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Abstract

One method of representing a high-rank tensor as a (hyper-)product of lower-rank

tensors is the tensor hypercontraction (THC) method of Hohenstein et al. This strategy

has been found to be useful for reducing the polynomial scaling of coupled-cluster

methods by representation of a four dimensional tensor of electron-repulsion integrals

in terms of five two-dimensional matrices. Pierce et al. have already shown that the

application of a robust form of THC to the particle-particle ladder term (PPL) reduces

the cost of this term in couple-cluster singles and doubles (CCSD) from O(N6) to

O(N5) with negligible errors in energy with respect to the density-fitted variant. In this

work we have implemented the least-squares variant of THC (LS-THC) which does not

require a non-linear tensor factorization, including the robust form (R-LS-THC), for the

calculation of the excitation and electron attachment energies using equation-of-motion

coupled cluster methods EOMEE-CCSD and EOMEA-CCSD, respectively. We have

benchmarked the effect of the R-LS-THC-PPL approximation on excitation energies

using the comprehensive QUEST database and the accuracy of electron attachment

energies using the NAB22 database. We find that errors on the order of 1 meV are

achievable with a reduction in total calculation time of approximately 5×.
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Introduction

Coupled cluster (CC) methods provide a rigorous theoretical framework for calculating ac-

curate molecular energies and properties for small molecules. However, the steep polyno-

mial scaling of computational cost of these methods is an impediment for applying them to

larger molecules. Many numerical approximations have been proposed to reduce the cost

of CC and related electronic structure methods, such as: Cholesky decomposition (CD), 1–4

resolution-of-the-identity (RI) or density fitting approximation (DF), 5–9 pseudospectral (PS)

approach,10–20 fast multipole method (FMM),21–23 the CANDECOMP/PARAFAC (CP, also

known as canonical polyadic) decomposition,24–30 and the tensor hypercontraction (THC)

approach.31–38 While the key feature in these various numerical approximations is decompos-

ing the four-index electron repulsion integral (ERI) tensor into smaller objects (three-index

tensors, matrices, etc.), these approximations can be largely divided into two groups: one

based on a factorization in terms of auxiliary basis functions and the other based on a repre-

sentation of ERIs using a set of physically motivated grid points.1 Amongst these, the THC

approach31 and in particular, its least-squares variant (LS-THC),35 is quite attractive as it

provides a systematic approach for achieving a chosen level of accuracy in fitting the ERI

tensor, and an efficient non-iterative procedure for determining the fit parameters. Control-

lable accuracy can be achieved either by selecting appropriate starting grids,39 or pruning the

starting grid by removing near-linear dependencies in the grid metric matrix.40 The THC

approach ultimately has its roots in PS theory, although there are substantial differences

in the details of each method. While PS utilizes a formal transformation from spectral to

physical space, followed by analytical integration of the resulting mixed physical-spectral

operator, THC can instead be viewed as a least-squares fitting of what otherwise would

be a double quadrature of the ERI in real space. An even closer connection is seen in the

partial THC approach38 which is nearly a “least-squares PS” technique. The interpolative

1Note that mathematically, the use of grid points for ERI approximation can often be interpreted as an
integral over an auxiliary basis “function” defined in terms of distributions such as the Dirac distribution.
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separable density fitting (ISDF) method nearly splits the difference between PS and THC

by computing analytical integrals in real space over numerically-determined auxiliary fitting

functions defined over real space quadrature points.41–43

In coupled cluster with single and double excitations (CCSD) and related methods, the

particle-particle ladder (PPL) term is the most expensive single contribution, often rep-

resenting a majority of the total computational time. The relative cost of the PPL term

also increases with increasing basis set size given that it scales as O(N4
vN

2
o ) while other

leading-order terms scale as O(N3
vN

3
o ) or O(N2

vN
4
o ), where Nv (No) is the number of virtual

(occupied) molecular orbitals. Parrish et al. have shown that LS-THC can be employed

to greatly reduce the cost CCSD by factorizing the PPL term alone.38 A partial LS-THC

(LS-PTHC) factorization was also explored and found to result in lower errors for the PPL

term.38 A similar complexity reduction was realized in earlier work by Martinez and Carter

by applying the PS approach to the PPL term in multi-reference configuration interaction

(MRCI).18 Recently, the relationship between DF, LS-PTHC, and LS-THC forms of ERI fac-

torization were used to derive a robust approximation to LS-THC-type methods, leading to

significant error cancellations in fitting the ERI tensor and impressively small energy errors

when applied to the PPL term of CCSD.44 In that work, a non-linear CP decomposition of

the density fitting factors was used to arrive at THC and PTHC factorization forms, leading

to the designation rCP-DF. In related work, a robust PS approach45 was recently applied to

ISDF-approximated Hartree–Fock exchange in periodic systems. The robust PS approach

leads to a similar level of error cancellation as observed in rCP-DF.44,45

The equation-of-motion excitation energy coupled cluster framework allows for calcu-

lating excited states (EOMEE-CC), electron attachment energies (EOMEA-CC), and other

related energies via linear excitation operators applied to the CC ground state wavefunc-

tion.46–50 Determination of the (vertical) excitation energy involves the solution of an eigen-

value equation via iterative application of the CC-transformed Hamiltonian to the EOMEE-

CC wavefunction. As in the ground state CCSD calculation, the most expensive term in
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EOMEE-CCSD (as well as related methods which utilize approximate ground states, such

as EOMEA-MBT251) methods is the PPL term. In a recent study, it was found that an effi-

cient DF approximation, in particular applied to the PPL term, within EOM-CCSD greatly

reduces the computational time.52

In this work, we have implemented the LS-THC, partial variant of THC (LS-PTHC),

and R-LS-THC methods for the PPL term (both ground and excited state equations) within

the EOMEE-CCSD and EOMEA-CCSD methods. In the following sections we discuss the

mathematical details of these THC methods, as well as the performance and accuracy of the

THC methods as compared to the standard DF approach.

Theoretical Methods

In this work the following notation is used: the letters pqrs denote arbitrary molecular

orbitals (MOs), while ijklmn (abcdef) denote occupied (virtual) MOs. The letters JKL

are used to denote density fitting auxiliary basis functions, and LS-THC grid points are

indicated by the letters RS.

Least-squares Tensor Hypercontraction

The tensor representation of ERI is expressed as,

gpqrs ≡ (pr|qs) =

∫
ϕ∗
p(r1)ϕr(r1)g(r1, r2)ϕ

∗
q(r2)ϕs(r2)dr1dr2 (1)

here, the operator g(r1, r2) = |r1 − r2|−1 denotes the Coulomb kernel. In the least-squares

THC (LS-THC) method,31,35,36 the ERI tensor g is factorized over the phyiscal grid points

into five matrices (as depicted in Figure 1c),

(pq|rs) ≈ (pq|rs)THC =
∑
RS

XR
p X

R
q VRSX

S
r X

S
s (2)
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Figure 1: Pictorial representation of various approximations to decompose particle-particle
interaction tensor term.
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The collocation matrices X are determined a priori by the evaluation of spatial MOs at grid

points, XR
p = ϕp(rR). The core matrix V captures the Coulomb-repulsion interaction. This

matrix is determined from least squares fitting of the exact ERI tensor or some intermediate

approximated tensor. Specifically as used in this work, the core matrix can be determined

starting from the DF approximation with O(N4) scaling where N = Nv + No,
35

(pq|rs)DF =
∑
KL

(pq|K)(K|L)−1(L|rs)

=
∑
JKL

(pq|K)(K|J)−1/2(J |L)−1/2(L|rs)

=
∑
J

BJ
pqB

J
rs (3)

VRS = min
VRS

1

2

∑
pqrs

|(pq|rs)DF −XR
p X

R
q VRSX

S
r X

S
s |2

=
∑
R′S′

(S−1)R′RER′S′(S−1)S′S (4)

ERS =
∑
pqrs

XR
p X

R
q (pq|rs)DFX

S
r X

S
s

=
∑
J

(∑
pq

XR
p X

R
q B

J
pq

)(∑
rs

XS
r X

S
s B

J
rs

)

=
∑
J

ηRJηSJ (5)

SRS =
∑
pq

XR
p X

R
q X

S
p X

S
q (6)

The induced factorization of the fitting matrix E = ηηT when fitting the DF ERI tensor

also leads to a factorized form of the core matrix as well as a direct approximation of the

density fitting factors,

VRS =
∑
J

(∑
R′

(S−1)R′Rη
R′J

)(∑
S′

(S−1)S′Sη
S′J

)

=
∑
J

γRJγSJ (7)
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BJ
pq ≈

∑
R

XR
p X

R
q γ

RJ (8)

Note that in practice, separate core matrices are determined for different classes of ERIs

(ab|cd), (ab|ci), (ab|ij), (ai|bj), (ai|jk), and (ij|kl) (constructed from γ matrices fit to dis-

tinct classes of DF factors BJ
ab, BJ

ai, and BJ
ij), and different effective grids and hence col-

location matrices are used for virtual-virtual, virtual-occupied, and occupied-occupied MO

pairs.40,53

Robust Tensor Hypercontraction

Pierce et al. discussed various THC and THC-like approximations to the PPL term,44 which

are schematically described in Figure 1. The central factorization used in their work is a 3-

way CP factorization of the virtual-virtual density fitting factors, determined via an iterative

non-linear procedure such as alternating least squares,54

BJ
ab ≈ (BCP )Jab =

∑
R

βR
a β

R
b γ

RJ (9)

Following (3), this CP decomposition can be applied to one of the density fitting factor

tensors leading to a “CP-PS” factorization as illustrated in Figure 1d,

(ab|cd)DF ≈ (ab|cd)CP−PS =
∑
J

(∑
R

βR
a β

R
b γ

RJ

)
BJ

cd

=
∑
R

βR
a β

R
b

(∑
J

γRJBJ
cd

)

=
∑
R

βR
a β

R
b (γB)Rcd (10)

The CP-PS factorization has the same form as the partial LS-THC method (LS-PTHC) 38

except that the latter is obtained by substituting X for β and the linear least-squares solve

in (7) and (8). Substituting the CP decomposition for both density fitting factor tensors
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results in a “CP-DF” method (Figure 1c, equivalent in form to LS-THC),

(ab|cd)DF ≈ (ab|cd)CP−DF =
∑
J

(∑
R

βR
a β

R
b γ

RJ

)(∑
S

βS
c β

S
d γ

SJ

)

=
∑
RS

βR
a β

R
b

(∑
J

γRJγSJ

)
βS
c β

S
d

=
∑
RS

βR
a β

R
b VRSβ

S
c β

S
d (11)

Pierce et al. analyzed the error in each approximation by considering the errors in each

component tensor (here, only the density fitting factors),

B−BCP = ∆B (12)

(ab|cd)DF − (ab|cd)CP−PS =
∑
J

(∆B)JabB
J
cd (13)

(ab|cd)DF − (ab|cd)CP−DF =
∑
J

(∆B)JabB
J
cd +

∑
J

BJ
ab(∆B)Jcd +

∑
J

(∆B)Jab(∆B)Jcd (14)

Because (ab|cd) = (cd|ab) the leading-order error can be canceled, leading to a robust fitting

method (Figure 1e),

(ab|cd)DF ≈ (ab|cd)rCP−DF = 2(ab|cd)CP−PS − (ab|cd)CP−DF

=
∑
RS

βR
a β

R
b

(
2(γB)Jcd −

∑
S

VRSβ
S
c β

S
d

)

=
∑
RS

βR
a β

R
b (γ̃B)Rcd (15)

(ab|cd)DF − (ab|cd)rCP−DF = −
∑
J

(∆B)Jab(∆B)Jcd (16)

assuming the approximate integrals are effectively symmetrized. It should be noted that this

factorization form breaks the exact symmetry of the ERIs, although when used in the PPL,

the symmetry of the double excitation amplitudes combined with explicit symmetrization of

the residual compensate for this symmetry breaking (vide infra).
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The definition of a robust R-LS-THC approximation follows clearly from the relationship

between CP-PS/LS-PTHC and CP-DF/LS-THC by substituting X for β and solving for γ

and V using (7) and (8) in the definition of (15), rather than a non-linear CP factorization.

The Particle-Particle Ladder Term in CCSD and EOM-CCSD

Solution of the CCSD ground state problem revolves around the computation of the coupled

cluster singles and doubles residual vectors,

Za
i = ⟨Φa

i |H̄|Φ0⟩ (17)

Zab
ij = ⟨Φab

ij |H̄|Φ0⟩ (18)

H̄ = e−T̂ ĤeT̂ =
(
ĤeT̂

)
c

(19)

Ĥ =
∑
pq

f p
q â

†
pâq +

1

2

∑
pqrs

gpqrs â
†
pâ

†
qâsâr (20)

T̂ =
∑
ai

tai â
†
aâi +

1

4

∑
abij

tabij â
†
aâ

†
bâj âi (21)

where |Φ0⟩ is the reference determinant, |Φab...
ij... ⟩ = â†aâ

†
b . . . âj âi|Φ0⟩ are excited determinants,

âp (â†p) are MO annihilation (creation) operators, and (. . .)c denotes a connected expression.

The CCSD singles and doubles amplitudes tai and tabij are determined by solving for Z = 0,

which in practice is realized by repeated calculation of (17) and (18) followed by adjustment

of tai and tabij . Calculation of (18) is the leading-order computational cost, which in turn is

commonly dominated by the PPL. In a closed-shell formalism, the doubles residual can be

expressed as,

Zab
ij = (1 + P ai

bj )

(
1

2
gabij +

∑
e

teig
ab
ej −

∑
m

tamW̃
mb
ij +

∑
em

tem(2gmb
ej − gmb

je )

+
∑
e

F a
e t

eb
ij −

∑
m

Fm
i tabmj +

1

2

∑
em

(2taeim − taemi)(2W̃
mb
ej − W̃mb

je )

−(
1

2
+ P i

j )
∑
em

taemiW̃
mb
je +

1

2

∑
mn

tabmnW
mn
ij +

1

2

∑
ef

tefij g
ab
ef

)
(22)
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F a
e = fa

e +
∑
fm

tfm(2gamef − gamfe )−
∑
fmn

tafmn(2gmn
ef − gmn

fe )−
∑
m

tamF
m
e (23)

Fm
i = fm

i +
∑
en

ten(2gmn
ie − gmn

ei ) +
∑
efn

tefin (2gmn
ef − gmn

fe ) +
∑
e

teiF
m
e (24)

Fm
e = fm

e +
∑
fn

tfn(2gmn
ef − gmn

fe ) (25)

W̃mb
ij = gmb

ij +
∑
e

teig
mb
ej +

∑
e

tejg
mb
ie +

∑
ef

(tefij + tei t
f
j )gmb

ef (26)

W̃mb
ej = gmb

ej −
∑
n

tbnW
mn
ej +

∑
f

tfj g
mb
ef +

1

4

∑
fn

(2tfbnj − tfbjn)(2gmn
ef − gmn

fe )

− 1

4

∑
fn

tfbjng
mn
fe (27)

W̃mb
je = gmb

je −
∑
n

tbnW
mn
je +

∑
f

tfj g
mb
fe −

1

2

∑
fn

tfbjng
mn
fe (28)

Wmn
ej = gmn

ej +
∑
f

tfj g
mn
ef (29)

Wmn
ij = (1 + Pmi

nj )

(
1

2
gmn
ij +

∑
e

teig
mn
ej +

1

2

∑
ef

(tefij + tei t
f
j )gmn

ef

)
(30)

where the permutation operator P exchanges corresponding upper and lower indices in the

following expression. The PPL is the last term in (22), and due to the presence of four

virtual and two occupied MO indices, scales as O(N4
vN

2
o ). Insertion of the R-LS-THC form

of (15) into the PPL gives,

Zab
ij ← (1 + P ai

bj )

(
1

2

∑
ef

tefij
∑
R

XR
a X

R
e (γ̃B)Rbf

)

= (1 + P ai
bj )

(
1

2

∑
R

XR
a

(∑
f

(γ̃B)Rbf

(∑
e

XR
e t

ef
ij

)))
(31)

Inspection of the final parenthesized expression shows that this form scales as O(NRN
2
vN

2
o )

where NR is the number of grid points which itself is chosen to scale linearly with the size

of the system. This, the overall scaling of this term is reduced from O(N6) to O(N5). Note
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that because tefij = tfeji and ef are dummy indices,

(1 + P ai
bj )

(∑
ef

tefij
∑
R

XR
a X

R
e (γ̃B)Rbf

)

=
∑
ef

tefij
∑
R

XR
a X

R
e (γ̃B)Rbf +

∑
ef

tefji
∑
R

XR
b X

R
e (γ̃B)Raf

=
∑
ef

tefij

(∑
R

XR
a X

R
e (γ̃B)Rbf +

∑
R

XR
b X

R
f (γ̃B)Rae

)
(32)

and so (ab|cd)R−LS−THC is effectively symmetrized. When using the “two-sided” LS-THC

factorization without robust fitting, a slightly different form of the PPL may be used,

Zab
ij ← (1 + P ai

bj )

(
1

2

∑
ef

tefij
∑
RS

XR
a X

R
e VRSX

S
b X

S
f

)

= (1 + P ai
bj )

(
1

2

∑
S

XS
b

(∑
R

XR
a VRS

(∑
f

XS
f

(∑
e

XR
e t

ef
ij

))))
(33)

Even though this form performs more floating point operations (O(N2
RNvN

2
o ) compared to

O(NRN
2
vN

2
o ) with typically NR > Nv), the required I/O from main memory is lower, and in

our experiments there is a slight performance advantage to this latter form.

For an arbitrary λ-th excited state, the EOMEE-CCSD method involves determining

a set of excitation amplitudes which are in fact an eigenvector of the CCSD transformed

Hamiltonian with eigenvalue equal to the excited state energy Eλ,

⟨Φa
i |H̄R̂(λ)|Φ0⟩ = Eλ⟨Φa

i |R̂(λ)|Φ0⟩ (34)

⟨Φab
ij |H̄R̂(λ)|Φ0⟩ = Eλ⟨Φab

ij |R̂(λ)|Φ0⟩ (35)

R̂(λ) = r0(λ) +
∑
ai

rai (λ)â†aâi +
1

4

∑
abij

rabij (λ)â†aâ
†
bâj âi (36)

Because the dimension of H̄ is very large, and only a small number of eigenvectors and eigen-

values are desired, iterative diagonalization techniques such as Davidson’s method55 are typ-
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ically used. In such an approach, the rate-limiting step is extremely similar to that in ground

state CCSD, with the key quantity being the so-called σ vector σ(λ)|Φ0⟩ = [H̄, R̂(λ)]|Φ0⟩.

The commutator is included to simplify the equations and directly yield the vertical exci-

tation energy ωλ = Eλ − ECC as the eigenvalue. For a closed-shell reference, the σ doubles

vector can be computed as (dropping λ for conciseness),

σab
ij = (1 + P ai

bj )

(∑
e

reiW
ab
ej −

∑
m

ramW
mb
ij +

∑
e

F a
e r

eb
ij −

∑
m

Fm
i rabmj

+
∑
e

Ga
et

eb
ij −

∑
m

Gm
i t

ab
mj +

1

2

∑
em

(2raeim − raemi)(2W
mb
ej −Wmb

je )

−(
1

2
+ P i

j )
∑
em

raemiW
mb
je +

1

2

∑
mn

rabmnW
mn
ij +

1

2

∑
ef

refij W
ab
ef

)
(37)

Ga
e =

∑
fm

rfm(2W am
ef −W am

fe )−
∑
fmn

rafmn(2gmn
ef − gmn

fe ) (38)

Gm
i =

∑
en

ren(2Wmn
ie −Wmn

ei ) +
∑
efn

refin (2gmn
ef − gmn

fe ) (39)

W ab
ef = (1 + P ae

bf )

(
1

2
gabef −

∑
m

tamg
mb
ef +

1

2

∑
mn

(tabmn + tamt
b
n)gmn

ef

)
(40)

W ab
ej = gabej −

∑
m

tamW
mb
ej −

∑
m

tbmW
am
ej +

∑
mn

(tabmn −
1

2
tamt

b
n)Wmn

ej −
∑
m

Fm
e tabmj

+
1

2

∑
fm

(2tfbmj − tfbjm)(2gamef − gamfe )− (
1

2
+ P a

b )
∑
fm

tfbjmg
am
fe +

∑
f

tfj g
ab
ef (41)

W am
ef = gamef −

∑
n

tang
nm
ef (42)

Wmb
ej = 2W̃mb

ej − gmb
ej +

∑
n

tbnW
mn
ej −

∑
f

tfj g
mb
ef (43)

Wmb
je = 2W̃mb

je − gmb
je +

∑
n

tbnW
mn
je −

∑
f

tfj g
mb
fe (44)

Wmb
ij = W̃mb

ij −
∑
n

tbnW
mn
ij +

∑
e

Fm
e tebij +

1

2

∑
en

(2tebnj − tebjn)(2Wmn
ie −Wmn

ei )

− (
1

2
+ P i

j )
∑
en

tebjnW
mn
ei (45)

Here, (ab|cd) appears in two places: in the final PPL term of (37) via (40), and also in the
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intermediate (41). While (37) represents the most common and direct way to calculate the

σ doubles vector, we use a modified form which isolates the term in (40) involving (ab|cd)

and allows for the elimination of all terms scaling as O(N4
vN

2
o ) after factorization,

σab
ij = (1 + P ai

bj )

(∑
e

reiW
ab
ej −

∑
m

ramW
mb
ij −

∑
m

tamG
mb
ij +

∑
em

rem(2Wmb
ej −Wmb

je )

+
∑
e

F a
e r

eb
ij −

∑
m

Fm
i rabmj +

∑
e

Ga
et

eb
ij −

∑
m

Gm
i t

ab
mj

+
1

2

∑
em

(2raeim − raemi)(2W
mb
ej −Wmb

je )− (
1

2
+ P i

j )
∑
em

raemiW
mb
je

+
1

2

∑
mn

rabmnW
mn
ij +

1

2

∑
mn

(tabmn + tamt
b
n)Gmn

ij +
1

2

∑
ef

refij g
ab
ef

)
(46)

Gmb
ij =

∑
ef

refij g
mb
ef (47)

Gmn
ij =

∑
ef

refij g
mn
ef (48)

When using the DF approximation, the presence of (ab|cd) in (41) does not present a scaling

obstacle. While this term could be combined with that from (40) by modifying the R̂2

amplitudes in (46), refij → (refij + 1
2
teir

f
j + 1

2
rei t

f
j ), we simply compute this term by taking

advantage of the DF factorization,

σab
ij ← (1 + P ai

bj )
∑
ef

rei t
f
j

(∑
J

BJ
aeB

J
bf

)

= (1 + P ai
bj )
∑
J

(∑
e

reiB
J
ae

)(∑
f

tfjB
J
bf

)
(49)

which scales as O(NDFN
2
vN

2
o ) where NDF is the number of auxiliary density fitting basis

functions. Now, the final PPL term of (46) can be computed exactly as in (31) with the

same benefits in scaling reduction.

Finally, the energy of the κ-th electron-attached state may be obtained using EOMEA-

CCSD. Electron attachement amplitudes and the final state energy can be obtained by solv-
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ing an eigenvalue problem as in EOMEE-CCSD, except that the eigenvector now represents

a non-number-conserving operator,

⟨Φa|H̄R̂(κ)|Φ0⟩ = Eκ⟨Φa|R̂(κ)|Φ0⟩ (50)

⟨Φab
i |H̄R̂(κ)|Φ0⟩ = Eλ⟨Φab

i |R̂(κ)|Φ0⟩ (51)

R̂(κ) =
∑
a

ra(κ)â†a +
1

2

∑
abi

rabi (κ)â†aâ
†
bâi (52)

For a closed-shell reference, and again modifying the working equations to fully expose the

(ab|cd) integrals, we arrive at our EOMEA-CCSD σ doubles vector equations,

σab
i =

(∑
e

reW ab
ie −

∑
m

tamG
mb
i −

∑
m

tbmG
am
i +

∑
e

F a
e r

eb
i +

∑
e

F b
e r

ae
i

−
∑
m

Fm
i rabm −

∑
m

Gmtabim +
1

2

∑
em

(2rebm − rbem)(2Wma
ei −Wma

ie )

−(
1

2
+ P a

b )
∑
em

rbemW
ma
ie

∑
mn

(tabmn + tamt
b
n)Gmn

i +
1

2

∑
ef

refi gabef

)
(53)

Gm =
∑
efn

rfen (2gmn
ef − gmn

fe ) (54)

Gmb
i =

∑
ef

refi gmb
ef (55)

Gam
i =

∑
ef

refi gamef (56)

Gmn
i =

∑
ef

refi gmn
ef (57)

The computation of the EOMEA-CCSD PPL term using R-LS-THC is similar to the CCSD

and EOMEE-CCSD case,

σab
i ←

∑
ef

refi
∑
R

XR
a X

R
e (γ̃B)Rbf

=
∑
R

XR
a

(∑
f

(γ̃B)Rbf

(∑
e

XR
e r

ef
i

))
(58)
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Here, the scaling is reduced from O(N4
vNo) to O(NRN

2
vNo).

Because we start with the density fitting factors BJ
ab for fitting the γ and V matrices, we

also utilize density fitting in the remainder of the CCSD and EOM-CCSD equations. This

means that with a large enough grid (such that the error due to THC fitting is negligible), the

error introduced relative to canonical (EOM-)CCSD is purely due to density fitting and the

same as for other available DF-(EOM-)CCSD implementations. While introducing density

fitting for the complete (EOM-)CCSD equations does modify the CCSD residual and EOM-

CCSD σ equations from (22), (46), and (53), the details are beyond the scope of this work

and do not affect the formal leading-order scaling of the remaining terms. Because all THC

methods used in this work are based on the DF approximation, we drop any explicit “DF-”

modifier in the discussion and assume that density fitting is always used unless otherwise

indicated.

Computational Details

DF-EOM-CCSD and the DF-based LS-THC, LS-PTHC, and R-LS-THC approximations

to the PPL term were implemented in a development version of CFOUR.56 We denote

the THC-based methods as LS-THC-PPL-EOM-CCSD, LS-PTHC-PPL-EOM-CCSD, and

R-LS-THC-PPL-EOM-CCSD, or simply THC-PPL-EOM-CCSD or THC-EOM-CCSD to

generically refer to any of these approximations. All calculations were performed with Dun-

ning’s correlation-consistent polarized valence triple-ζ basis set with augmented diffuse func-

tions (aug-cc-pVTZ),57 except for the stacked pyrimidine nucleotide system where cc-pVDZ58

was employed. Density fitting was performed with standard auxiliary basis sets paired to the

orbital basis set (aug-cc-pVTZ-RI and cc-pVDZ-RI, respectively),59 except where indicated.

The SG060 parent grid was used for THC fitting, with a varying numerical cut-off ϵ ranging

from 1.0 to 0.01 in order to control the size and accuracy of the pruned grid. 40
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Results and Discussion

Performance

Figure 2: Relative walltimes for DF-EOMEE-CCSD (DF-ON) and various THC-PPL-
EOMEE-CCSD methods for linear alkane chains. The measured times are normalized with
respect to total time taken for the DF-EOMEE-CCSD calculation. One excited state is
computed in each case. The grid tolerance was set to ϵ = 0.01. Timings are split into
components as discussed in the text.

A set of linear alkanes was chosen to study the performance of EOM-CCSD calculations

of a single excited state. Timings are measured running on 2× Intel® Xeon® E5-2695v4

CPUs and either 256 or 768 GiB of memory. OpenMP was used to parallelize the calculation

over all 36 cores. The total time for the calculation is divided into several categories: the

time taken for the self-consistent field (SCF) solution, the total time for the ground CCSD

and excited state EOM-CCSD solutions less the PPL term, the time taken for evaluating the
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PPL term for both CCSD and EOM-CCSD parts, grid generation and pruning times, and the

time required for determining the fitting parameters (γ, V, γB, and γ̃B). The remaining

calculation time was grouped together and indicated as “Other”. Full data are provided

in the ESI. Figure 2 illustrates relative wall-timings with respect to DF-EOMEE-CCSD

calculations for LS-THC, LS-PTHC, and R-LS-THC approximations of the PPL terms as a

function of alkane chain length.

The PPL evaluation takes significant time for CCSD and EOM-CCSD calculations with-

out THC. This time is significantly reduced for all the THC methods, by approximately a

factor of 12–30×. The results indicate that for the calculation of excited state, the time

spent to evaluate the PPL term is larger than that for the ground state; this is primarily due

to the larger number of iterations taken to solve the excited state eigenvalue problem. When

multiple excite states are desired this imbalance would grow even further, highlighting the

need to reduce the computational cost of the EOM-CCSD stage of the calculation. Adding

in the rest of the computational time, the reduction of cost for the PPL term still results

in significant total walltime savings, by approximately a 5× ratio for decane. As mentioned

previously, the non-robust LS-THC PPL term is slightly more computationally efficient than

for LS-PTHC or R-LS-THC.

Calculations utilizing the THC approximations require additional operations related to

the grid (generation, fitting, and pruning) and fitting of the initial ERIs/density fitting

factors, the cost of which is not present in standard DF-EOM-CCSD calculations. The

data provided in the ESI clearly indicates that these THC-specific timings are insignificant

contributions to overall walltime. This highlights one advantage of the LS-THC method in

that a costly non-linear solve is not required, which can take 5–20% of the total time in an

rCP-DF calculation.44 While most excited state calculations utilize only double- or triple-ζ

basis sets, we do note increased speed-ups for larger basis sets (measured up to quintuple-ζ

for acetaldehyde in the ESI), which is expected as the PPL term increasingly dominates for

larger basis sets.
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Finally, we note that a rather strict grid tolerance parameter ϵ = 0.01 was used for these

timings, while a milder tolerance of ϵ = 0.1 is sufficient for ∼meV errors and would even

further reduce the time required for the PPL. However, since even with a tight tolerance

the PPL is a minor contributor to total time, further reductions in walltime will be more

modest.

Accuracy of THC-PPL-EOMEE-CCSD

The accuracy of the THC-PPL-EOMEE-CCSD methods for vertical excitation energies was

benchmarked using the QUEST data sets,61 in particular, the QUEST1,62 QUEST3,63 and

QUEST464 data sets. We included all excited states listed in the database in our compar-

isons, and checked relative energies, oscillator strengths, and (where possible) assignments

in terms of MOs between THC-PPL-EOMEE-CCSD, DF-EOM-CCSD, and the QUEST

database to verify the selection of states.

Reported errors are measured as differences in the excitation energy between the DF-

EOMEE-CCSD and THC-PPL-EOMEE-CCSD calculations, i.e. ETHC−EOM−CCSD−EDF−EOM−CCSD,

for each of LS-THC, LS-PTHC, and R-LS-THC. Statistics of the errors over the QUEST

sub-databases are presented in Figures 3, 4, and 5.

Figure 3: (a) Mean signed error (MSE) and (b) log-log plot of mean absolute error (MAE)
for THC-PPL-EOMEE-CCSD vertical excitation energies calculated for excited states in
the QUEST1 database as a function of grid tolerance parameter ϵ. Maximum and minimum
errors are indicated by “whiskers”. See text for details.
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Figure 3a shows the mean signed error (MSE) for electronic excited states from the

QUEST1 database. The vertical excitation energies of 18 molecules (up to 3 non-hydrogen

atoms) are included to form the QUEST1 database.62 The average error is observed to

converge for all THC approximations with tighter grid tolerance. A similar trend observed for

mean absolute error (MAE, Figure 3b). While the errors for the R-LS-THC method reduce

to < 4 meV for ϵ < 10−1, for the LS-PTHC and LS-THC methods the error reaches ∼ meV

accuracy only for ϵ = 10−2. This result points out that the error cancellation embodied in

the R-LS-THC approximation can be effectively leveraged for evaluating vertical excitation

energies with relatively larger grid tolerances, although as seen above, even a “safe” value of

ϵ = 10−2 results in large overall speedups.

Figure 4: (a) Mean signed error (MSE) and (b) log-log plot of mean absolute error (MAE)
for THC-PPL-EOMEE-CCSD vertical excitation energies calculated for excited states in
the QUEST3 database as a function of grid tolerance parameter ϵ. Maximum and minimum
errors are indicated by “whiskers”. See text for details.

The mean signed and absolute errors for excitation energies contained from the QUEST3

database are presented in Figure 4. The QUEST3 database consists of vertical excitation

energies of molecules containing 4 to 6 non-hydrogen atoms.63 The average error shows an

oscillatory behavior versus grid tolerance which is not present in the errors observed for

QUEST1. In the mean absolute error, this change in sign of the mean signed error manifests

as a plateau in convergence of the error with grid size. However, average errors with very

small grids (ϵ > 0.3) are approximately only half as large as in QUEST1 such that the errors
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manifested for 0.1 ≥ ϵ ≥ 0.01 closely mirror those in QUEST1. In both cases, errors for

R-LS-THC are in the single-digit meV range below ϵ = 0.1.

Figure 5: (a) Mean signed error (MSE) and (b) log-log plot of mean absolute error (MAE)
for THC-PPL-EOMEE-CCSD vertical excitation energies calculated for excited states in
the QUEST4 database as a function of grid tolerance parameter ϵ. Maximum and minimum
errors are indicated by “whiskers”. See text for details.

The QUEST4 database include vertical transition energies of 30 closed shell “exotic”

molecules containing F, Cl, P, Si, etc. atoms.64 Figure 5 shows the mean signed and mean

absolute errors in the calculations of these excitation energies using THC approximated

methods, with respect to DF-EOM-CCSD. The R-LS-THC method—as expected—exhibits

a rapid convergence of the error, reaching sub-meV errors for ϵ < 0.1. Overall, the observed

errors follow a similar pattern as for QUEST1. However, it is interesting to note that the

average errors associated with all three THC approximated methods shrink below 10 meV

as the grid tolerance passes ϵ = 0.1. Maximum errors for LS-THC and LS-PTHC remain

as large as 0.25 eV in this range, but the error cancellation inherent in R-LS-THC reduces

maximum errors to only 63 meV (in this case, for silylidene).

The measurement of R-LS-THC errors in the excitation energies of QUEST species in-

dicate that for a sufficiently small grid tolerance (below ∼ 10−1.5) absolute errors in vertical

excitation energies are reliably below 1 meV. Further, it is observed that in each case the

error cancellation built into the R-LS-THC method results in rapid decay of the error with

decreasing grid tolerance (especially, for the MAE for grid tolerances below ∼ 10−1.0), and
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significantly lower errors than for LS-THC or LS-PTHC. At low to intermediate grid toler-

ances (100 < ϵ < 10−1.5), further improvement may be possible, e.g. via orbital weighting,38

or by using separate tolerances for the ground and excited state PPL terms so that errors in

the less computationally-demanding ground state CCSD equations can be converged more

tightly than the excited state itself (since EOMEE-CCSD relies on cancellation of missing

correlation effects of the ground and excited states via the cluster amplitudes T̂ ). How-

ever, even in the least accurate method (LS-THC-PPL-EOMEE-CCSD), simply tightening

the grid tolerance parameter reliably results in negligible energy errors and, as measured at

ϵ = 0.01, significant reductions in walltime.

Accuracy of THC-PPL-EOMEA-CCSD

Similarly to electronic excitation energies, electron attachment energies (electron affinities)

can be evaluated using the EOM framework.65 We studied the error in vertical electron at-

tachment energies using LS-THC, LS-PTHC, and R-LS-THC approximations of the PPL,

measured with respect to DF-EOMEA-CCSD. We also tested THC-PPL approximations

applied to EOMEA-MBPT2; in this method the diagonalization of the transformed Hamil-

tonian is performed precisely as in EOMEA-CCSD, but the coupled cluster amplitudes are

taken from second-order perturbation theory51 rather than a CCSD ground state calcula-

tion. Because the EOMEA stage of the calculation only scales as O(N5), the replacement

of CCSD with MBPT2 results in an overall scaling of O(N5) rather than O(N6). This also

results in the EOMEA PPL term becoming the dominant computational cost.

The accuracy of these implementations was assesed by calculating the lowest vertical

electron attachment energies (VEAs) for the set of 22 molecules included in the NAB22

test set.66 VEAs were calculated for the optimized geometries of neutral species as provided

in the supplementary information of Ref. 66. The reported errors in electron attachment

energies are defined in a similar manner as for excitation energies.

The errors in the electron attachment energies evaluated using THC-PPL-EOMEA-CCSD
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Figure 6: (a) Mean signed error (MSE) and (b) log-log plot of mean absolute error (MAE)
for THC-PPL-EOMEA-CCSD vertical electron attachment energies in the NAB22 database
as a function of grid tolerance parameter ϵ. Maximum and minimum errors are indicated by
“whiskers”. See text for details.

methods are presented in Figure 6. It is notable that errors for all the THC-approximated

methods at all grid tolerances are negative, i.e. the THC methods consistently underestimate

the EA energy in EOMEA-CCSD calculations. Thus, Figure 6a and Figure 6b show exactly

same behavior. Further, it is observed that the R-LS-THC approximation leads to reduction

of error below 10 meV for ϵ < 10−1 and below 1 meV for ϵ < 10−1.25.

Figure 7: (a) Mean signed error (MSE) and (b) log-log plot of mean absolute error (MAE) for
THC-PPL-EOMEA-MBPT2 vertical electron attachment energies in the NAB22 database
as a function of grid tolerance parameter ϵ. Maximum and minimum errors are indicated by
“whiskers”. See text for details.

Errors for VEAs calculated using THC-PPL-EOMEA-MBPT2 methods are presented in

Figure 7. The behavior of the errors here are seen to be quite different both qualitatively and
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quantitatively from those for EOMEA-CCSD. Qualitatively, the signed EOMEA-MPBT2

errors undergo a sign change near ϵ = 10−0.75, and exhibit a much wider range between the

maximum and minimum. Mean absolute errors are also much larger for ϵ > 0.1, reaching

nearly 4× the magnitude at ϵ = 1.0. However, errors for smaller grid thresholds, below

ϵ < 0.1 are much more similar and converge to sub-meV values at nearly the same rate.

The larger differences at loose grid thresholds may indicate a lack of balancing effect from

the more accurate CCSD ground state wavefunction. Focusing only on reliable values of

0.1 > ϵ > 0.01, the trend in errors is essentially the same as for vertical excitation energies,

but the magnitude of errors is much reduced, by as much as an order of magnitude. In

part, this reflects the smaller magnitude of the electron attachment energies themselves, but

there is likely also some effect from the expected simpler electronic structure of primary

electron-attached wavefunctions compared to electronic excitations.

Influence of the Density Fitting Auxiliary Basis Set

Table 1: Error in the calculated excitation energy (in meV) for the lowest excited state of
CH3CHO with LS-THC-PPL- and DF-EOMEE-CCSD with respect to canonical EOMEE-
CCSD. − log(ϵ) =∞ indicates a standard DF-EOMEE-CCSD calculation, and the number
of density fitting auxiliary basis functions and LS-THC grid points are indicated by NDF

and NR, respectively. Auxiliary basis sets are abbreviated, e.g. aTZ-RI = aug-cc-pVTZ-RI.

− log(ϵ) aTZ-RI aQZ-RI a5Z-RI NR

0.00 −562 −562 −562 1
0.25 −563 −562 −562 3
0.50 −752 −752 −752 35
0.75 −237 −237 −237 257
1.00 −34.3 −34.5 −34.6 567
1.25 −4.90 −5.25 −5.33 975
1.50 −0.496 −0.856 −0.938 1300
1.75 0.081 −0.273 −0.035 1565
2.00 0.423 0.1071 −0.004 1816
∞ 0.444 0.092 0.017 —

NDF 502 824 1234
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Table 2: Error in the calculated excitation energy (in meV) for the lowest excited state of
CH3CHO with LS-PTHC-PPL- and DF-EOMEE-CCSD with respect to canonical EOMEE-
CCSD. − log(ϵ) =∞ indicates a standard DF-EOMEE-CCSD calculation, and the number
of density fitting auxiliary basis functions and LS-THC grid points are indicated by NDF

and NR, respectively. Auxiliary basis sets are abbreviated, e.g. aTZ-RI = aug-cc-pVTZ-RI.

− log(ϵ) aTZ-RI aQZ-RI a5Z-RI NR

0.00 −563 −562 −562 1
0.25 −565 −564 −564 3
0.50 −503 −503 −503 35
0.75 −121 −121 −121 257
1.00 −15.3 −15.6 −15.6 567
1.25 −2.03 −2.37 −2.44 975
1.50 0.000 −0.353 −0.428 1300
1.75 0.027 −0.081 −0.169 1565
2.00 0.438 0.083 0.007 1816
∞ 0.444 0.092 0.017 —

NDF 502 824 1234

Table 3: Error in the calculated excitation energy (in meV) for the lowest excited state of
CH3CHO with R-LS-THC-PPL- and DF-EOMEE-CCSD with respect to canonical EOMEE-
CCSD. − log(ϵ) =∞ indicates a standard DF-EOMEE-CCSD calculation, and the number
of density fitting auxiliary basis functions and LS-THC grid points are indicated by NDF

and NR, respectively. Auxiliary basis sets are abbreviated, e.g. aTZ-RI = aug-cc-pVTZ-RI.

− log(ϵ) aTZ-RI aQZ-RI a5Z-RI NR

0.00 −563 −562 −562 1
0.25 −566 −566 −566 3
0.50 −351 −350 −350 35
0.75 −43.5 −43.4 −43.3 257
1.00 −0.101 −0.378 −0.382 567
1.25 0.455 0.121 0.065 975
1.50 0.465 0.119 0.050 1300
1.75 0.440 0.099 0.026 1565
2.00 0.446 0.095 0.020 1816
∞ 0.444 0.092 0.017 —

NDF 502 824 1234
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While the accuracy of the LS-THC, LS-PTHC, or R-LS-THC approximation can be

effectively controlled by the grid threshold ϵ, the density fitting approximation itself also

incurs an error in the excitation or electron attachment energy. Because the rate-limiting

steps of the THC-PPL-EOMEE-CCSD methods do not depend strongly on the size of the

auxiliary density fitting basis set (remaining terms scale as O(NDFN
3
vNo) or lower, where

NDF is the number of auxiliary basis functions), it is an intriguing possibility to increase

the size of the density fitting basis set in order to further reduce error with respect to the

canonical EOM-CCSD methods as well as to study the relationship between the THC and

DF errors.

Tables 1, 2, and 3 show the error in calculating the lowest vertical excitation energy of

acetaldehyde using LS-THC-PPL-, LS-PTHC-PPL-, and R-LS-THC-PPL-EOMEE-CCSD

calculations respectively. This analysis is performed for varying ϵ as well as auxiliary basis

set (while maintaining the same aug-cc-pVTZ orbital basis set). The auxiliary basis set

is varied from aug-cc-pVTZ-RI to aug-cc-pV5Z-RI, to understand the convergence of DF

approximation upon increasing the number of auxiliary functions. We also include standard

DF-EOMEE-CCSD VEEs as the limit of an infinite THC grid size. It is observed that for

DF-EOMEE-CCSD alone, the error in excitation energy converges smoothly with auxiliary

basis set size, and is already rather small when using the standard aug-cc-pVTZ-RI basis

set.

For the THC approximations, increasing the number of auxiliary functions does not

effectively reduce the total error for larger values of ϵ > 0.1. For LS-THC, the smooth

behavior of the convergence of the error with increasing auxiliary basis set is only observed

for ϵ = 10−2, while for R-LS-THC the error seems to be smoothly convergent for ϵ < 10−1.25.

In several cases, the THC and DF errors are of similar magnitude and opposite sign, resulting

in error cancellation (e.g. ϵ = 10−1.5 with LS-PTHC-PPL-EOMEE-CCSD and aug-cc-pVTZ-

RI). Even when of the same sign, the THC and DF errors typically combine in an uncorrelated

fashion, indicating that they are largely independent. The independence of the two errors
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also allows us to estimate at what point they become similar in magnitude based on the

relative number of auxiliary basis function and grid points. For LS-THC and LS-PTHC,

the errors become similar when NR ∼ 3NDF , while for R-LS-THC, errors are similar when

NR ∼ NDF . This relationship has interesting implications for R-LS-THC-PPL-EOMEE-

CCSD with the aug-cc-pVTZ-RI auxiliary basis set and ϵ = 0.1, as this is both the largest

value of ϵ which produces errors on the order of 1 meV, but is also a point of cancellation

in this example. If the relative sign of the DF and THC errors is consistent across many

different systems, then improving the total error by increasing the auxiliary basis set would

also require decreasing ϵ (e.g. note that the total error increases almost 4× when moving to

aug-cc-pVQZ-RI in this case).

Overall, these results show that indeed errors can be systematically reduced by increasing

the size of the density fitting auxiliary basis set and the THC grid in a concerted fashion.

However, given the already extremely small error due to density fitting, there doesn’t seem

to be a need to go beyond standard auxiliary basis sets in most instances.

Applicability to Large Systems

The applicability of the THC approximated PPL term was tested for the EOMEA-MBPT2

method on single-stranded DNA (ssDNA) model system. This model system (Figure 8)

includes three pyrimidine bases (thymine–cytosine–thymine: TCT) along with the phospho-

deoxyribose side chain. To obtain the geometry for this model system, we started with the

geometry for the DNA model system of the Ref. 67 and removed all atoms associated with

the purine strand. The final model system consists of 95 atoms, 436 electrons, and 987 ba-

sis functions using the cc-pVDZ basis set. Three vertical electron affinities were calculated

at the DF-, LS-THC-PPL-, LS-PTHC-PPL-, and R-LS-THC-PPL-EOMEA-MBPT2 level.

These calculations were performed on a system with 4× Intel® Xeon® E7-8891v3 CPUs

and 1.5 TiB of memory. OpenMP was used to parallelize the calculation over all 40 cores.

The calculated VEAs and timing breakdowns are presented in Table 4. All three THC
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Figure 8: Model ssDNA system containing stacked pyrimidine nucleotides (TCT) and phos-
phodeoxyribose side chain.

Table 4: Primary vertical electron affinities of the ssDNA TCT model using THC-PPL and
DF approximations. VEAs for DF-EOMEA-MBPT2 and differences of THC-PPL-EOMEA-
MBPT2 VEAs with respect to DF-EOMEA-MBPT2 are reported in eV. The grid threshold
ϵ was set to 0.01 for all THC calculations. Timing breakdowns (in hours) are also reported
for various components (tEOMEA is the total time for the EOMEA portion of the calculation
less the PPL term).

DF LS-THC LS-PTHC R-LS-THC

1st VEA −0.719 −3.29× 10−4 −1.64× 10−4 −1.64× 10−7

2nd VEA 0.587 +3.86× 10−4 +1.94× 10−4 +3.85× 10−8

3rd VEA 1.176 −1.82× 10−5 −8.79× 10−5 −5.50× 10−8

tTotal 85.9 30.2 31.5 31.9
tPPL 54.9 0.958 2.88 2.86

tEOMEA 24.4 22.7 21.7 21.8
tOther 6.54 6.57 6.93 7.23
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approximations feature errors below 1 meV, with the R-LS-THC approximation reducing

the error to ∼ 1 × 10−7 eV or below. The total time of the calculation is reduced by ap-

proximately a factor of 3 with each THC method. Because of the small virtual space, the

remaining EOMEA terms contribute a significant portion of the time, as do the integral

transformation, calculation of the MP2 energy, and formation of the transformed Hamilto-

nian (the latter three account for ∼ 85% of tOther). Grid generation, pruning, and THC

fitting together account for < 3% of tOther and ∼ 0.5% of the total time. Such small errors

encountered demonstrate the applicability of this approximation to larger systems for per-

forming excited state and electron attachment calculations with high relative accuracy and

significantly improved efficiency.

Conclusions

We have demonstrated that the LS-THC approximation, in particular the robust variant, is

efficient for reducing the scaling of coupled cluster singles and doubles and related equation-

of-motion coupled cluster methods. The LS-PTHC and rCP-DF (R-LS-THC-like) approxi-

mations to the PPL term were previously shown to significantly reduce the computational

time while maintaining high accuracy for the ground state CCSD method.38,44 Here, we have

shown that these approximations, when applied to PPL term evaluations for excited state

and electron attachment calculations, are highly effective in terms of accuracy and perfor-

mance. The R-LS-THC approximation, in particular, is found to be highly accurate for a

wide range of THC grid sizes while providing ∼ 5× speedup for EOMEE-CCSD calculations

with a triple-ζ basis set.

While we recommend a “safe” choice of grid tolerance parameter ϵ of 0.01, larger values

seem to have potential for situations where less accuracy is required and a very small grid is

advantageous. It should be noted that for higher ϵ (typically, ϵ > 0.1), we encountered some

instability in the EOMEE-CCSD solution and phenomena such as changes in root ordering
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which complicated the assignment of states relative to the DF-EOMEE-CCSD calculation.

It is not clear how much of these complications are due to a less-accurate evaluation of the

σ vector compared to poor ground state references in the corresponding CCSD calculations.

Techniques such as orbital weighting38 could address some of the problems when using small

grids, particularly with large basis sets.

Overall, the errors for the evaluation of excited states as well as of electron attached

states do not seem to be related to chemical structures of the size of the molecules. These

methods, in particular THC-PPL-EOMEA-MBPT2, are also applicable to large systems as

demonstrated by calculations on a single-stranded DNA model system. Further reductions

in walltime would require factorization of terms beyond the particle-particle ladder.
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