothness in the latent states in a man-
ner that addresses the non-uniqueness of the model.

4. We propose a flexible, non-parametric representation for
univariate pure state distributions using a discrete approx-
imation to the quantile function that results in a finite
dimensional formulation for DWB learning.

The remainder of the paper is organized as follows: in
Section II, we provide an overview of the Wasserstein distance
and barycenter focusing on the univariate case. In Section III,
we discuss the DWB model, highlighting the non-uniqueness
and inverse-scaling property of the Wasserstein barycenter as
well as the impact of the window size on the estimation of
a dynamically evolving data distribution. In Section IV, we
develop a variational problem for learning a DWB model,
followed by a discussion of the regularization approach, and
discretization of the pure state distributions required to obtain
a finite dimensional estimation problem. We then formally state
our non-parametric and regularized DWB variational problem
and provide an algorithm to estimate the model parameters.
In Section V we use simulated data to demonstrate the non-
uniqueness, impact of window size and regularization terms
discussed in this work and use real world human activity data
to demonstrate the advantages of the non-parametric DWB
approach relative to the Gaussian model.

II. TECHNICAL BACKGROUND

The Wasserstein-2 distance is a metric on the space of proba-
bility distributions on R

d with finite second moments [18], [19].
For two random variables q and s distributions ρq and ρs, the
squared Wasserstein-2 distance is defined via,

W2
2 (ρq, ρs) = inf

π∈Π(ρq,ρs)
Eq,s∼π‖q − s‖22 (1)

where π denotes the joint distribution of q and s, and Π(ρq, ρs)
is the set of all joint distributions with marginals ρq, ρs. In this
work, we refer to Eq. (1) as the squared Wasserstein distance.

Given a set of distributions ρq1:K = {ρq1 , ρq2 , ..., ρqK} and
a vector x ∈ΔK , where ΔK denotes the standard K-simplex,
the Wasserstein barycenter is the distribution that minimizes the
weighted (with respect to elements in x) squared Wasserstein
distance to the set of distributions [14] and is given by,

ρB =B(x, ρq1:K ) = argmin
ρ

K∑

k=1

x[k]W2
2 (ρ, ρqk), (2)

Fig. 2. DWB model diagram. The DWB models the distribution ρBt from
which the time series yt is sampled as the Wasserstein barycenter of a set of
pure state distributions ρq1:K and barycentric weight x1:T , the latent state
of the model.

where x[k] denotes the k-th element of the vector x. When ρq
and ρs are univariate distributions with cumulative distribution
functions Pq, Ps, the squared Wasserstein distance in Eq. (1)
becomes [19], [20],

W2
2 (ρq, ρs) =

∫ 1

0

(
P−1
q (ξ)− P−1

s (ξ)
)2

dξ. (3)

Here P−1
q and P−1

s are quantile functions, the generalized
inverse [21] of the cumulative distribution function, given by,

P−1(ξ) = inf{g ∈ R : P (g)≥ ξ}. (4)

It follows from Eqs. (2) and (3) that the Wasserstein barycenter
of a set of univariate distributions with quantile functions P−1

q1:K ,
will have quantile function [20],

P−1
B =

K∑

k=1

x[k]P−1
qk

. (5)

III. THE DYNAMICAL WASSERSTEIN BARYCENTER MODEL

Shown in Fig. 2, the DWB model [1] describes the distribu-
tion of a time series yt at time t as,

yt ∼ ρBt
=B(xt, ρq1:K ) (6)

where ρqk , k = 1, 2, . . . ,K are the distributions of the pure
states and the barycentric weight xt ∈ΔK capture the dynam-
ics of the transitions among these pure states.

Given yt, t= 1, 2, · · · , T modeled via equation (6), the prob-
lem is to estimate DWB model parameters which consist of the
pure state distributions and the sequence of barycentric weights.

Below we discuss two key characteristics that pose chal-
lenges for estimating the parameters of the DWB model. The
first is the non-uniqueness of the parameters (i.e., the pure state
distributions and the barycentric weights) that yield a Wasser-
stein barycenter. The second relates to the complications that
arise when we are provided only a single time series for learning
a DWB model.

A. Non-Uniqueness in the Parameters of a Wasserstein
Barycenter

The issue of uniqueness refers to the fact that a Wasser-
stein barycenter is not described by a unique set of pure state
distributions and barycentric weights. While the statement is
true regardless of dimension (see Appendix A for an example),
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Fig. 3. Diagram of the non-uniqueness and inverse-scaling effect of the parameters of a Wasserstein barycenter. Consider a set of three pure states with quantile
functions P−1

q1:3 and simplex-valued weight xB ∈Δ3 where ρB =B(xB , ρq1:3 ) with quantile function P−1
B =

∑3
k=1 xB [k]P−1

qk . We construct a family
of distinctly different pure state quantile functions P̄−1

q1:K and barycentric weights x̄B which produce the exact same barycenter P−1
B =

∑3
k=1 x̄B [k]P̄−1

qk .
Let x0 be another point on the simplex where ρ0 =B(x0, ρq1:3 ) has quantile function P−1

0 =
∑3

k=1 x0[k]P
−1
qk . Given x0 and xB , let x̄B given by Eq.

(7) be any point on the line connecting x0 through xB to the edge of the simplex. Moving x̄Baway from x0 along the line connecting x0 and xB (orange
segments), causes the pure states quantile functions P̄−1

q1:3 to move from P−1
q1:3 towardsP−1

0 . This corresponds to α ∈ [α0, 1] where α0 is the smallest value
of α such that x̄B still lies on the simplex. Conversely moving xB towardsx0 (blue segments) results in the pure state quantile functions moving away from
P−1
0 . This corresponds to α ∈ [1, αm], where αm is the largest value of α such that all P̄q1:3 remain in the set of quantile functions Q.

given the focus of this paper, we examine the univariate case
in some detail. Specifically, we provide a construction that
illustrates an inverse-scaling relation between the family of pure
state distributions and barycentric weights that yields the same
Wasserstein barycenter.

As shown in Fig. 3, assume we have a set of pure state
distributions ρq1:K indexed by k = 1, 2, . . . ,K with quantile
functions, P−1

qk
and barycentric weights xB ∈ΔK which give

rise to the barycenter ρB =B(xB , ρq1:K) with quantile func-
tion P−1

B =
∑K

k=1 xB [k]P
−1
qk

(Eq. (5)). For now, xB is as-
sumed to lie in the interior of the simplex and we consider
below the cases where xB is on a lower dimensional face
or vertex. Let us choose another point x0 �= xB correspond-
ing to barycentric quantile function P−1

0 =
∑K

k=1 x0[k]P
−1
qk

(Eq. (5)). We construct a family of barycentric weights x̄B and
pure state quantile functions, P̄−1

q1:K corresponding to distribu-
tions ρ̄q1:K such that ρB =B(x̄B , ρ̄q1:K), or in other words,
P−1
B =

∑K
k=1 x̄B [k]P̄

−1
qk

. Specifically, as seen in Fig. 3 we
define x̄B to be a point on the line segment connecting x0 to
the boundary of the simplex that passes through xB . That is,

x̄B = x0 +
1

α
(xB − x0). (7)

The parameterα captures the scaling nature of this construction.
When α=∞ we have x̄B = x0. As α decreases, x̄B moves
away from x0 along the blue segment connecting x0 and xB ,
ultimately crossingxB whenα= 1. Further reducingα towards
0 moves x̄B along the orange component of the same line
until some point α ∈ (0, 1], where x̄B reaches the boundary.
We denote this point as α0.

With this definition of x̄B in Eq. (7) we construct quantile
functions, P̄−1

q1:K such that P−1
B =

∑K
k=1 x̄B [k]P̄

−1
qk

. Indeed,

P−1
B =

K∑

k=1

xB [k]P
−1
qk

=

K∑

k=1

(αx̄B [k] + (1− α)x0[k])P
−1
qk

= α
K∑

k=1

x̄B [k]P
−1
qk

+ (1− α)
K∑

k=1

x0[k]P
−1
qk

= α

K∑

k=1

x̄B [k]P
−1
qk

+ (1− α)P−1
0

P−1
0 =

K∑

k=1

x[k]P−1
qk

=

K∑

k=1

(
αx̄B [k]P

−1
qk

+ (1− α)x̄B [k]P
−1
0

)

K∑

k=1

x̄B [k] = 1

=

K∑

k=1

x̄B [k]
(
αP−1

qk
+ (1− α)P−1

0

)
=

K∑

k=1

x̄B [k]P̄
−1
qk

with for each k,

P̄−1
qk

= P−1
0 + α(P−1

qk
− P−1

0 ). (8)

Eq. (8) bears a strong resemblance to Eq. (7), except now with
reciprocal use of α. For α ∈ [α0, 1], P̄−1

qk
is a convex combi-

nation of P−1
0 and P−1

qk
lying on the line segment connecting

the two quantile functions. In this case, since the collection of
monotone functions on [0, 1] is a convex set [22], P̄−1

q1:K will
be valid quantile functions. However, for α > 1, P̄−1

qk
extends

beyond P−1
B along the line that connects P−1

0 to P−1
B . In this

case, P̄−1
qk

is no longer a convex combination of P−1
0 and P−1

B

and is not guaranteed to be a quantile function. We denote αm

as the maximum value of α such that P̄−1
qk

is a valid quantile
function.

Thus, the sets of x̄B and P̄−1
q1:K corresponding to α ∈

[α0, αm] according to Eqs. (7) and (8) describe the family
of parameters that yield the same Wasserstein barycenter as
xB and P−1

q1:K . The reciprocal appearance of α in these equa-
tions captures the inverse-scaling relationship for this family
of parameters. As shown in Fig. 3, the case where α ∈ [α0, 1]
corresponds to the orange lines where increasing the distance of
x̄B from x0 along the segment connecting xB and x0, results
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in the pure states decreasing their distances to P−1
0 each along

linear trajectories connecting the P−1
qk

to P−1
0 . Conversely, the

case where α ∈ [1, αm] corresponds to the blue lines in Fig. 3
where decreasing the distance between x̄B and x0 by moving
along the line that connects xB to x0, results in pure state
quantile functions P̄−1

qk
that are now increasing their distance

fromP−1
0 by extending linearly along the ray fromP−1

0 toP−1
qk

.
Should xB lie on a face of the K-simplex of dimension

greater than one but less than K (i.e., not a vertex), this con-
struction may be repeated by placing x0 �= xB in that same
lower dimensional simplex. In such a case, we may also place
x0 in the interior of the K dimensional simplex. More specif-
ically, with xB on a face and x0 located in the interior, it is
clear that α0 = 1 implying that the construction above holds
only if αm > 1. This is also the case in the event that xB is a
vertex for any value of x0 �= xB . With the constraint that P̄−1

q1:K
must remain valid quantile functions, it is possible to construct
an example such that αm = 1, which when combined with
the aforementioned case where α0 = 1 means that we cannot
employ this construction to show non-uniqueness. However,
as discussed in Appendix A neither can we conclude that the
barycenter is in fact unique.

This non-uniqueness and inverse-scaling relation implies that
for models (such as the DWB) that require learning both the
pure state quantile functions and the barycentric weights cor-
responding to one or a sequence of Wasserstein barycenters,
introducing constraints on one set of parameters will have an
impact on the other. We take this effect into account in Section
IV-B when constructing regularizers to impose desirable prop-
erties on the latent state sequence and pure state distributions.

B. Model Sampling

A second characteristic of learning a DWB model relates to
how we incorporate observed data into the model. Ideally, we
would directly observe the data distribution ρBt

as specified by
Eq. (6) at each point in time or generate an estimate of these
distributions from multiple realizations of a time series. Unfor-
tunately, in all the practical cases of interest to us, only a single
instance of the time series is available for processing. Thus,
we consider the problem of estimating the time-varying data
distribution ρBt

from a single time series that is sampled from
ρBt

. To do this, we consider a window of n samples centered
at t, compiled into a vector yt = [y(t−n

2 ), . . . , y(t+n
2 −1)]

T. For
convenience of notation, we assume n to be even. We estimate
the data distribution with the distribution ρyt

based on this
sample window,

ρyt
=

1

n

n∑

i=1

δyt[i]. (9)

Here, δyt[i] is the Dirac-delta measure located at yt[i]. We then
define the window approximation error (WAE) as,

ewt
=W2

2 (ρyt
, ρBt

). (10)

Since the samples that constitute ρyt
are random, the WAE is

a random quantity.

Eq. (9) is an empirical measure when the samples in the
window are drawn IID which is only possible when the barycen-
tric weights xt, and thus ρBt

, is constant in time. In this case,
as n→∞, it is known that the distribution function of ρyt

converges almost surely to the distribution function of ρBt
,

and the expected value of ewt
converges to zero [23]. The

complication in our case comes from the fact that xt is changing
with time, meaning that the samples in the window are no
longer identically distributed as the data distribution changes
from sample to sample.

This impact of a dynamically evolving distribution on the
WAE is dependent on many factors including the size of the
window n as well as properties of the system that impact the
manner in which the data distribution changes between sam-
ples. To simplify matters, we consider a simple yet informa-
tive example in Fig. 4(a) of a system with two pure states
and two latent state configurations, one where the latent state
is constant with xC

t = [0.5, 0.5]T, and one where the latent
state is dynamic, changing at a constant rate where xD

t = [(1−
tT−1), tT−1]T, for t= 0, 1, . . . , T . For two distributions ρq1:2 ,
we generate a time series by sampling independently yC or D

t ∼
B(xC or D

t , ρq1:2). Thus, in the constant state case, yCt are IID.
Let ρyt∗ be the empirically estimated distribution constructed
according to Eq. (9) at t∗ = 0.5(T + 1), the half-way point of
the transition. In both cases of xC

t and xD
t the distribution at

this time is ρBt∗ =B([0.5, 0.5]T, ρq1:2).
When the window size is small, the distributional change over

the sample window is also small. Therefore as seen in the left
side of Fig. 4(b), the dynamic case closely approximates the
constant state where the average WAE decreases with respect
to the window size [23]. When the window size is large, the
samples being included in the window are further from t∗ and
thus the distributions of these samples increasingly diverge from
ρBt∗ . Shown by the rising and expanded quantile bands on the
right side of the plot, this effect causes the average and variabil-
ity of ewt∗ to increase for large windows. The resulting U-shape
curve of the WAE highlights the window size tradeoff where the
optimal window size n0 corresponding to the minimum of this
curve balances the benefits of having more samples for robust
estimation of a distribution with the effects of using samples
farther from the point of interest.

One major factor that impacts this tradeoff is the magni-
tude of the distributional change from sample to sample. There
are a number of factors that can decrease (resp. increase) the
magnitude of this per-sample change in distribution including
(1) decreasing (increasing) the rate of change of the system’s
continuous time dynamics; (2) increasing (decreasing) the sam-
pling rate of the sensor which provides discrete measurements;
or (3) decreasing (increasing) the Wasserstein distance between
the pure state distributions which affects the total amount of
distributional change during the transition among pure states.
Continuing with the example, we demonstrate the impact of
these factors on the window size tradeoff and optimal window
size. Again, modeling the system as moving from ρq1 to ρq2
with dynamics specified by xD

t , factors (1) and (2) dictate the

2N (μ, σ2): Gaussian distribution with mean μ, and variance σ2.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on February 01,2024 at 17:41:48 UTC from IEEE Xplore.  Restrictions apply. 



CHENG et al.: NONPARAMETRIC AND REGULARIZED DYNAMICAL WASSERSTEIN BARYCENTERS FOR SEQUENTIAL OBSERVATIONS 3169

Fig. 4. Approximating a distribution with a window of samples. (a) Two simulated configurations, one where xC
t = [0.5, 0.5]T is constant, and one where

xD
t = [(1− tT−1), tT−1]T is dynamically evolving. We generate a time series yt ∼B(xC or D

t , ρq1:2 ) where ρq1 =N (0, 5), and ρq2 =N (10, 0.2) 2.
(b) We estimate the distribution data distribution ρBt∗ where t∗ = 0.5(T + 1), with a distribution ρy∗

t
comprised of a window of n samples centered at t∗

according to Eq. (9). Varying the window size n we plot the average value and the 25/75-th quantile bands of ewt∗ =W2
2 (ρyt∗ , ρBt∗) from 104 simulations.

In the constant state case where ρy∗
t

consists of n IID samples from ρB∗
t

the average error monotonically decreases. However, in the dynamic case, where the
samples in the window are independent but not identically distributed, the U-shape curve highlights the window size tradeoff where n0 indicates the optimal
window size.

Fig. 5. Impact of system dynamics and pure state distributions on WAE.
The average WAE is plotted for various configurations where solid lines
refer to ρq1 =N (0, 5), ρq2 =N (10, 0.2) and dashed lines corresponds
to a system where the Wasserstein distance between ρq1:2 is decreased,
ρq1 =N (1, 4.23)ρq2 =N (9, 0.39). In both cases, ρBt∗ =N (5, 1.8). De-
creasing the per-sample change in distribution by increasing T or decreasing
W2

2 (ρq1 , ρq2 ) (solid → dashed) results in smaller ewt∗ . The impact of these
changes on ewt∗ is greater for larger windows, which increases the optimal
window n0 corresponding to the minimum of the U-curves.

number of samples over which this transition occurs3, thus
their combined impact can be understood by varying T . To
understand the impact of (3), we simulate two different pure
state configurations varying W2

2 (ρq1 , ρq2).
The results in Fig. 5 confirm that for a given window size,

decreasing the per-sample change in distribution by increasing
T , or by decreasing W2

2 (ρq1 , ρq2) results in a decrease in the av-
erage WAE. Additionally, the increasing difference between the
U-curves in Fig. 5 as we move towards larger windows confirms
that the decreasing the per-sample change in distribution has an
increasing benefit for larger windows where the dynamics of
the system have a larger impact on the accuracy of the window
estimate. This shifts the balance of the window size tradeoff as
seen by the minimums of these U-curves moving to the right,
implying that decreasing the per-sample change in distribution
using any of the three methods mentioned increases the optimal

3The rate of change (1) may have units change in distribution per second,
and the sampling rate (2) has units samples per second. Thus (1)

(2)
will have

units change in distribution per sample.

window size. Indeed, in the limiting case where either T →∞
or W2

2 (ρq1 , ρq2)→ 0 in which case ρq1 = ρq2 = ρBt∗ , the sam-
ples will be drawn IID from a constant distribution. In this
limit, the dynamic case converges to the constant case where
the optimal window size n0 →∞ and ewt

→ 0.

IV. NON-PARAMETRIC AND REGULARIZED DYNAMICAL

WASSERSTEIN BARYCENTERS

In this section, we detail our proposed variational problem
for estimating the parameters of the univariate DWB model.
We discuss our regularization that ensures that the latent state
evolves smoothly over time while taking into account its effect
on the pure states through the inverse-scaling relationship. We
also discuss our non-parametric representation for the pure
state distributions using a discrete approximation to the pure
state quantile function. Finally, we detail how this leads to a
least-squares formulation of the variational DWB objective and
propose an algorithm for learning the parameters of the model.

A. Variational Problem for DWB Model Estimation

Training a DWB model entails estimating the pure states
distributions and latent states sequence to minimize a cost
function that encourages both fidelity to the data as well as
model parameters that conform to prior knowledge we may
have concerning the general behavior of time series.

Building on the approach discussed in Section III-B, we
create a sequence of N sample windows of length n to estimate
the distribution of the time series at select points. For our
simulations in Section V we use overlapping windows separated
by a fixed stride length. Given ti for i= 1, . . . , N as the starting
index for these sample windows, let yi = [yti , ..., yti+n]

T be the
vector of samples and ρyi

the distribution according to Eq. (9)
corresponding to this window of samples. Using the WAE in Eq.
(10) summed over i as a data fidelity term and encoding prior
information in regularizers the details of which are discussed
below, the variational problem we seek to solve is,

ρ̂q1:K , x̂1:N = argmin
ρq1:K

,x1:N
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N∑

i=1

W2
2 (ρyi

, ρBi
)

︸ ︷︷ ︸
Data Fit

+λx Rx (x1:N )︸ ︷︷ ︸
x-regularization

+λqN Rq(ρq1:K )
︸ ︷︷ ︸

q-regularization

,

(11)

where ρBi
=B(xi, ρq1:K ). Here, λx, λq ≥ 0 are regularization

weights. We multiply Rq by N so that it scales with the length
of the time series along with the other terms in the cost function.

As highlighted by the inverse-scaling relation in Section
III-A, any regularizer of either the latent state or pure state must
consider its effect on the other parameter. Motivated by applica-
tions where the system evolves gradually over time, we propose
a regularization scheme that imposes a gradually evolving latent
state while ensuring that the learned pure state distributions
accurately reflect the distribution of the data corresponding to
when the system resides in a pure state.

B. Parameter Regularization for DWB

As seen in our windowing simulations in Section III-B, even
in a simple case, estimating a dynamically evolving distribu-
tion with a window of samples is a challenging problem. The
ambiguities identified in our experiments in Section III-B may
cause the learned latent state to vary greatly even if the system is
constant or gradually evolving. Therefore, to limit its variability,
we propose a regularizer that penalizes the sum of the squared
distances, d2(xi,xi+1), between successive latent states for a
suitable distance d on the simplex [16]. While several choices
are possible, for the purpose of this work, we choose the
Bhattacharrya-arccos distance [17], one that is bounded and
differentiable. We discuss alternative distances in Appendix B.
Thus, this regularizer penalizes the total length of the latent state
trajectory on the simplex according to

Rx(x1:N ) =

N−1∑

i=1

d2(xi,xi+1)

=

N−1∑

i=1

(
arccos

(
K∑

k=1

√
xi[k]xi+1[k]

))
. (12)

With the above choice for regularizing the latent state sequence,
our choice for regularization of the pure state distributions is
motivated by Eq. (7) and the inverse-scaling nature of barycen-
tric non-uniqueness. Considering our non-uniqueness construc-
tion in Eq. (7), if we set the reference point to be the current
value of the latent state x0 = xt, and constructed point as the
next state x̄B = xt+1, Eq. (7) takes the form xt+1 = xt +

1
αdt

where dt is a vector in the simplex along which we move
the latent state. Since dt is essentially arbitrary, taking α > 1
will encourage small changes in xt as required by Eq. (12).
Referring to Fig. 3, we see that in this α > 1 regime, barycen-
tric non-uniqueness manifests in the divergence of the quantile
functions; i.e., motion along the blue line segments. That this in
fact can occur is verified in our experiments in Section V.A.1.
Now, for time series that reside in each pure state at some
period in time, the observed data during those periods will be
representative of each of the pure state distributions. Therefore,

having estimated pure state distributions diverge is undesirable
if we want to accurately learn these quantities. To counteract
this diverging behavior, we propose a regularizer in the space
of quantile functions that penalizes the sum of squared Wasser-
stein distances of the pure state quantile functions P−1

qk
from

a reference quantile function P−1
0 . Here, we choose P−1

0 be
the quantile function of ρ0 =B(x0, ρq1:K ) where x0 =

1
K1K

(with 1K the length K vector of all ones):

Rq(ρq1:K ) =
∑

k=1:K

W2
2

(
ρqk , B

(
1

K
1K , ρq1:K

))

=
∑

k=1:K

∫ 1

0

⎛

⎝P−1
qk

(ξ)− 1

K

∑

j=1:K

P−1
qj (ξ)

⎞

⎠
2

dξ,

(13)

The two regularizers just discussed are designed to work in
tandem. Here, Rx ensures that the latent state evolves gradually
over the simplex while Rq ensures that the pure state quantile
functions do not diverge in the ways predicted by the inverse-
scaling analysis in Section III-A. Through our simulations in
Section V-A, we demonstrate how by appropriately balancing
the regularization weights one can reliably estimate the DWM
model parameters.

C. Discrete Quantile Approximation

As estimation of the infinite dimensional quantile functions
P−1
q1:K in (11) requires a finite dimensional approximation we

introduce the following two quantities:
Definition 1: [n-DQA] Given a quantile function P−1 :

[0, 1]→ R, the n-point discrete quantile approximation (n-

DQA) is a monotone step function P−1
n (ξ) = P−1

(
�ξn�−0.5

n

)

that is obtained by sampling the {0.5
n , 1.5

n , ..., n−0.5
n }-th quan-

tiles of P−1.
Definition 2: [n-DQV] The n-point discrete quantile vector

(n-DQV) q ∈ R
n is comprised of the sampled quantiles from

an n-point DQA: q[j] = P−1
(
j−0.5

n

)
, j = 1, 2, · · · , n.

The first two plots in the top row of Fig. 6 illustrate
these definitions. For a univariate distribution, the n-DQA
approximates the quantile function with a monotone step func-
tion whose constant values are sampled from the quantile
function on a uniform interval. Since the quantile function is
monotone, these sampled quantiles and consequently the n-
DQV is sorted in ascending order.

With this, we approximate the quantile functions of the pure
state distributions P−1

q1:K with their respective n-DQA P−1
n,q1:K ,

parameterizing them according to their n-DQV, which are de-
noted as q1:K . Learning these n-DQVs amounts to estimating
the { 0.5

n , 1.5
n , . . . , n−0.5

n }-quantiles of each pure state distribu-
tion. We also use this discrete quantile approach to estimate the
quantile functions of the model Wasserstein barycenter ρBi

=
B(xi, ρq1:K ). From Eq. (5) we see that the ξ-th quantile of the
Wasserstein barycenter is a weighted combination of the ξ-th
quantiles of ρq1:K , with barycentric weight xi. Since the q1:K
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Fig. 6. Discrete quantile representation for pure states, Wasserstein barycen-
ter, and empirical distribution function. (a) PDF of ρ1, ρ2. (b) Re-
spective quantile function and n-DQA where n= 5 with corresponding
n-DQV q1:2. (c) Quantile function of the Wasserstein barycenter ρBt∗ =

B([0.5, 0.5]T, ρ1:2) and its n-DQV, bt∗ , a weighted average of q1 and
q2. (d) Distribution according to Eq. (9) corresponding to sample window
with n= 5 points. (e) Corresponding empirical quantile function P−1

y

where y′ is the sorted vector of samples. (f) Since ρBt∗ and P−1
y

are monotone step functions sharing the same set of discontinuities, from
Eq. (3) W2

2 (ρy , ρn,B) = 1
n
‖y′ − b0.5‖22.

samples the quantile function of each pure state distribution at
the same quantile values, the n-DQV of ρBi

is

bi =
K∑

k=1

xi[k]qk. (14)

We denote corresponding n-DQA as P−1
n,Bi

and the correspond-
ing distribution as ρn,Bi

.
Using this n-DQV representation, by intentionally choosing

n, the discretization level for the n-DQV, to be equal to the
size of the sample window, we are able to pose a least-squares
cost that approximates the data fit term in Eq. (11). To see
this, we start by noting that all n-DQAs including P−1

n,qk
, P−1

n,Bi

are monotone step functions on [0, 1] with discontinuities at
{ 1
n ,

2
n , ...,

n−1
n }. Additionally, shown in the bottom row of

Fig. 6, the distributions ρyi
corresponding to sample windows

yi are discrete distributions comprised of Dirac-delta measures
supported on a set of n points with uniform weights (Eq. (9)).
By setting this window size n to be the same as the level of dis-
cretization used for the n-DQAs that approximate the pure state
quantile functions, the quantile functions P−1

yi
corresponding to

ρyi
will have the same monotone piecewise constant structure

with the same set of discontinuities as the n-DQA (bottom right
of Fig. 6). With y′

i being the vector obtained by sorting the
elements of yi in increasing order, the Wasserstein distance
between the ρyi

and ρn,Bi
is simply

W2
2 (ρyi

, ρn,Bi
) =

1

n
‖y′

i − bi‖22, (15)

where n is the size of the sample window corresponding to ρyi

and hence the length of y′
i, as well as the level of discretization

used for the n-DQA of the pure state distributions, and hence
the length of bi.

D. Model Estimation and Algorithm

Using this discrete quantile parameterization for the pure
state distributions allows us to pose an approximation to
the variational objective function in Eq. (11) for the DWB
model as a constrained nonlinear least squares problem. Let
Q= [q1, ...,qK ] ∈ R

n×K denote the matrix whose columns
correspond to the n-DQV of each of the pure states, Y =
[y′

1, ...,y
′
N ] ∈ R

n×N the matrix whose columns correspond the
sorted sample windows from the observed time series and X =
[x1, ...,xN ] ∈ R

K×N the matrix whose columns correspond
to the latent state vectors across time. Pulling together the
regularizers discussed in Section IV-B, we pose the following
constrained optimization problem,

Q̂, X̂ = argmin
Q,X

F (Q,X)

= argmin
Q,X

1

n
‖Y −QX‖2F

︸ ︷︷ ︸
Data fit

+λx

N−1∑

i=1

d2(X[:, i+ 1],X[:, i])

︸ ︷︷ ︸
Eq. (12)

+ λq
N

n

∥∥∥∥Q
(
I− 1

K
�K�

T
K

)∥∥∥∥
2

F︸ ︷︷ ︸
Eq. (13)

(16)

subject to:

Q[j + 1, k]−Q[j, k]≥ 0,
k = 1, . . . ,K,
j = 1, . . . , (n− 1)

(17)

K∑

k=1

X[k, i] = 1 i= 1 :N (18)

X[k, i]≥ 0
k = 1, . . . ,K
i = 1, . . . , N

(19)

As detailed in Algorithm 1, we minimize Eq. (16) using a
block coordinate descent approach with two blocks, alternating
between optimizing for Q and X while holding the other fixed.
For both constrained optimization problems, we utilize the se-
quential least squares programming (SLSQP) optimizer [24]
with python’s scipy library [25].

The learned parameters of Q̂ and X̂ both have closed, non-
empty, and convex constraints given by Eqs. (17)–(19). The n-
DQV, and thus the columns of Q must be sorted in ascending
order (Eq. (17)). The barycentric weights, and thus the columns
of X , are constrained to the set of positive matrices with rows
that sum to one (Eqs. (18) and (19)). Thus, by [26], every
limit point of an alternating block coordinate descent approach
with two blocks is guaranteed to be a critical point. We show
empirical convergence of this algorithm to a limit point in
Fig. 10.

Regarding the initialization of the parameters Q̂ and X̂ , we
initialize the pure state distributions based on clustering the
observation sample windows. Starting in line 14 in Algorithm 1,
we compute the similarity graph using the exponential of the
negative square Wasserstein distance between the distributions
estimated from any two sample windows and use spectral clus-
tering from Python’s sklearn [27] to learn K clusters. De-
noting Ck as the index set of sample windows that belong to
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Algorithm 1: Non-parametric and Regularized DWB

1 Input:
2 y1, ..., yt, ..., yT : Univariate time series
3 t1, ..., ti, ..., tN : Starting indices for sample windows
4 K: Number of pure states

5 Hyperparameters:
6 n: Sample window size η: Convergence threshold
7 λx, λq: Regularization weights to define F (Eq. (16))

8 Output:
9 Q̂ ∈ R

n×K : Stacked pure state DQVs
10 X̂ ∈ R

K×N Stacked barycentric weights

11 for i= 1 :N do
12 y′

i = sort(yti , ..., yti+n) ; // sorted windows
13 end
14 for i= 1 :N do // Window affinity matrix
15 for j = 1 :N do
16 A[i, j] = 1

n‖y′
i − y′

j‖22
17 end
18 end
19 c1:N = SpectralClustering(K, exp(−A)) ;

// Cluster sample windows
20 for k = 1, ...,K do
21 Ck = {i : ci = k}
22 qk = 1

|Ck|
∑

i∈Ck
y′
i ; // Init. n-DQV

23 end
24 Y = [y′

1, ...,y
′
N ] ; // Stacked windows

25 X̂
(0)

= 1
K�K�

T
N ; // Initialize X

26 Q̂(0) = [q1, ...,qK ] ; // Stacked n-DQVs
27 do

28 X̂
(i+1)

= argminX F
(
Q= Q̂(i),X = X̂

(i)
)

;

// SLSQP

29 Q̂(i+1) = argminQ F
(
Q= Q̂(i),X = X̂

(i+1)
)

;

// SLSQP

30 while F
(
Q̂(i), X̂

(i)
)
− F

(
Q̂(i+1), X̂

(i+1)
)
> η;

cluster k, in line 22 we initialize the n-DQV of each pure
state to be, qk = 1

|Ck|
∑

i∈Ck
y′
i. We initialize the latent state

X̂[t, k] = 1
K ∀i= 1, . . . , N, k = 1, . . . ,K, to be at the centroid

of the simplex for all points in time.

V. MODEL EVALUATION

Analyzing simulated and real world human activity data
where the system gradually evolves among its pure states, we
empirically demonstrate (1) how the proposed regularizers al-
low the DWB model to accurately recover the system parame-
ters taking into account the inverse-scaling relationship between
the model parameters, (2) the impact of the window size on the
accuracy of estimating the system parameters of a dynamically
evolving time series, and (3) how our non-parametric formula-
tion of the DWB problem is able to accurately learn the pure
state distributions.

Fig. 7. Simulated pure state distributions and latent state process. (a) PDF,
(b) CDF, and (c) quantile function for the pure state distributions used in
the simulated experiments. (d) Simulated latent state trajectory as the system
transitions among its three pure states.

A. Simulated Experiments

Our approach proposes regularizers to the DWB model with
the assumption that the latent state of the system transitions
gradually among its pure states. Here, we consider a simulated
system whose parameters reflect these properties, denoting the
ground truth pure state distributions and latent states as ρq1:K ,
x1:T and the model estimated parameters as ρ̂q1:K , x̂1:T .

Consider a system that consists of K = 3 pure states with
ground truth distributions,

ρq1 = 0.5N (3, 0.25) + 0.25N (−3, 0.25)

ρq2 = U [−4, 4]

ρq3 =
1

5

5∑

i=1

N
(
q[i], 1e−8

)

q= [−2.88,−0.74,−0.64,−0.41, 1.82] . (20)

Here, U [a, b] denotes a uniform distribution on the interval
[a, b]. We show the PDF in Fig. 7(a), CDF in Fig. 7(b), and
quantile functions in Fig. 7(c) for each of these distributions

Now let us consider a time series that transitions among these
three pure states following the trajectory outlined in Fig. 7(d).
The continuous-time latent state xτ alternates between pausing
at each pure state for 1 second, and then transitioning to another
pure state for 2 seconds moving from ρ1 . . . ρ2 . . . ρ3 . . . ρ1 over
the course of continuous time τ = [0, 9] seconds. To emulate
the simulated setup in Section III-B of varying the per-sample
change in distribution, we vary r (Hz), the rate at which we
sample this continuous-time sequence to generate the ground
truth latent state xt for t= 1, . . . , T . Time series are inde-
pendently sampled yt ∼ ρBt

=B(xt, ρq1:3) by uniformly sam-
pling a quantile ξ ∈ [0, 1] and evaluating the quantile function
P−1
Bt

(ξ) =
∑3

k=1 xt[k]P
−1
qk

(ξ).
From this time series, we generate a sequence of sample

windows using sliding window [28], spacing out the windows
on a constant interval, ti+1 = ti + δ. For these experiments,
we choose to set δ = n, which partitions the time series into
a sequence of N = 
T

n � disjoint windows of size n.
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Fig. 8. Impact of regularization and the inverse-scaling relationship. (a) Without regularization, though the ground truth latent state evolves gradually, the
learned latent state varies over the simplex. (b) Introducing just the latent state regularizer (blue) imposes some level of smoothness to the latent state, but
consequently results in the pure state quantile functions diverging from their ground truth values. Conversely, including just the pure state regularizer (orange)
causes the pure state quantile functions to move closer together and the latent states to move towards the boundary of the simplex. (c) Using regularization
weights that minimize ex + eq balance the effects of these two regularizers to accurately recover the gradually evolving latent state sequence and the pure
states quantile functions of the time series. Plots are shown for r = 200, n= 100.

With knowledge of ground truth, we can assess our model
using the average distance of our learned parameters to these
ground truth values according to,

eq =
1

K

K∑

k=1

W2
2 (ρqk , ρ̂qk) ex =

1

N

N∑

t=1

‖xt − x̂t‖22. (21)

Since our model is unsupervised, there is no guarantee that the
indexing of the learned pure states will match that of the ground
truth. Therefore, when assessing our model, we assume that
learned pure states (and subsequently the latent state vector)
are reordered in a manner that minimizes Eq. (21).

1) Regularization and Inverse-Scaling: We demonstrate
the inverse scaling relationship between the model parameters
through the interaction between the latent state and pure state
regularizers. As discussed in Section III-B, the difficulty in
accurately estimating the model parameters stems from the
problem of estimating dynamically evolving data distribution
with a window of finite length. In Fig. 8, we see that in the
absence of any regularization, the learned latent state can vary
over the simplex, even when the ground truth latent state is
stationary or gradually evolving. The blue lines of Fig. 8(b)
show that introducing only the latent state regularizer that pe-
nalizes d2(xt,xt+1) imposes some level of smoothness on
the latent state. However, as discussed in Section IV-B this
regularizer has an additional effect that is similar to the α > 1
regime corresponding to the blue lines in Fig. 3 where the latent
states trajectory contracts towards a point on the simplex. In
this case, as specified by the inverse-scaling relationship, seen
from the blue quantile plots in Fig. 8(b), the pure state quantile
functions diverge from the ground truth values. On the other
hand, as seen in orange lines of Fig. 8(b), having only the pure
state regularizer causes the pure state quantile functions to be
pulled closer together where by the inverse-scaling relationship,
the latent states move away from the centroid of the simplex
towards the boundary.

Only through the combination of these regularization
terms can we recover the ground truth parameters of
this simulated system that gradually evolves among its
pure states. Using our knowledge of ground truth we
perform a grid search by varying the regularization weights
λx, λq = {1e−4, 2e−4, 5e−4, 1e−3, ..., 1e−1} and picking the

pair that minimizes the total ground truth error ex + eq . As
seen from Fig. 8(c), the DWB model corresponding to these
optimal regularization weights more accurately recover the
ground truth parameters of this simulated system. In Section
V-B, we perform parameter selection in the absence of ground
truth using L-surfaces [29].

2) Impact of Window Size: In Section III-B, we highlighted
the effect of window size and the rate of change in the data
distribution on the accuracy of estimating a dynamically evolv-
ing distribution using a window of samples. Here, we seek
to understand how these factors impact the accuracy of the
learned DWB parameters. Using the aforementioned setup in
Section V-A, we simulate two systems with different sampling
rates r ∈ {150, 200}Hz, generating 500 time series per value
of r. We then run our DWB model varying the window size
between n= 50, 100, ..., 400, 410, ..., 500. We find the optimal
regularization weights by performing a grid search over the
range of values as Section V.A.1. For each value of n and r,
we set λx, λq to be the average of the results of this grid search
performed for 5 randomly selected time series.

In this experiment, we remove potential confounding vari-
ables across the various window sizes. First, we use the same
initialization for the pure states distributions, specifically the
one generated from the spectral clustering method discussed in
Section IV-D for the configuration of n= 200. Secondly, we
ensure that the sequence of sample windows estimates the time
series at the same points in time, such that regardless of r, n the
windows are centered at τ = [1.5, 2.0, ..., 7.5].

The results shown in Fig. 9 imply that the factors discussed
in Section III-B that impact the ability of a sample window
to accurately estimate a dynamically evolving data distribution
similarly affect the ability of the DWB model to accurately learn
a system’s pure states and latent states from these estimated
windows. The U-shape curves in Fig. 9 of the average ground
truth error as a function of window size bear strong similarities
to the U-shape curves illustrating the window size tradeoff
in Fig. 5 where small windows lack the samples to precisely
estimate the data distribution and the accuracy of large windows
suffer due to the dynamics of the systems. Furthermore, we see
the same trend as in Section III-B where decreasing the per-
sample change in distribution, shown here by increasing the
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Fig. 9. Impact of window size on simulated model accuracy. Ground truth
error averaged over 500 generated time series as a function of window size n
for sampling rates of r = 150, 200 Hz. The U-shape plots imply that the
factors that impact the ability of small and large windows to estimate a
dynamically evolving data distribution similarly impact the ground truth error
of the learned DWB model parameters. Additionally, increasing the sampling
rate r of the time series, which results in a smaller per-sample change in the
data distribution, similarly improves the model accuracy for larger windows
and shifts the minimum of the U-curve towards larger windows. The minimum
error (solid dots) for r = 150 was achieved with a window size of n= 300,
while for r = 200 the minimum window size was achieved at n= 400.

Fig. 10. Convergence of simulated experiments: Plot of the objective
function shows convergence to a limit point. Shown for simulated data with
n= 400, 410, ..., 500 and r = 150, 200.

sampling rate r, improves the accuracy for models with larger
windows shifting this window size tradeoff and the “optimal”
window size towards larger windows.

3) Convergence: Convergence of the optimization process
to a limit point is shown in Fig. 10 for various configurations
of the simulated data defined in Section V-A.

B. Real World Data

In this section, we compare the performance of the non-
parametric DWB model to the Gaussian DWB model [1] on
univariate data. To highlight the difference between the Gaus-
sian and non-parametric discrete quantile parameterizations, we
use the regularization framework proposed in this paper for both
models. We evaluate using our simulated data and two human
activity datasets.

1) Beep Test (BT, proprietary): Subjects run between two
points to a metronome with increasing frequency, alter-
nating between two states: running and standing. We use
the vertical component (z-axis) of the 3-axis accelerom-
eter, which is the dimension in which the distributions of
the two pure states are best differentiated. The sensor is
sampled at 100 Hz.

Fig. 11. L-surface for selection of regularization weights. L-surface for
MSR time series for (left) non-parametric and (right) Gaussian DWB models
varying λx, λq from [1e−5, 1]. Each figure plots the magnitude of the data
loss against the magnitude of the two regularization parameters on a log scale.
Selecting the regularization weight according to L-surfaces amounts finding
the λx, λq corresponding to the ”corner“ of the surface plot, the point where
further increasing λx, λq (which corresponds to moving toward the back
corner of the plot, decreasing 1

K
Rq(ρq1:K ) and 1

N
Rx(x1:T )) results in

a sharp increase in the magnitude of the data loss.

2) Microsoft Research Human Activity (MSR, [30]): 126
subjects perform exercises in a gym setting. Exercises
vary among subjects covering strength, cardio, cross-fit,
and static exercises. Each time series is truncated to five
minutes. Discrete labels corresponding to activities are
provided, thus we set K to the number of labeled discrete
states in the truncated time series (range: K = 2 to 7). We
use the x-axis of the 3-axis accelerometer sampled at 50
Hz.

3) Simulated Data (Sim): Following the data generating
process outlined in Section V-A, we simulate 500 time
series setting r = 200.

Evaluation: Since ground truth is not known in the real
world setting, we assess performance by considering the
model fit to the data, computed using the data-fit term in
Eq. (11),

ey =
1

N

N∑

t=1

W2
2 (ρyt

, ρBt
) (22)

In the non-parametric model, this distance is computed ac-
cording to Eq. (15). In the Gaussian DWB model where ρBt

is Gaussian, this distance is computed using a Monte-Carlo
method using 1e5 IID samples from ρBt

.
To select regularization weights when ground truth is not

available, we draw from the field of inverse problems and use
L-surfaces [29]. Fig. 11 shows the L-surface for one MSR
dataset plotting ey against the magnitude of the Rx and Rq

on a log scale while varying λx, λq ranging from 1e−5 to 1.
For each model configuration and dataset, we use this L-surface
method to pick a set of regularization parameters based on one
representative time series and apply those parameters to the rest
of the dataset. These parameters are detailed in Table I.

Fig. 12 compares the learned pure states of the Gaussian
DWB and non-parametric DWB for one example MSR time
series. As seen from Fig. 12(b), the distributions of the data
corresponding to many of the activities are clearly multi-modal
and therefore not Gaussian. Compared to the Gaussian DWB
approach shown in Fig. 12(c), the pure states learned using
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Fig. 12. Non-parametric vs Gaussian pure states distributions for MSR data. (a) MSR time series consisting of 4 activities over 5 minutes. (b) Pure state
distributions estimated from discrete labeled data converted to a PDF using KDE with a Gaussian kernel (σ = 0.04). (c) Learned pure states for Gaussian
model from [1]. (d) Learned pure states for our proposed non-parametric model. The n-DQV qk for each pure state is converted to a PDF using KDE with
the same Gaussian kernel centered on the values of qk . The distribution of the data in each pure state activity (blue: elliptical, yellow: tricep extension, purple:
bicep curl, red: non-exercise) is better captured using the non-parametric approach ey = 0.73 compared to the Gaussian ey = 3.74.

TABLE I
DWB MODEL CONFIGURATION. WINDOW SIZE AND

REGULARIZATION WEIGHTS FOR NON-PARAMETRIC (NP) AND

GAUSSIAN (GAUSS) DWB MODELS FOR SIMULATED (SIM) AND

REAL WORLD (BT, MSR) DATASETS

MSR BT Sim
n 250 100 100

NP λx, λq 5e−2, 5e−3 2e−1, 5e−2 2e−11e−2

Gauss λx, λq 5e−2, 2e−3 2e−1, 2e−2 1e−12e−3

TABLE II
QUANTITATIVE COMPARISON OF DWB MODEL.

AVERAGE ey ACROSS ALL TIME SERIES FOR

SIMULATED (SIM) AND REAL WORLD (BT, MSR)
DATASETS SHOW CLEAR BENEFITS OF THE

NON-PARAMETRIC DWB MODEL COMPARED TO

THE GAUSSIAN DATA-GENERATING DISTRIBUTION

MODEL USED BY [1]

MSR BT Sim
NP 1.32 2.07 2.19

Gauss 3.76 6.00 12.33

the proposed non-parametric representation shown in Fig. 12(d)
more closely match the estimated pure states from the data. This
is also reflected quantitatively in Table II where the values of ey
show that our non-parametric DWB model better approximates
the sample windows of the time series compared to the Gaussian
DWB model for each of the evaluated datasets.

We note that the magnitude of the ey , and thus the results
in Table II are dependent on the choice of the regularization
parameters, which are chosen in a partially subjective manner.
However, we can see in the L-surfaces in Fig. 11 that compared
to the Gaussian model the error is significantly lower in the non-
parametric model. Therefore any small subjective changes in
the choice of regularization parameter would not significantly
alter these conclusions.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we build upon the DWB model in [1]. We
present and discuss the inverse scaling relationship which

captures the lack of uniqueness in the DWB model. We also
consider the challenges of estimating the data distribution of
a dynamically evolving time series. We then propose a tem-
poral smoothness regularization framework to simultaneously
address both of these challenges. Finally, we move beyond the
Gaussian assumption of [1] by using a discrete approximation
to the pure state quantile function which results in a least-
square “data-fit” term in the DWB objective function. Using
simulated data, we demonstrate how the two proposed regu-
larization terms work together to achieve the desired smooth-
ness in the time evolution of the latent state as well as the
impact of window size on the accuracy of the learned model.
In the real world setting of human activity analysis, we demon-
strate how compared to the original Gaussian DWB model our
non-parametric DWB model better characterizes the time-
varying data distribution of the time series.

An important future work is to extend the univariate frame-
work to the general non-parametric multivariate setting. Lack of
closed form expressions for barycenters in the non-parametric
multivariate setting as well as the “curse of dimensionality”
in approximating a high-dimensional distribution from samples
[31] makes this extension numerically and statistically chal-
lenging. However, fast algorithms for computing Wasserstein
barycenters [32] can be effectively utilized for low dimensional
problems.

Furthermore, in this work we only consider the Wasser-
stein barycenter to model the change in distribution as a sys-
tem moves among pure states. An interesting topic for future
research is to consider barycenters corresponding to alterna-
tive probability distribution distances such as the Sinkhorn
divergence [33].

Our choice to approximate the quantile function of ρqk by
sampling on a uniform interval combined with the use of a
Dirac-delta functions to estimate ρyi

from windows of samples
lead to the finite dimensional least-squares data fit term in Eq.
(16). Future work can consider alternative methods of estimat-
ing distributions from samples (e.g. kernel-density estimation
[34]) and quantile approximation methods (e.g. linear or spline
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Fig. 13. Non-uniqueness of Wasserstein barycenter parameters for multi-
variate Gaussians. Both systems of pure state distributions and barycentric
weights result in the same barycenters, ρA =B(xA, ρq1:2 ) =B(x̄A, ρ̄q1:2 )
and ρB =B(xB , ρq1:2 ) =B(x̄B , ρ̄q1:2 ). Consistent with the inverse-
scaling relationship discussed in Section III-A, compared to system 1, in
system 2 the Wasserstein distance between ρ̄q1 and ρ̄q2 is diminished while
the distance between x̄A and x̄B is increased.

decomposition [35]) to derive alternative forms of this univari-
ate DWB problem.

We empirically show the monotonic convergence of the two-
block cyclic descent method used in the paper. The theory in
[26] indicates that we are converging to a critical point of the
cost function. In future work, we can seek stronger guarantees
of converging to a second-order stationary point using a prox-
imal point block coordinate descent algorithm [36].

Finally, in this work, we also explore the issue of approx-
imating the data distribution of a dynamically evolving sys-
tem from a window of independent, non-identically distributed
random variables. We demonstrate the tradeoff between the
errors associated with large and small windows using simulated
data to illustrate the effects of system parameters that drive the
per-sample change in the distribution on the accuracy of this
window estimate. Future work may consider an analytical
approach to this problem using the relationship between
quantiles and order statistics [37], [38] and by bounding
the maximum change in distribution over the length of the
window.

APPENDIX A
EXTENSIONS OF DWB NON-UNIQUENESS

While the discussion of this paper pertains mainly to the
univariate case, the issue of uniqueness discussed in Section
III also exists in the multivariate case. Consider the two di-
mensional systems specified in Fig. 13 of systems with two
Gaussian pure states. For both systems, ρA =B(xA, ρq1:2) =
B(x̄A, ρ̄q1:2) and ρB =B(xB , ρq1:2) =B(x̄B , ρ̄q1:2).

This multivariate example also exhibits the inverse scaling re-
lationship discussed in Section III-A. The Wasserstein distance
between the pure states in system 1 (ρq1 , ρq2 ) is larger than that
of system 2 (ρ̄q1 , ρ̄q2 ), however, the resulting distance between
the latent states corresponding to ρA, ρB in system 1 (xA,xB)
is smaller than that of system 2 (x̄A, x̄B).

Furthermore, we can create an example where the construc-
tion specified in Section III-A does not result in multiple pos-
sible values of xB and P−1

q1:K and thus cannot be used to
demonstrate the non-uniqueness of the Wasserstein barycenter
parameters.

Fig. 14. Comparison of alternative simplex distances: (left) Example of
the distance profiles for various simplex distances given by d2(x0,x)
where x0 = [0.5, 0.25, 0.25]T and x ∈ [0.5, 0, 0.5]T, [0.5, 0.5, 0]T. The
Bhattacharya-arccos and city-block distances are plotted against the left axis
while the Aitchison, which diverges at the simplex boundary, is plotted against
the right axis. (Center and right) The learned simplex trajectory using the
city-block and Aitchison distance in the regularizer (Eq. (12)) using the same
data shown in Fig. 8 which uses the Bhattacharya-arcos distance. λx, λq are
selected via grid search using the parameters specified in Section V-A and
r = 200, n= 100.

Let ρq1 = δ0 and ρq2 = U [0, 1], where P−1
q1 (ξ) = 0 and

P−1
q2 (ξ) = ξ for ξ ∈ [0, 1]. Then the Wasserstein barycenter

ρt =B(xt, ρ1:2) for any barycentric weight xt = [(1− t), t]T

will have distribution U [0, t] and quantile function P−1
t (ξ) =

tξ. Per the construction in Section III-A, let us pick xB = [1, 0]
to be at a vertex, thus P−1

B (ξ) = 0 and let x0 = [0.5, 0.5]T,
thus in P−1

0 (ξ) = 0.5ξ. According to Eq. (7), x̄B falls of the
simplex for any α < 1 thus making α0 = 1. Similarly, according
to Eq. (8), P̄−1

B (ξ) = (1− α)tξ, which breaks the monotoni-
cally increasing constraint of quantile functions for any α > 1,
thus restricting αm = 1. Thus, according to the construction in
Section III-A, the set [α0, αm] = 1.

Although this example breaks the argument of the non-
uniqueness of the Wasserstein barycenter parameters for this
specific construction used to highlight the inverse-scaling rela-
tionship, it does not mean that the parameters of the Wasserstein
barycenter are indeed unique. For example, since xB is taken to
be at a vertex [1, 0]T resulting in ρB = ρq1 , any valid distribu-
tion can be chosen for ρq2 and still have ρB =B([1, 0]T, ρq1:2).

APPENDIX B
ALTERNATIVE SIMPLEX DISTANCES

In this work, the Bhattacharya-arccos distance was used as a
regularizer on the latent state. However, a variety of simplex dis-
tances can be used [16], the choice of which may be application
dependent. We compare the Bhattacharya-arccos, city-block4,
and Aitchison distance in Fig. 14. The Aitchison distance di-
verges as one of the points moves towards the simplex boundary
(x has one or more zeros). As a result, when using this distance
as the regularizer in our DWB model, the learned simplex
trajectory will also avoid edges of the simplex. This is not the
case for the city-block or Bhattacharya-arccos distance which
is finite for any two points on the simplex. In our simulated and
real world experiments, we did not find significant differences
in the ground truth error among these three simplex distances.
We leave further investigation of these distance properties and
their effect as regularizers to future work.

4We approximate |x| ≈
√
x2 + ε with ε= 1e− 8
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