1 Mutation of self-binding sites in the promoter of the MrpC 2 transcriptional regulator leads to asynchronous Myxococcus xanthus 3 development 4 5 6 Maeve McLaughlin¹, Penelope I Higgs¹ 7 ¹Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA 8 * Correspondence: Penelope I. Higgs 9 10 pihiggs@wayne.edu 11 Keywords: negative autoregulation motif, Myxococcus xanthus, biofilm, genetic regulatory 12 network, development. 13 14

Abstract

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

MrpC, a member of the CRP/Fnr transcription factor superfamily, is necessary to induce and control the multicellular developmental program of the bacterium, Myxococcus xanthus. During development, certain cells in the population first swarm into haystack-shaped aggregates and then differentiate into environmentally resistant spores to form mature fruiting bodies (a specialized biofilm). *mrpC* transcriptional regulation is controlled by negative autoregulation (NAR). Disruption of MrpC binding sites within the mrpC promoter region led to increased mrpC reporter expression and broadened distribution of mrpC expression levels between individual cells in the population, consistent with disruption of the MrpC NAR. Expression of mrpC from the mutant promoter led to a striking phenotype in which cells lose synchronized transition from aggregation to sporulation. Instead, some cells abruptly exit aggregation centers and remain locked in a cohesive swarming state, while the remaining cells transition to spores inside residual fruiting bodies. *In situ* examination of a fluorescent reporter for MrpC levels in developmental subpopulations demonstrated cells locked in the swarms likely contained intermediate MrpC levels. We hypothesize intermediate levels of MrpC are sufficient to promote aggregation but insufficient to trigger sporulation. These results suggest that in the M. xanthus multicellular developmental program, MrpC NAR can facilitate synchronized transitions of cell populations between developmental states.

33 34 35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

1. Introduction

Myxococcus xanthus is a "social" bacterium with a life cycle that is highly dependent on collective behaviors (Munoz-Dorado et al., 2016). During vegetative growth, large groups of M. xanthus cells swarm over solid surfaces in search of prey on which they cooperatively predate (Rosenberg et al., 1977; Berleman et al., 2008). Under nutrient limited conditions, M. xanthus enters an ~ 72-hour developmental program during which cells form a specialized biofilm and segregate into distinct cell fates (Higgs et al., 2014). Some cells are induced to swarm into aggregation centers to produce mounds of approximately 10⁵ cells. Once inside aggregation centers, individual cells slow down and stop moving (Cotter et al., 2017), which prevents them from leaving the aggregation center. These cells are then induced to differentiate into environmentally resistant spores, producing mature multicellular fruiting bodies. Other cells within the developing population remain outside of the fruiting bodies and differentiate into peripheral rods, which are thought of as a persister-like state (O'Connor and Zusman, 1991; Lee et al., 2012). For development to be effective, cells in the population must coordinate their behavior both in time and space. If sporulation were to occur before completion of aggregation, then the benefits conferred by a multicellular fruiting body structure, such as enhanced resistance to environmental stresses or group dispersal, would be lost (Velicer et al., 2014).

51 52

53 MrpC, is a CRP/Fnr superfamily transcriptional regulator that coordinates expression of 54 hundreds of developmental genes (Sun and Shi, 2001b; Robinson et al., 2014). Under standard 55 laboratory developmental conditions, no ligand has been identified to activate MrpC, and 56 purified MrpC binds efficiently to target DNA binding sites in vitro (Nariya and Inouye, 2006; 57 Mittal and Kroos, 2009a; McLaughlin et al., 2018). Threshold levels of MrpC appear to drive 58 distinct stages of development: low levels are associated with induction of aggregation onset. 59 higher levels are associated with commitment to sporulation (Lee et al., 2012; Rajagopalan and Kroos, 2014, 2017; Hoang and Kroos, 2018). Peripheral rods contain low levels of MrpC in the 60

wild type *M. xanthus* strain DZ2 (Lee et al., 2012). One immediate target of MrpC is activation of the transcription factor, FruA (Ueki and Inouye, 2003). FruA is essential for development (Ogawa et al., 1996; Ellehauge et al., 1998), and FruA and MrpC coordinately induce expression of multiple downstream genes (Mittal and Kroos, 2009b; Lee et al., 2011; Son et al., 2011).

MrpC is under complex regulation. Shortly after cells sense nutrient limitation, *mrpC* expression is upregulated by MrpB, a bacterial enhancer binding protein (bEBP) (Sun and Shi, 2001a). MrpB binds to two upstream activating sequences (UAS1 and UAS2) 182 bp from the *mrpC* start codon, where it presumably stimulates *mrpC* expression from a sigma⁵⁴-dependent promoter (Sun and Shi, 2001a; McLaughlin et al., 2018). MrpC directly binds to at least four sites (BS1, 3, 4 and 5) in its own promoter and functions as a negative autoregulator by competing with its transcriptional activator, MrpB, for overlapping UAS1/BS3 and UAS2/BS4 binding sites (McLaughlin et al., 2018). MrpC also positively regulates expression of *mrpB* (Sun and Shi, 2001a)(C. Mataczynski and P.I. Higgs, unpublished results). Finally, early during the developmental program, gradual accumulation of MrpC is achieved because the Esp signaling system induces turnover of MrpC (Higgs et al., 2008; Schramm et al., 2012). Several additional post-transcriptional events modulate MrpC accumulation (and therefore progression through development) in response to changing environmental conditions (Nariya and Inouye, 2005; Rajagopalan and Kroos, 2014, 2017; Marcos-Torres et al., 2020).

NAR is a particularly abundant genetic regulatory network motif (Thieffry et al., 1998; Rosenfeld et al., 2002). Theoretical and experimental data have demonstrated NAR network motifs serve to buffer against transcriptional noise, speed up response times, increase the input dynamic range of a circuit, and optimize fitness (Becskei and Serrano, 2000; Rosenfeld et al., 2002; Camas et al., 2006; Nevozhay et al., 2009; Kozuch et al., 2020). Most of these well-described functions have been investigated synthetic systems or in single-celled organisms; fewer examples of the phenotypic consequences of perturbing network motifs in natural multicellular systems are available.

Here, we set out to investigate the role of MrpC NAR in the context of the multicellular developmental program in M. xanthus. We demonstrate that disruption of BS1 and BS5 independently and additively increase mrpC reporter expression, consistent with both playing a role in NAR. mrpC expressed from a BS1/BS5 mutant promoter was associated with early and increased MrpC accumulation and led to premature aggregation onset, reduced fruiting body organization, and, unexpectedly, reduced sporulation efficiency. Using a method to film strains developing under submerged culture (Glaser and Higgs, 2019), we observed that this strain exhibited striking asynchronous development: after formation of aggregates, some cells suddenly exited aggregation centers as fast-moving swarms, while other cells remained in stationary fruiting bodies. Deep convolution neural network analyses indicated these developmental swarms displayed trajectories and velocities that were distinct from cells in the mobile aggregate phase. Also consistent with loss of NAR, analysis of single cell mrpC expression in situ demonstrated that mutated BS1/BS5 resulted in increased cell-to-cell variability of mrpC expression. These data suggest that in the context of the multicellular developmental program, MrpC NAR may help to constrain variation in mrpC expression within the developing population to facilitate synchronized transition from cells in the aggregation state to the sporulation state. Interestingly, in situ analysis of single cell MrpC-reporter accumulation

suggested that developmental swarms maintained MrpC levels intermediate between those found in peripheral rods and sporulating cells suggesting distinct MrpC steady-state levels can produce novel group phenotypes.

109 110 111

112

113

107

108

2. Materials and Methods

2.1 Bacterial strains, plasmids, and oligonucleotides

The bacterial strains used in this study are listed in S1 Table. Plasmids were constructed (Lee et al., 2010) using the oligonucleotide sequences, and construction strategy listed in S2 Table.

114115116

2.2 Growth and Developmental conditions

- 117 Escherichia coli were grown under standard laboratory conditions in LB media supplemented
- with 50 μg ml⁻¹ of kanamycin and/or 20 μg ml⁻¹ of tetracycline, where necessary (Maniatis et al.,
- 119 1982). M. xanthus DZ2 strains were grown under vegetative conditions on CYE agar or in broth,
- as described previously (Lee et al., 2010); plates were supplemented with 100 µg ml⁻¹ of
- kanamycin and/or oxytetracycline at 10 µg ml⁻¹, where necessary.
- 122 M. xanthus strains were induced to develop under submerged culture conditions (Lee et al.,
- 123 2010). Briefly, vegetative cells were diluted to an absorbance measured at 500 nm (A₅₅₀) of
- 124 0.035 in fresh CYE broth, seeded into petri dishes or tissue culture dishes (as indicated in the
- relevant methods sections) and allowed to grow to a confluent layer for 24 hours at 32 °C. We
- estimate the cells grew to approximately 6 x 10⁵ cells mm⁻¹ (Lee et al., 2010). To initiate
- development, CYE media was removed and replaced with an equivalent volume of MMC buffer
- 128 [10 mM 4-morpholinepropanesulfonic acid (MOPS) pH 7.6, 4 mM MgSO₄, 2 mM CaCl₂],
- followed by continued incubation at 32 °C for 72-120 hours.
- To record static developmental phenotypes, 0.5 ml diluted cells were seeded into 24-well tissue culture plates in triplicate and imaged at the indicated times with a Leica M80 stereomicroscope.

132133

2.3 Analysis of mCherry fluorescence by plate reader

- Submerged culture assays were set up using 0.5 mL diluted cells seeded into each well of 24-
- well tissue culture plates, and population mCherry fluorescence was measured as described
- previously (McLaughlin et al., 2018). Briefly, developing cells were harvested at the indicated
- hours post-starvation, dispersed, and 1/10 volume of each sample was assayed for fluorescence
- at 580 nm in a Typhoon imager scan. Values plotted are the average and associated standard
- deviation from three independent biological replicates. Similar patterns were observed when
- 140 fluorescence was first normalized to total protein concentration from each sample at each time
- point (data not shown).

142143

2.4 Sporulation assay

- Developmental sporulation efficiency was determined as described previously from 0.5 mL
- diluted cells developed in triplicate in 24-well tissue culture plates under submerged culture
- 146 conditions (Lee et al., 2010). Briefly, heat (50°C for 60 min)- and sonication (60 pulses 30%
- output)-resistant spores were enumerated in a Helber counting chamber. Sporulation efficiency
- was calculated as percent of wild type spores at 72 or 120 hours as indicated. Values reported are
- the average and associated standard deviation from triplicate independent biological
- experiments. Chemical-induced sporulation was triggered by addition of glycerol to 0.5 M to
- vegetatively growing cells in CYE broth with shaking incubation for 24 h at 32°C (Muller et al.,
- 152 2010). Spores were isolated and enumerated as indicated above.

2.5 Developmental video analysis

153 154

161

163

165

170 171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189 190

191

192

193 194

195

196

197

198

155 M. xanthus strains were induced to develop under submerged culture using 0.15 mL diluted cells 156 per well in 96-well tissue culture plates. After induction of starvation, plates were incubated in a Tecan Spark10M plate reader preheated to 32°C (Glaser and Higgs, 2019). The center of each 157 158 well was imaged every 30 min from 0-72 h post-starvation and images assembled into movies 159 (6 fps) in ImageJ (Schindelin et al., 2012). For each movie, onset of aggregation (Aggonset), 160 maximum aggregates (Agg_{MAX}) and final fruiting bodies (Agg_{FINAL}) were enumerated as described previously (Glaser and Higgs, 2019). The percent of aggregates that transitioned to 162 stationary fruiting bodies was calculated as [Agg_{FINAL}/Agg_{MAX}]. The number of aggregates that were mobile (Agg_{MOBILE}) in each movie was recorded and percent Agg_{MOBILE} was calculated as 164 [Agg_{MOBILE} / Agg_{FINAL}]. For each movie, the first frame (Mobility_I) and final frame (Mobility_F) in which aggregates were mobile was recorded and mobility duration was calculated as 166 [(Mobility_F - Mobility_I) x 0.5 h/frame]. Mobility delay was calculated as [Mobility_I - Agg_{ONSET}]. 167 Data were compiled from three biological replicates that contained five technical replicates per 168 strain. Statistical significance was analyzed in Prism (GraphPad) using unpaired t-test assuming 169 Gaussian distribution, or otherwise the Mann-Whitney test.

2.6 Neural network training and analysis

For tracking aggregate and swarm mobility, DeepLabCut deep convolution neural network was used (Mathis et al., 2018). To train DeepLabCut, 769 total frames were extracted from 29 developmental movies that contained aggregates and/or developmental swarms, which were manually labeled in every frame in which they were present. Using the labeled frames, the DeepLabCut neural network was trained using a 50-layer residual network (He et al., 2016) on Google Colaboratory (hardware accelerator: GPU) for 340,000 iterations (p-cutoff =0.1). The trained neural network possessed a training and test error of 1.62 and of 6.66 pixels, respectively. To track movement of aggregates and swarms, 15 videos for each strain (3 biological replicates each with 5 technical replicates) from 25 - 72 h of development were analyzed with the trained neural network. The predicted labels (likelihood > p-cutoff) for each video were then manually processed and any spurious labels were removed. To track mobility of individual swarms and aggregates, videos were cropped to contain only a single aggregate and/or swarm. Swarms and aggregates were only analyzed for mobility if they remained within the frame for the entirety of the recording. To track mobility in an entire well, developmental videos (640 x 510 pixels) were initially cropped into twenty smaller videos (160 x 102 pixels) with ImageJ (Schindelin et al., 2012). Each cropped video was analyzed with the trained neural network as stated previously. Labels from individual videos were then manually stitched together. Displacement between two time points with coordinates (x_i, y_i) and (x_f, y_f) was calculated as $[((x_f - x_i)^2 + (y_f - y_i)^2)^{-2}]$ x (1661.5 µm/1280 pixels)]. Total swarm displacement was calculated as the sum of all displacements across all time points. Speed of mobility between two time points (t_i and t_f) was calculated as [displacement/ $((t_f - t_i) \times 60 \text{ min/h})$].

2.7 Confocal microscopy

For analysis of single cell mrpC expression, M. xanthus strains bearing P_{van}-mNeonGreen and either P_{WT}-mCherry (PH1373) or P_{MUT}-mCherry (PH1374) were diluted 1:19 with an unlabeled wild type strain (DZ2) and induced to develop under submerged culture conditions using 2.1 mL diluted cells to seed ibiTreated u-dishes^{35mm, high} (Ibidi). Developing cultures were imaged using

a Leica TCS SP8 inverted confocal microscope with a 63x objective. Brightfield images were taken with a gain of 230 V and 0.0% offset. mNeonGreen fluorescence was examined using a 488 nm wavelength laser (5% power) for excitation, a 500 – 540 nm emission spectra, 800 V gain, and 0.0% offset. mCherry fluorescence was examined using a 552 nm wavelength laser (5% power) for excitation, a 585 – 630 nm emission spectra, 650 V gain, and 0.0% offset. For each replicate of 24 h pre-aggregating cells and 48 h peripheral rods, five images were taken from throughout the plate for each strain (line average: 8, resolution: 1024 x 1024). For analysis of the 48 h fruiting bodies, z-stacks of three fruiting bodies were taken for each strain. Each fruiting body was imaged from the base to the interior of the fruiting body (21-37 images; step size: 1 μm, line average: 4, resolution: 1024 x 1024). Data were compiled from three independent biological replicates.

Images were subsequently analyzed in ImageJ (Schindelin et al., 2012). For 48 h aggregated populations, images were initially cropped to include only the fruiting body. ROIs were created by thresholding the images from the mNeonGreen channel to contain only pixels that were above the intensity of the unlabeled background strain (pixel threshold: 45), then analyzing particles with area $> 0.5 \ \mu m^2$ and circularity of 0.0 - 1.0. ROIs were then transferred to the mCherry channel images and the integrated density was measured. The red-green (RG) ratios were plotted and points identified as outliers by Grubb's test (p < 0.5) were removed. The coefficient of variation (CV) for each biological replicated was calculated by dividing the standard deviation by the mean. Similar RG ratios and CV values were obtained from random single z-layer images indicating no significant differences in mrpC reporter expression were observed in different layers of cells.

For analysis of MrpC-mNeonGreen production in developing cells, M. xanthus strain PH1375 was induced to develop as above. Prior to imaging, FM 4-64 was added to 5 µg ml⁻¹ final concentration and incubated at 32°C for 60 min [modified from (Hoang et al., 2021)]. At the designated time points, developing cultures were imaged as above, except mNeonGreen fluorescence was recorded with 500 V gain. FM 4-64 fluorescence was detected using 722 – 762 nm emission spectra and 650 V gain. For analysis of peripheral rod populations, five images for each replicate were taken throughout the plate (line average: 8, resolution: 1024 x 1024) and ROIs (identified based on membrane stain) were drawn for 20 rod shaped cells and 20 circular cells representing average sizes. For analysis of aggregated cell populations, 1 µm z-stacks of three fruiting bodies or developmental swarms were recorded. One layer in the z-stack was randomly chosen and ROIs were drawn around 40 circular cells within the fruiting body or 40 rod-shaped cells in the swarms each of which was fully in-plane in the image. The mean fluorescence for each ROI in the mNeonGreen channel was measured and plotted. To account for the relative proportion of spheres and rods in each peripheral rod population, the number of rod-shaped and circular cells were counted in 30.84 x 30.84 pixel ROI (24 hours) or 60.07 x 60.07 pixel ROI (30 and 48 hours) and a proportional equivalent of random cells or spheres were chosen for plotting. All images were analyzed with the Leica Application Suite X (LasX) histogram tool.

2.8 Cell lysate preparation and immunoblot analysis

Cell lysates were generated from strains developed under submerged culture using 16 mL diluted cells seeded in 100-mm petri dishes. At the indicated time points, the overlay buffer was removed, the cell layer was resuspended in 1.5 ml ice-cold MMC. Cells were pelleted (17,000 x

g, 5 min, 4°C), and pellets were stored at -20°C until further use. 1 ml 13% ice-cold trichloroacetic acid (TCA) and 0.1 mm zirconia/silca beads were added to each pellet and subject bead beating with a FastPrep-24 tissue homogenizer (MP Biomedical) at 6.5 m/s for 45 sec at 4°C, six times with 2 min incubation on ice between rounds. Samples were then incubated on ice for at least 15 min. Protein was pelleted as above, washed with 1.0 ml ice-cold Tris buffer [100 mM Tris-HCl (pH 8.0)], then resuspended in 50 μl Tris buffer and 150 μl clear LSB (Schramm et al., 2012), heated at 95°C for 5 min, then stored at -20°C until further use. Protein concentration was determined by Pierce BCA protein assay kit (Thermo Fisher Scientific), samples were diluted to 0.87 μg μl⁻¹ in 2 x LSB, and 10 μg protein resolved by denaturing polyacrylamide (10%) gel electrophoresis and transferred (semi-dry) to polyvinylidene difluoride (PVDF) membrane. Membranes were probed with rabbit polyclonal anti-MrpC (1:1,000) or anti-mNeonGreen (1:1000)(Cell Signaling Technologies), and anti-rabbit IgG secondary antibodies conjugated to horseradish peroxidase (HRP) at 1:20,000 or 1:5000, respectively. Signal was detected with enhanced chemiluminescence substrate followed by exposure to autoradiography film.

3. Results

3.1 Disruption of MrpC binding sites in the *mrpC* promoter region produces increased *mrpC* expression consistent with perturbed negative autoregulation

mrpC expression is subject to NAR due at least in part to competition between MrpC and its transcriptional activator, MrpB, for overlapping binding sites (McLaughlin et al., 2018)(Fig 1A). MrpC binds to two additional sequences within its promoter (termed BS5 and BS1)(McLaughlin et al., 2018). To examine whether BS5 and BS1 contributed to MrpC NAR, we analyzed mrpC reporter constructs bearing either the wild-type promoter or mutant promoters containing substitutions within BS1 (BS1*), a deletion of BS5 (ΔBS5), or both (BS1*ΔBS5). BS1* was generated by substituting the TGT consensus resides to GAA which completely disrupts MrpC binding to BS1 in vitro (McLaughlin et al., 2018)(Fig 1A and S1 Fig B). Each reporter construct was inserted into the Mx8 phage attachment site (attB) of wild-type M. xanthus strain DZ2, and developmental assays indicated all resulting strains displayed wild-type developmental phenotypes (data not shown). Analysis of the reporters during development demonstrated the ΔBS5 and BS1* mutations resulted in 2.5-fold and 1.8-fold increases in mCherry fluorescence compared to the wild-type reporter at 48 h, respectively (S1 Fig C). The reporter bearing the BS1* Δ BS5 double disruption yielded a 3.3 fold increase in mCherry fluorescence compared to the wild type parent, and 1.3-fold increase compared to the single $\Delta BS5$ reporters (Fig 1B and S1 Fig C). No significant mCherry fluorescence was detected from the P_{ΔBS5-3}-mCh reporter which lacks the MrpB binding sites UAS1 and 2 as well as MrpC BS3, 4 and 5 (McLaughlin et al., 2018)(S1 Fig A and C), indicating no other promoter elements contribute to induction of mrpC expression. The observation that reporter expression in the $\Delta mrpC$ strain is dramatically higher early during development (S1 Fig D) reflects the contribution of MrpC binding to BS3/4 to directly compete with MrpB binding at UAS1/2. MrpC BS3/4 intimately overlap with MrpB UAS1/2 (McLaughlin et al., 2018), and we could not design mutations which wouldn't also be predicted to perturb MrpB-dependent activation of mrpC expression.

3.2 Mutation of MrpC BS1 and BS5 leads to early aggregation and reduced sporulation To examine how the MrpC BS1 and BS5 mutations affect *M. xanthus* development, we next generated constructs in which the *mrpC* gene was driven from its wild-type promoter or from the

 $\Delta BS5/BS1*$ promoter. These constructs were integrated in the $\Delta mrpC$ background at the attB site, producing $\triangle mrpC$ att $B::P_{WT}-mrpC$ (parent) and $\triangle mrpC$ att $B::P_{ABS5/BS1}*-mrpC$ strains (hereafter termed P_{WT} -mrpC and P_{MUT} -mrpC, respectively). The phenotype of these two strains was compared to the $\triangle mrpC$ and wild type background strains induced to develop under submerged culture. In this assay, cells are first allowed to grow into a uniform layer that covers the bottom of the well, and development is induced by replacing growth media with starvation buffer. As expected, the $\Delta mrpC$ strain failed to produce aggregates, whereas the wild-type and P_{WT}-mrpC strains produced similar visible aggregation centers between 24 to 36 h that darkened by 72 h post-starvation (Fig 1C and S2 Fig A), indicating exogenously expressed mrpC restores wild type aggregation. In contrast, the P_{MUT}-mrpC strain produced aggregates at least 6 h earlier than the parent strain (Fig 1C and S2 Fig A). Furthermore, while the P_{MUT}-mrpC aggregates appeared similar to the parent at 36 h, they subsequently failed to appropriately darken, and by 48-72 h became more disorganized than the parent and wild-type strains (Fig 1C).

303 304 305

306

307

308

309

310

311

312

313

314

315

316

317

318

291

292

293

294

295

296

297

298

299

300

301

302

To examine sporulation levels in these strains, heat- and sonication-resistant spores were enumerated at 48, 72, and 120 h. After 120 h of development, the wild type had produced 3.1 \pm 0.7×10^7 spores (recorded as $100 \pm 23\%$), while no spores could be detected from $\Delta mrpC$ mutant (< 0.07 % wild type)(S2 Fig B). The Pwt-mrpC strain produced $70 \pm 16\%$ of the wild type levels. suggesting exogenous expression of mrpC did not fully complement with respect to sporulation efficiency (S2 Fig B). The P_{MUT}-mrpC strain, however, exhibited a striking reduction in sporulation corresponding to $30 \pm 17\%$ of the resistant spores produced by the PwT-mrpC strain at 72 hours of development (S2 Fig B). To determine if there was an inherent defect in the core sporulation program in the P_{MUT}-mrpC mutant, we examined the number of heat- and sonicationresistant spores produced after artificial chemical induction of sporulation in liquid cultures which bypasses the requirement for aggregation (Dworkin and Gibson, 1964). The P_{MUT}-mrpC mutant produced a similar number of chemical-induced spores as the wild type, whereas the $\Delta mrpC$ mutant failed to produce any spores (S2 Fig C). These results suggested that the inefficient sporulation observed by the P_{MUT}-mrpC strain during starvation-induced development was not due to failure to execute spore differentiation per se.

319 320 321

322

323

324

325

326

327

328

329

330

331

332

333

335

Finally, to examine how the observed phenotypes correlated with total MrpC levels, we prepared lysates from P_{WT}-mrpC or P_{MUT}-mrpC strains at intervals between 0 – 60 hours of development and subjected them to anti-MrpC immunoblot. In the P_{WT}-mrpC strain, MrpC was absent at the onset of development (t = 0), increased between 18 - 30 h of development, and then subsequently decreased after the onset of sporulation (Fig 1D and S2 Fig B). Relative to the PwTmrpC strain, levels of MrpC in the P_{MUT}-mrpC strain were 2-3-fold higher between 18 – 48 h, and eventually decreased to P_{WT}-mrpC levels by 60 h (Fig 1D and S3 Fig B). This pattern of MrpC accumulation in the two strains was similar to mrpC expression levels when the relative increase in mCherry production was examined by plotting the change in mCherry fluorescence between n and n+1 time points (S3 Fig). Consistent with previous observations (Higgs et al., 2008; Schramm et al., 2012), elevated MrpC levels at 24 hours likely explained the early aggregation onset observed in the P_{MUT}-mrpC strain (Fig 1C). However, the reduced sporulation efficiency observed by this strain was surprising given MrpC levels were similar at 60 h of development when sporulation levels were reduced compared to the parent (S2 Fig B).

334

Together, these results suggested that perturbing the binding of MrpC in its promoter region, and

likely interfering in MrpC NAR, resulted in an uncoupling between completion of aggregation and induction of sporulation.

3.3 Perturbation of MrpC NAR leads to asynchronous development

Movies of *M. xanthus* development have demonstrated that prior to the onset of sporulation, aggregates are surprisingly dynamic (Curtis et al., 2007; Xie et al., 2011; Zhang et al., 2011; Bahar et al., 2014; Glaser and Higgs, 2019). Initial aggregates often dissolve or coalesce, and even mature aggregates can be mobile prior to transition to stationary spore-filled fruiting bodies (Glaser and Higgs, 2019). To examine how MrpC NAR affected these transient behaviors, the wild type, P_{WT} -mrpC (S1 Movie), and P_{MUT} -mrpC (S2 Movie) strains were induced to develop under submerged culture conditions, imaged every 30 min from 0-72 h in an automated plate reader, and the images assembled into movies. For each movie, the time of aggregation onset, the number of initial versus mature aggregates, and the duration of mature aggregate mobility was recorded. These analyses demonstrated that aggregation onset in the P_{MUT} -mrpC strain assays was 3 hours earlier than the wild type and P_{WT} -mrpC strains (25 \pm 1 vs. 28 \pm 1 and 28 \pm 1 h post-starvation, respectively)(Fig 1E, S2 Fig D, S3 Table).

Remarkable differences in the behavior of mature aggregates between the strains was detected. In the wild type strain, very few mobile aggregates were observed (5 ± 12 %) and the duration of mobility was short (2 ± 1 h) (S3 Table). In the P_{WT} -mrpC strain, 40 ± 30 % of the aggregates were mobile for 7 ± 3 h (Fig 1F-G, S3 Table, S1 Movie). As the endogenous mrpC promoter region is still intact in the $\Delta mrpC$ background, we speculated that the differences between the wild type and P_{WT} -mrpC (i.e. $\Delta mrpC$ attB:: P_{WT} -mrpC) strains may result from two copies of the mrpC promoter region, which may dilute the NAR activity of the available MrpC. Remarkably, however, in 80 ± 20 % of the aggregates produced in the P_{MUT} -mrpC strain, a large proportion of cells suddenly exited one side of the aggregate, leaving other cells behind as darkened shallow fruiting bodies (S2 Movie). The cells that exited the aggregate collectively migrated throughout the plate; we referred to these cells as a developmental swarm. Most of these swarms (70 %; 19/27) were still actively moving by the end of the filming period at 72 h. These observations explained both the disorganized appearance of the late aggregates (Fig 1C) and the reduced sporulation efficiencies (S2 Fig B) observed in the P_{MUT} -mrpC strain.

On average, all three strains produced similar maximum numbers of initial aggregates (between 6-8) and final fruiting bodies (between 5-6) (S3 Table). However, in the P_{MUT} -mrpC strain, the overall number of aggregates that transitioned into fruiting bodies ($60 \pm 10\%$) was significantly reduced (p = 0.031; t-test) compared to the wild type and P_{WT} -mrpC strains ($80 \pm 16\%$ and $80 \pm 19\%$, respectively) (S3 Table, S4 Fig B). Interestingly, although aggregation onset in the P_{MUT} -mrpC cells was 3 h earlier than the other strains, there was no significant difference in the time at which fully formed aggregates began to move (mobility onset) in the P_{MUT} -mrpC (37 ± 4 h) relative to the P_{WT} -mrpC cells (37 ± 4 h) (S3 Table, S4 Fig A). Thus, the interval between formation of aggregates and onset of aggregate mobility in the P_{WT} -mrpC and P_{MUT} -mrpC was 7 \pm 3, and 11 ± 3 h, respectively.

To better compare the characteristics of the individual entities produced by the P_{MUT} -mrpC and P_{WT} -mrpC mobile strains, we employed the DeepLabCut deep convolutional neural network (Mathis et al., 2018) to analyze developing strains. The neural network was trained on manually

382 labelled Pwt-mrpC or PMUT-mrpC developmental images with a 50-layer residual network 383 (ResNet-50) for 340,000 iterations resulting in a training and test error of 1.62 and 6.66 pixels, 384 respectively (Becskei and Serrano, 2000; He et al., 2016). The trained neural network was then 385 used to analyze fifteen videos of each strain (3 independent biological replicates each with 5 386 technical replicates). First, the neural network assigned non-mobile aggregates a median speed of $0.22 \mu m/min$ (IOR: $0.12 - 0.40 \mu m/min$), which was attributed to an artifact from slight shifts in 388 the position of the automated plate reader camera between time points (data not shown). In the 389 P_{WT}-mrpC strain, the mobile aggregates travelled at an average speed of 0.3 µm/min (S4 Fig F), 390 and movement was primarily radial (Fig 1F and S4 Fig C) such that the average net displacement was within two aggregate diameters of the starting point (Fig 1F and S4 Fig E). In the P_{MUT}-392 mrpC strain, developmental swarms travelled at an average speed of 0.6 µm/min (S4 Fig F) and their movement involved long runs, sharp turns, and/or repeated reversals (Fig 1F and S4 Fig D); 394 the average total displacement was 1500 ± 400 um (S4 Fig E). Unlike with the Pw_T-mrpC strain. 395 almost all mobile aggregates left a shallow immobile fruiting body behind (Fig 1C and F). Thus, developmental swarms displayed speed and trajectory characteristics that were significantly different from the P_{WT}-mrpC mobile aggregates, suggesting they did not result from simply increasing the duration of the parent aggregate mobility phase.

3.4 MrpC NAR dampens cell-to-cell variability in mrpC expression

387

391

393

396

397

398

399 400

401

402

403

404

405

406

407

408 409

410

411 412

413

414

415

416 417

418

419 420

421

422

423

424

425

426

427

Theoretical and experimental analyses have suggested that NAR motifs function to decrease cellto-cell variability in gene expression, ensuring that expression is homogenous within a population (Becskei and Serrano, 2000). Since the P_{MUT}-mrpC strain appeared to produce subpopulations of cells in different developmental states (i.e. developmental swarms and stationary fruiting bodies; Fig 1F), we hypothesized that MrpC-mediated NAR may be functioning to limit heterogeneity of mrpC expression thus ensuring a coordinated developmental process.

To examine population variation in mrpC expression, we measured mCherry production from individual wild-type cells bearing the Pwt-mCh or Pmut-mCh reporter during in situ development under submerged culture. For normalization purposes, these cells also contained a construct that expressed mNeonGreen from an inducible promoter integrated at a second genomic site (1.38kb::P_{vanillate}-mNeonGreen). These double labeled strains were each diluted 1:19 into a markerless wild type, and single cell fluorescence was recorded using confocal laser scanning microscopy (CLSM). For each cell, mCherry fluorescence was normalized to mNeonGreen fluorescence, and the distribution of red-to-green (RG) ratios from individual cells from three independent biological experiments was plotted. Variability in single-cell RG ratios amongst the population was calculated using the coefficient of variation (CV).

In pre-aggregating cells (24 h development) with the wild type reporter, a mean RG ratio of 0.38 \pm 0.09 was observed with a narrow distribution in values (Fig 2A) that corresponded to a CV of $23.4 \pm 0.3\%$ (Fig 2D). Cells with the P_{MUT}-mCh reporter displayed both 3-fold increased mean reporter expression (RG ratio of 1.2 ± 0.4) and a significantly increased spread in distribution of expression (CV 32 \pm 2%)(Fig 2A and D). Similarly, in fruiting bodies, cells bearing the P_{MUT} mCh reporter displayed 2.5- and 1.3-fold increased mean RG ratio and CV compared to the PwtmCh fruiting body cells, respectively (Fig 2B and D). This trend was also observed in the peripheral rods (mean RG ratio and CV of 3- and 1.3-fold higher than the Pwt-mCh reporter,

respectively). These results indicated that MrpC-mediated NAR may function to not only limit the level of expression, but also to limit the cell-to-cell variability in expression. Additionally, these results suggested the increase in variability was not subpopulation specific, indicating that MrpC-mediated NAR was functioning throughout the entire population to limit expression heterogeneity.

432 433 434

435

436

437

438

439

440

441

442

443

444

445

446 447

448

449

450

451

452

453

454

455

456 457

458

459

460

461

462

463

464

465

466 467

468

469

470

471

472473

428

429

430

431

3.5 Developmental swarms possess an intermediate level of MrpC

Thus far, we observed that disruption of MrpC BS1/5 led to uncoordinated behavior and increased variability in mrpC expression within the population. To examine the MrpC levels in individual cells in the distinct subpopulations, we set out to generate strains producing MrpC fused to a fluorescent marker. Attempts to generate strains producing MrpC with fluorescent proteins or small fluorescent tags fused to either the amino- or carboxy-terminus, expressed either from the endogenous mrpC locus or from exogenous sites, resulted in strong developmental phenotypes and/or partial release of MrpC from the fusion proteins (data not shown). One interesting exception was a strain bearing a carboxy-terminal mNeonGreen fusion to MrpC expressed from the native mrpC promoter in the $\triangle mrpC$ background ($\triangle mrpC$ attB::PwTmrpC-mNeonGreen; hereafter termed mrpC-mNG). Surprisingly, this strain exhibited a similar developmental swarm phenotype to that of the P_{MUT}-mrpC (S5 Fig A, S3 Movie) although aggregation onset was six hours earlier in the mrpC-mNG strain than in the P_{MUT}-mrpC strain, and there was more variability in the number of mobile aggregates between biological replicates (S3 Table). These results strongly suggested that fusion of mNeonGreen to the C-terminus of MrpC was interfering in efficient NAR, perhaps because the mNG fusion interferes with cooperative multimeric MrpC interactions required for efficient exclusion of MrpB from the mrpC promoter region (McLaughlin et al., 2018). Examination of developing mrpC-mNG cells by fluorescence microscopy demonstrated that fluorescence was detected primarily in the center of the cell (S5 Fig C) likely colocalized with the nucleoid, consistent with the role of MrpC as a global transcriptional regulator. A similar localization was also observed by anti-MrpC immunofluorescence in wild-type developing cells (V. Bhardwaj and P. I. Higgs, unpublished results). Finally, immunoblot analyses of the developmental mrpC-mNG lysates demonstrated no untagged MrpC could be by detected by polyclonal anti-MrpC immunoblot, indicating MrpCmNG (predicted molecular mass 54 kDa) was the sole version of MrpC in this strain (S5 Fig B). However, anti-mNG antibodies detected bands corresponding to the 54 kDa MrpC-mNG fusion protein and a 27 kDa mNG monomer (S5 Fig B). We speculate mNeonGreen was released as a result of normal MrpC turnover (Schramm et al., 2012); importantly, this mNeonGreen should not be localized over the nucleoid and was likely detected as diffuse signal in the cells. Regardless, mNeonGreen fluorescence indicated the level of MrpC that was (at one point) produced. Therefore, we took advantage of the mrpC-mNG strain to examine the relative accumulation of MrpC in developing cells in the pre-aggregation, developmental swarm, sporulating fruiting body, and peripheral rod populations in situ. For this purpose, the mrpCmNG strain was induced to develop for 24, 30, or 48 hours and stained with a membrane dye (FM4-64) for 60 min prior to imaging by CLSM. At the pre-aggregation stage (24 h poststarvation), we observed randomly aligned rod-shaped cells with a mean per cell mNeonGreen fluorescence of 80 ± 20 arbitrary units (AU)(Fig 3A-C). By 30 hours, the population divided to produce cells within symmetric round aggregates and peripheral rods remaining between the aggregates with mean per cell fluorescence of 120 ± 20 AU and 60 ± 20 AU, respectively. The observation that mNG fluorescence levels in these two populations correlated with relative levels of MrpC previously observed in peripheral rod populations vs aggregate populations in M. xanthus strain DZ2 (Lee et al., 2012) strongly suggests that mNG fluorescence was also useful for estimating relative levels of MrpC in the developmental swarms. Developmental swarms observed at 48 hours contained per cell fluorescence values ($70 \pm 20 \text{ AU}$) between those observed for cells in the residual fruiting bodies (100 ± 30) and peripheral rods (40 ± 20)(Fig 3A-C). The developmental swarms consisted almost exclusively of rods aligned with their long axis perpendicular to the moving front of the swarm, whereas the fruiting bodies consisted of rods aligned tangential to the edge of the fruiting body or spherical shaped spores (S5 Fig D). At both 30 and 48 hours, the peripheral rods were randomly aligned (S5 Fig D). These observations suggested that developmental swarms arise from cells locked into an intermediate MrpC level. We speculate these intermediate MrpC levels promote cell movement, whereas cells that attained a higher level of MrpC had reduced cell movement and triggered differentiation into non-motile spores forming immobile fruiting bodies.

4. Discussion

MrpC is a key developmental transcriptional regulator of the multicellular developmental program in M. xanthus. MrpC accumulation is key to dictate onset of stages (i.e. aggregation and sporulation) within the developmental program, but also likely determines distinct cell fates within the program (Fig 3)(Lee et al., 2012). MrpC is subject to negative autoregulation and its promoter region contains at least four MrpC binding sites (McLaughlin et al., 2018). Disruption of either binding site 1 or 5 led to increased mrpC expression (Fig 1, S1), and disruption of both produced a nearly additive effect. The arrangement of BS1 suggests that MrpC dimers sterically hinder binding of the sigma⁵⁴ factor to its promoter, consistent with DNase foot printing analyses (Nariya and Inouye, 2006). MrpC binding at BS5 may additionally interfere with MrpB binding to UAS1. We further hypothesize that MrpC bound at BS5 and BS1 may interact to stabilize a DNA loop that further impedes MrpB access to UAS1/2, because deletion of an unusual twentyfive amino acid N-terminal extension in MrpC has the same effect on the mrpC reporter as the ΔmrpC deletion strain, but is completely competent for binding at any of BS 1, 3, 4 and 5 in vitro (McLaughlin et al., 2018). Thus, the BS1/BS5 mutations likely perturbed MrpC NAR. Consistently, a known attribute of NAR is to constrain variation in gene expression (due to noise reduction), and the BS1/BS5 mutation lead to increased cell-to-cell variation in mrpC expression (Fig 2). However, we could not address other known attributes of NAR that have been observed in synthetic systems because we did not isolate MrpC from its additional feedback circuits (examples described below).

One phenotypic consequence of the BS1/BS5 mutations was production of aggregation centers earlier than the parent (Fig 1C and E), likely because MrpC accumulated earlier in this strain (Fig 1D). MrpC levels exhibit similar accumulation patterns in the absence of the Esp signaling system, which induces proteolytic turnover of MrpC (Cho and Zusman, 1999; Schramm et al., 2012). *esp* mutants likewise display early aggregation onset but, in contrast to the P_{MUT}-*mrpC* strain, also result in early and increased sporulation efficiency (Cho and Zusman, 1999; Schramm et al., 2012). The P_{MUT}-*mrpC* strain displayed significantly reduced sporulation efficiency because some cells abruptly exited the aggregation centers and remained locked in a swarming state (Fig 1F and S2 Fig). This phenomenon can be attributed to increased variability in *mrpC* expression (Fig 2) rather than just increased levels *per se*, because the *esp* mutant does

not produce developmental swarms (Schramm et al., 2012)(S4 Movie). Instead, the *esp* strain skipped the aggregate mobility phase and transitioned into darkened immobile fruiting bodies earlier than the wild type (S4 Movie).

522523524

525

526

527

528

529

530

531

532

533

534

535

520

521

The increased cell-to-cell variability in *mrpC* expression likely produced a population that simultaneously contains a mixture of cells at different MrpC thresholds (ie pre-aggregation, aggregation, or sporulation)(Fig 4). For example, at 30 h of development, the population consisted of cells that had already accumulated higher levels of MrpC and were already in mature aggregates (Fig 3), as well as cells which had not yet accumulated much MrpC and had likely not yet aggregated into these centers. By 48 hours, some of these cells had already reached the level of MrpC required to commit to sporulation and thus remained in stationary fruiting bodies (Fig 3). Those at the lower end were in the aggregation phase and collectively exited the aggregation center as a swarm. With the wild-type *mrpC* promoter, MrpC levels are more homogeneous within a given time frame, and the population undergoes a quick, collective transition from aggregation to sporulation (Fig 4). Thus, MrpC negative autoregulation appears to be important in maintaining population synchrony during the *M. xanthus* multicellular developmental program.

536537538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555556

557

558

559

560

561

562

563

564565

The swarms that exited the mounds exhibited aberrant behavior because they left the mature aggregates and continued to migrate as a group until at least 72 hours post-starvation. How could the P_{MUT}-mrpC lead to this novel behavior? One possibility is that cells inside an aggregation center are normally subject to an additional positive feedback loop which is necessary to reinforce transition to sporulation. For example, C-signaling, a contact-dependent signaling system is highly active in aggregated cells and particular in cells transitioning to spores (Sogaard-Andersen and Kaiser, 1996; Hoang et al., 2021), but is presumably inactivated once the cells differentiate into spores. In the P_{MUT}-mrpC strain, developmental swarms appear to arise from cells that expressed lower levels of MrpC and arrived at the mature aggregate after the other cells had already sporulated. These late-to-arrive cells may have therefore missed the positive feedback loop necessary to increase MrpC levels to the sporulation threshold (S6 Fig A), and are instead stuck at intermediate MrpC levels which stimulate aggregation. A second (not mutually exclusive) possibility is that an oscillation motif is triggered in the developmental swarms such that MrpC levels never reach the sporulation threshold but never fall below the aggregation threshold. It is known that oscillations can be generated through a network motif comprised of a composite negative feedback loop coupled to an additional positive feedback loop (Alon, 2007; Stricker et al., 2008). Interestingly, such a motif can be identified for MrpC (S6 Fig B): MrpC induces expression of esp (S. Kasto, A. Schramm and P. I. Higgs, unpublished results), and Esp indirectly induces degradation of MrpC via proteolysis (Schramm et al., 2012). MrpB induces expression of mrpC, and MrpC positively regulates expression of mrpB (Sun and Shi, 2001a)(C. Mataczynski and P.I. Higgs, unpublished results). Another possibility is that the propagation of these swarms could arise from changes in mechanical forces that govern cell swarms, such as local changes in surfactant or cell-cell adhesion properties (Guzman-Herrera et al., 2020; Islam et al., 2020; Saïdi et al., 2021). The observation that strains that produce the developmental swarms initially produce relatively normal aggregates, is consistent with models suggesting initial aggregates (cell layers) form as a result of physical forces governing selforganization, such as Oswald ripening or active nematic liquid crystal formation (Bahar et al., 2014; Copenhagen et al., 2021). The role of distinct levels of MrpC in strain DZ2 may then be to

control the proportions of cells in distinct fates and stabilize transition of aggregates into mature fruiting bodies.

During development in M. xanthus, groups of cells organize into a defined pattern (i.e. fruiting bodies) for a designated function (protection and/or collective dispersal), making the developing population akin to a specialized bacterial tissue. While multicellular tissue formation in M. xanthus is relatively simple compared to that of higher eukaryotic organisms, many of the same basic regulatory principles still apply. Cells must synchronously progress through development in a defined temporal order to produce a functional structure. This principle is exemplified by the regulation of gastrulation in *Drosophila melanogaster* embryogenesis. Invagination (coordinated cell movement) during gastrulation is largely coordinated by the key regulator, snail (Leptin and Grunewald, 1990). Expression of snail displays a significant degree of homogeneity and synchronicity, which is crucial for its function (Boettiger and Levine, 2013; Lagha et al., 2013). If synchronicity is perturbed, then multicellular coordination of invagination becomes defective and the severity of the defect strongly correlates with the level of asynchronicity (Lagha et al., 2013). Intriguingly, Snail is proposed to function as a negative autoregulator, which is thought to promote homogeneity of *snail* expression in the population (Boettiger and Levine, 2013); this provides an additional example where the noise reduction attribute of NAR motifs may promote synchronized responses in a multicellular developmental systems.

Our study also illustrates a mechanism for evolution of emergent behaviors. Developmental swarms, a distinct subpopulation of cells stuck in a collective movement state, arose from mutations in MrpC binding sites which likely lead to disruption of MrpC NAR. In general, NAR motifs are thought to contribute to an organism's robustness against mutational perturbations (Marciano et al., 2014). For example, mutations in NAR TF genes are tolerated at a higher rate than in non-NAR TF genes, likely because alterations in NAR TF activity are automatically compensated by changes in the TF self-expression (Marciano et al., 2016). Mutations in a selfpromoter, however, can alter the steady state levels of the TF without a corresponding compensation in binding affinity to other target promoters (Kozuch et al., 2020). In a developmental transcriptional network with multiple interconnected regulatory motifs (S6 Fig C), a perturbed NAR motif leading to increased cell-to-cell variation could lead to subpopulations of cells which trigger or bypass connected regulatory motifs to induce novel cell fate trajectories. Given that M. xanthus development is heavily influenced by a number of factors independent of genetic regulatory networks, including physical factors (eg. surface characteristics) and mechanical properties (eg. coarsening processes) (Bahar et al., 2014; Liu et al., 2019; Guzman-Herrera et al., 2020; Ramos et al., 2021), it is likely that emerging phenotypes could be drastically different depending on specific environmental conditions or difference in initial population density, leading to eventual selection of beneficial phenotypes perhaps optimized for specific environmental niches.

5. Acknowledgments

566

567

568569

570571

572

573

574575

576

577

578

579

580

581

582

583

584

585 586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605 606

607

608 609

610

611

The authors gratefully acknowledge Justin Kenney for initial advice on deep convolution neural network analyses and members of the Higgs and Schrader lab groups for helpful discussions. This manuscript has been submitted as a preprint to bioRxiv (McLaughlin and Higgs, 2019). This work was funded by a National Science Foundation grant IOS-1651921.

612 613 614	6. References
615 616	Alon, U. (2007). Network motifs: theory and experimental approaches. <i>Nat Rev Genet</i> 8, 450–61. doi: 10.1038/nrg2102.
617 618 619	Bahar, F., Pratt-Szeliga, P. C., Angus, S., Guo, J., and Welch, R. D. (2014). Describing Myxococcus xanthus aggregation using Ostwald ripening equations for thin liquid films. <i>Sci Rep</i> 4, 6376. doi: 10.1038/srep06376.
620 621	Becskei, A., and Serrano, L. (2000). Engineering stability in gene networks by autoregulation. <i>Nature</i> 405, 590–3. doi: 10.1038/35014651.
622 623 624	Berleman, J. E., Scott, J., Chumley, T., and Kirby, J. R. (2008). Predataxis behavior in Myxococcus xanthus. <i>Proc Natl Acad Sci U A</i> 105, 17127–32. doi: 10.1073/pnas.0804387105.
625 626	Boettiger, A. N., and Levine, M. (2013). Rapid transcription fosters coordinate snail expression in the Drosophila embryo. <i>Cell Rep</i> 3, 8–15. doi: 10.1016/j.celrep.2012.12.015.
627 628 629	Camas, F. M., Blázquez, J., and Poyatos, J. F. (2006). Autogenous and nonautogenous control of response in a genetic network. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 103, 12718–12723. doi: 10.1073/pnas.0602119103.
630 631	Cho, K., and Zusman, D. R. (1999). Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. <i>Mol Microbiol</i> 34, 714–25.
632 633 634	Copenhagen, K., Alert, R., Wingreen, N. S., and Shaevitz, J. W. (2021). Topological defects promote layer formation in Myxococcus xanthus colonies. <i>Nat. Phys.</i> 17, 211–215. doi: 10.1038/s41567-020-01056-4.
635 636 637 638	Cotter, C. R., Schuttler, H. B., Igoshin, O. A., and Shimkets, L. J. (2017). Data-driven modeling reveals cell behaviors controlling self-organization during Myxococcus xanthus development. <i>Proc Natl Acad Sci U A</i> 114, E4592–E4601. doi: 10.1073/pnas.1620981114.
639 640 641	Curtis, P. D., Taylor, R. G., Welch, R. D., and Shimkets, L. J. (2007). Spatial organization of Myxococcus xanthus during fruiting body formation. <i>J Bacteriol</i> 189, 9126–30. doi: 10.1128/JB.01008-07.
642 643	Dworkin, M., and Gibson, S. M. (1964). A System for Studying Microbial Morphogenesis: Rapid Formation of Microcysts in Myxococcus Xanthus. <i>Science</i> 146, 243–4.
644 645 646	Ellehauge, E., Norregaard-Madsen, M., and Sogaard-Andersen, L. (1998). The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in Myxococcus xanthus development. <i>Mol Microbiol</i> 30, 807–17.

- Glaser, M. M., and Higgs, P. I. (2019). Orphan Hybrid Histidine Protein Kinase SinK Acts as a
 Signal Integrator To Fine-Tune Multicellular Behavior in Myxococcus xanthus. *J Bacteriol* 201. doi: 10.1128/JB.00561-18.
- Guzman-Herrera, A., Arias Del Angel, J. A., Rivera-Yoshida, N., Benitez, M., and Franci, A. (2020). Dynamical patterning modules and network motifs as joint determinants of
- development: Lessons from an aggregative bacterium. *J Exp Zool B Mol Dev Evol*. doi:
- 653 10.1002/jez.b.22946.
- He, Kaiming., Zhang, Xiangyu., Ren, Shaoqing., and and Sun, Jian. (2016). Deep Residual Learning for Image Recognition. *Proc. IEEE Conf. Comput. Vis. Pattern*, 770–778.
- Higgs, P. I., Hartzell, P. L., Holkenbrink, C., and Hoiczyk, E. (2014). "Myxococcus xanthus
 Vegetative and Developmental Cell Heterogeneity," in *Myxobacteria: Genomics, Cellular and Molecular Biology*, eds. Z. Yang and P. I. Higgs (Norfolk, UK: Caister
 Academic Press), 51–77.
- Higgs, P. I., Jagadeesan, S., Mann, P., and Zusman, D. R. (2008). EspA, an orphan hybrid
 histidine protein kinase, regulates the timing of expression of key developmental proteins
 of Myxococcus xanthus. *J Bacteriol* 190, 4416–26. doi: 10.1128/JB.00265-08.
- Hoang, Y., Franklin, J. L., Dufour, Y. S., and Kroos, L. (2021). Cell density, alignment, and
 orientation correlate with C-signal-dependent gene expression during Myxococcus
 xanthus development. *Proc Natl Acad Sci U A* 118. doi: 10.1073/pnas.2111706118.
- Hoang, Y., and Kroos, L. (2018). Ultrasensitive Response of Developing Myxococcus xanthus to
 the Addition of Nutrient Medium Correlates with the Level of MrpC. *J Bacteriol* 200.
 doi: 10.1128/JB.00456-18.
- Islam, S. T., Vergara Alvarez, I., Saidi, F., Guiseppi, A., Vinogradov, E., Sharma, G., et al.
 (2020). Modulation of bacterial multicellularity via spatio-specific polysaccharide
 secretion. *PLoS Biol* 18, e3000728. doi: 10.1371/journal.pbio.3000728.
- Kozuch, B. C., Shaffer, M. G., and Culyba, M. J. (2020). The Parameter-Fitness Landscape of
 lexA Autoregulation in Escherichia coli. *mSphere* 5, e00718-20. doi:
 10.1128/mSphere.00718-20.
- Lagha, M., Bothma, J. P., Esposito, E., Ng, S., Stefanik, L., Tsui, C., et al. (2013). Paused Pol II coordinates tissue morphogenesis in the Drosophila embryo. *Cell* 153, 976–87. doi: 10.1016/j.cell.2013.04.045.
- Lee, B., Holkenbrink, C., Treuner-Lange, A., and Higgs, P. I. (2012). Myxococcus xanthus developmental cell fate production: heterogeneous accumulation of developmental regulatory proteins and reexamination of the role of MazF in developmental lysis. *J Bacteriol* 194, 3058–68. doi: 10.1128/JB.06756-11.

- Lee, B., Schramm, A., Jagadeesan, S., and Higgs, P. I. (2010). Two-component systems and regulation of developmental progression in Myxococcus xanthus. *Methods Enzym.* 471, 253–78. doi: 10.1016/S0076-6879(10)71014-4.
- Lee, J. S., Son, B., Viswanathan, P., Luethy, P. M., and Kroos, L. (2011). Combinatorial regulation of fmgD by MrpC2 and FruA during Myxococcus xanthus development. *J Bacteriol* 193, 1681–9. doi: 10.1128/JB.01541-10.
- Leptin, M., and Grunewald, B. (1990). Cell shape changes during gastrulation in Drosophila.
 Development 110, 73–84.
- Liu, G., Patch, A., Bahar, F., Yllanes, D., Welch, R. D., Marchetti, M. C., et al. (2019). Self Driven Phase Transitions Drive Myxococcus xanthus Fruiting Body Formation. *Phys. Rev. Lett.* 122, 248102. doi: 10.1103/PhysRevLett.122.248102.
- Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982). *Molecular cloning : a laboratory manual*. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.
- Marciano, D. C., Lua, R. C., Herman, C., and Lichtarge, O. (2016). Cooperativity of Negative
 Autoregulation Confers Increased Mutational Robustness. *Phys Rev Lett* 116, 258104.
 doi: 10.1103/PhysRevLett.116.258104.
- Marciano, D. C., Lua, R. C., Katsonis, P., Amin, S. R., Herman, C., and Lichtarge, O. (2014).
 Negative feedback in genetic circuits confers evolutionary resilience and capacitance.
 Cell Rep 7, 1789–95. doi: 10.1016/j.celrep.2014.05.018.
- Marcos-Torres, F. J., Volz, C., and Muller, R. (2020). An ambruticin-sensing complex modulates Myxococcus xanthus development and mediates myxobacterial interspecies communication. *Nat Commun* 11, 5563. doi: 10.1038/s41467-020-19384-7.
- Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., et al. (2018).

 DeepLabCut: markerless pose estimation of user-defined body parts with deep learning.

 Nat Neurosci 21, 1281–1289. doi: 10.1038/s41593-018-0209-y.
- McLaughlin, M., and Higgs, P. I. (2019). A negative autoregulation network motif is required for synchronized Myxococcus xanthus development. 738716. doi: 10.1101/738716.
- McLaughlin, M., Bhardwaj, V., Feeley, B. E., and Higgs, P. I. (2018). MrpC, a CRP/Fnr homolog, functions as a negative autoregulator during the Myxococcus xanthus multicellular developmental program. *Mol Microbiol*. doi: 10.1111/mmi.13982.
- Mittal, S., and Kroos, L. (2009a). A combination of unusual transcription factors binds
 cooperatively to control Myxococcus xanthus developmental gene expression. *Proc Natl Acad Sci U A* 106, 1965–70. doi: 10.1073/pnas.0808516106.
- Mittal, S., and Kroos, L. (2009b). Combinatorial regulation by a novel arrangement of FruA and MrpC2 transcription factors during Myxococcus xanthus development. *J Bacteriol* 191, 2753–63. doi: 10.1128/JB.01818-08.

- Muller, F. D., Treuner-Lange, A., Heider, J., Huntley, S. M., and Higgs, P. I. (2010). Global
- transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus
- necessary for cell differentiation. BMC Genomics 11, 264. doi: 10.1186/1471-2164-11-
- 721 264.
- Munoz-Dorado, J., Marcos-Torres, F. J., Garcia-Bravo, E., Moraleda-Munoz, A., and Perez, J.
- 723 (2016). Myxobacteria: Moving, Killing, Feeding, and Surviving Together. Front
- 724 *Microbiol* 7, 781. doi: 10.3389/fmicb.2016.00781.
- Nariya, H., and Inouye, S. (2005). Identification of a protein Ser/Thr kinase cascade that
- regulates essential transcriptional activators in Myxococcus xanthus development. *Mol*
- 727 *Microbiol* 58, 367–79. doi: 10.1111/j.1365-2958.2005.04826.x.
- Nariya, H., and Inouye, S. (2006). A protein Ser/Thr kinase cascade negatively regulates the
- DNA-binding activity of MrpC, a smaller form of which may be necessary for the
- Myxococcus xanthus development. *Mol Microbiol* 60, 1205–17. doi: 10.1111/j.1365-
- 731 2958.2006.05178.x.
- Nevozhay, D., Adams, R. M., Murphy, K. F., Josic, K., and Balazsi, G. (2009). Negative
- autoregulation linearizes the dose-response and suppresses the heterogeneity of gene
- 734 expression. *Proc Natl Acad Sci U A* 106, 5123–8. doi: 10.1073/pnas.0809901106.
- O'Connor, K. A., and Zusman, D. R. (1991). Development in Myxococcus xanthus involves
- differentiation into two cell types, peripheral rods and spores. *J Bacteriol* 173, 3318–33.
- Ogawa, M., Fujitani, S., Mao, X., Inouye, S., and Komano, T. (1996). FruA, a putative
- transcription factor essential for the development of Myxococcus xanthus. *Mol Microbiol*
- 739 22, 757–67.
- Rajagopalan, R., and Kroos, L. (2014). Nutrient-regulated proteolysis of MrpC halts expression
- of genes important for commitment to sporulation during Myxococcus xanthus
- 742 development. *J Bacteriol* 196, 2736–47. doi: 10.1128/JB.01692-14.
- Rajagopalan, R., and Kroos, L. (2017). The dev Operon Regulates the Timing of Sporulation
- during Myxococcus xanthus Development. *J Bacteriol* 199. doi: 10.1128/JB.00788-16.
- Ramos, C. H., Rodriguez-Sanchez, E., Del Angel, J. A. A., Arzola, A. V., Benitez, M.,
- Escalante, A. E., et al. (2021). The environment topography alters the way to
- multicellularity in Myxococcus xanthus. *Sci Adv* 7. doi: 10.1126/sciadv.abh2278.
- Robinson, M., Son, B., Kroos, D., and Kroos, L. (2014). Transcription factor MrpC binds to
- promoter regions of hundreds of developmentally-regulated genes in Myxococcus
- 750 xanthus. *BMC Genomics* 15, 1123. doi: 10.1186/1471-2164-15-1123.
- Rosenberg, E., Keller, K. H., and Dworkin, M. (1977). Cell density-dependent growth of
- Myxococcus xanthus on casein. *J Bacteriol* 129, 770–7.

- Rosenfeld, N., Elowitz, M. B., and Alon, U. (2002). Negative autoregulation speeds the response
- times of transcription networks. J Mol Biol 323, 785–93. doi: 10.1016/s0022-
- 755 2836(02)00994-4.
- Saïdi, F., Jolivet, N. Y., Lemon, D. J., Nakamura, A., Belgrave, A. M., Garza, A. G., et al.
- 757 (2021). Bacterial glycocalyx integrity drives multicellular swarm biofilm dynamism. *Mol.*
- 758 *Microbiol.* 116, 1151–1172. doi: 10.1111/mmi.14803.
- 759 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al.
- 760 (2012). Fiji: an open-source platform for biological-image analysis. *Nat Methods* 9, 676–
- 761 82. doi: 10.1038/nmeth.2019.
- Schramm, A., Lee, B., and Higgs, P. I. (2012). Intra- and interprotein phosphorylation between
- two-hybrid histidine kinases controls Myxococcus xanthus developmental progression. J
- 764 *Biol Chem* 287, 25060–72. doi: 10.1074/jbc.M112.387241.
- Sogaard-Andersen, L., and Kaiser, D. (1996). C factor, a cell-surface-associated intercellular
- signaling protein, stimulates the cytoplasmic Frz signal transduction system in
- 767 Myxococcus xanthus. *Proc Natl Acad Sci U A* 93, 2675–9.
- Son, B., Liu, Y., and Kroos, L. (2011). Combinatorial regulation by MrpC2 and FruA involves
- three sites in the fmgE promoter region during Myxococcus xanthus development. J
- 770 *Bacteriol* 193, 2756–66. doi: 10.1128/JB.00205-11.
- 771 Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S., and Hasty, J. (2008). A
- fast, robust and tunable synthetic gene oscillator. *Nature* 456, 516–9. doi:
- 773 10.1038/nature07389.
- Sun, H., and Shi, W. (2001a). Analyses of mrp genes during Myxococcus xanthus development.
- *J Bacteriol* 183, 6733–9. doi: 10.1128/JB.183.23.6733-6739.2001.
- Sun, H., and Shi, W. (2001b). Genetic studies of mrp, a locus essential for cellular aggregation
- and sporulation of Myxococcus xanthus. *J Bacteriol* 183, 4786–95. doi:
- 778 10.1128/JB.183.16.4786-4795.2001.
- 779 Thieffry, D., Huerta, A. M., Perez-Rueda, E., and Collado-Vides, J. (1998). From specific gene
- regulation to genomic networks: a global analysis of transcriptional regulation in
- 781 Escherichia coli. *Bioessays* 20, 433–40. doi: 10.1002/(SICI)1521-
- 782 1878(199805)20:5<433::AID-BIES10>3.0.CO;2-2.
- 783 Ueki, T., and Inouye, S. (2003). Identification of an activator protein required for the induction
- of fruA, a gene essential for fruiting body development in Myxococcus xanthus. *Proc*
- 785 *Natl Acad Sci U A* 100, 8782–7. doi: 10.1073/pnas.1533026100.
- Velicer, G. J., Mendes-Soares, H., and Wiegloss, S. (2014). "Whence Comes Social Diversity?
- Ecological and Evolutionary Analysis of the Myxobacteria," in *Myxobacteria: Genomics*,
- 788 Cellular and Molecular Biology, eds. Z. Yang and P. I. Higgs (Norfolk, UK: Caister
- 789 Academic Press), 1–29.

- Xie, C., Zhang, H., Shimkets, L. J., and Igoshin, O. A. (2011). Statistical image analysis reveals
 features affecting fates of Myxococcus xanthus developmental aggregates. *Proc Natl Acad Sci U A* 108, 5915–20. doi: 10.1073/pnas.1018383108.
- Zhang, H., Angus, S., Tran, M., Xie, C., Igoshin, O. A., and Welch, R. D. (2011). Quantifying
 aggregation dynamics during Myxococcus xanthus development. *J Bacteriol* 193, 5164–795
 70. doi: 10.1128/JB.05188-11.

797 798

796

799

830

831

832

Figure captions

800 Figure 1. Disruption of MrpC binding sites 1 and 5 perturbs MrpC negative autoregulation 801 (NAR) and leads to asynchronous development. (A) Top: Schematic of the mrpC promoter 802 region. BS: Sequences to which MrpC directly binds; UAS: upstream activating sequences to which MrpB directly binds; σ^{54} : putative sigma⁵⁴-dependent promoter; +1: transcriptional start 803 site; black arrow: mrpC gene. Middle: Schematic of the reporter construct used in (B). PmrpC-804 805 mCh: the wild type mrpC promoter region was fused to the mCherry fluorescence reporter gene 806 (red arrow). Bottom: Reporter with deletion of BS5 and disruption of BS1 in the *mrpC* promoter. 807 (B) mrpC expression is increased when binding sites (BS) 5 and 1 are disrupted. Analysis of 808 mrpC expression with an mCherry reporter expressed from the wild type mrpC (P_{mrpC} -mCh) or 809 mutant MrpC binding sites 1 and 5 (P_{ABS5/BS1*}-mCh mrpC) promoters. Reporters were integrated 810 into wild type cells and mCherry fluorescence was recorded during development under 811 submerged culture. Data plotted is the average and associated standard deviation of three 812 independent biological replicates. (C) Disruption of MrpC BS 5 and 1 caused early aggregation 813 and disrupted fruiting bodies. The developmental phenotype observed from $\Delta mrpC$ cells 814 expressing mrpC from its wild type- (Pwt-mrpC) or Pabs5/BS1*- (Pmut-mrpC) promoters recorded 815 at the hours post-starvation indicated; >24 indicates images recorded at 0, 12, 18 and 24 hours of 816 development were indistinguishable. White arrows: aggregates of ~10⁵ cells; black arrows: 817 immobile fruiting bodies; red arrows: developmental swarms. (D) Representative anti-MrpC 818 immunoblot of lysates prepared from PwT-mrpC or PMUT-mrpC cells developing under 819 submerged culture. (E, G) Distribution of developmental times at which aggregation centers 820 were first observed (aggregation onset; E), or durations of time that aggregates (P_{WT}-mrpC) or 821 developmental swarms (P_{MUT}-mrpC) traveled (mobility duration; G). Mean (bar) and associated 822 standard deviations are indicated. Data was analyzed for statistically significant differences using an unpaired t test (E) or Mann-Whitney test (G). ****: p < 0.0001. Strains were developed under 823 824 submerged culture in 96 well plates and imaged every 30 min for 72 hours Data are compiled 825 from three independent biological replicates. n=26 (P_{WT} -mrpC) and 28 (P_{MUT} -mrpC)(E); n=20826 (P_{WT}-mrpC) and 30 (P_{MUT}-mrpC)(G). (F) Identification and tracking of aggregates by a 827 DeepLabCut trained neural network. Stationary aggregates (blue) and developmental swarms 828 (red) identified from movies of cells developing under submerged culture as in C. Data from one 829 representative assay is shown.

Figure 2. Perturbation of MrpC NAR increases the level and population-wide variability of mrpC expression. (A-C) Histogram of mrpC reporter expression in pre-aggregation (A), fruiting

833 body (B), or peripheral rod populations (C). Wild-type cells expressing mCherry from either the 834 wild-type mrpC promoter (P_{mrpC}-mCh; P_{WT}-mCh) or perturbed NAR mrpC promoter (P_{BS5/BS1}*-835 mCh; P_{MUT}-mCh), and mNeonGreen from a constitutive promoter (P_{vanillate}-mNG). Strains were 836 developed under submerged culture and imaged by confocal microscopy. mCherry (red) and 837 mNeonGreen fluorescence was measured for individual cells and the red-green ratio calculated. 838 Ratios were binned and the percent of the population with the indicated red-green ratio displayed 839 by histogram. For the P_{WT} -mCh strain, n = 8064 (A), 14,298 (B), and 933 (C) cells. For the 840 P_{MUT} -mCh strain, n = 5835 (A), 11,198 (B), and 850 (C) cells. Representative images showing 841 mCherry and mNeonGreen fluorescence overlayed from each population in the indicated strains 842 is shown. Note: the edge of a fruiting body is shown in B. (D) Average coefficient of variation 843 and associated standard deviation was calculated from three independent biological replicates. 844 Light gray: P_{WT}-mCh; dark gray: P_{MUT}-mCh. Data was analyzed for statistically significant 845 differences using an unequal variances t-test. *: p < 0.05; *** p < 0.001. 846

Figure 3. Developmental swarms correlate with intermediate MrpC production. (A)

847

848

849

850

851 852

853

854

855

856

857 858

859

860

861

862

863

864

865

866

867 868

869

870

871 872

873

874

875

876

877

Developmental phenotype images of the $\Delta mrpC$ strain expressing mrpC-mNG from the wild type mrpC promoter integrated at an exogenous locus (P_{WT}-mrpC-mNG). (B) Fluorescent imaging of P_{WT}-mrpC-mNG cells in the indicated stages. Development was induced under submerged culture conditions for the indicated times, treated with FM4-64 membrane stain, and imaged by confocal microscopy. Fluorescence captured from the membrane strain and mNeonGreen is colored blue and green, respectively. A and B: Pre-aggregation cells (PA), mature aggregates (MA, white arrows), developmental swarms (DS, red arrows), and fruiting bodies (FB, black arrows) are indicated. (C) Average mNeonGreen fluorescence recorded from individual rod shaped cells (light gray circles) or spherical cells (dark grey circles) in each population. Data distribution is indicated to the right by box plots. Boxes: first quartile-third quartile: whiskers: minimum and maximum; solid line: median; dashed line: mean. Outliers show as distinct dots. Regions of interest (ROIs) were identified based on the membrane stain and the average mNeonGreen fluorescence within the ROI was measured. Results from two independent biological replicates are shown. n = 200 cells for PA, 30 h PR and 48h PR populations. n = 240cells for 30 h MA, 48 h FB, and 48 h DS populations. Circles in the pre-aggregate and peripheral rod populations likely corresponded to end-on cells, rather than spores. Statistical analysis (twosample unequal variances t-test) indicated all populations displayed significantly different average fluorescence intensities (p < 0.001), except 48 h DS and 24 h PA (p = 0.08).

Figure 4. Model for role of NAR in synchronized progression through developmental phases. (A) Distributions of MrpC in the wild-type (dark blue peak) and perturbed MrpC NAR (dark green peak) strains at trigger points (dotted lines) for aggregation and sporulation. After the onset of starvation, MrpC levels (red gradient rectangle) steadily increase. With appropriate NAR, the distribution of MrpC at the trigger thresholds is constrained which promotes synchronized transition of the population to aggregation and then sporulation phases. The window for population transition to the next stage is short (light blue rectangle). When NAR is perturbed, the distribution of MrpC at the trigger thresholds is broad and cells can contain different threshold levels of MrpC. The window for population transition to the next stage is lengthened (light green rectangle) causing some cells to swarm away from fruiting bodies. (B) Schematic of M. xanthus developmental stages and associated MrpC levels in individual cells in

the wild type (WT; top) and perturbed MrpC NAR mutant (MUT; bottom). WT: Cells (white

rods) in the pre-aggregation (PA) stage contain little MrpC. Accumulation of MrpC (light red) triggers aggregation, and cells move into aggregation centers (mounds of cells). Continued accumulation of MrpC (dark red) in mature aggregates (MA) triggers sporulation (white circles) forming fruiting bodies (FB). Mature committed spores contain little MrpC. MUT: Broadened distribution of MrpC results in multiple stages of development at the same time. MAs contain some cells that reached the sporulation threshold. Cells which did not reach the sporulation threshold exit the aggregate as developmental swarms (DS), leaving residual fruiting bodies in place. Peripheral rods are not shown. Aggregation onset is induced on average 3 hours earlier than in the wild type.