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Abstract—Neural signal recording and optical stimulation
using implantable devices have become a ubiquitous method
to treat brain disorders, yet there lie some shortcomings,
such as size, weight, and functionalities of the implants. This
work presents a commercial off-the-shelf (COTS) component-
based miniaturized wireless optogenetic headstage with
simultaneous optical stimulation and electrophysiological
recording for freely moving rats. The system includes a
battery-based neural stimulator consisting of a low-dropout
(LDO) regulator, an oscillator, and a µLED. The electrophys-
iological signal recording system includes an intracortical
neural probe implemented on a shape memory polymer (SMP) substrate, an array of neural amplifiers with an integrated
analog-to-digital converter (ADC), a transceiver IC, and a ceramic antenna. A digital sub-1-GHz transceiver integrated
with a low-power microcontroller (MCU) is used to transmit the acquired neural data to a remote receiver unit, followed
by offline spike detection and sorting in LabVIEW. The front-end recording amplifiers provide a gain of 45.7 dB with
the input-referred noise of 2.4 µVrms. The integrated multiplexer (MUX) with the ADC allows sampling of the amplified
voltage at a configurable sampling rate of 160–480 kSamples/s. The total power consumption of the stimulation and the
recording system is 23 mW. The dimension of the headstage device is 13.5 × 21.3 mm, weighing 4 g without the battery.
The system is experimentally validated in an in vivo setting by placing the headstage on the head of a male rat and
recording the neural signals from the ventral tegmental area (VTA) of the brain. This integrative neural signal recording
and spike sorting approach would be useful for the development of a closed-loop neuromodulation system.

Index Terms— Duty-cycled optical stimulation, neuromodulation, spike sorting, wireless electrophysiological record-
ing.

I. INTRODUCTION

ADVANCES in miniaturized implantable medical devices
have led the way to the treatment of several neuro-
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logical disorders. Modulation of activity of specific neurons
via stimulation could be exploited to treat various disorders,
such as Parkinson’s disease, epilepsy, chronic pain, poststroke
paralysis, and so on [1], [2], [3], [4], [5], [6], [7]. Compared
with traditional electrical or magnetic stimulation, optogenetic
stimulation is a powerful stimulation technique that can be
used to precisely excite or inhibit certain types of neurons in
the brain [8], [9], [10]. Using optogenetic neuromodulation,
neuroscientists are able to optically stimulate the geneti-
cally engineered neurons to study and control various neural
activities in the brain [11], [12], [13]. An optogenetic neu-
romodulation approach includes the capability of performing
large-scale neural activity recording and optical stimulation
using a programmable and customized modulation system.
An optogenetic neuromodulation system typically includes
electrophysiological recording and optical stimulation modules
in order to conduct closed-loop neuromodulation to control the
neural activities in relevant brain locations [14]. The recorded
neural signals are wirelessly transmitted and sent to the global
signal processing unit in most of the previously reported
literature [13].
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These features—the simultaneous recording and stimulation
of targeted neuronal populations with an iterative, closed-
loop control mechanism—have many advantages for basic
investigation. First, the fidelity of the intended experimental
stimulation parameters and their effects would be difficult or
cumbersome to directly verify the basic neuroscience experi-
ment, particularly with chronic implantation of optical fibers,
which can be technically failed at various time points. Indirect
measures of stimulation efficacy, such as immediate-early
gene expression [15], do not provide the electrophysiological
precision necessary for characterizing stimulation effects, and
neither slice physiology nor anesthetized electrophysiology
provides such characterization in their intended awake, behav-
ing context. The ability to directly verify stimulation efficacy
in vivo during behavioral tests at all points in an experiment,
therefore, bolsters the rigor of any such research [5], [6], [7].
In addition, the ability to modulate stimulation parameters
according to electrophysiological readouts in target neurons
in vivo greatly simplifies the process of identifying optical
stimulation parameters in new neuronal populations or cell
types. Chronically implanted optrodes setup in a closed-loop
system enables not only identification and control of imme-
diate neuronal dynamics (such as synaptic fatigue and similar
processes) but also allows neuroscientists to probe for changed
neuronal sensitivities over periods of days, weeks, or even
months. The closed-loop setup allows neuroscientists to mod-
ulate stimulation according to the neuronal responsiveness,
greatly increasing the consistency and precision of neuronal
control.

Stimulation parameters include several degrees of freedom,
which are specific for certain applications. The combination of
parameters includes the stimulation frequency, the pulsewidth,
and the output voltage delivered to the µLED [16]. Varying
the stimulation parameters results in improving the efficacy of
the stimulation [17]. For example, low-stimulation frequency
(<100 Hz) improves the effectiveness of deep brain stimula-
tion, whereas an intervention for severe gait disorder requires
a high-frequency stimulation of 130–185 Hz [18]. Different
stimulation frequencies are applied according to the spike
trains generated from the same regions. This work utilizes the
low-frequency stimulation in the ventral tegmental area (VTA),
a frequent target of neural control in research investigating the
effects of dopaminergic neuronal circuit function. We selected
the VTA as a target not only for its popularity but also as
a target of optogenetic control [19], [20], [21], [22], [23],
[24], [25], but also because of its many points of clinical
significance (e.g., schizophrenia [26], [27], [28], Parkinson’s
disease [27], [29], depression [28], [30], addiction [31], and
Huntington’s disease [32]), and its application to the inves-
tigation of many basic processes (e.g., basic learning and
motivational processes [33], incentive salience [34], utility
functions [35], prediction error [36], motor control [37], and
so on).

Typically, the recording system includes neural electrodes,
amplifiers, a multiplexer (MUX), an analog-to-digital con-
verter (ADC), a transceiver module, and an antenna. Two
of the significant constraints in developing a wireless head-
stage capable of simultaneous stimulation and multichannel

recording are the limited power resource and the small form
factor. This work presents a low-power analog circuitry built
with standard commercial off-the-shelf (COTS) components.
Arrays of 16 low-noise amplifiers are used to acquire the elec-
trophysiological signals from the 16-channel neural probes.
The neural signal recording amplifier chip RHD2132 has a
built-in 16-bit ADC, which converts the amplified analog
signals to digital bits [38], [39]. Here, 32 channel amplifier
chips (Intan RHD2132) has been used where 16 channels
have been exploited, and the other 16 have been kept left.
A sub-1-GHz radio transceiver integrated with an MSP430
microcontroller (MCU) transmits the acquired neural signals to
a remote receiver for further processing [40], [41]. This work
utilizes only two chips, thus featuring a small form factor,
while also maintaining the power budget and recording the
electrophysiological signal accurately and precisely.

The utter comprehension of the neural signal recording for
a target neuron depends on the detection and the sorting
of the spikes from different neurons, which occur at the
same neuronal surface [42], [43]. Since the spikes from
different neurons can get superimposed onto each other and
create correlated/uncorrelated noises, it is of great importance
to conduct the spike feature extraction and sort them to
the correspondent neurons. In order to extract the features
from the neural signals, at first, the spikes are detected, and
then, they are clustered into different groups based on their
similarity of features and shapes [44]. The objective of the
spike sorting is to assign each cluster to the corresponding
neuron. Several techniques have been proposed for spike
detection and sorting in prior works [45], [46], [47]. The
spike detection algorithms can be primarily categorized into
two methods: 1) manual and supervised and 2) automated and
unsupervised. One of the widely used techniques for manual
spike detection is the window discriminator. This method is
unsuitable for large-scale recording systems, since it needs
manual supervision [45], [48]. Other detection algorithms
are based on the absolute-value threshold, nonlinear energy
operator, and template matching [48], [49], [50]. Among
these methods, nonlinear energy operator can perform well
for a multielectrode setup even if the signal-to-noise ratio
(SNR) is low (<10 dB). Considering the above constraints,
this article utilizes the continuous wavelet transform (CWT)-
based unsupervised spike detection algorithm implemented in
LabVIEW (National Instruments, NI) [45]. This work also
includes offline sorting after the spikes are detected accurately.
Spikes are sorted from the detected spikes based on the
features, such as the peak-to-peak amplitude of the spikes,
time duration of spike trains, or interval between consecutive
spikes [51]. Principal component analysis (PCA), a commonly
used artificial intelligence (AI) algorithm, is one of the most
widely used feature extraction methods, which reduces the
dimensionality of the dataset by evaluating the variations in
the neural signal. This work utilizes a PCA-based clustering
technique in LabVIEW. The main objective of the implemen-
tation of this work in LabVIEW is to perform spike detection
and sort in an unsupervised, faster, and accurate way. There
is nothing particularly new about the detection and sorting
algorithm used here; rather, the novel aspects of this work lie
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in the unified approach taken toward optical stimulation, neural
signal recording, and spike sorting of the recorded signal.

The performance of the full system is validated in vivo with
a Long–Evans rat (Charles River), which is a wild type of
rat and not a genetically modified rat to validate the efficacy
of optogenetic neuromodulation. Experimental results demon-
strate the system’s reliability in recording electrophysiological
signals from 16 channels and the wireless transmission of the
data. We also demonstrate the battery-powered reconfigurable
optogenetic stimulation capability of the headstage system,
which is only 4-g weight and is mounted on the head of
the rat. Our integrated system has also a PCA and k-means-
based spike sorting and classification GUI developed using
LabVIEW, which can be used for the real-time closed-loop
neuromodulation settings in the future work. The integration
of the envisioned system within the NI LabVIEW framework
for the purpose of spike sorting and classification signifies
a novel accomplishment that is yet to be demonstrated in
the current body of scientific literature. Moreover, by har-
nessing the capabilities of the ADC integrated within the
electrophysiology interface chip (RHD 2132), the energy
expenditure of the recording circuitry is significantly reduced,
thus making a substantial contribution toward minimizing the
system’s overall footprint representing an additional element
of novelty within the framework of this research undertak-
ing. This article is organized as follows. Section II discusses
the detailed design architecture of the headstage device.
Section III presents the unsupervised spike detection and sort-
ing algorithms implemented in LabVIEW. The simulation and
experimental validation are provided in Section IV, followed
by a concluding remark in Section V.

II. SYSTEM OVERVIEW

The block-level diagram of the proposed optogenetic head-
stage is shown in the graphical abstract. The headstage is
entirely built using COTS-based components. The complete
system consists of two interconnected parts. The first part
includes a printed circuit board (PCB), which contains the
electronics for data acquisition (DAQ), wireless data transmis-
sion, and optical stimulation. The second part is a detachable
implantable module, which includes the neural probe and
the µLED. Two Omnetics connectors (part A79044-001 and
A79045-001 pair) are used as an interface to connect the
neural probe with the readout circuit PCB board. The neural
recording interface allows for the conditioning and sampling
of the low-amplitude extracellular action potentials (APs) as
well as the local field potentials (LFPs), whose bandwidths
range between 300 Hz–5 kHz and 0.1–300 Hz, respectively.
The amplitude of APs is in between 50 and 500 µV, whereas
the amplitude of the LFP can be up to several mV [52], [53].

A. Implantable Neural Probe
The single-shank neural probes are utilized for reliable

recording in chronic applications. In this work, a 16-electrodes
probe (Model: BP-8-2x8E) from Qualia Inc., Dallas, TX,
USA, is used as an interface between the neurons and the
recording circuitry. The implantable shank length, width, and

thickness are 8, 4, and 0.20 mm, respectively, which is the
preferred length for recording the signals from the VTA.
The electrode pitch is 0.5-mm thick with the dimension of
18 × 10 and 25 × 50 µm. The electrode layer is composed
of sputtered iridium oxide films (SIROFs). The neural probes
are fabricated using thiolene acrylate shape memory polymer
(SMP) substrates that are stiff at room temperature for surgical
manipulation and insertion but show a decrease in the elastic
modulus by orders of magnitude at the body temperature. This
limits the foreign body response by significantly reducing the
mechanical mismatch between the implant and the brain tissue.

The packaged electrodes are sterilized in the following
manner: the devices are loaded into a liner bag along with a
gas indicator tape. The bag also contains biological indicators,
such as a dosimeter and a glass ampoule containing 18 g
of liquid ethylene oxide (EtO). Next, the packed liner bag
is loaded into an EtO sterilizer and sealed using Velcro
wrap. After 24-h sterilization cycle at room temperature and
atmospheric pressure, the samples are retrieved after the 2-h
purge/aeration. Following the sterilization, degassing cycles
are performed to remove the residual EtO. The neural probe is
placed inside a vacuum oven and kept there for 72 h at 37 ◦C
under reduced pressure (house vacuum) for degassing cycles.

B. Neural Signal Recording Interface
The neural recording interface IC amplifies and digitizes the

measured APs and LFPs by the neural probe. The acquisition
of such a high number of neural signals from multiple sites is
conducted using an exclusive RHD2132 mixed-signal single-
chip interface IC (Intan Technology, USA). The interface IC
is packaged using a small quad flat no-lead (QFN) chip (8 ×

8 mm). This customized interface provides high linearity and
low input noise to appropriately measure the low amplitudes
of neural waveforms. It achieves an input-referred noise of
2.4 µVrms, with a reconfigurable bandwidth setting capability
through a serial peripheral interface (SPI) bus, which allows
on-the-fly reconfiguration of the bandpass filters to accommo-
date different input signals. Each channel includes a bandpass
filter that consists of a first-order high-pass filter, the cutoff
frequency of which is reconfigurable from 0.1 to 500 Hz,
cascaded with a low-pass third-order Butterworth filter, and
the cutoff frequency of which is reconfigurable from 0.1 to
20 kHz. The RHD2132 has a shared successive-approximation
register (SAR)-ADC for all the channels through a high-speed
analog MUX. All the 16 channels are sampled in a round-robin
fashion to convert the analog amplified signal to the digital
bits. The ADC can sample the analog output from each chan-
nel of the neural amplifier at the rate of up to 30 kSamples/s,
with a resolution of 16 bits. Thus, the reconfigurable sampling
rate of the ADC is in the range of 160–480 kSamples/s.
In order to maintain the SPI communication to an MCU,
a standard SPI interface is created through the four signals: a
serial data clock (SCLK), a master in, slave out (MISO) data
line, a master out, slave in data line, and an active-low chip
selection pin (CS). In this SPI interface, the MCU works as the
master and the RHD2132 as the slave. Synthetic neural signals
are generated from the MATLAB and read by the LabVIEW
that enables the signal to be coming from the analog output pin
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of the DAQ device. This analog voltage signal is then applied
to the amplifier to amplify the signal. After the amplification,
the on-chip ADC is used to digitize the signal. The same
myDAQ device is used to process the digitized data. LabVIEW
GUI is used again as the digital-to-analog converter (DAC)
to reconstruct the analog neural signal. The NI measurement
and automation explorer (NI MAX) from National Instrument,
Austin, TX, USA, are used to apply the analog input to the
amplifier and to acquire the digital output from the ADC.

C. Wireless Transceiver
Wireless communication of the recorded data is employed

using a low-power CC430F5137 chip from Texas Instruments,
Dallas. This chip integrates a system-on-chip (SoC) MCU
(MSP430) with an RF transceiver (CC1101) module. Since
this chip also maintains the SPI interface with the RHD2132,
we are able to achieve a small footprint for the headstage.
The IC is packaged in a 7- × 7-mm QFN chip with a
48-pin configuration. The CC1101 operates with a supply
voltage of 3.3 V. It uses two-frequency shift keying (FSK)
modulation with a maximum data rate of 500 kBaud. In this
work, the output transmitted power is set to 0 dBm. All
the configurations of the transceiver are controlled by the
MSP430 MCU. The transceiver operating in a center frequency
of 868 MHz is used to transmit the neural signal data at the
low-power mode to a remote base station. The receiver module
is connected to the PC, where the data are reconstructed and
processed using the LabVIEW GUI. The channel data are
sampled in a round-robin fashion, so only the packet is sent
pertaining to each channel’s data at a time. Hence, the data
rate of 500 kBaud is enough for the wireless system. The
recorded neural signal data for all 16 channels are wirelessly
transmitted in a round-robin fashion at a data rate of 500 ks/s
per channel. Due to this fact, wireless transmission of data
from 16 channels at 500 ks/s is sufficient.

D. Power Management Unit
The neural recording and the stimulation system are pow-

ered by a power management unit (PMU), which includes
a 3.7-V EEMB LIR2032 lithium-ion battery with a 45-mAh
capacity. The lithium-ion battery can be recharged, exploiting
an external adapter and reinserted in the headstage easily.
As the neural recording system requires a constant 3.3-V
supply, a commercially available low-dropout (LDO) voltage
regulator is used to drop down the voltage to 3.3 V from
the 3.7-V battery. Besides, neural stimulation requires pulse
stimulation with constant voltage. Thus, an oscillator circuit
is used, following the LDO circuit to provide the pulse
stimulation with a constant voltage amplitude of 3.3 V.

1) LDO Regulator: A TPS746-Q1 ultralow-power LDO
voltage regulator by Texas Instruments with a high power
supply rejection ratio (PSRR) of 38 dB at 100 kHz is used
to provide the constant supply voltage. The device regulates
the input voltage to the nominal output voltage when the input
voltage is greater than the nominal output voltage, which is
3.3 V in this work. The TPS746-Q1 has an input voltage range
of 1.5–6 V and an externally adjustable output voltage range

Fig. 1. (a) Schematic of the TPS746-Q1 LDO. (b) Schematic of the
oscillator circuit for duty cycling the turning on/off of the stimulating LED.

of 0.55–5.5 V. The commercial LDO is a 2- × 2-mm plastic
small-outline no-lead package (WSON) packaged chip with
six pins, as shown in Fig. 1(a). The input capacitor CIN of
10 µF is used to improve the transient response, input ripple,
and PSRR. If the supply voltage node of the system has a high
impedance over a large frequency range, multiple capacitors
can be used in parallel. An output capacitor Cout of 10 µF
is used for the stability as well. The output of the LDO is
adjusted using a feedback resistive divider denoted by RFB and
RP . The value of the resistive dividers can be chosen based
on the required output voltage using the following equation,
where VFB is the feedback voltage:

VLDO = VFB ×

(
1 +

RFB

RP

)
. (1)

To achieve a voltage output VLDO of 3.7 V, in this work,
10- and 4.3-k� resistors are used as RFB and RP , respectively,
which results in a feedback voltage, VFB of 1 V.

2) Neural Stimulation Circuit: The neural stimulation circuit
includes a commercially available MIC1555 CMOS RC oscil-
lator by Microchip to provide pulses with a precise frequency
to the light source, which is a µLED in this work, as shown in
Fig. 1(b). The dimension of the µLED is 0.5 × 1 × 0.4 mm3.
The distance between the µLED and the neural probe is kept
as 1 mm, so that the signal from the neuron, which is optically
stimulated by the µLED, can be recorded. The MIC1555 is a
small outline transistor (SOT-23) package that can be powered
from a 2.7–18-V supply voltage. An input capacitor C1 of 1 µF
is used to decouple the input noise. The oscillator can act as
a monostable or as an astable oscillator. To use the MIC1555
as an astable oscillator, the trigger (TRG) and the threshold
(THG) pin need to be connected. To set the output frequency
in the astable mode, the output RC components need to be
adjusted according to the following equation:

f =
1

k1 RC
(2)

where R is the equivalent resistance of the output parallel
resistance R1 and R2 and C is the threshold capacitance C2 as
shown in Fig. 1(b). k1 is a constant, which has a constant
having a value of 1.42 for the RC constant range of 0.01–
0.1 s. In this work, a fixed resistance of 220 k� is used as R1,
and a 1-µF capacitor is used as a threshold capacitor. To make
the oscillator reconfigurable, a variable resistor R2 having a
range of 10–110 k� is used, and a load capacitor Co of
100 pF is used to make the output pulse smoother. The output
pulse signal from the oscillator is then delivered to an LB-
QH9G µLED by OSRAM Opto Semiconductors, which has a
minimum forward voltage of 2.7 V and a minimum forward
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Fig. 2. (a) 3-D-printed headstage architecture designed in Autodesk
Fusion 360. (b) Fabricated 3-D-printed headstage using Creality Ender 3
3-D printer.

current of 5 mA. As such, given that the LDO maintains a
minimum output voltage of 2.7 V, accounting for the gradual
decrease in the nominal voltage of the battery, the stimulation
circuit, specifically the µLED, will still continue to function.

E. 3-D-Printed Headstage Fabrication
The headstage is a 3-D-printed rectangular box (21.3 ×

13.5 × 11.5 mm) with three slots, which are designed to
hold the lithium-ion battery (coin cell), the neural stimulation
circuit and PMU, and the recording interface board, as shown
in Fig. 2. It has four legs, which are cemented on the head of
the rat during the in vivo experiment. Exploiting the Creality
Ender 3 3-D printer, the headstage is designed using 1.75-mm
polylactic acid (PLA) filament, which makes the weight of
the headstage to be less than 1 g. To place the µLED and
the electrode through the headstage, two holes are created
at the bottom of the headstage. Fig. 2(a) shows the 3-D
architecture of the headstage designed using Autodesk Fusion
360, and Fig. 2(b) shows the fabricated 3-D-printed headstage.
A 38 AWG Remington wire with 10-mm length is used to
connect the µLED leads with the output of the stimulation
circuit. To isolate the µLED from the tissue material, the
µLED and the wires are coated with polydimethylsiloxane
(PDMS) coating, which is a biocompatible material.

III. SPIKE DETECTION AND SORTING

The spike sorting process is typically a multistep proce-
dure. The first step is the detection of the spikes, which
eliminates the background noise from the spikes and aligns
all the detected spikes according to the spatiotemporal points
relative to the target spike waveform. The next step is the
feature extraction from the detected data. After the features
are extracted from the spike waveform, a reduction of the
dimensionality is implemented. Here, the spikes are separated
according to their features, which would best specify their
identity. In the final step, spikes are grouped into different
clusters according to the extracted features. The steps are
described in Sections III-A and III-B as shown below.

A. Unsupervised Spike Detection
In this work, CWT algorithm is adopted as an automated

and unsupervised spike detection process. Since the neural

amplifier has reconfigurable bandwidth, it acts as a bandpass
filter (300–6000 Hz) and filters out the low-frequency and
high-frequency noises. After the filtration, decomposition of
the neural signal is performed with the suitable wavelet basis.
Although there exist different wavelets, we have implemented
one of the biorthogonal wavelets: bior1.3, which has more
symmetry than other wavelets, such as db02 [45]. The block
diagram of the spike detection process is shown in Fig. 3.
In determining the scales, a set of scales are defined as
follows [45]:

A = {a0, a1, . . . , a j , . . . , aJ } (3)

where a0 and aJ are calculated using the sampling rate of the
recorded signal and the minimum and maximum width of the
spikes. The sampling frequency of the recorded data used here
is 20 kHz. The minimum and maximum spike widths are set
as 0.5 and 1 ms, respectively, while the number of scales is
chosen to be 4.

The CWT VI from the advanced signal processing toolkit
in LabVIEW is used to determine the CWT coefficients from
the input signal. The coefficients are defined as follows:

CWTs(a, τ ) =
1
√

a

∫
∞

−∞

s(t)ϕ0 ×

(
t − τ

a

)
dt. (4)

Here, s(t) is the input signal, and ϕ0(t) represents the mother
wavelet. The other two parameters a and τ are the user-defined
scales and the shift of the wavelet in the t-direction (dt being
the time step size), respectively. The CWT coefficients are
used to determine the hard threshold of the spike detection
process from the following equation [45]:

T j = σ j
√

2 loge N (5)

where σ 2
j is the variance of the coefficients, N is the number

of samples, and T j is the automated threshold. After the spikes
are detected, they are aligned relative to their threshold points.
Since any misalignment among the spikes can result in the
extended number of points in the feature space, eventually,
the clustering of the spikes becomes more challenging. Thus,
it is imperative to perform spike alignment even before the
classification process. The most widely used temporal align-
ment method is to align the shapes of the spikes to the point
of the maximal peak of the spike and store the point for a
certain period. This work utilizes 1.5 ms as the spike length
for alignment. The array max and min function VIs are used
for determining the maximum and the minimum spike widths
of the signal.

B. Feature Extraction and Spike Sorting
Previous studies reported the shape of the spikes, such

as amplitudes and time width of the spikes, peak-to-peak
amplitude, and duration of the spike trains as the features of
interest in the neural signal [54]. Although this approach is
pretty straightforward, the performance of the spike sorting
process deteriorates due to the noise and the inherent variance
in the spike shapes. PCA is one of the most widely used
algorithms for automated feature extraction in the offline
analysis of the spikes. A set of orthogonal basis vectors is
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Fig. 3. Block diagram of the spike detection using CWT in LabVIEW.

Fig. 4. (a) Top layer of the recording board. (b) Bottom layer of the board. (c) Neural probe with implantable shank. (d) Full headstage with the
recording and the stimulation circuit. (e) Top layer of the stimulation board. (f) Bottom layer of the board. (g) Experimental validation of the system
in PBS solution.

Fig. 5. Output voltage and current of the TPS746-Q1 LDO with respect
to the varying input dc voltages.

estimated to interpret the variance of data, which are the
original spike waveform from the acquired signal.

Any specific spike can be expressed by adding the scaled
PCs as follows:

ci =

N∑
n=1

PCi (n).s(n). (6)

Here, ci is the PC coefficient, s is any specific spike, PCi is
the i th PC, and N is the number of samples in that particular
spike. The ci is grouped together to classify the spikes.

Fig. 6. (a) Stimulation frequency variation of the stimulation for varying
feedback resistor. (b) Output pulse signal of 20 Hz from the MIC1555
oscillator.

IV. IMPLEMENTATION AND MEASUREMENT RESULTS

This work is divided into two sections: optical stimulation
and neural signal recording with offline spike detection and
PCA-based feature extraction. The headstage includes a rigid
four-layer PCB board with a thickness of 0.8 mm, which
includes both the optical stimulation and neural recording
system ensuring the compactness of the board, as it will be
carried by the rat. The PCB has a minimum trace width of
0.2 mm and a minimum hole size of 0.15 mm. The top layer
of the recording board is dedicated to the amplifier, and the
bottom layer contains the transceiver and the ceramic antenna
[Fig. 4(a) and (b)]. The top section holds the neural recording
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Fig. 7. LED stimulation pattern and the filtered spike waveform caused
by the stimulation.

Fig. 8. Electrical characterization of neural probes inside the PBS
solution.

Fig. 9. (a) Reconstructed neural signal. (b) Zoomed-in view of the spike.
(c) Filtered spike signal.

interface and the Omnetics connector, which connects the
headstage with the implantable neural probe [Fig. 4(c)]. The
whole headstage with the battery, optical stimulation, and
neural recording system is shown in Fig. 4(d), where wires
and layers used to connect the battery and stimulation circuit
are shown to visualize the whole system. The custom probe
manufactured by Qualia Labs Inc. allows recording neural
activity from 16 microelectrodes, which is the number of
channels of the amplifier. Fig. 4(e) and (f) presents the top
and bottom layers of the optical stimulation board. The neural
probe contains the implantable shank, which is immersed into
the phosphate-buffered saline (PBS) solution, as shown in
Fig. 4(g). The obtained results are described in detail in the
following sections.

Fig. 10. Flowchart of the spike sorting process using k -means
algorithm.

A. Optical Stimulation
The PMU circuit is designed to provide 3.3 V from a 3.7-V

lithium-ion battery to the analog front end and the wireless
recording circuitry as well as the µLED for stimulation. The
values of RFB and RP in (1) are chosen to be 10 and 4.3 k�

to achieve an output LDO voltage of 3.3 V and a feedback
voltage of 1 V. The LDO provides a constant voltage of 3.3 V
and a constant current of 10 mA when the input voltage
of the LDO is above 3.3 V. Thus, the total power provided
by the LDO is 33 mW. However, the forward current required
for the µLED is 5 mA, so a current divider is needed at
the output of the LDO to have the desired current of 5 mA
as shown in Fig. 5 to operate the µLED. Fig. 6 shows the
output voltage and current level for the LDO. The total power
consumption of the stimulation and the recording system is
23 mW, which is powered by the PMU for almost 1.5 h.

The output voltage of the LDO is also used as the input
supply voltage of the MIC1555 oscillator, which has the capa-
bility to achieve a reconfigurable pulse signal for stimulation.
A fixed resistance of 220 k� is used as R1, while a variable
resistor ranging from 10 to 110 k� is used as R2, as shown in
Fig. 1. The equivalent resistance of R1 and R2 helps to achieve
the stimulation frequency ranging from 10 to 50 Hz, as shown
in Fig. 6(a). In this work, a 20-Hz oscillation frequency with
a voltage amplitude of 3.3 V is used to drive the µLED. The
20-Hz pulse signal generated from the MIC1555 is shown in
Fig. 6(b).

B. Neural Signal Recording
The µLED stimulates the neurons at a configurable fre-

quency of 10–50 Hz and, thus, generates the spikes. This
process has been modeled utilizing the noisy spike generator
used in [55]. In order to emulate the realistic surroundings,
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we have generated the synthetic spike waveform correlated
with the LED stimulation. Some parameters, such as the
spike shapes, the average amplitude of the spikes, average
interspike interval, the spike firing rates, and the standard
deviation of the noise, are applied to the simulator to generate
the spikes. At first, the spike times are generated for the
target neurons. In this work, the number of target neurons is
considered as two. The spikes for a specific time interval are
generated using Gaussian distribution. The spikes from the
other neurons are also generated, which are correlated with
one of the target neurons of interest (correlated interference).
The simulator also generates the spikes from the uncorrelated
neurons with the target neurons (uncorrelated interference).
Since the shape of the spikes is considered as the characteristic
feature of the target neuron, the shape could be modeled
as the summation of the weighted delayed versions of the
signals. In this work, the delay is considered to be 30 µs.
Any spike lasts this amount of time in the neuron spiking
surface. The number of the delay times is used as 40, which
gives the duration of a spike as 1.2 ms. Finally, in order to
create a realistic environment of thermal and neural interface
noise, Gaussian noise is also added to the spike signals.
The spike firing rate is determined from the 20%–50% duty-
cycled optical stimulation frequency of 10–50 Hz, while
duty-cycled optical stimulation offers flexibility to control
neuromodulation.

The stimulation pattern (voltage across the µLED), which
enables the stimulating current flowing through the µLED,
is shown in Fig. 7 for the 20-Hz stimulation frequency. The
µLED voltage stays at the constant value of 3.3 V for the
20% on period. As the stimulation by the µLED excites
a group of neuronal activity rather than a single neuronal
activity, there exists other neuronal interference as well for
which the spike occurrence does not completely follow the
µLED stimulation pattern. The synthetic neural spike signals
are applied to the neural probe and transmitted wirelessly.
Fig. 7 also presents the reconstructed filtered spikes having
the amplitude of ∼180 µV. It can be seen from the figure that
the out-of-band noise and interference noises are eliminated,
although the generated synthetic signal has an additional
Gaussian noise correlated with the neurons. The SNR of the
spike train is calculated as 32 dB. In addition, no photoelectric
effect is observed in the recorded neural signal due to the
stimulation of the neurons using µLEDs, as the amplifier chip
has a high common mode rejection ratio (CMRR).

The neural probe is first characterized to determine the
impedance. Fig. 8 shows the impedance of the probe over the
frequency ranging from 0.1 to 10 kHz. The impedance is mea-
sured using AD5940BIOZ, which is a bioelectric evaluation
board from Analog Devices, Norwood, MA, USA, to evaluate
the bioimpedance in an electrolyte solution. A standard two-
wire impedance analysis method is applied to measure the
equivalent impedance of the neural probe. The Ag/AgCl
electrode is used as the reference electrode, and the probe
is connected as the working electrode. Typically, the spike
width is ∼0.5–1 ms; thus, the impedance for the neural probe
is determined at 1 kHz. The impedance of the probe at 1 kHz
is 220 k�, which is the impedance of the single recording

site/microelectrode. The capacitive input impedance of the
neural amplifier at 1 kHz is 13 M�.

The recorded neural signal is transmitted through the
wireless transceiver at a transmitted power of 0 dBm. The
distance between the transmitter and the receiver is kept as
2 m. Fig. 9(a) presents the reconstructed neural signal at the
receiver end. A zoomed-in view of the reconstructed spikes
is also presented in Fig. 9(b). After the additional filtering
(second-order Butterworth filter in LabVIEW), the filtered
spikes [Fig. 9(c)] are used in the spike detection and sorting
process.

Several algorithms have been proposed for clustering the
signals after they are grouped by PCA analysis. k-means
algorithm is one of the simplest yet sophisticated approaches
in spike clustering. In this work, both the PCA and the k-means
algorithms are implemented in LabVIEW GUI, where we have
used the Advanced Machine Learning Toolkit. The flowchart
of the spike sorting process using the k-means algorithm is
presented in Fig. 10. In the k-means clustering, at first, the
number of clusters, k, and the cluster centroids are defined.
Then, each spike is assigned to a specific cluster randomly,
and then, the distances between the spike and the centroids
are calculated. The spike is then assigned to the cluster with
the shortest distance. Finally, the process is optimized by
recomputing the position of the centroid as the mean of the
spikes of that cluster. In LabVIEW GUI, the number of clusters
is defined as two, since the target neurons are assumed to be
two. The tolerance is set as 0.0001 for the maximum iterations
of the k-means method as 100.

Spike detection and sorting process are performed offline
by transmitting the raw signal and analyzed in LabVIEW.
In order to evaluate the accuracy of the process, ground-truth
data are needed. From the generated synthetic neural signal,
the actual detected spikes and shapes are determined and
then compared after implementing the spike sorting algorithm.
The MATLAB simulator generates a 582-spike waveform
emulating the real electrophysiological recordings. After the
signals are received at a remote receiver, filtering and spike
detection are performed. The total number of detected spikes
after applying CWT is calculated as 608, resulting in an error
of ∼4.4%. The higher number of spikes could result from the
percentage error of the computing of the hard threshold in the
spike detection process.

Accuracy of the spike sorting process has been calculated
using the probability of spikes reported inaccurately (PFA).
A false alarm can occur to an electrode, which is affected
by the surrounding noise from other electrodes, resulting in
a threshold crossing of the signal. PFA is calculated as 22%
using the following equation:

PFA =
no. of false alarm

no. of true negatives
. (7)

Probability of detection (PD) is also a significant parameter
for feature extraction. PD can be found from the following
equation:

PD = 1 −
no. of misses

no. of true positives
. (8)
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TABLE I
COMPARISON WITH THE STATE OF THE ARTS

Fig. 11. (a) In vivo experimental setup: freely moving rat with the
headstage mounted on its head; headstage includes both the µLED and
the neural probe. (b) Wirelessly recorded spontaneous neural activity.

PD is calculated in MATLAB and found to be 89%. The
accuracy of the spike sorting process is validated with the high
probability of PD , thus making it suitable for the closed-loop
neuromodulation system.

C. In Vivo Recording
Institutional Review Boards (IRBs) approval is obtained

before performing the in vivo experiment (IACUC Pro-
tocol Application Number: 20022). The SMP substrate
single-shank probe is implanted inside the rat’s brain. It pro-
vides mechanical stiffness for surgical treatment but softens
after implantation to reduce the tissue damage. This results
in an enhanced tissue response and device performance. The
probe was coated with polyimide before the surgery, so no
metal was exposed to the tissue surface, causing a very small
amount of artifacts. The optrode was implanted stereotaxically
into the VTA of the brain of a male 1.3-year-old Long–Evans
rat (Charles River) weighing 963 g. The animal was first
anesthetized using 3.5% isoflurane in a mixture of 1.5% O2 in
an anesthesia chamber. The crown of the scalp was shaved,
and the animal was transferred to a stereotax, continuing
to receive 2.5%–3.5% isoflurane in 1.5% oxygen for the

duration of the procedure. The eyes were protected with
gel to prevent drying, and a heating pad was utilized to
keep the body temperature between 37◦ and 39◦. The scalp
was sterilized using chlorhexidine scrub, isopropyl alcohol
(70%), and chlorhexidine solution. The scalp was injected with
lidocaine, and a midline incision was created to expose the
skull. A stereotaxically mounted drill was used to produce
burr holes for optrode insertion and bone screws. Four bone
screws surrounded the implant insertion site. The original burr
hole at the target coordinates happened to produce excessive
bleeding, probably because of its proximity to a medium
vessel. Coordinates were, therefore, shifted by 0.1 mm to the
left. After the implant was lowered to its target (relative to
bregma, 0.17-mm lateral (left, adjusted), 5.8-mm posterior, and
7-mm ventral from the lower surface of dura), it was secured
to the bone screws using dental cement. Buprenorphine SR
(1.2 mg/kg) and 3cc supplemental saline were administered
subcutaneously 15 min before the end of the procedure. After
the dental cement was dried and the wireless optogenetic
headstage was secured, the scalp was secured around the
headstage using nylon sutures, and a further 9cc subcutaneous
saline was administered in periodic 3cc increments to restore
any body fluids lost during surgery. The animal’s behavior
and temperature were monitored until 30 min after they had
regained the ability to ambulate. Fig. 11(a) shows the freely
moving rat with the headstage mounted on top of its head.
The first test was administered just after the animal had
woken up from the procedure. Additional tests were conducted
approximately 24 and 72 h later. During tests, the animal
was cradled in a towel, and the battery contact from the
exposed section of the headstage taped in place. The towel
was removed for the measurement itself, and the animal was
left to move freely. After the test, the contact was detached
again and left tucked into the plastic of the implant to prevent
the discharge of the battery. Each recording was conducted
for a time duration of 10 min. Fig. 11(b) shows the acquired
spiking activity. Here, only four channels out of 16 channels
are demonstrated, as the others will give the similar recordings.
The recorded neural signal from the 16 channels is transmitted
wirelessly in a round-robin fashion. The recording front end
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Fig. 12. (a) Aligned detected spikes from the recorded data. (b) illus-
tration of the feature space using PCA and k -means algorithm.

captures small spontaneous activities with the amplitudes of
less than 50 µV. The LFP activity is acquired over a 3-dB
bandwidth of 0.1–500 Hz through the neural probe. The lower
and upper cutoff frequencies were set by the on-chip registers
of RHD2132 where registers 8–13 selects the amplifier’s
bandwidth to record the LFPs. The original acquired signal
is divided by the amplifier gain of 192 V/V. The receiver was
kept within 2 ft from the headstage setup.

The spike detection and spike sorting are performed in an
offline setup. The spike sorter takes the recorded data of the
first day for training the algorithm and implements the feature
on the recorded data of the second day. In the experiment, the
threshold amplitude is set to 20 µV, and the maximum number
of clusters is set to four. The algorithm is able to automatically
detect the spikes, compress, and sort the spikes. The detected
clusters were used to generate a trigger signal to validate the
scheme. The trigger was configured to occur if four APs per
cluster were found within a 100-ms time window. Fig. 12(a)
shows the automatic classification results. It can be seen that
the classification algorithm accurately sorted most of the APs,
since each cluster encompasses a different AP waveform. The
algorithm is converged to an appropriate number of clusters.
The aligned spikes after the detection are shown in Fig. 12(a).
The concluding step of the spike sorting process includes the
clustering of the spikes from different neuron sites. Fig. 12(b)
shows the clustered spikes from the aligned waveform. The
clustering feature space proves that the spikes have an inter-
spike interval of at least below the refractory period of 1.5 ms.
The separation between the cluster centroids also clearly shows
that the clusters should not be merged, which implies they
are from the different target neurons. Two types of spikes are
shown in Fig. 12(a), but for the whole recorded data, there
were a total of four clusters, as demonstrated in Fig. 12(b),
depending on the amplitude and pulsewidth variations. Table I
presents a comparison among the performance parameters
of the other works with those of this work. It can be seen
from the table that this work includes the recording, wireless
transmission, and the optical stimulation of the headstage.
It also includes the duty-cycled stimulation capability, which is
useful for optimizing the specific location in the brain. Another
significant feature of this work is to implement unsupervised
spike detection and spike sorting algorithm, which is useful for
closed-loop neuromodulation. Integration of all these features
has not been demonstrated in the prior works, thus making

this work suitable for implementing a closed-loop optogenetic
stimulation system. Nevertheless, the most challenging block
of a neural recording implant is the neural amplifier. Therefore,
this block needs to be elaborated in terms of designing a
compact, high gain, low power, and low-noise amplifier. Also,
various techniques to reduce the noise of the neural amplifier
need to be assessed.

V. CONCLUSION

This article presents the complete system of optical stim-
ulation and electrophysiological recording system, which is
able to record data using a 16-channel neural probe. The
system is validated in an in vivo experimental setup in the
relevant brain region to record the neural signals and send
them wirelessly to the remote receiver. The system uses
reconfigurable stimulation techniques that allow the system
to record data for various optogenetic stimulations. The unsu-
pervised spike sorting and spike detection help postanalyze
the data to identify the brain response. This integrative and
wireless recording and stimulation along with spike sorting
create a path toward a truly closed-loop neuromodulation
system. The benefits of this closed-loop system go beyond
the sophistication of the sorted data that can be gathered.
In addition, the system enables precise control of neuronal
populations for neuroscientists—control that can be modulated
according to either consistent or changing responsiveness in
target neurons. Such a system can be used to both establish and
verify the fidelity of neural control manipulations as well as
to gather fine-grained, temporally extended, and behaviorally
contextualized data on the characteristics of neuronal activity.
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