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Abstract

The problem of testing monotonicity for Boolean functions on the hypergrid, f : [n]® — {0,1}
is a classic topic in property testing. When n = 2, the domain is the hypercube. For the hypercube
case, a breakthrough result of Khot-Minzer-Safra (FOCS 2015) gave a non-adaptive, one-sided tester
making O(e~2v/d) queries. Up to polylog d and ¢ factors, this bound matches the Q(+/d)-query non-
adaptive lower bound (Chen-De-Servedio-Tan (STOC 2015), Chen-Waingarten-Xie (STOC 2017)). For
any n > 2, the optimal non-adaptive complexity was unknown. A previous result of the authors achieves
a O(d®/%)-query upper bound (SODA 2020), quite far from the v/d bound for the hypercube.

In this paper, we resolve the non-adaptive complexity of monotonicity testing for all constant n, up
to poly(e~*log d) factors. Specifically, we give a non-adaptive, one-sided monotonicity tester making
9] (a_Qn\/a) queries. From a technical standpoint, we prove new directed isoperimetric theorems over
the hypergrid [n]?. These results generalize the celebrated directed Talagrand inequalities that were only
known for the hypercube.
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1 Introduction

Monotonicity testing, especially over hypergrid domains, is one of the most well studied problems in prop-
erty testing. We use [n] to denote the set {1,2,...,n}. The set [n]? is the d-dimensional hypergrid where
x € [n]?is a d-dimensional vector with x; € [n]. The hypergrid is equipped with the natural partial order
x < yiff x; < y; foralli € [d]. Note that when n = 2, the hypergrid [n]? is isomorphic to the hypercube
{0,1}4.

Let f : [n]¢ — {0,1} be a Boolean function defined on the hypergrid. The function f is monotone if
f(x) < f(y) whenever x < y. The Hamming distance between two Boolean functions f and g, denoted
as A(f,g), is the fraction of points where they differ. The distance to monotonicity of a function f :
[n]? — {0,1} is defined as ¢ £ := Ming monotone A(f, g). The Boolean monotonicity testing problem on the
hypergrid takes parameter ¢ and oracle access to f : [n]? — {0, 1}. The objective is to design a randomized
algorithm, called the tester, that accepts a monotone function with probability > 2/3 and rejects a function f
with e; > ¢ with probability > 2/3. A tester is one-sided if it accepts a monotone function with probability
1. A tester is non-adaptive if all its queries are made in one round before seeing any responses.

There has been a rich history of results on monotonicity testing over hypergrids, with a significant focus
on hypercubes [GGLT00, DGL™99, CS13, CS14a, BRY14a, CST14, CDJS15, CDST15, KMS15, BB16,
BCS18, CWX17, BCS20, BKR20, HY?22]. We discuss the history more in Section 1.4, but for now, we give
the state of the art. For hypercubes, after a long line of work, the breakthrough result [KMS15] of Khot,
Minzer, and Safra gave an 55(\/3)—query non-adaptive, one-sided tester. This result is tight due to a nearly
matching O(v/d) query-lower bound for non-adaptive testers due to Chen, Waingarten, and Xie [CWXI17].
For general hypergrids, the best upper bound is the Og(d5/ 6)-query tester of the authors [BCS18, BCS20].

This Q(v/d) vs O(d®/®) gap for non-adaptive testers is a tantalizing and important open question in
property testing. Even for the domain [3]¢, the optimal non-adaptive monotonicity testing bound is unknown.
One of the main questions driving our work is:

Are there 55(\/;1)-query monotonicity testers for domains beyond the hypercube?

Directed isoperimetric theorems. The initial seminal work on monotonicity testing, by Goldreich, Gold-
wasser, Lehman, Ron, and Samorodnitsky [GGL00] alld Dodis, Goldreich, Lehman, Ron, Raskhodnikova
and Samorodnitsky [DGL™99] prove the existence of O.(d)-query testers. For almost a decade, it was not
clear whether o(d)-query testers were possible. In [CS14a], the last two authors gave the first such tester
via an exciting connection with robust directed isoperimetric theorems. Indeed, all o(d)-query testers are
achieved through such theorems.

Think of a Boolean function f as the indicator for a subset of the domain. The variance of f, var(f),
is a measure of the volume of the indicated subset. An isoperimetric theorem for a Boolean function relates
the variance of f to the “boundary” of the function which correspond to the sensitive edges or/and their
endpoints. The deep insight of these theorems comes from sophisticated ways of measuring boundary size,
involving both the vertex and edge boundary. A directed isoperimetric theorem is an analog where we only
measure “up-boundary” formed by monotonicity violations. Rather surprisingly, in the directed case, one
can replace the variance as a measure of volume by the distance to monotonicity.

In Table 1, we list some classic isoperimetric results and their directed analogues for the hypercube. For
a point x, I¢(x) is the number of sensitive edges incident to x. We use I to denote Ex[/¢(x)], the total
influence of f, which the number of sensitive edges in f divided by the domain size 2¢. The quantity T ¥
is the vertex boundary size divided by 27. The directed analogues of these, I Ix T £ 1 7 (x), only consider
sensitive edges that violate monotonicity.



Undirected Isoperimetry Directed Isoperimetry
Iy > Q(var(f))  (Poincaré inequality, Folklore) I >Q(ey) (Goldreich et al.[GGLT00])
Ir-Ty > Q(var(f)?) (Margulis [Mar74]) I7 -T; >Q(e3) (Chakrabarty, Seshadhri [CS14a])
Ex [\/1;(x)] > Q(var(f)) (Talagrand [Tal93]) | Ex [ I; (x)| = Q(lo%) (Khot, Minzer, Safra [KMS15])

Table 1: Boolean hypercube isoperimetry results and their directed analogues. Pallavoor, Raskhodnikova,
and Waingarten [PRW22 ] removed the log d-dependence in the directed Talagrand inequality.

Observe the remarkable parallel between the standard isoperimetric results and their directed versions.
The Talagrand inequality is the strongest statement, and implies all other bounds. The directed versions
imply the undirected versions, using standard inequalities regarding monotone functions. The [KMS15]
55 (v/d)-query tester is based on the directed Talagrand inequality.

The story for hypergrids is much more complicated. From an isoperimetric perspective, a common ap-
proach is to consider the augmented hypergrid, wherein we add edges between pairs in the same line. The
dimension reduction technique in [DGL"99] used to prove the 65 (d) testers can be thought of as estab-
lishing a directed Poincaré inequality . In previous work [BCS18], the authors proved a directed Margulis
inequality, which led to the 65(0[5/ 6) query tester. Another motivating question for our work is:

Can the directed Talagrand inequality be generalized beyond the hypercube?

1.1 Main results

We answer both questions mentioned above in the affirmative. To state our results more formally, we begin
with some notations. For any i € [d], we use e; to denote the d-dimensional vector which has 1 on the ith
coordinate and zero everywhere else. For a dimension 4, a pair (x,y) is called i-aligned if x and y only
differ on their i-coordinate. An i-line is a 1D line of n points obtained by fixing all but the ith coordinate.

We define a notion of directed influence of Boolean functions on hypergrids, which generalizes the no-
tion for Boolean functions on hypercubes. In plain English, for a point x we count the number of dimensions
in which x takes part in a violation. We call this the thresholded negative influence of x. Note that x could
participate in multiple violations along the same dimension. Throughout this paper, we will be only talking
about negative influences of functions on the hypergrid, and thus will often refer to the above as just thresh-
olded influence, and for brevity’s sake we also don’t use the superscript “—" in the notation below to denote
the negative aspect.

Definition 1.1 (Thresholded Influence). Fix f : [n]? — {0,1} and a dimension i € [d]. Fix a point
x € [n]% The thresholded influence of x along coordinate i is denoted ® ¢(x; i), and has value 1 if there

exists an i-aligned violation (X,y). The thresholded influence of x is ® y(x) = Z‘ij:l D r(x;1).

Note that the thresholded influence coincides with the hypercube directed influence when n = 2. Also
note that for any x, ®(x) € {0,1,...,d} and is independent of n. We prove the following theorem, a
directed Talagrand theorem for hypergrids, which generalizes the [KMS15] result up to log n factors.

Theorem 1.2. Let f : [n]? — {0, 1} be e-far from monotone.

Eyepn) [ (I)f(x)] =1 <lo;n>
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Robust isoperimetric theorems and monotonicity testing. For the application to monotonicity testing,
as [KMS15] showed, a significant strengthening of Theorem 1.2 is required. The weakness of Theorem 1.2,
as stated, is that the same violation/influence is “double-counted” at both its endpoints. The LHS can
significantly vary depending on whether we choose to only “count” influences at zero-valued or one-valued
points, and this is true even on the hypercube. As a simple illustration, consider the function f that is 1 at
the all zeros point and 0 everywhere else. Suppose we only count influences at one-valued points. Then the
only vertex with any I(x) is the all 0’s point, and this value is d. Therefore, the Talagrand objective is g.
On the other hand, if we count influences at zero-valued points, then f(x) = 1 for the d points e; to eg,

and 0 everywhere else. The Talagrand objective counted from zero-valued points is now much larger: 5%.

Therefore, depending on how we count, one can potentially reduce the Talagrand objective, Ex[\/1f(x)].
[KMS15] define a general way of deciding which endpoint “pays” for a violated edge. Consider a

coloring' x : E — {0, 1} of every edge (x,y) € E of the hypercube to either 0 or 1. Now, given a violated
edge (x,y), we use this coloring to decide whose influence this edge contributes towards. More precisely,
given this coloring , the colored directed influence IJZX(X) of x is defined as the number of violated edges
(x,y) incident on x which have the same color as f(x). Given a coloring, the colorful Talagrand objective
equals the expected root colored directed influence. What [KMS15] prove is that no matter what coloring x
one chooses, the Talagrand objective is still large, and in particular Ex [ I (x)} = Q(%).

We define the robust/colorful generalizations of the thresholded negative influence on hypergrids. Con-
sider the fully augmented hypergrid, where we put the edge (x,y) if x and y differ on only one coordinate.
Let E be the set of edges in the fully augmented hypergrid.

Definition 1.3 (Colorful Thresholded Influence). Fix f : [n]® — {0,1} and x : E — {0,1}. Fixa
dimension i € [d] and a point x € [n]%. The colorful thresholded negative influence of x along coordinate i
is denoted ® ¢ . (x; 1), and has value 1 if there exists an i-aligned violation (x,y) such that x(x,y) = f(x),
and has value 0 otherwise. The colorful thresholded negative influence of x is @, (x) = Z?:l Qs (x50).

The main result of our paper is a robust directed Talagrand isoperimetry theorem for Boolean functions
on the hypergrid. It is a strict generalization of the KMS Talagrand theorem for hypercubes.

Theorem 1.4. Let f : [n]¢ — {0, 1} be e-far from monotone, and let x : E — {0, 1} be an arbitrary
coloring of the edges of the augmented hypergrid.

g
E, ¢ [ q)f,x(x)] =Q (logn>

As a consequence of this theorem, we can (up to log factors) resolve the question of non-adaptive
monotonicity testing on hypergrids with constant n. We note that the best bound for any n > 2 was
O(d5/ 6). Even for the simplest non-hypercube case of n = 3, it was open whether the optimal non-adaptive
complexity of monotonicity testing is v/d.

Theorem 1.5. Consider Boolean functions over the hypergrid, f : [n]? — {0, 1}. There is a one-sided,
non-adaptive tester for monotonicity that makes O(e~>nv/dlog®(nd)) queries.

'[KMS15] considered the colorings to be red/blue, but we find the 0, 1-coloring more natural.



The importance of being robust. We briefly explain why the robust Talagrand version is central to the
monotonicity testing application. All testers that have a o(d)-query complexity are versions of a path tester,
which can be thought of as querying endpoints of a directed random walk in the hypercube. Consider a
function f as the indicator for a set 17, where the violating edges form the “up-boundary” between 1y
and its complement. To analyze the random walk, we would like to lower bound the probability that a
random walk starts in 1, crosses over the boundary, and stays in Tf, that is, the set of 0’s. To analyze this,
one needs some structural properties in the graph induced by the boundary edges, which [KMS15] express
via their notion of a “good subgraph”. In particular, one needs that there be a large number of edges, but
also that they are regularly spread out among the vertices. It doesn’t seem that the “uncolored” Talagrand
versions (like Theorem 1.2) are strong enough to prove this regularity, but the robust version can “weed out”
high-degree vertices via a definition of a suitable coloring function . In short, the robust version of the
Talagrand-style isoperimetric theorem is much more expressive. Indeed, these style of robust results have
found other applications in distribution testing [CCK*21] as well.

The dependence on n. Given Theorem 1.5, it is natural to ask whether the dependence on 7 is necessary.
Previous domain reduction theorems have shown that one can reduce n to poly(d) in a black box man-
ner [BCS20, HY22]. The monotonicity tester based on the directed Margulis inequality for hypergrids has
a logarithmic dependence on n [BCS18]. Combining with domain reduction, we get a O(poly(e~1)d%/¢)-
query tester. It is an outstanding open problem to remove the dependence on n from Theorem 1.5. In
Section 8, we outline an approach to do so using the directed Talagrand inequality of Theorem 1.4.

1.2 Challenges

We explain the challenges faced in proving Theorem 1.4 and Theorem 1.5. The KMS proof of the directed
Talagrand inequality for the hypercube is a tour-de-force [KMS15], and there are many parts of their proof
that do not generalize for n > 2. We begin by giving an overview of the KMS proof for the hypercube case.

For the time being, let us focus on the uncolored case. For convenience, let T'( f) = Ex|[y /1 (x)] denote

the hypercube directed Talagrand objective for a f : {0,1}¢ — {0,1}. To lower bound 7'(f), [KMS15]
transform the function f to a function g using a sequence of what they call split operators. The ith split
operator applied to f replaces the ith coordinate/dimension by two new coordinates (i, +) and (i, —). One
way to think of the split operator is that takes the ((0,x_;), (1,x_;)) edge and converts it into a square.
(Here, x_; denotes the collection of coordinates in x skipping x;.) The “bottom” and “top” corners of the
square store the original values of the edge, while the “diagonal” corners store the min and max values (of
the edge). The definition of this remarkably ingenious operator ensures that the split function is monotone
in (4, +) and anti-monotone in (i, —). The final function g : {0,1}?¢ — {0, 1} obtained by splitting on
all coordinates has the property that it is either monotone or anti-monotone on all coordinates. That is, g
is unate (or pure, as [KMS15] call them), and for such functions the directed Talagrand inequality can be
proved via a short reduction to the undirected case.

The utility of the split operator comes from the main technical contribution of [KMS15] (Section 3.4),
where it is shown that splitting cannot increase the directed Talagrand objective. This is a “roll-your-sleeve-
and-calculate” argument that follows a case-by-case analysis. So, we can lower bound 7'(f) > T'(g). Since
g is unate, one can prove 1'(g) > &4 (the distance of g to monotonicity). But how does one handle ¢,
or g more generally? This is done by relating splitting to classic switch operator in monotonicity testing,
introduced in [GGL'00]. The switch operator for the ith coordinate can be thought of as modifying the
edges along the i-dimension: for any i-edge violation (x,y), this operator switches the values, thereby



fixing the violation. The switching operator has the remarkable property of never increasing monotonicity
violations in other dimensions; hence, switching in all dimensions leads to a monotone function. [KMS15]
observe that the function g basically “embeds” disjoint variations of f, wherein each variation is obtained
by performing a distinct sequence of switches on f. The function g contains all possible such variations of
[, stored cleverly so that g is unate. One can then use properties of the switch operators to relate £, to €.
(The truth is more complicated; we will come back to this point later.)

Challenge #1, splitting on hypergrids? The biggest challenge in trying to generalize the [KMS15] argu-
ment is to generalize the split operator. One natural starting point would be to consider the sort operator,
defined in [DGL199], which generalizes the switch operator: the sort operator in the ith coordinate sorts
the function along all i-lines. But it is not at all clear how to split the ¢th coordinate into a set of coordinates
that contains the information about the sort operator thereby leading to a pure/unate function. In short, sort-
ing is a much more complicated operation than switching, and it is not clear how to succinctly encode this
information using a single operator.

We address this challenge by a reorientation of the KMS proof. Instead of looking at operators on
dimensions to understand effects of switching/sorting, we do these via what we call “tracker functions”
which are n? different Boolean functions tracking the changes in f. We discuss this more in Section 1.3.

Challenge #2, the case analysis for decreasing Talagrand objective. As mentioned earlier, the central
calculation of KMS is in showing that splitting does not increase the directed Talagrand objective. This is
related (not quite, but close enough) to showing that the switch operator does not increase the Talagrand
objective. A statement like this is proven in KMS by case analysis; there are 4 cases, for the possible values
a Boolean function takes on an edge. One immediately sees that such an approach cannot scale for general
n, since the number of possible Boolean functions on a line is 2. Even with our new idea of new idea of
tracking functions, we cannot escape this complexity of arguing how the Talagrand-style objective decreases
upon a sorting operation, and a case-by-case analysis depending on the values of the function is infeasible.
We address this challenge by a connection to the theory of majorization. We show that the sort operator
is (roughly) a majorizing operator on the vector of influences. The concavity of square root function implies
that sorting along lines cannot increase the Talagrand objective. More details are given in the next section.

Challenge #3, the colorings. Even if we circumvented the above issues, the robust colored Talagrand
objective brings a new set of issues. Roughly speaking, colorings decide which points “pay” for violations
of the Talagrand objective, the switching/sorting operator move points around by changing values, and the
high-level argument to prove 7'(f) drops is showing that these violations “pay” for the moves. In the
hypercube, a switch either changes the values on all the points of the edge or none of the points, and this
binary nature makes the handling of colors in the KMS proof fairly easy, merely introducing a few extra
cases in their argument. Sorting, on the other hand, can change an arbitrary set of points, and in particular,
even in the case of n = 3, a point participating in a violation may not change value in a sort.

To address this challenge, as we apply the sort operators to obtain a handle on our function, we also need
to recolor the edges such that we obtain the drop in the 7T-objective. Once again, the theory of majorization
is the guide. This part of the proof is perhaps the most technical portion of our paper.

Other minor challenges: the telescoping argument and tester analysis: The issues detailed here are not
really conceptual challenges, but they do require some work to handle the richer hypergrid domain.

Recall that the KMS analysis proves the chain of inequalities, T'(f) > T'(g) = (g,4). Unfortunately,
it can happen that ¢, < €. In this case, KMS observe that one could redo the entire argument on random
restrictions of f to half the coordinates. If the corresponding ¢ is still too small, then one restricts on one-
fourth of the coordinates, so on and so forth. One can prove that somewhere along these log d restrictions,
one must have €, = §)(ey). Pallavoor, Raskhodnikova, and Waingarten [PRW22] improve this analysis to



remove a log d loss from the final bound. We face the same problems in our analysis, and have to adapt the
analysis to our setting.

Finally, the tester analysis of KMS for the hypercube can be ported to the hypergrid path tester, with
some suitable adaptations of their argument. It is convenient to think of the fully augmented hypergrid,
where all pairs that lie along a line are connected by an edge. We can essentially view the hypergrid tester as
sampling a random hypercube from the fully augmented hypergrid, and then performing a directed random
walk on this hypercube. We can then piggyback on various tools from KMS for the hypercube tester, to
bound the rejection probability of the path tester for hypergrids.

1.3 Main Ideas

We sketch some key ideas needed to prove Theorem 1.4 and address the challenges detailed earlier. We begin
with a key conceptual contribution of this paper. Given a function f : [n]® — {0, 1}, we define a collection
of Boolean functions on the hypercube called tracker functions. We will lower bound the directed Talagrand
objective on the hypergrid by the undirected Talagrand objective on these tracker functions. Indeed, the
inspiration of these tracker functions arose out of understanding the analysis in [KMS15], in particular, the
intermediate “g” function in their Section 4. As an homage, we also denote our tracker functions with the
same Roman letter, even though it is different from their function.

1.3.1 Tracker functions g for all x € [n]?

Let us begin with the sort operator discussed earlier. Without loss of generality, fix the ordering of coordi-
nates in [d] to be (1,2, ...,d). The operator sort; for i € [d] sorts the function on every i-line. Given a
subset S C [d] of coordinates, the function (S o f) is obtained by sorting the coordinates in .S in that order.
Sorting along any dimension cannot increase the number of violations along any other dimension, and
therefore upon sorting on all dimensions, the result is a monotone function [DGL"99]. Suppose f is e-far
from monotone. Clearly, the total number of points changed by sorting along all dimensions must be at least
en®. While this is not obvious here, it will be useful to to track how the function value changes when we sort
along a certain subset S of coordinates. The intuitive idea is: if the function value changes for most such
partial sortings, then perhaps the function is far from being monotone. To this end, for every point x € [n]?,
we define a Boolean function gy : 2[4 — {0,1} that tracks how the function value f changes as we apply
the sort operator a subset .S of the coordinates. It is best to think of the domain of gx as subsets S C [d].

Definition 1.6 (Tracker Functions gx). Fix an x € [n]%. The tracker function g5 : {0,1}% — {0,1} is
defined as
VS Cld], gx(S):=(Sof) ()

We provide an illustration of this definition in Figure 1.

Note that when f is a monotone function, all the functions gx are constants. Sorting does not change any
values, s0 gx(S) is always f(x). On the other hand, if f is not monotone along dimension i, then there are
points such that gx({i}) # f(x). Indeed, one would expect the typical variance of these gx functions to be
related to the distance to monotonicity of f (technically not true, but we come to this point later).

The tracker functions help us lower bound the (colorful) Talagrand objective for thresholded influence,
in particular, the LHS in Theorem 1.4. Recall that the Talagrand objective is the expected square root of the
colorful thresholded influences on the hypergrid function f. We lower bound this quantity by the expected
Talagrand objective on the undirected (colorful, however) influence of the various gx functions. Note that gx
functions are defined on hypercubes. So we reduce the robust directed Talagrand inequality on hypergrids
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Figure 1: The blue function f : [n]® — {0, 1} is defined in the middle using bold, gothic characters. We
have d = 2 and n = 2. For each of the 4 points of this square, we have four different g5 : {0,1}% — {0,1}
and they are described in the four green squares. For any S C {1,2}, if we focus on the corresponding
corners of the four squares, then we get the function (S o f). For instance, if S = {2}, then if we focus on
the top left corners, then starting from goo and moving clockwise we get (0,1, 1,0). These will precisely the
Sfunction f (read clockwise from 00) after we sort along dimension 2.

to robust undirected Talagrand inequalities on hypercubes. This is the main technical contribution of our
paper. Let us define the (colored) influences of these gx functions.

Definition 1.7 (Influence of the Tracking Functions). Fix a x € [n]? and consider the tracking function
gx : {0,1}% — {0,1}). Fix a coordinate j € [d]. The influence of gx at a subset S along the jth coordinate
is defined as

LI(S) =1 iff gx(S) # gx(S@®j) thatis (Sof)(x) £ (S®j o f)(x)

In plain English, the influence of the jth coordinate at a subset S is 1 if the function value (the hypergrid
function) changes when we include the dimension j to be sorted. Once again, note that the same sensitive
edge (S,S @ j) is contributing towards both I (S) and I,7 (S @ j). We define a robust, colored version
of these influences.

Definition 1.8 (Colorful Influence of the Tracking Functions). Fix a x € [n]? and consider the tracking
function gy : {0,1}% — {0, 1}. Fix any arbitrary coloring & : E(219) — {0, 1} of the Boolean hypercube.
Fix a coordinate j € [d]. The influence of gx at a subset S along the jth coordinate is defined as

L7 (S)=1iff gx(S) # 9x(S®j) and gx(S) = &(S, S & j)

The colorful total influence at the point S in gx is defined as

IQx,fx(S) = Z Ig:,jgx(s)

d
Jj=1
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As before, for a sensitive edge (5,5 @ j) of gx, we count it towards the influence of the endpoint whose
value equals the color £x (S, S @ j). The main technical contribution of this paper is proving that for any
function f : [n]? — {0,1} and any arbitrary coloring x : £ — {0, 1} of the hypergrid edges, for every
x € [n]¢ there exists a coloring & : E(2[9) — {0,1} of the Boolean hypercube edges, such that

Ty, (f) := Exeppa [ q)ﬁx(x)} 2 ExcpaEscia [\/ Lo (9] (H1)

We explain the = in the above inequality in the next subsection.

Why is a statement like (H1) useful? Because the RHS terms are Talagrand objectives on colored
influences on the usual undirected hypercube. Therefore, we can apply undirected Talagrand bounds (known
from KMS, Theorem 2.8) to get an upper bound on the variance.

Corollary 1.9 (Corollary of Theorem 1.8 in [KMS15]). Fix f : [n]¢ — {0,1}. Fixanx € [n]? and consider
the tracking function gy : {0,1}% — {0,1}. Consider any arbitrary coloring & : E(2%) — {0,1} of the
Boolean hypercube. Then, for every x € [n]d, we have

Escig [\/1geex (S)] = Q(var(gx))

The final piece of the puzzle connects var(gx)’s with the distance to monotonicity. Ideally, we would have
liked to have a statement such as the following true.

Escna [var(gx)| ~ Q(ey) (H2)
We now see that (H1), Corollary 1.9, and (H2) together implies Theorem 1.4 (indeed without the log n).

1.3.2 High level description of our approaches

Addressing the ~ in (H1) via semisorting. As stated, we do not know if (H1) is true. However, we
establish (H1) for semisorted functions f : [n]® — {0,1}. A function f is semisorted if on any line /, the
restriction of the function on the first half is sorted and the restriction on the second half is sorted. This may
seem like a simple subclass of functions, but note that all functions on the Boolean hypercube (n = 2) are
vacuously semisorted. Thus, proving Theorem 1.4 on semi-sorted functions is already a generalization of
the [KMS15] result. Theorem 3.2 is the formal restatement of (H1).

We reduce Theorem 1.4 on general functions to the same bound for semisorted functions. Consider
semisorting f, which means we sort f on each half of every line. Suppose the Talagrand objective did not
increase and the distance to monotonicity did not decrease. Then Theorem 1.4 on the semisorted version
of f implies Theorem 1.4 on f. What we can prove is that: given the semisorted function, one can find a
recoloring of the hypergrid edges such that the Talagrand objective doesn’t increase. The precise statement
is given in Lemma 3.1. We comment on our techniques to prove such a statement in a later paragraph.

Although semisorting can’t increase the Talagrand objective, it can clearly reduce the distance to mono-
tonicity. However, a relatively simple inductive argument proves Theorem 1.4 with a log n loss. Any func-
tion can be turned into a completely sorted (aka monotone) function by performing “log n semisorting steps”
at varying scales. In each scale, we consider many disjoint small hypergrids, and convert a semisorted func-
tion defined over a small hypergrid to another semisorted function over a hypergrid of double the size (the
next scale). In one of these scales, we will find a semisorted function that has {2(¢/logn) distance from
its sorted version. One can average Theorem 1.4 over all the small hypergrids at this scale to bound the
Talagrand objective of the whole function by €2(¢/logn). This is the step where we incur the log n-factor
loss. This argument is not complicated, and we provide illustrated details in Section 3.

The real work happens in proving Theorem 3.3, that is, (H1) for semisorted functions.



Approach to proving (H1) for semisorted functions. Recall, we have a fixed adversarial coloring x :
E — {0,1}. The proof follows a “hybrid argument” where we define a potential that is modified over d + 1
rounds. At the beginning of round 0 it takes the value Exe[n}d[ ® . (x)] which is the LHS of (H1). At the
end of round d it takes the value Ey(,j0Egca[\/Ig, 6. ()] which is the RHS of (H1). The proof follows
by showing that the potential decreases in each round.

Let us describe the potential. Let us first write this without any reference to the colorings (so no x’s and
&x’s), and then subsequently address the colorings. At stage i, fix a subset S' C [i]. Define

7 d
Ri(S) 1= Bycpya SLIS) ) Psop(xi) (Hybrid)
j=1 j=i+1

We remind the reader that S o f is the function f after the dimensions corresponding to ¢ € .S have been
sorted. Thus, R;(S) is a “hybrid” Talagrand objective, with two different kinds of influences being summed.
Consider point x € [n]?. On the first i coordinates, we sum the undirected influence (along these coordi-
nates) of S on the function gx. On the coordinates ¢ + 1 to d, we sum to directed influence along these
coordinates in the function S o f. The potential is A; := Egc(;)[Ri(S)].

To make some sense of this, consider the extreme cases of ¢ = 0 and ¢ = d. When ¢ = 0, we only
have the second ®g. s term. Furthermore, S is empty since S C [i]. So Ag is precisely the original directed
Talagrand objective, the LHS of (H1). When ¢ = d, we only have the I, :xj terms. Taking expectation over
S C [d] to get A4, we deduce that A is the RHS of (H1).

We will prove A;_1 > A; forall 1 < i < d. To choose a uar set in [i], we can choose a uar subset
of [i — 1] and then add i with 1/2 probability. Hence, A; = (Egc[—1)[Ri(S) + Ri(S + i)])/2, while
A1 = Egcpi—1)[Ri-1(5)]. So, if we prove that R; 1(S) is at least than both R;(S) and R;(S + i), then
A;—1 > A;. The bulk of the technical work in this paper is involved in proving these two inequalities, so let
us spend a little time explaining what proving this entails.

Let’s take the inequality R;_1(S) > R;(S). Refer again to (Hybrid). When we go from R;_1(S) to
R;(S), under the square root, the term ®g7(x; 1) is replaced by I - ¢(S). To remind the reader, the former
term is the indicator of whether x participates in a i-violation after the coordinates in .S C [i — 1] have been
sorted. The latter term is whether gx (S + i) equals gx(S), that is, whether the (hypergrid) function value at
x changes between sorting on coordinates in .S and S + 4. Just by parsing the definitions, one can observe
that ® g, f(x;i) > I*(S); if a point is modified on sorting in the i-coordinate, then it must be participating
in some ¢-violation (note that vice-versa may not be true and thus we have an inequality and not an equality).
The quantity under the square-root point-wise dominates (ie, for every x) when we move from R;_;(S5) to
RZ(S) Thus, the Rl_l(S) > RZ(S)

The other inequality R;_1(S) > R;(S + i), however, is much trickier to establish. In R;(S + i), the
second summation under the square-root, the  terms, are actually on a different function. The ®g.f (x;7)
terms in R;_1(.S) are the thresholded influences of the function after sorting on coordinates in .S. But in
R;(S + i), these terms are (g )¢(x; ), the thresholded influences of x for the function after sorting on
S + 1. Although, it is true that sorting on more coordinates cannot increase the total number of violations
along any dimension, this fact is not true point-wise. So, a point-wise argument as in the previous inequality
is not possible.

The argument for this inequality proceeds line-by-line. One fixes an i-line £ and considers the vector of
“hybrid function” values on this line. We then consider this vector when moving from R;_1(S) to R;(S+1),
and we need to show that the sum of square roots can get only smaller. This is where one of our key insights
comes in: the theory of majorization can be used to assert these bounds. Roughly speaking, a vector a



(weakly) majorizes a vector b if the sum of the k-largest coordinates of a dominates the sum of the k-largest
coordinates of b, for every k. A less balanced vector majorizes a more balanced vector. If the ¢;-norms of
these vectors are the same, then the sum of square roots of the entries of a is at most the sum of square roots
of that of b. This follows from concavity of the square-root function.

Our overarching mantra throughout this paper is this: whenever we perform an operation and the hybrid-
influence-vector induced by a line changes, the new vector majorizes the old vector. Specifically, these
vectors are generated by look at the terms of R;_1(.S) and R;(.S + 7) restricted to i-lines.

To prove this vector-after-operation majorizes vector-before-operation, we need some structural assump-
tions on the function. Otherwise, it’s not hard to construct examples where this just fails. The structure we
need is precisely the semisortedness of f. When a function is semisorted, then majorization argument goes
through. At a high level, when f is semisorted, the vector of influences (along a line) satisfy various mono-
tonicity properties. In particular, when we (fully) sort on some coordinate 7, we can show the points losing
violations had low violations to begin with. That is, the vector of violations becomes less balanced, and the
majorization follows.

The above discussion disregarded the colors. With colors, the situation is noticeably more difficult.
Although the function f is assumed to be semisorted, the coloring x : £ — {0,1} is adversarial. So
even though the vector of influences may have monotonicity properties, the colored influences may not have
this structure. So a point with high influence could have much lower colored influence. Note that the sort
operator is insensitive to the coloring. So the majorization argument discussed above might not hold when
looking at colored influences.

With colors, (Hybrid) is replaced by the actual quantity (Colorful Hybrid) described in Section 5. To
carry out the majorization argument, we need to construct a family of colorings &, on the n? different
hypercubes. We also need 2% many different auxiliary colorings g of the hypergrid, constructed after every
sort operation. The argument is highly technical. But all colorings are chosen to follow our mantra: vector
after operation should majorize vector before operation. The same principle is also used to prove Lemma 3.1
which claims that semisorting an interval can only decrease the Talagrand objective, after a recoloring.

The details of the actual R;(S) hybrid function and the strategy to use them is presented in Section 5.
The most technical part of the paper is in Section 6, which proves that the potential decreases in each round.

Addressing the ~ in (H2) via random sorts. To finally complete the argument, we need (H2) that relates
the average variance of the gy functions to the distance to monotonicity of f. As discussed earlier, (H2) is
false, even for the case of hypercubes. Nevertheless, one can use (H1) and Corollary 1.9 to prove a lower
bound on T, (f) with respect to . This is the telescoping argument of KMS, refined in [PRW22]. We
describe the main ideas below. The first observation (see Theorem 4.1) is that Ey 14 [var(gx)] is roughly
Es[A(So f,S o f] where S is a uniform random subset of coordinates. The distance to monotonicity ¢ is
approximated by A (f, S oS o f) which, by triangle inequality, is at most A(f, S o f) + A(So f,So f).
Thus, we get a relation between ¢ 7, the expected var(gx ), and the distance between f and a “random sort” of
f. Therefore, if (H2) is not true, then a random sort of f must be still far from being monotone, and then one
can repeat the whole argument on just this random sort itself. In one of these log d “repetitions”, the (H2)
must be true since in the end we get a monotone function (which can’t be far from being monotone). And this
suffices to establish Theorem 1.4. We re-assert that the main ideas are already present in [KMS15, PRW22].
However, we require a more general presentation to make things work for hypergrids. These details can be
found in Section 4.
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1.4 Related Work

Monotonicity testing has seen much activity since its introduction around 25 years ago [EKK 00, GGL 100,
DGL199, LRO1, FLN 02, HK03, AC06, HK08, ACCL07, Fis04, SS08, Bha08, BCSM12, FR10, BBM12,
RRSW11,BGJ"12,CS13, CS14a, CST14, BRY 14a, BRY 14b, CDST15, CDJS15, KMS15, BB16, CWX17,
BCS18, BCS20, BKR20, HY?22].

We have already covered much of the previous work on Boolean monotonicity testing over the hyper-
cube, but give a short recap. For convenience of presentation, in some results, we subsume e-dependencies
using the notation O.. The problem was introduced by Goldreich et al. [GGL"00] and Raskhodnikova
[Ras99], who described an O(d/¢)- -query tester. Chakrabarty and Seshadhri [CS14a] achieved the first sub-
linear in dimension query complexity of O, (d7/ 8) using directed isoperimetric inequalities. Chen, Servedio,
and Tan [CST14] improved the analysis to O, (d5/ 6) queries. Fischer et al. [FLN"02] had first shown an
Q(+v/d)-query lower bound for non-adaptive, one-sided testers, by a short and neat construction. The non-
adaptive, two-sided Q(\/E) lower bound is much harder to attain, and was done by Chen, Waingartgn, and
Xie [CWX17], improving on the £(d'/2~¢) bound from [CDST15], which itself improved on the Q(d'/?)
bound of [CST14]. [KMS15] gave an Oa(\/g) -query tester, via the robust directed Talagrand inequality.

While this resolves the non-adaptive testing complexity (up to poly(e~! log d) factors) for the hyper-
cube, the adaptive complexity is still open. The first polynomial lower bound of Q(dl/ 4) for adaptive testers
was given by Belovs and Blais [BB16] and has since been improved to Q(dl/ 3) by Chen, Waingarten, and
Xie [CWX17]. Chakrabarty and Seshadhri [CS19] gave an adaptive O, (Iy)-query tester, thereby showing
that adaptivity can help in monotonicity testing. The d'/? vs v/d query complexity gap is an outstanding
open question in property testing.

There has been work on approximating the distance to monotonicity in poly(d, ¢ f)-queries. Fattal and
Ron [FR10] gave the first non-trivial result of an O(d)-approximation, and Pallavoor, Raskhodnikova, and
Waingarten [PRW22] gave a non-adaptive O(v/d)-approximation (all running in poly(d, ;) time). They
also show that non-adaptive poly(d)-time algorithms cannot beat this approximation factor.

The above discussion is only for Boolean valued functions on the hypercube. For arbitrary ranges, the
original results on monotonicity testing gave an O(d?/¢)-query tester [GGL ™00, DGL"99]. Chakrabarty
and Seshadhri [CS13] proved that O(d/e)-queries suffices for monotonicity testing, matching the lower
bound of Q(d) of Blais, Brody, and Matulef [BBM12]. The latter bound holds even when the range size
is v/d. A recent result of Black, Kalemaj, and Raskhodnikova showed a smooth trade-off between the
v/d bound for the Boolean range and the d bound for arbitrary ranges ([BKR20]). Consider functions
f:{0,1}¢ — [r]. They gave a tester with query complexity O, (rv/d), achieved by extending the directed
Talagrand inequality to arbitrary range functions. Their techniques are quite black-box and carry over to
other posets. We note that their techniques can also be ported to our setting, so we can get an O, (rmf )-
query monotonicity tester for functions f : [n]? — [r].

We now discuss monotonicity testing on the hypergrid. We discuss more about the e-dependencies,
since there have been interesting relevant discoveries. As mentioned above, [DGL™99] gives a non-adaptive,
one-sided O((d/¢) log?(d/e))-query tester. This was improved to O((d/e) log(d/<)) by Berman, Raskhod-
nikova, and Yaroslavtsev [BRY 14a]. This paper also showed an interesting adaptivity gap for 2D functions
f :[n)? — {0,1}: there exists an O(1/¢)-query adaptive tester (in fact, for any constant dimension d), and
they show an Q(log(1/¢)/e) lower bound for non-adaptive testers. Previous work [BCS18] by the authors
gave an O (d5/ 6log n)-query tester, by proving a directed Margulis inequality on augmented hypergrids.
Another work [BCS20] of the authors, and subsequently a work [HY22] by Harms and Yoshida, designed
domain reduction methods for monotonicity testing, showing how n can be reduced to poly(¢~!,d) by
subsampling the hypergrid.
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For hypergrid functions with arbitrary ranges, the optimal complexity is known to be ©(dlogn) [CS13,
CS14b]. When the range is [r] and d = 1, one can get O(log r)-query testers [PRV18]. As we mentioned
earlier, the techniques of [BKR20], combined with our Theorem 1.4, yield a 65(7’71\/&) query tester for
functions f: [n]¢ — [r].

2 Preliminaries

A central construct in our proof is the sort operator.

Definition 2.1. Consider a Boolean function on the line h : [n] — {0,1}. The sort operator sort() is
defined as follows.
0 ifb<n—|hls

sort(h)(b) = {1 ifb>n— |||

Thus, the sort operator “moves” the values on a line to ensure that it is sorted. Note that sort(h) and
h have exactly the same number of zero/one valued points. We can now define the sort operator for any
dimension ¢. This operator takes a hypergrid function and applies the sort operator on every ¢-line.

Definition 2.2. Let i be a dimension and f : [n]? — {0, 1}. The sort operator for dimension i, sort;(), is
defined as follows. For every i-line ¢, sort;(f)|; = sort(f|s).

Let S be an ordered list of dimensions, denoted (i1,i2,...,ix). The function S o f is obtained by
applying the sort;() operator in the order given by S. Namely,

So f = sort;, (sort;,_,(...sort, (f)))

Somewhat abusing notation, we will treat the ordered list of dimensions S as a set, with respect to
containing elements. The key property of the sort operator is that it preserves the sortedness of other dimen-
sions.

Claim 2.3. The function S o f is monotone along all dimensions in S.

Proof. We will prove the following statement: if f is monotone along dimension i, then sort;(f) is mono-
tone along both dimensions ¢ and j. A straightforward induction (which we omit) proves the claim.

By construction, the function sort;(f) is monotone along dimension j. Consider two arbitrary points
x = x that are i-aligned (meaning that they only differ in their i-coordinates). We will prove that
sort;(f)(x) < sort;(f)(x), which will prove that sort;(f) is monotone along dimension 4.

For convenience, let the j-lines containing x and x’ be ¢ and ¢, respectively. Note that these j-lines
only differ in their i-coordinates. Let ¢ denote the j-coordinate of x (and x’). Observe that sort;(f)x =
sort;(f)|e(c) (analogously for x').

Note that, Vc € [n], fl¢(c) < fle(c). This is because f is monotone along dimension 4, and ¢ has
a lower i-coordinate than that of ¢'. Hence, ||f|¢]l1 < | f|e|l1. By the definition of the sort operator,
Ve € [n], sort(fle)(c) < sort(fle)(c). Thus, sort;(f)|¢(c) < sort;(f)|e(c), implying sort;(f)(x) <
sort;(f)(x'). O

A crucial property of the sort operator is that it can never increase the distance between functions. This
property, which was first established in [DGL"99] (Lemma 4), will be used in Section 4, where we apply
our main isoperimetric theorem on random restrictions. We provide a proof for completeness.

12



Claim 2.4. Let f, f' : [n]? — {0, 1} be two Boolean functions. For any ordered set S C [d],

A(So f,Sof) <A(f, f)

Proof. Tt suffices to prove this bound when S is a singleton. We prove that for any i € [d], A(sort;(f), sort;(f’)) <
A(f, f'). In the following, we will use the simple fact that for monotone functions h,h’ : [n] — {0,1},

A(h, 1) = ‘Hh”l - Hh'Hl]. Also, we use the equality ||sort(h)[|1 = [|]):.
Asorti(f),sorti(f) = 3 Alsorti(f)le,sorsi(Fe) = 3 |lsorti()lells — llsorti( el

£ i-line 4

Z L1l = 1Ll
= Z’Zﬂe Zf|e(0)’

c€[n] c€ln]
< 33| flee) = Flete)| = A £
£ c€ln]

O

The method of obtaining a monotone function via repeated sorting is close to being optimal. For hyper-
cubes, this result was established by [FR10] (Lemma 4.3) and also present in [KMS15] (Lemma 3.5). The
proofs goes through word-for-word applied to hypergrids.

Claim 2.5. For any function f : [n]¢ — {0,1},

ef SA(f,[d] o f) < 2e

Proof. The first inequality is obvious since [d] o f is monotone as established in Claim 2.3. Let h be the
monotone function closest to f, thatis, ey = A(f, h). So

Alffdof) < AlfH)+A(d)o 1) A(F )+ A(d 0 £,[d] o h) < 2A(f,h) = 2
triangle ineq since h=[d]oh <A(f,h) by Claim 2.4

O]

We provide one more simple claim about the sort operator that will be used throughout Section 6. Given
h,h': [n] — {0, 1}, define

A~ (h,h') = |{c € [n]: h(c) > h'(c)}| and AT (h, ') = |{c € [n]: h(c) < I/ (c)}|.
Claim 2.6. Let h,h': [n] — {0, 1} be any two functions. Then, A~ (sort(h),sort(h’)) < A~ (h, ).

Proof. Observe that if ||h|[; < [|A/]|;, then A~ (sort(h),sort(h')) = 0 and so we are done. On the other

hand if |||, > ||1||,. then we have

A~ (sort(h), sort(k')) = |All, — |||, = 3 h(e = A~ (A1) — AT (A, B) < A (h, 1),

c€ln]
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2.1 Colorful Influences and the Talagrand Objective

We will need undirected, colorful Talagrand inequalities for proving Theorem 1.4. For the sake of complete-
ness, we explicitly define the undirected colored influence.

Definition 2.7. Consider a function g : {0,1}% — {0,1} and a 0-1 coloring & of the edges of the hypercube
{0,1}%. The influence of z € {0,1}%, denoted I,¢(z), is the number of sensitive edges incident to z whose
color has value f(z).

(An edge is sensitive if both endpoints have different values.)

Talagrand’s theorem asserts that E,[\/1,(z)] = Q(var(g)) [Tal93]. The robust/colored version proven
by KMS asserts this to be true for arbitrary colored influences.

Theorem 2.8 (Paraphrasing Theorem 1.8 of [KMS15]). (Colored Talagrand Theorem on the Undirected
Hypercube) There exists an absolute constant C' > 0 such that for any function g : {0,1}¢ — {0,1} and
any 0-1 coloring £ of the edges of the hypercube,

E, (01} [ Ig(z)} > C -var(g)

It will be convenient in our analysis to formally define the Talagrand objective for colored, thresholded
influences on the hypergrid.

Definition 2.9 (Colored Thresholded Talagrand Objective). Given any Boolean function f : [n]* — {0,1}
and x : E — {0, 1}, we define the Talagrand objective with respect to the colorful thresholded influence as
follows.

To, (1) = B |21,

where, ® . is defined in Definition 1.3.

2.2 Majorization

It is convenient to think of the Talagrand objective as a “norm” of a vector. Throughout the paper, we (ab)use
the following notation:

t
given a vector v € RY,, [Vll/o = Z VVi.
i=1
If we imagine an n? dimensional vector indexed by the points of the hypergrid, we see that the Talagrand
objective is precisely the norm of the vector whose xth entry is ®, (x). Most often, however, we would
be considering the Talagrand objective line-by-line, with the natural ordering of the line defining a natural
ordering on the vector. To be more precise, fix a dimension ¢ € [d], fix an i-line . An i-line is a set
of n points which only differ in the ith coordinate. This line ¢ defines a vector w € R%, whose jth
coordinate, for 1 < 7 < n is precisely ® f,x(X) where x € £ has x; = j. Note that -

Vi € [d], bex(f):% ) HWH

1/2°
i-lines £ /

Our proof to establish (the correct version of) (H1) proceeds via a hybrid argument that modifies the function
and the coloring in various stages. In each stage, we prove that the norm decreases. We use the following
facts from the theory of majorization.
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In the rest of this subsection all vectors, unless explicitly mentioned, live in R%, for some positive
integer t. Given a vector a, we use (a)i and (a)T to denote the vectors obtained by sorting a in decreasing
and increasing order, respectively. Given two vectors a and b with the same /1 norm, we say a =n,; b if
forall 1 <k <7, Y0 (@) > iz (b))

Throughout this paper, when we apply majorization the LHS vector would be sorted (either increasing
or decreasing) while the RHS vector would be unsorted. To be absolutely clear which is which, when a is
sorted decreasing, we use the notation a = ;; (b)¢ and when a is sorted increasing we use the notation
a = maj (b)T. Here is a simple standard fact that connects majorization to the Talagrand objective; it uses
the fact that the sum of square roots is a symmetric concave function, and is thus Schur-concave.

Fact 2.10 (Chapter 3, [MOAI11]). Let a and b be two vectors such that a =ma; b. Then,

a”1/2 = ||b”1/2-

Next, we state and prove a simple but key lemma repeatedly used throughout the analysis.

— —
Lemma 2.11. Let U = ) . w; be a finite sum of t-dimensional non-negative vectors. Let S :=

> (wi)*. Then, S e (U) . Analogously, if S =", (wi)T, then S e <U> )

Proof. We prove _t»he first statement; the second analogous statement has an absolutely analogous proof. We
begin by noting .S is a sorted decreasing vector since it is a sum of sorted decreasing vectors. For brevity,

= —\ — -
let’suse V := (U) . Next, we note that HSH1 = HVH1 = willy-
Now fixal < 7 < ¢t. We need to show 25:1 §j > 25:1 Vj. Consider the T-largest coordinates

of V, and let them comprise T' C [t]. Consider the |T'|-dimensional vectors w;[T] where we restrict our

attention to only these coordinates. Let S’ be theJT |-dimensional vector formed by sum of the sorted
—

versions of w;[T]. Note that >37_; S = >°7_; V;. Also note that for any 1 < j < 7, the number

?; equals the ) . (jth max of w;[7T) and gj equals ZiTzl(jth max of w;). Thus, E‘)j > g;, proving that
ZJT‘:l Sj = 25:1 V. o

3 Semisorting and Reduction to Semisorted Functions

As we mentioned earlier when we stated (H1), we do not know if this is a true statement for an arbitrary
function. It is true for what we call semisorted functions, and proving this would be the bulk of the work.
In this section, we define what semisorted functions are, we prove that the Talagrand objective can only de-
crease when one moves to a semisorted function, and therefore how one can reduce to proving Theorem 1.4
only for semisorted functions.

Fix a function f : [n]? — {0,1}. Fix a coordinate 4 and fix an interval I = [a,b]. Semisorting f on
this interval in dimension i leads to a function A : [n]® — {0,1} as follows. We take every i-line ¢ and
consider the function restricted on the interval I on this line, and we sort it. The following lemma shows that
semisorting on any (4, I') pair can only reduce the Talagrand objective. We defer its proof to Section 3.1.

Lemma 3.1 (Semisorting only decreases Tg.). Let f be any hypergrid function and let x be any bi-
coloring of the augmented hypergrid edges. Let i € [d] be any dimension and I be any interval |a, b|.
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There exists a (re)-coloring X' of the edges of the augmented hypergrid such that

Ty, (f) = Ta, (h)

where h is the function obtained upon semisorting f in dimension i on the interval I.

A function f : [n]? — {0, 1} is called semisorted if for any i € [d] and any i-line ¢, the function restricted to
the first n/2 points is sorted increasing and the function restricted to the second half is also sorted increasing.
It is instructive to note that when n = 2, that is when the domain is the hypercube, every function is
semisorted. This shows that semisorted functions form a non-trivial family. However, the semisortedness is
a property that allows us to prove that (H1) holds. In particular, we prove this theorem.

Theorem 3.2 (Connecting Talagrand Objectives of f and Tracker Functions). Let f: [n]? — {0,1}
be a semisorted function and let x: E — {0,1} be an arbitrary coloring of the edges of the fully

augmented hypergrid. Then for every x € [n]d, one can find a coloring &x of the edges of the Boolean
hypercube such that

T, (f) = Exepye [ ‘I’f,x(x)] > Exepmid Esclg) [/ Lot (S)]-

We can use the above theorem to get set the intuition behind (H2) correct, and prove Theorem 1.4 for
semisorted functions. We state this below, but we defer the proof of this to Section 4. At this point we
remind the reader again that this is not at all trivial, but the proof ideas are generalizations of those present
in [KMS15, PRW22] for the hypercube case.

Theorem 3.3 (Theorem 1.4 for semisorted functions.). Let f : [n]¢ — {0, 1} be a semisorted function
that is e-far from monotone. Let x : E — {0, 1} be an arbitrary coloring of the edges of the augmented
hypergrid. Then there is a constant C" such that

To,(f) = Bx |y[07,00] 2

Lemma 3.1 shows that the Talagrand objective can’t rise on semisorting. The distance to monotonicty,
however, can fall. In the remainder of the section we show how we can reduce to the semisorted case with a
loss of log n, and in particular, we use Theorem 3.3 to prove Theorem 1.4.

Sequence of Semisorted Functions and Reduction to the Semisorted Case. We now describe a semi-
sorting process which gives a way of getting from f to a monotone function. Without much loss of gener-
ality, let us assume n = 2* which we can assume by padding. Iteratively coarsen the domain [n]¢ = [2¥]¢
as follows. First “chop” this hypergrid into 2¢ many [n/2]? = [2*~1]? hypergrids by slicing through the
“middle” in each of the d-coordinates. More precisely, these 2¢ hypergrids can be indexed via v € {0,1}4,
where given such a vector, the corresponding hypergrid is

d
n n n
=1
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Each hypergrid Hy is an [n/2]¢ = [2¥~1]? hypergrid. Let us denote the collection of all these hypergrids
as the set 1. So, H1 has 2¢ many hypergrids and each hypergrid has dimension [n/2]? = [2¥~1]¢. Repeat
the above operation on each hypergrid in H;. More precisely, each hypergrid H in H; will lead to 2¢
hypergrids each with dimension [n/4]? = [2=2]¢. The total number of such hypergrids, which we collect
in the collection Ha, is 2¢ x 2¢ = (22)9. More generally, we have a family #; consisting of (Qi)d many
hypergrids of dimension [n/2{]% = [2¥=¥]4. The collection Hj,_; consists of (2¥~1)¢ many d-dimensional
hypercubes.

Figure 2: In the figure, we see an example with d = 2 and n = 8 = 23. There are 2°> many 4 x 4 green
(hyper)-grids, and 4> many 2 x 2 red squares.

Note that in any family H; for 1 < i < k — 1, each H € H; is a sub-hypergrid of [n]?. We let fz denote
the restriction of f only to this subset H of the domain. Also, let 7y denote the singleton set containing
only one hypergrid, [n]?. Define the function f; : [n]? — {0, 1} as follows: consider every hypergrid® H in
‘Hi—1 and apply the sort operator on fg for all these hypergrids. Note that f; is a monotone function when
restricted to H € Hy_1. Recursively define f; as follows: consider every hypergrid H € Hj_; and apply
the sort operator on (f;—1)x for all these hypergrids. Figure 3 is an illustration for d = 2 and k& = 3, i.e.
n=2_8.

Claim 3.4. There must exist an 0 < j < k — 1 such that A(f;, fj+1) > €¢/k.
Proof. This follows from triangle inequality and the fact that A(fo, fi) > ;. U

Proof of Theorem 1.4. We now show how Theorem 1.4 follows from Lemma 3.1 and Theorem 3.3 via
an averaging argument. We fix the j as in Claim 3.4. By Lemma 3.1 we get that for any function f and
any coloring X, there exists a recoloring x’ such that T, (f) > Ty, (f;). Now consider the hypergrids in
H € Hp_j_1. Let fj| g be the function restricted to this sub-domain H. Note that the function fj] H 1S
indeed semisorted by construction. Therefore, by Theorem 3.3 (on the coloring x’) we know that for all
HeHp j,

To ,(filn) > C" e

By Claim 2.5, we know that 2|, > A(f;j|m, fj+1|m). Taking expectation over H € Hj_j_1, we see
that the LHS is at most (at most since we only consider violations staying in H) T‘I’x’ (f;), while the RHS

/

is precisely A(f;, fj+1)/2 > €¢/2k. Putting everything together, we get o, (f) > ;O/gf; proving Theo-

rem 1.4. O

“these will be hypercubes
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Figure 3: The function f = fo is described to the left, and then one obtains f1, fo and fs. The function h
which is obtained doing sort on the whole of f is described below. Note h # f3.

3.1 Semisorting only decreases the Talagrand objective: Proof of Lemma 3.1
Let us first describe the coloring x’.

e First let us describe the recoloring of pairs of points (x,x’) which differ only in some coordinate
J # i and x; = X lies in the interval [a, b]. We go over all these edges by considering pairs of i-lines
which differ on a single coordinate j # i. More precisely, if £/ = x + te; then ¢/ = x’ + te; for some
x' = x + ae;j with a > 0. We now consider re-coloring the pairs (x,x" = x + ae;) as follows.

Let V' denote the points x € ¢ such that (a) x; € I, (b) f(x) = 1, but (c) f(x + ae;) = 0. That is
(x, X + ae;) is a violation. Consider all edges Ey := {(x,x+ae;) : x € V} and let ) be the |Ey|
dimensional 0, 1-vector which are the x values of edges in Ey going left to right.

Now consider the function i where I has been sorted on both £ and ¢'. Let U denote the points x € £
such that (a) x; € I, (b) h(x) = 1, but (c) h(x + ae;) = 0. That is (x,x + ae;) is a violation in h.
Firstly note that |[U| < |V/| and furthermore, these |U| points form a contiguous interval of I. We now
describe the recoloring x’ of the edges in Eyy := {(x,x + ae;) : x € V}; all the other recolorings
are immaterial since they don’t contribute to T‘I’x’ (h) since the edges are not violating. We take the
|V'|-dimensional vector Y, sort in decreasing order, and then take the first |U| coordinates and use
them to define x/(e) for e € Eyy, left to right. See Figure 4 for an illustration.

e Now we describe recoloring of pairs of points (x,y) which only differ in coordinate 4. First, if both
x; and y; lie in 1, or if they both lie outside I, then we leave their colors unchanged. Furthermore, if
(x,y) is not a violating pair in f, then we leave its color unchanged. Now consider a y to the right of
I, that is, y; > band f(y) = 0. Consider the x’s with x; in I with f(x) = 1, each of which forms
a violation with y. Suppose there are k¥ many of them, of which kg of them are colored 0 and k; of
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Figure 4: We are considering only the interval I. The line below is ¢ and the line above is {'. The green
shaded zones correspond to where the function evaluates to 1s. The situation to the right is after sorting.
Only the violating edges are marked. On the left, the red solid edges are colored x(e) = 1 while the blue

dashed are colored x(e) = 0. On the right, the color-coding is the same but for X'. All other unmarked
edges inherit the same colors as x.

1
1
1
1

them are colored 1. We now consider the picture in 5, and once again there are exactly k& (possibly
different) points in the interval which are violating with y in h. Going from left to right, we color the
first k1 of them 1 and the next ko of them 0, in x’. We now do a similar thing for a z to the left of I,
that is, z; < a and f(z) = 1. We now consider the x’s with x; € I with f(x) = 0, each of which
forms a violation with z. As before, suppose there are k£ many of them k; of them colored 1 and kg
of them colored 0. In g also there are k locations with which z is a violation. We, once again, going
from left to right, color the first k1 of them 1 and the next kg of them 0, in x’. See Figure 5 for an
illustration.

1 110101100 0 ‘ 1 000011111 0

Figure 5: The two vertical black lines demarcate 1. The green shaded zones correspond to where the function
evaluates to 1s. The situation to the right is after sorting. 'y is a point with f(y) = 0 to the right of I; =
is a point with f(z) = 1 to the left of 1. Only the violating edges incident to 'y and z are marked. On the
left, the red solid edges are colored x(e) = 1 while the blue dashed are colored x(e) = 0. On the right, the
color-coding is the same but for the recoloring X'. All other unmarked edges incident of y or z inherit the
same colors as x. Edges with both endpoints in I or both endpoints outside I also inherit the same color.

Now we prove the lemma “line-by-line”. In particular, we want to prove for any ¢-line ¢, we have

S Va0 2 3 e (x)

x€El xEL

Note that it suffices to prove the above for x whose x; € I.
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To prove the above inequality, it is best to consider the two vectors ®,(f) and ®,/(h) which are |I|-
dimensional whose xth coordinate is precisely ®, (x) and ®;, ,/(x) respectively. We want to prove

|7

e

1/2 = Hq)xl<h)H1/2 M

First we divide the |I| coordinates of ®, (f) into O U Z corresponding to when f(x) = 1 and f(x) = 0.

Let’s call these two vectors <1>§<1)( f) and 11)5(0)( f). The former vector is |O| dimensional, the latter is | Z|
dimensional, and @, (f) is obtained by some splicing of these two vectors. We will do the same for the

coordinates of ®,-(h) to obtain @;1/) (h) and @;9) (h). Note that since sorting doesn’t change the number of
Os or 1, both these vectors are |O| and | Z| dimensional, respectively. We now set to prove

o9 (n)

and H(ID;O)(f)H > ||,

/2 2

o007, 2 |2

1/2 1/2

and this will prove (1). We prove the first inequality; the proof gf_}he second is analogous. For brevity’s

sake, for the rest of the section we drop the superscript (1) from ®(1).

The plan is to write ®, (f) as a sum of (Boolean) vectors, and then show that ®,/(h) is dominated by the
sum of sorts of those Boolean vectors. Then we invoke Lemma 2.11.

We write @, (f) as a sum of Boolean vectors as follows. Fix any other i-line ¢’ := ¢ + ae; for some
j # i and a > 0. Define the following (0, 1)-vector also indexed by elements of O.

up(x) =1 if f(x+ae;) =0and x(x,x + ae;) =1
That is, uy (x) = 1 if the projection of x onto ¢, (x,x’ := x + ae;), is a violating edge in f with x-color 1.
Define the following vector A as follows.

Definition 3.5. For any x € O,

A =S min 1, 3 wx| =S w

i 0'=l+ae, i

let’s call this wj(x)€{0,1}
Finally, for x € O, define
Al(x) =1 if there is some y to its right, potentially outside the interval / with f(y) = 0 and x(x,y) = 1

Using the vectors, we can write

Observation 3.6. For any x € O,
O, (f)(x) = A*(x) + Al (x)

Now let’s consider the situation after [ is sorted. The ones of O now “shift around”; indeed, they are the
|O| many right most points. Let’s call these locations O and note |O’| = |O|.
Now define the |O’| = |O| dimensional vector vy where for x € O’

vp(x) =1 if h(x +aej) = 0 and X' (x,x + ae;) = 1

Now we will use the property of the recoloring we performed. We claim two things:
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Claim 3.7. The number of 1s in vy is at most the number of 1s in uy, and vy is sorted decreasing.

Proof. The number of 1s in uy is precisely the number of violating edges of the form (x,x’) in f, where
x; € I and X’ = x + ae; and x(x,x’) = 1. Similarly, the number of 1s in uy are precisely the number
of violating edges of the form (x,x’) in h, where x; € I and X’ = x + ae; and x/(x,x’) = 1. When we
recolored to get x' we made sure by property (a) that the latter number is smaller.

Take x and y in O, with x; < y;, but suppose, for the sake of contradiction, vy (x) = 0 and vy (y) = 1.
The latter implies h(y’ := y +ae;) = 0 and x'(y,y’) = 1. Since h is sorted on ¢, h(x' := x+ae;) = 0 as
well. Since x € O, h(x) = 1 which means (x, x) is a violating edge in h. v (x) = 0 implies }’(x, x") = 0.
But this violates property (b) of x’. 0

What we need is the following corollary.
Forany ¢' = ( + aej, vy <coor (uﬁ')i 3)

where recall that (z ) 1s the sorted-decreasing version of z.

Just as we defined AL define the |O|-dimensional vector Bl as follows.

Definition 3.8. For any x € O/,

:Zmin 1, Z v (x) :3ZZJ(X)

i O'=l+ae, i

let’s call this z.j(x)€{0,1}

Note that for every j # i, w; and z; are |O| = |O’| dimensional Boolean vectors which we index by
x € O and x € O', respectively.

Claim 3.9. For all j, 7; <coor (W)

Proof. Follows from (3), and the defintions of z; and w; as described in Definition 3.5 and Definition 3.8.
O

Finally, for x € O, define the |0’| = |O| dimensional vector B!l as
Bl(x) = 1 if there is some y to its right, outside the interval I with h(y) = f(y) = 0 and ¥'(x,y) = 1.

Just as in Observation 3.6, note that

Observation 3.10. For any x € O/,

We now connect Al and Bl as follows.
—> —\ ]
Claim 3.11. Bl <., (A”)

Proof. Similar to Claim 3.7, this follows from the following claim.

Claim 3.12. The number of 1s in Bl is at most that in Al, and B\l is sorted decreasing.
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Proof. This also follows from the way we recolor ’ the pairs of the form (x,y) with y lying to the right of
I and f(y) = 0. First let’s show B I'is sorted decreasing. Take two points x and z with a < x; < z; < b

both evaluating to 1 in g. Say, Bll(z) = 1 implying there is some y with g(y) = f(y) = 0 to the right of T
s.t. X'(z,y) = 1. However, the way we recolor the edges incident on y, this implies x/(x,y) = 1 as well.

But that would imply Bll(x) = 1.

The first part of the claim also follows from the way we recolor. Suppose the number of ones in Al is ¢.
That is, only ¢ of the points in O have 1-colored edges going to the right of the interval. Consider the subset
W of these outer endpoints. The function value, both f and g, are 0 here. Note that none of these points in
W have more than ¢ edges incident on them which are colored 1 in x. Now note that in ’, this number of
1-edges are conserved, and_sp for every w € W, the number of 1-colored violating edges is still < ¢. Now

suppose for contradiction B I has (t + 1) ones. Take the right most point x and consider the violating edge
(x,y) which is colored 1 in x’. By construction, this y must have 1-colored edges to all the (¢ + 1) points
(since we color them 1 left-to-right). This contradicts the number of 1-edges incident on y. O

O]

To summarize, we have from Observation 3.6 and Definition 3.5,
o\ (f) = ij + Al
J#i

that is, we have written the LHS as a sum of Boolean vectors. And, we have from Observation 3.10 and Def-
inition 3.8, followed by Claim 3.9 and (3.11) that

b =Yt B Zeer 3w+ ()
i i

N
call this s®

Trivially, we have H(DX/(h)H < HS—(I;H , and from Lemma 2.11, we get HS—(I;H < H@X(f)H ,
1/2 1/2 1/2 1/2
completing the proof of the first part of (2).

4 Connecting with the Distance to Monotonicity: Proof of Theorem 3.3

In this section, we set the intuition behind (H2) straight. We show how the isoperimetric theorem Theo-
rem 3.2 on semisorted functions can be used to prove Theorem 3.3. We begin by recalling the corollary of
the undirected, colored Talagrand objective on the hypercube.

Corollary 1.9 (Corollary of Theorem 1.8 in [KMS15]). Fix f : [n]¢ — {0, 1}. Fixanx € [n]? and consider
the tracking function gy : {0,1}% — {0,1}. Consider any arbitrary coloring & : E(2[4) — {0,1} of the
Boolean hypercube. Then, for every x € [n]d, we have

Escig [\/ e (5)] = Qvar(gx))

As mentioned earlier, one can’t show (H2), that is, Ex[var(gx)] = €2(e¢). Indeed, there are examples of
functions even over the hypercube where the above bound does not hold. KMS deal with this problem by
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applying Theorem 3.2 to random restrictions of f. One can show that there is some restriction where the
corresponding Ex [var(gx)] is large. They referred to these calculations as the “telescoping argument”. This
argument was quantitatively improved by Pallavoor-Raskhodnikova-Waingarten [PRW22].

In this section, we port that argument to the hypergrid setting. Our proof is different in its presentation,
though the key ideas are the same as KMS. Our first step is to convert Theorem 3.2 to a more convenient
form, using the undirected Theorem 2.8.

Theorem 4.1. There exists a constant C' > 0 such that for any semisorted function f : [n]* — {0,1} and
any arbitrary coloring x : E — {0, 1} of the augmented hypergrid, we have

To, (f) =2 C"-Es[A(So f,S0 f)].

Proof. By Theorem 3.2, there exists some colorings &y such that Tp, (f) > ExEs[\/Ig, ¢ (S)]. By the
undirected Talagrand bound Theorem 2.8, Eg[+/1,, ¢, (S)] > C - var(gx).

Es[A(So f,Sof)] = EsEx[1((Sof)(x)# (Sof)(x))]
= EsEx[1(gx(S) # 9x(95))]
= ExEs[L(gx(S) # gx(5))] < 4Ex[var(gx)] ©)

(The final inequality uses Claim 4.2, stated below.) Hence, ExEg[\/1, ¢(S)] > (C/4)Eg[A(So f, So f)].

Claim 4.2. For any Boolean function h : {0,1}¢ — {0, 1}, Prg[h(S) # h(S)] < 4var(h).

Proof. Recall that var(h) = 4 Prg[h(S) = 0] Prg[h(S) = 1]. Hence, var(h) = 4 maxycyg 1) Prs[h(S) =
b] minge 0,13 Prs[h(S) = b]. Since one of the values is taken with probability at least 1/2, var(h) >
2minyeqo1) Prslh(S) = ).

Let S = {S | h(S) # h(S)}. Observe that half the sets in S have an h-value of 1, and the other half
have value zero. Hence, Prg[h(S) # h(S)] < 2minyeqg 1y Prs[h(S) = b]. Combining with the bound
from the previous paragraph, Prg[h(S) # h(S)] < 4var(h). O

O]

We now give some definitions and claim regarding the Talagrand objective of random restrictions of
functions.

Definition 4.3. Ler S C [d] be a subset of coordinates. The distribution of restrictions on S, denoted R, is
supported over functions and generated as follows. We pick a uar setting of the coordinates in S, and output
the function under this restriction. (Hence, h ~ Rg has domain [n]s .)

The isoperimetric theorem of Theorem 3.2 holds for any ordering of the coordinates. In this section, we
will need to randomize the ordering of the sort operators. We will represent an ordering as a permutation 7
over [d]. Abusing notation, for any subset S C [d], 7(.5) is the induced ordered list of S.

Definition 4.4. For any function h : [n]¥ — {0, 1}, define §(h) to be E-[A(h, w([k]) o h)].

By Claim 2.3, sorting on all coordinates leads to a monotone function. Thus, §(h) is at least the distance
of h to monotonicity. We will perform our analyses in terms of d(f), since it is more amenable to a proof
by induction over domain size.

The following claim is central to the final induction, and relates §( f) to Eg[A(S o f, S o f)]. This is the
(only) claim where we need to permute the coordinates. All other claims and theorems hold for an arbitrary
ordering of the coordinates (when defining S o f).
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Claim 4.5. §(f) < EsE; z(5)[0(h)] + E-Es[A(r(S) o f,7(S) o f)]

Proof. Let us consider an arbitrary ordering of dimensions. By triangle inequality,
A(f,SoSof) <A(f,Sof)+A(Sof,SoSof)

Observe that So So f = S o f, since sorting repeatedly on a dimension does not modify a function. Hence,
A(Sof,SoSof)=A(So0Sof,SoSof)<A(Sof,Sof). The latter inequality holds because
switching only reduces the Hamming distance between functions (Claim 2.4). Plugging this bound in and
taking expectations over ordered subset .S of dimensions:

Es[A(f,SoSo f)] <Es[A(f,So f)] + Es[A(So f,S o f)] ®)

Observe that S o f only changes the function in the dimensions in S, and can be thought to act on the
restrictions of f (to S). Hence Es[A(f,S o f)] = Epr(s)[A(h, S o h)]. Roughly speaking, the quantity
A(f,S o So f)ise(f) and Ej g (s)[A(h, S o h)] is Eporse(h). So we would hope that (5) implies
e(f) <e(h) + Es[A(So f,S o f)].

Unfortunately, the quantities are only constant factor approximations of £(f),e(h). So by converting
(5) in terms of e( f), we would potentially lose a constant factor in (5).

To avoid this problem, we deal with §(f) instead. By randomly permuting S and taking expectations,
the quantities in (5) can be replaced by §(-) terms. Taking expectations over a uar 7, (5) implies

E-Es[A(f,7(S) om(9) o f)] < ExEs[A(f,7(5) o f)] + E<Es[A(n(S) o f,m(S) o /)] (6)
Note that the switching order in the LHS, 7(S) o 7(.S), is uniformly random. Moreover,
E-EsEj r(s)[A(h, 7(5) o h)] = EsELER[A(h, w(S) o h)] = EsEp[6(h)]

Combining all our bounds, we get that §(f) < EsEj r(s)[0(h)] + E-Es[A(n(S) o f,m(S)o f)]. O

We prove a useful claim about the Talagrand objective of restrictions, made in [PRW22].

Claim 4.6. Letp € (0, 1), and H(p) be the distribution of subsets of |d] generated by selecting each element
with iid probability p. Then, To, (f) > (1/1/P) - Egpi(p)En~rs[Te, (h)].

Proof. Fix a set S. For any subset S of coordinates, let the define the influence in S as @, (x;5) =
Y ics Py (x;4). We are just summing the influences over the coordinates of S.

Consider the quantity Ep [T, (h)] = EporgEz[\/®ny(2)]. Note that z denotes a uar setting of
the coordinates in S. The colorings of A are inherited from the coloring of f. Each function / is indexed by
a (uar) setting of S. Hence,

EnrsEz[\/ ®nx(2)] = Ex[y/Pf(x;5)] (7

The point x is uar in the entire domain [n]%. Note that Eg.(,)[® 7, (x; 9)] is precisely p - @, (x; 5),
since each coordinate is independently picked in .S with probability p.

Es i) EnrsTo, (1)) = EsEx[\/®f(x;5)]
— ExEgs[y/®/,(x;5)]

Bx |/ Bs[®(x:5)]| = Bx|\/p- 013(x:9)] = V- To, (/)

IN
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The inequality above is a consequence of the concavity of the square root function and Jensen’s inequality.
O

Now we have all the ingredients to prove Theorem 3.3 whice we restate below for convenience.

Theorem 3.3 (Theorem 1.4 for semisorted functions.). Let f : [n]¢ — {0, 1} be a semisorted function
that is e-far from monotone. Let x : E — {0, 1} be an arbitrary coloring of the edges of the augmented
hypergrid. Then there is a constant C" such that

To,(f) = Bx |y/07,00] 2 "

Proof. The proof is by induction over the dimension d of the domain. Formally, we will prove a lower
bound of (C’/10)e, where C’ is the constat of Theorem 4.1.
Let us first prove the base case, when d < 10. Note that @, (x) = Zle ® .\ (x;1), where each term in

the summation is 0-1 valued. Hence, by the /;-l3-inequality, \/® ¢, (x) > Zle Qs (x59)/d = Py (x)/d.
Thus, Ts, (f) > Ex[®,,(x)]/d. Furthermore, Ex[® , (x)] = Zgzl Ex[®¢,(x;7)]. We can break the
expectation over x into lines as follows.

(I)fX ZEéudrzlme (I)f|g, ( )]

(The coordinate ¢ is uar in [r].) Now, for a Boolean function f|; on a line, if the distance to monotonicity is
€, then there are at least en violating pairs [EKK00], and thus for any coloring x, we have E.[®, , (c)] >
e(f10)- and 33 By var e (Fle) = Qe(S)).

Hence, T, (f) = 2(e/d). For d < 10, the lemma holds, and so henceforth we assume d > 10.

Now for the induction step. We now break into cases.

Case 1, ExEg[A(n(S) o f,7(S) o f)] > 6(f)/10: By Theorem4.1, Ty, (f) > ¢- Eg[A(So f,So f)]

(for any ordering of coordinates). So Ty, (f) > ¢ - ExEg[A(n(S) o f,7(S) o f)] > (¢/10) - 6(f).
Case 2, E-Es[A(S o f,5 o f)] < 8(f)/10: By Claim 4.5, EsE),z(s)[6(h)] > 6(f) — ExEg[A(S 0

f+S o f)]. In this case, we can lower bound ESE;, .z (s)[0(h)] > (9/10)4(f). Note that S is drawn from
the distribution 7(1/2). When S # [d], we can apply induction to Tg, (h) for h ~ R(S). Hence,

Es (/2 Enrs)To, (b)) > 27¢ Z Ejr(s)[To, (h)] >27%- (¢/10) - Z Ej r(s)[0(h)]
S#[d oy

— 27 (/10). (S%; Enris) 5(0)] - Ew[dw(h)})

= (¢/10)(EsEpur(s)d(h)] —27%5(f))  (h~R((d))is
> (¢/10)-(9/10) - 6(f) — 27 - (¢/10) - 6(f) (by case condition)

= (9/10 = 27%) - (¢/10) - 6(f) = (4/5) - (¢/10) - 6(f) ®)
By Claim 4.6, T, (f) > \@-ESNH(UQ)E,WR(S) [T, (h)]. Combining with the inequality of (8), T, (f) >
(V2-4/5) - (¢/10) - 5(f) > (¢/10) - 6(f). O
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5 Connecting Talagrand Objectives of f and the Tracker Functions

In this section and the next, we establish our main technical result Theorem 3.2 relating the Talagrand
objectives on the colorful thresholded influence of the hypergrid function f : [n]¢ — {0,1} and the Ta-
lagrand objectives on the undirected influence of the tracker functions. We restate the theorem below for
convenience.

Theorem 3.2 (Connecting Talagrand Objectives of f and Tracker Functions). Let f: [n]? — {0,1}
be a semisorted function and let x: E — {0, 1} be an arbitrary coloring of the edges of the fully
augmented hypergrid. Then for every x € [n]%, one can find a coloring & of the edges of the Boolean
hypercube such that

T<I>X (f) = Exe[n}d |: (I)f,x(x):| > Exe[n]d ESQ[d] [\/ ng,Ex(S)]'

To prove Theorem 3.2 we need to describe the coloring &, for each x in [n]?. We proceed doing so in d
stages.

e Forevery i € {0,1,...,d} and for every x € [n]?, we define a partial edge coloring f,(f) of the
hypercube which assigns a {0, 1} value to every hypercube edge of the form (7,7 @ j) for all j < ¢,

and for all T C [i]. The process will begin with the null coloring, 5,(9), and end with a complete
coloring, &x := g@, for every x € [n]d.

e Forevery i € {0,1,...,d} and every S C [i] we will also define a coloring Xg) of the edges of
the augmented hypergrid. We start with Xéo) := x where Yy is the original coloring which, recall, is

adversarially chosen.

For every ¢ € {0,1,...,d} and S C [i] we will use the above colorings to define the (i, .S)-hybrid
Talagrand objective

i d
Ri(S) = By ;ngf 0 (9) + j;rl@SOf,xg)(X; 7). (Colorful Hybrid)

Recall that S o f is the function obtained after sorting f on the coordinates in S. Note that R;(.S) is

well-defined given the partial colorings 5,(5) for each € [n]? as defined above. Also observe that since

Xéo) := X, the arbitrary coloring specified in the theorem statement, we have that Ry(()) is precisely the

LHS in the statement of Theorem 3.2, that is, Ro(f)) = Eyxcppe [/ @, (x)]. Additionally, since we use

€x = f,ﬁd), observe that Egcq[R4(S)] is precisely the statement of Theorem 3.2.
With the above setup in mind, we show that the following Lemma 5.1 suffices to prove Theorem 3.2.

Lemma 5.1 (Potential Drop Lemma). Fixi € {1,...,d}, f,(f_l)for all x € [n]?, and Xg_l)for every

S C [i — 1], which all satisfy the specifications described in the previous paragraph. There exists a

(4)

choice of f,(f ) for every x € [n]¢ and x ; , ngll for every S C [i — 1] all satisfying the specifications
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described. in the previous paragraph, such that for all S C [i — 1], we have (a) R;—1(S) > R;(S) and
(b) Ri—1(S) > R;(S +1).

Proof of Theorem 3.2: Consider the following binary tree with d + 1 levels. Each level ¢ € {0,1,...,d}
(@)

has 2¢ nodes indexed by subsets S C [i]. Every such node is associated with a coloring g of the augmented

hypergrid edges. The level 7 is also associated with a partial coloring 5,(3) for every x € [n]?.

The 0’th level contains a single node indexed by (). The associated augmented hypergrid coloring is
Xéo) := x. The partial coloring §,(c0) is null for all x € [n]?. We associate the value Ro()) = Ty, (f) with
the root.

For 1 <4 < d, we describe the children of each node in level : — 1. Each node in level i — 1 is indexed by
some S C [i —1]. We associate this node with the value R;_(,5). This node has two children at level i: one,
the left child, indexed by S and the other, the right child, indexed by S + 4. The coloring of the hypergrid
edges at the left child is defined as xfé) from the lemma, and that of the hypergrid edges at the right child

is defined as ngﬂ from the lemma. The left and right children hold the quantites R;(S) and R;(S + i),

respectively. At level ¢, the partial coloring f,(f_l) is also extended to 5,(3) for every x € [n]? as stated in the
lemma. From the lemma, we have R;_1(S) > R;(S) and R;_1(S) > R;(S + i). This immediately implies
the following:

Foralli € {1,...,d}, we have Egcf;_11[Ri-1(S)] > Egcp;)[Ri(S)]

and chaining these d inequalities together yields Ro(()) > Egcq[Ra(S5)]-
Now consider the leaf nodes of this tree, Wthh hold the values R4(S ) for every S C [d]. Observe that

Ri(S) = Excpye [V T (S)] since & := fx . Recalling that Ro(()) = T, (f) yields

To (/) = Ro(0) > Bscq[Ra(S)] = BsciqExeps [ ng,gx<s>]

and this establishes the claim after exchanging the expectations. O

6 Proof of Potential Drop Lemma 5.1

Recall i € {1,...,d} is fixed. For brevity’s sake, we will fix aset S C [i — 1] and call h := (S o f). Let’s

refer to xg_l) as simply x without confusing with the original x in the theorem. The two colorings Xg) and

qu)ﬂ that we construct will be simply called X’ and x”, respectively. Let’s call the partial colorings § =1

as simply &. We will call the coloring §x which we need to construct simply &, in the latter. Recall that
&x is defined on all edges (7,7 & j) for T' C [i — 1] and j < i — 1 and in order to prove the lemma we will
need to define & on all edges ('@ j) for T C [i] and j < 1.

Fix an i-line . We prove the lemma line-by-line. To be precise, let us consider the following vectors.
First,

L= ZI—J ) 4 B (x39) ZcphXXJ i x €l )
N— j=it+1
‘14—’ £, —~
L(1>e L(3)Z
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Observe that

, T 1@, 1@
B =g 3 2], = 3 [0+ 4 28 1)
where, recall, we are (ab)using the notation [|v]|; 5 := ZZ \/172
Define
Ry = Z 0, (S) + I (S) + Y Bp(xi) o xEd (11)
S j=it1
R®, —~—
R(l)g R®),

where we have denoted, in red, the recolorings that we need to define. The “first” RHS term is

1 - 1
(S) = — - (1) (2) (3) H 12
RS =g 3 R = 2[RV B0 RO )
i-lines £ i-lines £
Similarly, define
N i—1
My = L7, (S+1i) + Il (S+1) Z Dionr(x:5)  : xEL (13)
j=1 %f—’ j=i+1
—~ g M@, —~
M@, ME),

and notice that the “second” RHS term is

1 — 1
Ri(S +i) = — HM H S HM(1> M®, 4+ MO H 14
1(S+Z) nd,z €1/2 nd,z ¢+ ¢+ é1/2 (14)
- nes ¢
Observe now that it suffices to prove that there exists colorings X', x”, and &, ’s such that Hngl/Q >
HI_%)gH > H]\_j g” for all -lines £. Thus, we now fix an ¢-line ¢ and drop the subscript,
1/2 1/2 1/2
£, from all the previously defined vectors for brevity. We define LHS := HZH1/2’ RHS; = HRH

and Hng

1/2’
RHSy := H]—\ZHUQ’ and set out to prove LHS > RHS; and LHS > RHS,.

A Picture of the Line. Since h is semisorted, the picture of h restricted to £ looks like this. The green
zone is where the function is 1. Without loss of generality we assume £ has more ones than zeros. We use A
to denote the ones on the left and C' to denote the zeros on the right. We use k :=|C|,and B C A are the
k right most ones in the left side. Throughout, we will use the notation A x to denote the sub-vector of A
defined on ¢ with coordinates restricted to x € X; we will always use this notation when X is a contiguous
interval. Indeed, these X’s will be always picked from {W, A, C, O, B, A\ B} or unions of these, always
making sure they form a contiguous interval.
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High Level Idea. Before we venture into proving the inequalities, we would like to remind the reader
again of the proof strategy discussed in Section 1.3. We need to define the colorings x’, x”, and also
{,(ci)’s such that the objective after recoloring satisfy the inequality we desire to prove. This going to hinge
upon showing that the vector obtained after operation either majorizes or is coordinate-wise dominated by a
vector that majorizes the vector before the operation. In particular, these are the conditions (a)-(d) and (e)-
(h) mentioned below in the grey boxes. To show these properties, we would be crucially using the property
that the function f is semi-sorted which leads to certain monotonicity properties that allows us to claim
them. In particular, we would be using Lemma 2.11 when establishing almost all the conditions mentioned
above. There is a certain sense of repetition in which these arguments are made, however, we have provided
all the details for completeness.

6.1 Proving LHS > RHS;

During the proof of LHS > RHS;, we will define the coloring x’ on all edges of the fully augmented
hypergrid and £, (S, S @ j) where j < i for all x € [n]¢. We will not specify . (S + i,S + i @ j) since
these won’t be needed to prove this inequality; we will describe them when we prove LHS > RHS,.

Before we describe the recolorings, it is useful to describe the plan of the proof. This will motivate why
we recolor as we do. We will actually consider

5 = [T, + [ Eall o + 2], + 7o

1/2 1/2 1/2 1/2

and — — — —
RHS: = |, + |l , + e, +[[Fo]
1/2 1/2

1/2 1/2

and argue domination term-by-term.
More precisely, we find recolorings x’, £’ such that

@ RY = <L(§)> and RY) = sy <L(OQ)> forg € {1,3},

—

— — ——>\ —
(b) 3L such that L'?) = s, <L‘j)> and I'\?) = coor RY,

© R =ma (Léqv)) and RY =y (L%”) for g € {1,3},

—> —>

— =\ —
(d) 3L such that L = ma; <L‘02)> and LY =coor RS,

Let us see why the above conditions suffice to prove the inequality. The second part of (b) implies that

[, < |+ 29

. Part (a) and the first part of (b), along with Lemma 2.11, implies
1/2
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—\ +
RS) + Rf) + L;(f) maj (LA> . And so,
implies ||LC||1/2 2 ”RCH1/2-

Lallyo = [[Rally2- A similar argument using (c) and (d)

One last observation is needed to complete the proof. Note that Rl(f,) is the zero vector: the points

x € W don’t change value even when / is sorted. Also note that L%,IQ/) is the zero vector; the points x €
W don’t participate in a violation in direction 7. And therefore, part (c) along with Lemma 2.11 implies

N T
Ry = maj (LW> implying ||Lw ||, 5 = [[Rw || /o. Similarly, R(O2) = Lg) = 0, and thus part (a) along

with Lemma 2.11 implies | Lol 2 = [[Roll; -

6.1.1 Proving (a) and (c) for ¢ = 3

Defining the Coloring x': We will now describe the coloring X’ on all edges of the form (x,x + ae;)
where j > ¢+ 1, h(x) = 1 and h(x + ae;) = 0. For all other edges e, we simply define x'(e) = x(e) as
these edges do not play a role in proving the inequality.

Given a pair of i-lines £ and ¢/ = ( + ae; for j > 1+ 1and a > 0, we consider the set of violations from
lto in h:

Vi={(x,x+ae;): x €, h(x) = 1, and h(x + ae;) = 0}. (15)

Since h is semi-sorted, it’s clear that we can write V' = V7, U Vg as a union of two intervals, in the sense that
{x: (x,x+ae;) € Vi } is an interval in the lower half of £ and {x: (x,x+ae;) € Vr} is an interval in the
upper half of ¢. Similarly, the upper endpoints form two intervals in #. We then obtain x’ by down-sorting
x on each of these intervals, moving left-to-right:

(X'(e): e € V) = (x(e): e € Vi)* and (x/(e): e € V) = (x(e): e € V)*.

We provide the following illustration for clarity. The white and green intervals represent where h = 0 and
h = 1, respectively. The vertical arrows represent violated edges. Blue edges have color 0 and red edges
have color 1. The left picture depicts the original coloring, , and the right picture depicts the recoloring x’.

hl{/ hlf’
l | | l | |
AAAAAA AAAA AAAAAA ’ AAAA
o o
l | | l | |
[ E— — —
VL h VR VL hl VR
|f 4

We now return to our fixed ¢-line ¢ and set out to prove parts (a) and (c) for ¢ = 3, given this coloring
X’. Let’s recall our illustration of £ and our definition of the intervals W, A, C, O.

~
=~
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Proving (a) for g = 3: Fixj > i+ landai-line ¢’ := ¢+ ae;. Let A := {x € A : h(x+ ae;) =0}
and O' := {x € O : h(x+ aej) = 0}. Since h is semi-sorted, it is not hard to see that A" and O’ are
prefixes of A and O, respectively.

Claim 6.1. Ifx; < x| in A such that x' € A’, then x € A'. The same is true for O and O'.
Proof. Since h is semisorted, h(x” + ae;) = 0 implies h(x + ae;) = 0. O
Moreover, observe that our definition of X’ gives us
(X'(x,x+aej): x € A') = (x(x,x +aej): x € A’)i

and
(X'(x,x+ aej): x € O') = (x(x,x + ae;): x € O/)i.
Let’s investigate what this leads to. These are key properties.

Definition 6.2. Fix j > i + 1 and fix an i-line {' := { + ae; for a > 0. Define the following two boolean

vectors
vfa = (1(h(x+aej) =0 and X'(x,x + ae;) = 1) = A)
and

Observe, for x € A,

O, (x37) mln( Zvja X) and Py, (x;7) mln( Zvja > (16)

Claim 6.3. Fixaj > i+ 1 and a > 0. For any two x; < X, in A, wehavevja( )>v (x'). That is, the
R

vector v,

is sorted decreasing.

Proof. Since h is semisorted h(x’ + ae;) = 0 implies h(x + ae;) = 0. Furthermore, since both these are
violations, by design x/(x/, x" + ae;) = 1 implies x'(x,x + ae;) = 1. O
Claim 6.4. Fixa j > i+ 1 and a > 0. The vectors vfa and V]Ij o, are permutations of one another.

Proof. This is precisely how x’ is defined: it only permutes the colorings on the violations incident on
A. O

In conclusion, using the observation (16), we conclude that we can write

- d
Lf) = Z O (x55) @+ xe A
j=i+1

as a weighted sum of Boolean vectors, and the above two claims imply that the vector

- d
RY =Y @nyixij) : xe4
j=it+1

is the same weighted sum of the sorted decreasing orders of those Boolean vectors. Therefore, we can
conclude using Lemma 2.11,
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RY) > maj (di”) (17)

An absolutely analogous argument with O’s replacing A’s gives us
3. (8
RS = (LO) (18)

Proving (c) for ¢ = 3: The picture is similar, but reversed, when we consider the points in W U C, where
h(x) = 0. Recall the definition of W and C' as in the illustration. Fix j > ¢ + 1 and a ¢-line ¢ := ¢ — ae;.
LetW':={xeW : h(x—aej) =1} and C" := {x € C : h(x — ae;j) = 1}. It is not hard to see that
W' and C” are suffixes of W and C, respectively.

Claim 6.5. Ifx; < x| in W such that x € W', then x' € W'. The same is true for C' and C'.
Proof. Since h is semisorted, h(x — ae;) = 1 implies h(x' — ae;) = 1. O
Again, observe that our definition of x’ gives us
(X'(x — aej,x): x € W) = (x(x — aej,x): x € VV’)¢

and
(X'(x — aej,x): x € C') = (x(x — aej,x): x € C")i

Definition 6.6. Fix j > i + 1 and fix an i-line {" := { — ae; for a > 0. Define the following two boolean
vectors

<
I

E . (1(h(x —aej) =1 and x'(x —aej,x)=0) : x€C)

and
vi = (1(h(x —aej) =1 and x(x —aej,x) =0) : x€ C)

Observe, forx € C,

P, \/(x;7) = min (1, vaa(x)> and Py (x;7) = min (1, Zvﬁa(x)) (19)

Claim 6.7. Fixa j > i+ 1 and a > 0. For any two x; > X, in C, we have Vfa(x) > Vfa(x’). That is, the
R

vector v

na IS sorted increasing when considered left to right.

Proof. Since h is semisorted h(x’ — ae;) = 1 implies h(x — ae;) = 1. Furthermore, since both these are
violations, by design x/(x/, x" + ae;) = 0 implies x'(x,x + ae;j) = 0. O
Claim 6.8. Fixa j > i+ 1 and a > 0. The vectors Vﬁa and vﬁa are permutations of one another.
—> —>
A similar argument to the one given above now implies L(CB) is a sum of Boolean vectors, and R(g’ ) is
the sum of the sorted increasing orders of those Boolean vectors. Using Lemma 2.11, we can conclude
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— —\ 1
R® = i (LS‘)) (20)

And an absolutely analogous argument gives

— —\ 1
Ry Zmaj (L(v‘?) 1)
This finishes the proofs of ¢ = 3 for (a) and (c).

6.1.2 Proving (a) and (c) for ¢ = 1

Defining & (S, S @ j) for S C [i —1]and j <i—1: We now define the partial coloring &, := @ on all
edges (S, S @ j) where S C [i — 1] and j < i — 1 for all x € [n]%. These are exactly the relevant edges for
the proof of parts (a) and (c) for ¢ = 1. Note that the partial coloring & := 5,(3_1) is defined over precisely
these edges for each x € [n]%. The color of £, on the edges (S, S + i) for S C [i — 1] will be defined when
we prove parts (b) and (d). The color of &, on the edges (S + 4,5 +i® j) for S C[i —1]and j <i—1
will be defined when we prove LHS > RHSs.

Fix j <i—1,5 C [i — 1], and a i-line £. We consider the set of x € £ such that (S, S @ j) is influential
in gx:

Vi={x€l: gx(S)=1and gx(S ® j) = 0}. (22)

Note that since f is semi-sorted, we have that (S o f) and (S @ j o f) are both semi-sorted. Thus, we
can write V = V, U Vi where V7, and Vj are intervals contained in the left and right half of /, respectively.
We again obtain &), by down-sorting the original coloring on these intervals:

(E(S,S®j):x € VL) = (&(S, S @ j): x € Vi)

and similarly
(€(S,S®j):x € VR) = (&x(S, S @ j): x € VR)*.

Forall x € £\ V, we define £ (S, S @ j) := &(S, S @ j). This completely describes &, (S, S @ j) for every
x € [n]?.

We provide the following illustration for clarity. Note that the picture is quite similar to the one provided
in Section 6.1.1, when we defined ’. The key difference is that the bottom and top segments represent the
same line /, but with different functions S o f and (S @ j) o f, respectively. The vertical lines are no longer
arrows to emphasize that they represent undirected edges in the hypercube as opposed to directed edges in
the augmented hypergrid.

(S®N-Nl, S®)-Nl,
l | | l | |
—¢ - — ¢ -
l | | l | |
— — 7 —
v SeNl, Ve v SN, Ve
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We now return to our fixed ¢-line ¢ and set out to prove parts (a) and (c) for ¢ = 1, given the colorings
&L.. Let’s recall our illustration of ¢ and our definition of the intervals W, A, C, O. Recall that gx = h(x)
and so the definition of these intervals is the same.

~
=~

Proof of Part (a) for ¢ = 1: Fixj <i—1landlet A = {x € A: gx(S® j) =0} and O’ = {x €
O: gx(S®j) = 0}, which are prefixes of A and O, respectively. From our definition of £/ (S, S @ j) above,
we have

(EL(S, S @ j): x € A) = (&(S, 5 @ j): x € A')*

and similarly

(EL(S, S @ j): x € 0') = (&x(S, S @ j): x € O)*.
Claim 6.9. ( e (9) 1 xe€ A) is a sorted decreasing vector, and is a permutation of ( o £X(S ) @ xXE€ A).
Proof. Take x; < x} in A. Note that gx(S) = 1 for both x, x". Thus,

ngj’gl (S) -1 (QX(S @j) = (0 and &(S,S @j) = 1)

and

ng]§x<5) =1(gx(S@j)=0and &(S,S @ j) =1)

The two vectors are Boolean vectors with number of ones equal to the number of ones in ({x (S, S®j) : x €
A") which equals the number of ones in (£, (S, S @ j) : x € A’). Thus, they are permutations. By design
of &..’s, this vector is sorted decreasing on A’, and all zeros in A \ A’ (which come to the right of A’). [

Observing that
- 5 i—1
1
L] Z . (S) :xeA| and Ry I7,(S) : xeA
j=1
using Lemma 2.11 and the claim above, we get
20 (23
Ry’ Zmaj | Ly (23)
Absolutely analogously, we get
A0, ()
RO Emaj <LO ) (24)
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Proof of Part (c) for ¢ = 1: The picture is similar, but reversed when we consider the points in W U C,
where gx(S) = 0. Fix j < i — 1 and define W’ := {x € W: gx(S® j) = 1} and C' := {x €
C': gx(S@®j) = 1} which are suffixes of W and C, respectively. From our definition of (S, S @ j) above,
made from the perspective of the set S' @ j, we have

(€L(S, S @ j): x € W) = (6x(5, 9 @ j): x € W')*

and similarly

(EL(S, S @ j): x € C") = (&x(S, S @ j): x € ).

Analogous to Claim 6.9, we have the following claim.
Claim 6.10. <I;j5, (S) : xe€ W) is a sorted increasing vector, and is a permutation of (I;jgx(S) : X E W)

Arguing similarly to the proof of Equation (23) we get

— — >\

Ry =i (L(vlv)> (25)
and absolutely analogously, we get

2. (D)

RC Emaj LC (26)

17), (18), (20), (21), and (23), (24), (25), (26) establish (a) and (c).

6.1.3 Proving (b) and (d):

Finally, we need to establish (b) and (d). Let us recall these and also draw the picture of ¢ that we have been
using.

—_ —_ —\ J —_ —
(b) 3L'? such that L'?) = s, (Lff’) and L'\?) =coor R,

— — —\ 7T — —
(@) 3L such that L)\ = ma; (Lﬁ?) and L2 = coor R,

~
=~

—>

We remind the reader that L(?)(x) = ®;, , (x;1) for all x € £. We begin with an observation which strongly
uses the “thresholded” nature of the definition of ®.

— —

Claim 6.11. No matter how Y is defined, either L(AQ) is the all 1s vector, or L(g) is the all 1s vector.
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Proof. Suppose for the sake of contradiction, there exists x € A and y € C such that &, (x;i) =
Py, (y;i) = 0. But the edge (x,y) is a violation, and if x(x,y) = 1 then ®j,(x;7) = 1, otherwise
@, (y;1) = 1. Contradiction. O

—

Next we remind the reader that R (x) = Ig:xi ¢ (). We now define the & (S, S + i) colorings for
x € A U C using the above claim in the following simple manner.

e

It LY =1, then ¢,(S,S+i)=1V¥xe AUC 27)
otherwise, N
we have Lg) =1, and so we define & (5,5 +i)=0 VYxe AUC (28)
In the former case, we have R(j) = (111---10000) and L(A2) = 1 and so we pick L;(‘Q) = Lf). Also
——
k many
— — —\ 71
note that we have Rg) as the all zeros vector, and so we pick L/C(Q) = L(C2 )> . These satisfy (b) and (d).

In the latter case the argument is analogous. Thus, in either case we have established (b) and (d), and this
completes the proof of LHS > RHS;.

We remind the reader that we have now defined & (S, S @ j) for all subsets S C [i — 1] and 1 < j <.
In the next subsection, when we prove LHS > RHS,, we will need to define & (S + 1,5 + i & j) for all
j < i—1. Note that for j = i, we have (S+1i,S+i®j) = (S+1,S5) and the coloring &, has already been
defined for these edges in (27) or (28).

6.2 Proving LHS > RHS,

This inequality is a bit trickier to establish because the function A itself now changes to ¢ o h in RHS,. For
instance, focusing on the illustration we have been using, upon sorting the picture looks like this.

k k
] W | 8 | | 0 |
. w |z [ a c | o |

We have now partitioned the interval A into I U B where B is the k-ones closest to the semi-sorting
boundary. After sorting, we think of the ones in B moving into C, and the ones in I shifting and moving to
Q C A. The first k entries of A, which we call Z, takes the value 0 after sorting this line.

To argue LHS > RHS,, we break the vector L as

2], =2, .+ |Erooo], , + | Zc|
H 1/2 Wiy =B, 15|,
and the vector ]\7 as N N
i, = [, , + [Favccs], , + |32z]
H 1/2 Wy 1| Meuovol| , +{[Mz], ,
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and argue vector-by-vector. The plan of the proof is similar to the previous case. We want to find recolorings
X" and & such that

N — 1

© I o8 such that M{sZo =maj (qugo) and M2 >coor Mgpro- for q € {1,3}.
1) 2) &\, @ @)

() dL;gp suchthat L5 =maj | Ligo | and L;go =coor MQCO.

— s\ 7 —
@ IMW such that MVE,% = ma) <L<V‘§)C> and MY, = coor M&‘?Z, for g € {1,3}.

— — [———)
(h) L2 such that L%, = maj <L(WQ,)C> and L), = coor M2,

Let us see why the above conditions suffice to prove the inequality. The second part of (f) implies that

|¥aco]

(3) 1(2)
HMQCO +Myoo + Lrgo

1 S . Part (e) and the first part of (f), along with Lemma 2.11,
1/2

!
implies M(Egc)'o + M(E?C)VO + LI(B)O > maj (LIBO) - Andso, [|L1poll; 5 = [[M1Boll; jo- Now, by the second

Myl + My, + L2,

and by the first
1/2

part of (g) and the second part of (h) we have ’MWC Hl /2 < ‘

part of (g) and (h) we have M{,g,% + M&(,:S(); + LI(ME)C Zmaj <LWC> Thus, ”LWZ||1/2 ||MWZH1/2

1/2

6.2.1 Proving (e) and (g) for ¢ = 3

Defining the Coloring x”: We now describe the coloring x” on all edges of the form (x,x + ae;) where
j>i+1,(ioh)(x)=1and (ioh)(x+ aej) = 0. For all other edges e, we simply define x”(e) = x(e).

Given a pair of 4-lines £ and ¢/ = / + aej for j > ¢4 1 and a > 0 we consider the set of violations
from £ to ¢/ in h and in 7 o h. As before, the violations in & form two a union of two intervals V = V; U V.
Recall the definition of V' in (15). Since (i o h) is sorted in dimension i, the violations from ¢ to ¢ in (i o h)
form a single interval which we will call U

U:={(x,x+aej): xel, (ioh)(x)=1),and (i o h)(x + ae;) = 0}.

Since the sort operator can only reduce the number of violations in a dimension, we have |U| < |V|
(Claim 2.6 applied to hl, and h|y). We define J to be the interval of |V| — |U| points directly to the
right of U so that U U J is an interval of size |V'|. We then define

(X"(e): x e UUJ) = (x(e): e € V)*.

We now have a complete description of x”. We provide the following illustration for clarity. The white
and green intervals represent where h = 0 and h = 1, respectively. The vertical arrows represent violated
edges. Blue edges have color 0 and red edges have color 1. The left picture depicts the original coloring, X,
and the original function, h. The right picture depicts the recoloring, x”, and the function after sorting, i o h.
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hbﬁ (l ° h)f

We now return to our fixed i-line £ and set out to prove (e) and (g) for ¢ = 3, given this coloring x”. Let’s
recall our illustration of h and (i o h) restricted to ¢ and our definition of the intervals W, I, B, C, O, Z, Q.

Proving (e) for ¢ = 3: Recall the definition of A = I U B, O, and (Q U C U O as in the illustration. Fix
j>i+landai-linel =/(+ae;. Let A" :={x € A: h(x+ae;) =0},0' := {x € O: h(x+ae;) =0},
and U := {x € QUCUO: (ioh)(x+ aej) = 0}. Again, applying Claim 2.6 to h|, and h|,, we have
|U| < |A'| 4 |O'|. Let J denote the interval of size | A’| + |O’| — |U]| directly to the right of U so that U U .J
is an interval of size |A’| + |O’|. Observe that by our definition of x” above, we have

(X" (x,x+aej): x e UUJ) = (x(x,x+ae;): x € A'U O')i.
Let’s see what this leads to.

Definition 6.12. Fix j > i + 1 and fix an i-line !’ := { + ae; for a > 0. Define the following two boolean

vectors:
vit = (1((ioh)(x+ae;) =0 and X"(x,x+ae;)=1) : x€QUCUO)
and
vﬁa = (1(h(x+ae;) =0 and x(x,x+ae;)=1) : x€ IUBUO).

Observe, forx € QU C U O,

Dion (X5 7) mln( Zvja ) 29)
and forx e TUBUO,

P\ (x57) = mln( ZV% > . (30)
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Claim 6.13. Fix j > i+ 1 and a > 0. For any two x; < X, in Q U C U O, we have v} (x) > v (x/).

]7a
That is, the vector v% is sorted decreasing.

Proof. Since (i o h) is semisorted (i o h)(x’ + ae;) = 0 implies (i o h)(x + ae;) = 0. Furthermore, since
both these are violations, by design x”(x’,x" + ae;) = 1 implies x”(x,x + ae;) = 1. O

1
Claim 6.14. Fix j > i+ 1 and a > 0. The vector V% has at most as many 1s as V]l-: o and thus <vL ) > coor

j7a
M

Vj,a'

Proof. This is precisely how " is defined: it only permutes the colorings on the violations incident on
I' U B U O, and this number can only decrease upon sorting (Claim 2.6 applied to x restricted to the edges
going from £ to /). O

In conclusion, we can write

—_— d
Lgo: Z Oy (x55) + xelUBUO
j=itl

as a sum of Boolean vectors, and the above two claims imply that the vector

> d
3 .
Mc(gc)*o = Z Dionyy(X57) + x€QUCUO
Jj=i+l
is coordinate wise dominated by the sum of the sorted decreasing orders of those Boolean vectors. Defining

Még(?é)o to be the sum of the sorted decreasing orders, using Lemma 2.11, we establish part (e) for ¢ = 3.
Namely, we get

—\ | —_—> —_—
i3 . B 3 (3) 3)
ML : MQC)O = maj (LIE);O> and Mo =coor Mo 31)

Proving (g) for ¢ = 3: A similar argument but working with the zeros establishes part (g) for ¢ = 3. The
picture is similar, but reversed, when we consider the points in W U C, where h(x) = 0. Fix a dimension
j>i+1landsome !’ ={—ae;. Let W = {x € W: h(x—aej) =1}, ' = {x € C: h(x —aej) =1},
andU = {x € WUZ: (ioh)(x —aej) = 1}. Note that |U| < |W'| 4 |C’| (Claim 2.6 applied to h|, and
hl¢). Let J denote the interval of |[W'| + |C’| directly to the right of |U| so that U U J is an interval of size
|W'| + |C’|. Observe that by our definition of x” above, we have

(X"(x —aej,x): x e UUJ) = (x(x — aej,x): x € WU C'/)i.
Let’s see what this leads to.

Definition 6.15. Fix j > i + 1 and fix an i-line {" := { — ae; for a > 0. Define the following two boolean
vectors:
vl = (1((ioh)(x —ae;) =1 and X"(x—ae;,x)=0) : x€ WUZ)

and
vl = (1(h(x —aej) =1 and x(x —ae;,x)=0) : xc WUC).
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Observe, forx € W U Z,
DQiop (X3 7) = min ( Zvj “ ) (32)
and forx € W U C,

Py, (x37) —m1n< Zvya ) (33)

Claim 6.16. Fix j > i+ 1 and a > 0. For any two x; < X, in W U Z, wehavev%( )<vja(x) That is,
M

j.a is sorted i lncreasmg.

the vector v

Proof. Since (i o h) is sorted in dimension ¢, we have (i o h)(x — ae;j) = 1 implies (i o h)(x' — ae;) =1
Furthermore, since both these are violations, by design x”(x—ae;, x) = 0 implies " (x'—ae;,x’) = 0. O

.T
Claim 6.17. Fix j > 1+ 1 and a > 0. The vector vM has at most as many 1s as V] and thus < ]L ) > coor

M
Vj,a-

Proof. This is precisely how x” is defined: it only permutes the colorings on the violations incident on
W U C, and this number can only decrease upon sorting (Claim 2.6 applied to x restricted to the edges
going from ¢” to £). O

In conclusion, we can write

d
Lg/?/)c = Z Pp o (x37) xeWucl
J=i+1

as a sum of Boolean vectors, and the above two claims imply that the vector

5 d
(3 A
MW)Z = Z Dljony o (X57) + xEWUZ
j=i+1
is coordinate wise dominated by the sum of the sorted increasing orders of those Boolean vectors. Defining

MI/,I(? % to be the sum of the sorted decreasing orders, using Lemma 2.11, we establish part (g) for ¢ = 3.
Namely, we get

S T
M M e (L(S) ) and MVI(/% Zeoor My Sl

6.2.2 Proving (e) and (g) for ¢ =1

Defining & (S+14,S+i®j)for S C [i—1]and j <i—1: We now define the panial coloring &, := Q)
on all edges (S + 4,5 + i@ j) where S C [i — 1] and j < i — 1 for all x € [n]%. These are exactly the
relevant edges for the proof of parts (e) and (g) for ¢ = 1. Note that the partial coloring &x = &x (i- D

undefined over these edges.
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Fix S C [i — 1], j <1i—1, and ai-line £. We consider the set of x € £ such that (S, .S @ j) is influential
in gx and the set of edges where (S + 7,5 + ¢ @ j) is influential in gx. As before, the former is a union of
two intervals V' = V}, U V. Recall the definition of V' in (22). Since (S +¢) o fand (S + i@ j) o f are
both sorted in dimension 4, the set of x € ¢ such that (S +4,.S + i @ j) is influential forms a single interval
which we will call U:

U:={x€l:gx(S+i)=1and gx(S+i®j) =0}.

Again, we have |U| < |V| (Claim 2.6 applied to (S o f)|, and ((S @ j) o f)|¢) and we let J denote the
|V| — |U| points directly right of U, so that U U J is an interval of length |V/|. We then define

E(S+i,S+i®j):xeUUJ)=(&(S,S@j): xe V).

Forallz € £\ (U U J) we define & (S + 7,5 + i @ j) = 1. Note that this is an arbitrary choice since such
edges are not influential and so they do not come in to play in the rest of the proof.

We now have a complete description of & on (S + 14,5 + i @ j) for all x € [n]?. We provide the
following illustration for clarity, which is quite similar to the illustration provided in Section 6.2.1 when we
defined x”. The left picture depicts the original colorings, £y, and the relevant functions before applying
the sort operator in dimension i. The right picture depicts the recoloring, ., and the relevant functions after
applying the sort operator in dimension ¢.

(@ hl, (S+i®jel,
| | | -
<& - & — <&
| | | ‘ — |
v, Vi U I=0
(S, (S+iyefl,

We now return to our fixed i-line ¢ and set out to prove (e) and (g) for ¢ = 1, given the colorings ..
Recall gx(S) = h(x) and gx(S + i) = (i o h)(x) and so we can reference the same illustration and our
definition of the intervals W, I, B, C, O, Z, Q.

| w [ | B c 0
w z | Ta C 0

Proving (e) for g = 1: Fixj <i—1landlet A :={x € A: gx(S®j) =0},0" :={x € O: gx(S®j) =
0,and U :={x € QUCUO: gx(S+1i® j) = 0}. Asbefore, |U| < |A’| 4 |O’| (applying Claim 2.6 to
(So f)|¢and ((S & j) o f)|¢) and we define J to be the |A’| — |O’| points directly to the right of U so that
U U Jisaprefix of Q UC U O of size |A’| + |O'|. From our definition of &, from above we have

(EL(S+i,S+i@®jf):xeUUJ) = (&(S,S@j): xe AUO) .

We now get the following claim.
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Claim 6.18. ( IEL (S+1i) : xeQUCU O) is a sorted decreasing vector, and has at most as many
ones as the vector (ngjgx(S) : xelUBU O).
Proof. Take x; < x} in Q@ U C U O. Note that gx(S + i) = gx/(S + 1) = 1 by definition Q U C'U O. Thus,

I g,(SJrz)_l(g,((SJrz@g)—Oandgx(SJrz S+idj)=1)

and
I76,(8) =1 (0x(S ) = 0and &(S, 5 & ) = 1)
By design of the &, s, the first vector is sorted decreasing on Q U C' U O (it takes value 0 after U). Also by

design, the number of ones in the latter vector can only be larger since we obtain £’ by taking a permutation
and possibly discarding some ones (the ones corresponding to J). O

Observing that

N i—1
L%B)o: ZI;%X(S):XGIUBUO and MS%O Z 5, (S+14) : x€eQUCUO
j=1

we see that the latter vector is coordinate-wise dominated by a vector Wthh is a sum of sorted decreasing

versions of Boolean vectors which add up to the former one. Defining M (C)o to be the sum of the sorted

decreasing orders, using Lemma 2.11, we establish part (e) for ¢ = 3. Namely, we get

—_— ] _ _
Mo+ Maho i (E530) 08 MG e Mo Gs)

Proof of Part (g) for ¢ = 1: A similar argument but working with the zeros establishes part (g) for
g = 1. Recall the definition of the sets W, C,and Z. Let W/ = {x € W: gx(S® j) =1}, ' = {x €
C:9x(S®j)=1}handU ={x e WU Z: gx(S+i® j) = 1}. As before |U| < |W'| + |C’| (applying
Claim 2.6 to ((S@® 7)o f)|s and (S o f)|,) and we define .J to be the set of |W'| 4 |C’| — |U]| points directly
to the right of U so that U U J is an interval of size |IW’| 4 |C’|. Note that U is a suffix of W U Z and J is a
prefix of Q U C U O.

From our definition of £ above, made with the set S @ j, we have

(EL(S+i,S+i@j):xeUUJ) = (&(S,S@j): x e W UC)*.
Claim 6.19. ( (S +i) . xeWuZz ) is a sorted increasing vector, and has at most as many ones
as the vector (ngjyéx(S) : xeWu C).
Proof. Take x; < X in W U Z. Note that gx (S + ¢) = gx (S + i) = 0 by definition W U Z. Thus,

L7, (S+1i)=1(9x(S+i®j) = 1and & (S +i,5 +i e j) = 0)

and
I (5)=1(gx(S ® j) = 1 and & (S, S & j) = 0)

By design of the &, s, the first vector is sorted increasing on W U Z. Also by design, the number of ones in
the latter vector can only be larger since we obtain ¢’ by taking a permutation and possibly discarding some
ones (the ones corresponding to J). O
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Observing that

_ 1—1
1 =j _ ‘
Lo =(Y177,.(8) : xewuC| and MWZ_ E:ng{g (S+i) : xeWuZ
j=1 7j=1

we see that the latter vector is coordinate-wise dominated by a vector which is a sum of sorted increasing

versions of Boolean vectors which add up to the former one. Defining Mél(/l% to be the sum of the sorted

increasing orders, using Lemma 2.11, we establish part (e) for ¢ = 3. Namely,
/(1) /(1) (1) ' (1) o (1)
My, 0 My 7 =maj | Lyve and My, =coor Myy/,. (36)

6.2.3 Proving (f) and (h):

Let us now prove part (f) and (h). Note, at this point, & is fully defined on all pairs (S, S @ j) for S C [i]
and 5 < i. We don’t have the freedom to redefine. However, we see that the definition we made in (27)
and (28) suffices. Let us recall what we want to establish.

___, — !

® EILIBO such that LI%)O > maj <L§2E)?O> and L/I(]?O > coor M(E?QC),O.
) ( ) o (2) ! /(2) (2)

(h) EILWC such that Ly~ =maj (LWC> and Lyyo =coor Myy/,.

We remind the reader that L(?)(x) = ®;, , (x; i) for all x € £ and the coloring was defined as follows:

If L§§_1 then €.(S,S+i)=1V¥xe IUBUC

otherwise, N
we have L(OQ) =1, andso & (S,S+i)=0VxelUuBUC

We remind the reader that M) (x) = Ig_l ¢ (S + i) and therefore this is 1 iff gx(S + i) # gx(5) and

&(S,S + 1) = g«(S + 7). The former 1mp11es xe ZUC.

_—

Suppose we are in the first case. Then, M(Q)( ) = 1lif and only if x € C. Since L% =1 >coor Mgg,

—_— >

we can set L I(B)O to be the vector that is 1s in 7 U B and 0’s in O. This establishes (f). To establish (h), we

— — —\ T
observe that Méé)z is the zero vector, and thus we can choose Ll(Wz)C to be <L$f,)c> .

Suppose we are in the second case. Then, M®) (x) = 1if and only if x € Z. Since Lg) =1 >coor
M 22), we can set L/(m% to be the vector that is 1s in C and 0’s in W. This establishes (h). To establish (f),

> — >\
we observe that Mgéo is the zero vector, and thus we can choose L/1(123)o to be (L%O> .

In either case, we have established (f) and (h), and thus completed the proof.
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7 The Tester and it’s Analysis: Proof of Theorem 1.5

With the isoperimetric theorem of Theorem 1.4 in place, we can now design and analyze the monotonicity
tester for Boolean hypergrid functions. This section closely follows the analogous analysis in [KMS15], and
will lift certain notions from that paper. We do have to make slight adaptations to various arguments therein
to account for the hypergrid domain.

We first describe the path tester for the hypergrid.

Input: A Boolean function f : [n]? — {0, 1}.

Choose k € {0,1,2,..., [logd]} uniformly at random. Set 7 := 2F.

Choose x € [n]¢ uniformly at random. Denote x = (x1,Xa, .. ., Xg).

Pick a uniform random subset R C [d] of T coordinates.

For each r € R, pick uar value ¢, € [n] \ {x;}.

Generate z as follows. For every r € [d], if r € R and ¢, > X, set z, = ¢,. Else, set z, = x,.
If f(z) > f(x), REJECT.

N hE LD =

Figure 6: Path Tester for Hypergrid Functions

Clearly, the tester doesn’t reject any monotone function. Our main theorem regarding the tester fol-
lows. A standard boosting argument gives us the O(e~2n+/d)-query Boolean monotonicity tester on [n]¢
proving Theorem 1.5.

B

Theorem 7.1. If f is e-far from monotone, then the path tester for hypergrid functions rejects with proba-

bility Q(inﬁlzgf,(nd) ).

7.1 Directed random walks, influences, and persistence

One can think of the above tester as obtaining z by a lazy directed random walk of 7 steps from a uniform
random x. Note that in some steps we may not move at all; these correspond to coordinates € R such that
¢r < x,. It will be convenient to define an alternate, but equivalent process that generates the pair (x, z).

Input: A length parameter 7.

In each dimension ¢, sample a uniform random pair a; < b; from [n].

Let H be the hypercube formed by H?zl{ai, bi}.

Pick a var point x from H.

Pick a uar subset R of 7 coordinates, permuted randomly.

Generate z as follows. For every r € [d], if r € R and x,, = a,, set z, = b,. Else, set z, = x,.

A S

Figure 7: Directed random walks, by sampling hypercubes

This process generates walks by first sampling a random hypercube H, and then doing a lazy directed
walk on H. We first observe that conditioned on the walk length 7, the distribution of (x, z) pairs generated
by the path tester and the above process are identical.

44



Observation 7.2. Fix 7 € [d]. Let D, Do denote the distributions over [n]® x [n]¢ described in Fig. 6 and

Fig. 7, respectively, conditioned on the walk length . Then, for any pair (x,z) where x < z, we have
Pr[(x,z) ~ D1] = Pr[(x,2z) ~ Dsl.

Proof. Let S = {i € [d]: z; > x;}. The probability from D; is given by

Pr[(x,z) ~ D] = ni . Z (i) HPr[ci = z;] H Pric; < x;]

d
RDOS : |R|=T7 €S 1€R\S
1 (d\! 1 x; — 1
- () X M Iy
RDS : |R|=T1i€S 1€R\S
We now compute the probability for Ds. For i € [d], let &; be the event that a; = x; or b; = x;. Note
n—1
-2 2
Pr[-&;] = ( 2 J_n-2 Pr[&] = =.
(%) n n

Let &« denote the event that the first point sampled according to D5 is x. We have

d d
1 2 1 1
~IIreted 5= (2) gi=
=1
Let &, denote the event that the second point is z. We have

Pr &6« = Z <i) - HPr[ai =x;and b; = z; | &) - H Pr[b; = x; | &]

RDS ‘R|=T icS iGR\S

Fix an 7 € S. We have

Prla; = xjand b =z;] 1/(5) 1
Pr[&] 2/n n—1

Pria; = x; and b; = z; | E| = Pr[a; = x; and b; = z; | &] =

Now fixan ¢ € R\ S. We have

Pri& 2/n n-—1"
Therefore, Pr[(x,z) ~ Da] = Pr[éx] - Pr[&;]Ex] = Pr[(x,2z) ~ D4]. O

<X7;—1>
Prib; = x; | &) = Pr[b = x; | & = Prlb: = i () x; — 1

We now have that the random walk distributions described in Fig. 6 and Fig. 7 are equivalent. The former
is more convenient to analyze for the final rejection probability, but the latter perspective allows us to prove
various influence bounds by piggybacking on the [KMS15] hypercube analysis.

Definition 7.3. We define the rotal influence and total negative influence of f as follows.

7d Z ZZ 7éfXl,XQ,...,Xi_l,C,Xi_H,...,Xd))

xe[n}d i=1 c=1

If_ =n"? Z ZZ X) # f(X1,X2y ...y, Xio1,C, Xit1, .-, Xq))

xeln]t: f(x)=1 =1 c>%i

Note these are different from the thresholded influences and for most functions will grow as n grows.
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We can analogously define these influences on the hypercubes H sampled by the process described in
Fig.7. Abusing notation, we will denote these influences as Iy := Iy, and I; := IJ?H. A simple, yet
important claim relates the expected influence on H to the total influence on the hypergrid. All expectations
over H are taken with respect to the distribution described in steps 1-2 of Fig. 7.

Claim 7.4. EH[IH} = If/(n — 1) and EH[I;]] = ;/(n — 1).

Proof. Consider any i-edge (x,y) of the fully augmented hypergrid. The probability that this edge is present
in H can be computed as follows. Firstly, we need a; = x; and b; = y;. This happens with probability
(g)_l. Then, for all j # i, one of {a;, b;} needs to be x; (note that x; = y; since (x, y) is an i-edge). This
happens with probability (1 — ((”;1)/(’;)))d_1 = (2/n)?" 1,

The total number of influential edges in f is nl 7. Thus, by linearity of expectation, the expected
number of influential edges in H is (g)_l x (2/n)4 1 x Iy =241, /(n — 1).

An analogous proof holds for the negative influence. O

By using a lemma of [KMS15], we can prove that if the total influence of f is too large, then the negative
influence is also large.

Claim 7.5. If I} > 9(n — 1)Vd, then I; > (n —1)Vd,

Proof. Theorem 9.1 of [KMS15] asserts that, if [ > 6/d, then I, > Iy /3. (This holds for any Boolean
hypercube function.) If I; > 9(n — 1)V/d, then by Claim 7.4, Ey[I;] > 9v/d. Hence,

IWd <Eylly] = Prlly <6Vd Eyllu|ly <6vVd + PrlIy > 6Vd Ey[ly|ly > 6Vd|
< 6Vd+Prly > 6VdAE[3I,|Ig > 6Vd] < 6Vd + 3Eg[I] (37
Hence, Ep[I;] > V/d. By Claim 7.4, I; > (n — 1)Vd. O

One of the crucial definitions is that of persistence.

Definition 7.6. A point x € [n]? is called T-persistent if Pr,[f(x) = f(z)] > 1/2 where z is chosen by a
T-length directed random walk from x.

Lemma 7.7. If I; < 9(n— 1)\/d, then the fraction of vertices that are not T-persistent is at most Cpert/ Vd
(Where Cpe, is an absolute constant).

Proof. We will analyze the random walk using the distribution described in Fig. 7 and leverage the analysis
that [KMS15] use to prove their Lemma 9.3. Let o denote the fraction of 7-non-persistent vertices in the
fully augmented hypergrid with respect to our function f. Again, let D, Dy denote the distributions over
pairs (x, z) described in Fig. 6, Fig. 7, respectively, conditioned on the walk length 7. For a fixed H sampled
in steps 1-2 of Fig. 7, let Dy  denote the distribution over (x, z) described in steps 3-5. Using the definition
of persistence and Obs. 7.2, we have

«
—< P =E P . 38
5 S o Brp S0 # S@) =B | Pr () # f(2) (39)

Let ﬁg, u denote the same distribution as Dy i except with I being a uar subset of the 0-coordinates of x

(recall step 4 of Fig.7). Le. Do g is the non-lazy walk distribution on H. Let x = xV,xt ... ,x" =zbe
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0 1

the 7 steps taken on the walk sampled by D z and let x = X”, X", ..., X" = z be the 7 steps taken on the

walk sampled by 2327 . For a fixed H we have

T—1 T—1
Pro (f(x) # f(2) < D Pr(f(x) £ fx*)) < SPr (F&) £ f&) . (39)
(x,2)~D2. 1 —0 =0

The first inequality is by a union bound and the second inequality holds because the first walk is lazy and
the second is not. More precisely, we can couple the 7/ < 7 steps of the lazy-random walk where the point
actually moves to the first 7/ steps of the second non-lazy walk, and the remaining 7 — 7’ terms of the
non-lazy walk can only increase the RHS.

By Lemma 9.4 of [KMS15], the edge (X!, X/*!) is distributed approximately as a uniform random edge
in H. In particular, this implies Pr (f(x%) # f(X**!)) < C - 2Iy/d for an absolute constant C. (Note
21y /d is the probability of a uniform random edge in H being influential.) Putting (38) and (39) together
yields a0 < %E i) By Claim 7.4 we have Eg[I5] < 9+/d and so setting Cper 1= 36C completes the
proof. O

7.2 The good subgraph and capturing violations

We now use the isoperimetric theorem of Theorem 1.4 to construct a good subgraph, in the parlance of [KMS15].

Theorem 7.8. There exists a bipartite subgraph G = (X, Y, E) of the fully augmented hypergrid with the
following properties.

|X| =onor |Y| = on®

Every vertex has degree at most k.

Forallx € X, f(x)=1. Forally €Y, f(y) =0.

|E| > okn?/2.

oVk = 0(¢/log*(nd)).

Proof. Consider the bipartite subgraph consisting of all violations of the fully augmented hypergrid. Con-
sider any bi-coloring x of the edges of this subgraph. Let degx(x) denote the number of violating edges
e incident to x for which x(e) = f(x). Note that deg, (x) > ®,(x). Hence, Theorem 1.4 asserts that

> ox/deg, (x) > C' nde /logn, for some absolute constant C’. According to Def. 6.4 of [KMS15], the
bipartite graph is C'ne/ log n-robust.

By Lemma 6.5 of [KMS15], any robust bipartite graph has a “good subgraph” satisfying the following
bound. (Below, C” is a constant.)

! d "
ot iz et g Cr
8log(nd) logn log”(nd)
One can remove vertices from this good subgraph to ensure that ov/k = ©(¢/log?(nd)). O

For the rest of the analysis we will assume | X | = on?, without loss of generality. The edges of the good
subgraph of Theorem 7.8 are central to the tester analysis. We will need to choose 7 carefully to ensure that
the analysis carries through. Towards that choice, we will set a convenient bound on o. We will use C;- to
denote a sufficiently large constant that is at least 100C),, and the constants of Theorem 1.4. (The constant
Cper 1s from Lemma 7.7.)
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Claim 7.9. If o < Ciar/Vd, then I} = Q(e2V/d/log*(nd)).

Proof. By the good subgraph properties in Theorem 7.8, vk = Q(ev/d/ log?(nd)). Hence, the number of
edges of the good subgraph is at least ckn?/2 = (ov'k) x VE x n¢/2 = Q(e2vdn?/log*(nd)). We divide
this bound by n? to bound If_. O

Essentially, for the analysis, we can ignore the case when o is too small. With this bound in place, we
can now set the right choice of 7 based on the good subgraph parameters.

Definition 7.10. For any o > Cy,,/V/d, define 7, to be the power of 2 in the range [0v/d/Ciay, 023/ d ] Ciay ).
(Since U\/g/C'lm, > 1, the choice of T, exists.)

We will now define a particular “edge capturing event” that ensures that the tester finds a violation
to monotonicity. The crucial property is that these events are uniquely associated with edges of the good
subgraph, and are all disjoint. So, we can lower bound the probability of this event and multiply by the
number of edges of the good subgraph.

Definition 7.11. Let x € X. We call an edge (x,y) of the good subgraph viable if y is 7,-persistent. The
set of viable coordinates of x are the dimensions containing the viable edges incident to x.

For a viable i-edge e = (x,y), the capturing event C, is defined as follows. Consider the sampling
process of the tester, and condition on T := 7,. We define C. = E1 N Ea N E3 N Eq N E5 where:

o &1: The point X is chosen (as the first point).
&Ey: The coordinate set R contains i.
E3: The coordinate c; is y;.
&4: R\ i does not contain any viable coordinates of X.

55.' f(Z) =0.

The main calculation is to lower bound the probability of the event C., for any viable edge.

Lemma 7.12. For any viable edge e = (x,y), Pr[Ce|T = 7,] = Q(n~% x n™! x 7,/d).
Proof. The probability of choosing x is n~%. The probability that i lies in Ris () /(%) = 7,/d. The

To—1 To
probability that ¢; equals y; is —2<. Thatis, Pr[&1 A & A &) = Q(n~% x n~! x 7,/d). Thus, it remains to
show that PI‘[54 A Es ’ EtNE N 53] = Q(l)
Let T" denote the set of viable coordinates of x. Since the maximum degree in the good subgraph G is

k, we have |T'| < k. Thus,
Pr[(R 'mT—@)>(i:k1)—lH P Y O g k7o 40

Recall from Theorem 7.8 that k = ©( -

1
log?(nd) ' ?)
Thus, we have k = O(d - %) and in particular, k¥ = o(d) and so

Pr{(R\ i) N T = 0] > exp (—o <k 'J")) ~ exp <—o <’; . m/8>> — exp(—0(oVE) (D)

and from Claim 7.9 we may assume that 0 > Cj,,-/ V.

where the second step used our definition of 7, and the last step simply used the fact that £k < d. By
Theorem 7.8 we have ok = ©(g/log?(nd)) and so we have Pr[(R \ i) N'T = (] > 9/10 as long as nd is
at least some constant.
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Finally, since y is 7,-persistent, the probability that this random walk from y ends at z where f(z) = 1
is at most 1/2. Thus, by the union bound

Pr[84/\55\51/\€2/\€3] > 1—(1/10+1/2) :2/5

and this completes the proof. O

7.3 Wrapping it all up

We combine all the bounds and calculations to prove that the path tester has an 5(52 / n\/g) probability of
success.

Proof. (of Theorem 7.1) We first take care of some edge cases.

Case 1, I > 9(n — 1)V/d: By Claim 7.5, I > (n— 1)v/d. Thus, the total number of violated edges
of the augmented hypergrid is at least (n — 1)\/&716[. The total number of edges is %(n — 1)dn®. Hence, a
uniform random edge is a violation with probability at least 1/ (2\/&) The path tester selects 7 = 1 with
probability at least 1/ log d, so the rejection probability is at least 1/(2v/dlog d).

Case 2, 0 < Ciq,/V/d: By Claim 7.9, Iy = Q(2V/d/1og*(nd)). Thus the probability that a uniform
random edge is a violation is Q(£2/(nv/dlog*(nd))). Similar to the above case, the rejection probability is
Q(?/(nV/dlog*(nd))).

Case 3, I} < 9(n —1)v/d and o > C),,/V/d: This is the interesting case, where all the previous claims
and lemmas are used. Since o > Ciq,/ V/d, we can define T, using Definition 7.10. By Lemma 7.7, since
Iy <9(n—1) V/d, the fraction of vertices that are not 7,-persistent is at most

Cper’ro’/\/g S (QCper/Clar) o< 0'/4

Let us now count the number of viable edges in the good subgraph promised by Theorem 7.8. There are at
least ckn®/2 edges in the good subgraph. There are at most (o /4) - n non-persistent vertices in the good
subgraph, each of which has degree at most k. Thus, removing all non-persistent vertices leaves us with

okn?/2 — (0/4) x n® x k = okn? /4

edges, all of which are viable. Let us now lower bound the probability of the tester rejecting using Lemma 7.12.
Recall that all the events C, are disjoint and 7, = @(0\/&).

Pr[ U Ce|T:TO—] = Z Pr[Ce|T = 7,]

e viable e viable

v

(ck/Hn? x n=% x n™t x (1,/d)
Q(o%k/(nVd)) = Q%) (nVdlog (nd))).

The probability of setting 7 to be 7, is 1/ log d, so we multiply the bound above by 1/ log d to complete the
proof. O
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8 Towards a O(v/d) tester

In this section we describe a different notion of influence of Boolean functions on hypergrids. We conjecture
a Talagrand style isoperimetric theorem for the colored version of this influence is true. If so, then we can
design a tester whose query complexity has no polynomial dependence on n. More precisely, the dependence
on n is only polylogarithmic, and since by results of [BCS20, HY?22] one can assume n. = poly(d), the final
tester’s query complexity is 5(\/&)

Definition 8.1 (Weighted Influence). Fix f : [n]¢ — {0, 1} and a dimension i € [d). Fix a point x € [n]<.
The weighted influence of x along coordinate i is defined as

W) = > .

y=x=ae; : such that (x,y) is violating
The weighted influence of x is ¥ ¢(x) = Zle s (x;1).

Consider giving a weight to every edge (x,x + ae;) equal to 1/a, the reciprocal of the length of the
edge. The weighted influence of a point x with f(x) = 1 is the sum of the weights of out-edges which
are violating. This is another generalization of the notion of influence in hypercubes. Also note that for
any x, the thresholded influence of any point can’t be much smaller than the weighted influence; indeed,
Pr(x) > HLR\I/ #(x) where H,, is the nth Harmonic number and is ©(log n). Therefore, lower bounding ¥’s
also lower bounds ®’s. On the other hand, ® s(x; i) could be as large as (n — 1) - ¥ (x; ¢) for a particular x.

The Talagrand objective with respect to this notion is defined as the expected square root of the weighted
influence.

Definition 8.2 (Talagrand Objective wrt Weighted Influence). Given any Boolean function f : [n]? —
{0, 1}, we define the Talagrand objective with respect to the weighted influence as

Ty (f) = Exeppya [ ‘I’f(x)]

where VU is as defined in Definition 8.1.
We also have a notion of colorful weighted influence and the corresponding Talagrand objective.

Definition 8.3 (Colorful Weighted Influence). Fix f : [n]¢ — {0,1} and x : E — {0, 1}. Fix a dimension
i € [d]. Fix a point x € [n]%. The colorful weighted influence of x along coordinate i is defined as

. 1
Upx(x5) := Z -
y=x=ae; : such that (x,y) is violating and x(x,y)=f(x)

The colorful weighted influence of x is W, (x) = Zle U (x51).

Definition 8.4 (Colorful Thresholded Talagrand Objective). Given any Boolean function f : [n]% — {0, 1}
and x : E — {0,1}, we define the Talagrand objective with respect to the colorful weighted influence as

o, (1) = B [/ 07,)]

where V¢ .\ is as defined in Definition 8.3.

We are now ready to state our main conjecture. Note that due to the fact that s, (x) = O(logn)® (%),
the conjecture below generalizes Theorem 1.4 up to poly log n factors.
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Conjecture 8.5. Let f : [n]? — {0, 1} which is e-far from monotone, and let x : E — {0, 1} be an
arbitrary coloring of the edges of the augmented hypergrid. Then there exists a constant ¢ > 0 such
that

Tw, (f) == Exeppa [ ‘I’fvx(x)} - Q( : >

log®n

where V¢, (x) is as defined in Definition 8.3.

If the above conjecture is true, then we can design a 5(\/&) tester. Before we state this tester, and indeed
to motivate it, we first note that the analysis of the tester described in Figure 6 is tight on its dependence on
n. An example is the so-called centrist function defined in [BCS20] (Section 8) defined as follows for the
case n = d, that is, f : [d]¢ — {0,1}.

f(x)_{o if Jield x; =2

1 otherwise

[BCS20] (Claim 8.2) showed that e y = (1) for the above function. To see this, observe that the probability

of a random point having x; # 2 for all i € [d] is (1 — é)d = O(1). Now let’s consider the rejection
probability of the algorithm in Figure 6. Note that a violating pair (x,y) must satisfy x; = 1 and y; = 2
for some %, and that 7 needs to be picked in the random set R. Even conditioning on picking that ¢ € R, the
probability c; would be set to 2 is ﬁ ~ é in this case. Therefore, the algorithm needs to be modified.

To fix this, think about the tester as performing a (lazy) directed random walk. And now when one picks
a dimension 7 to move in, one doesn’t have a uniform distribution over the length it moves in this dimension,
as currently is the case in Figure 6, rather one chooses a length using a discrete Pareto distribution. That is,
smaller lengths are given more weight than longer lengths. More precisely, we pick a length a to move with
probability proportional to %; note that the constant of proportionality that we need to scale down by is at
most H,, = ©(logn). This is the reason we defined the weighted influence as we did in Definition 8.1, and
indeed, if Conjecture 8.5 is true, then we can prove that this tester is an O(\/&) tester; the proof technique
is similar to that described in Section 7 which itself is a modification of the analysis in [KMS15].

We now show that the uncolored version of Conjecture 8.5 is in fact true, and follows easily using the
colorful version Theorem 1.4 for thresholded influence.

Theorem 8.6. Let f : [n]? — {0, 1} which is e-far from monotone. Then,

Ty (f) = Exelpa [\/m] =6 (10;1)

where WV ¢(x) is as defined in Definition 8.1.

Proof. The key is that we can always define a coloring x for which Ty (f) = Q(Tg, (f)) simply as follows.
For every edge (x,x + ae;) of the fully augmented hypergrid, define x(x,x + ae;) := 1 if the interval
[x, X+ ae;] is at least half 0’s and x(x,x + ae;) := 0 otherwise. This coloring achieves the desired property
because of the following simple fact.

Fact8.7. Let S C {1,...,n} be of size |S| > [n/2]. Then Y ,.s L = Q(1).

Proof. For simplicity let n be even. The sum is minimized when S = [n] \ [n/2] and in this case the sum is
equal to H, — H,, ;5 = Q(1). O
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Now consider x and ¢ € [d] such that f(x) = 1 and ®;,(x;¢) = 1. This implies that there exists an -
edge (x,y) for which f(y) = 0 and x(x,y) = 1. By definition of the coloring, the interval [x, y] is at least
half 0’s and so W ¢(x;4) = €(1). Similarly, consider y and 7 € [d] such that f(y) = 0 and ®¢,(y;i) = 1.
This implies that there exists an i-edge (x,y) for which f(x) = 1 and x(x,y) = 0. By definition of the
coloring, the interval [x, y] is at least half 1’s and so W;(y;4) = Q(1). Thus, Ty (f) = (T, (f)) and so
invoking Theorem 1.4 completes the proof. O

It is worthwhile to point out the challenge in generalizing the above theorem to the colored version. Note
the above was a “point-by-point” argument in that we found a coloring x of the fully augmented hypergrid
edges such that for every x and every ¢ € [d], we could prove ¥ (x;7) = Q(®,(x;%)). One would wonder
if such a point-by-point analysis is possible even when we have an arbitrary coloring x’, and the LHS in the
previous statement is replaced with the colored version. Unfortunately, this is not possible. One can find
examples of f and x’ such that no matter how you define , there will be some point x and some dimension
i such that @, (x;4) = 1, but W¢,/(x;4) ~ 1/n. These examples do not disprove the conjecture since, in
these examples, for a constant fraction of (x, ¢) pairs, we do have W,/ (x;4) = (P, (x)), but it does point
to the need of a new argument. One could also wonder if the proof technique used to prove Theorem 1.4 can
bear upon the proof of the conjecture. There are many roadblocks here, one of them primarily being that
semisorting can increase the Talagrand objective with respect to the W-influences mainly because it can bring
violations closer which bumps up the ¥-influence. Nevertheless, the authors believe that Conjecture 8.5 is
true, and we leave the resolution of this as a promising direction towards getting rid of the polynomial
dependence on n thereby resolving the Boolean monotonicity testing question on hypergrids.
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