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Abstract

Similarity transformed equation-of-motion coupled cluster theory (STEOM-CC) is

an alternative approach to equation-of-motion coupled cluster theory for excited states

(EOMEE-CC) which uses a second similarity transformation of the Hamiltonian, fol-

lowed by diagonalization in a small (CI singles-like) excitation space, even when single

and double excitations are included in the transformation. In addition to vertical exci-

tation energies, transition moments measure the strength of the interactions between

states determining absorption, emission, and other processes. In STEOM-CCSD, tran-

sition moments are calculated in a straight-forward manner as biorthogonal expecta-

tion values using both the left- and right-hand solutions, with the main difference from

EOMEE-CC being the inclusion of the transformation operator. We recently developed

an extension of STEOM-CCSD to core excitations, CVS-STEOM-CCSD+cT, which in-

cludes triple excitations and the well-known core-valence separation for the core ioniza-

tion potential calculations. In this work, we derived transition moments for core-excited

states with core triple excitations, including both ground-to-core-excited and valence-

to-core-excited transitions. The improvement of the computed transition moments of

the CVS-STEOM-CCSD+cT method is compared to standard CVS-STEOMEE-CCSD

and CVS-EOMEE-CCSD for our previously published small molecule benchmark set.

1



Introduction

A fundamental objective of electronic structure theory is to describe the properties of the

ground state. While this does create a partial picture, it is important to describe the many

transition properties for molecules being excited from the ground state to an excited state or

from one excited state to another. Excited state energies, and to some extent geometries, are

easily benchmarked and can be compared against various experimental or theoretical refer-

ences. However, this is not the case for other properties, such as oscillator strengths, dipole

moments, and vibrational frequencies.1,2 The need for formally-derived transition properties,

especially between two excited states, is incredibly important to study experimental spec-

tra and theoretical methods such as time-resolved x-ray spectroscopy, x-ray absorption and

emission, and non-adiabatic coupling. In x-ray absorption spectroscopy, computed oscillator

strengths aid in the assignment of peaks in experimental spectra.3,4 The focus on transition

moments allows for insight on the strength of the interactions between states governing ab-

sorption, emission, and other processes. Oscillator strengths, f , indicate the probability of

a given transition from the ground state to an excited state occurring and can be measured

through observed intensities.1,5

Many theoretical chemists utilize density functional theory (DFT) for computational

chemistry problems involving the ground state, and time-dependent density functional the-

ory (TD-DFT) extends the concepts of DFT to excited states.6,7 TD-DFT has become

popular for calculating excitation energies and excited state properties due to its ability to

be accurate, yet computationally efficient.1,5 However, there are self-interaction errors when

computing the description of the ground state, which affects the accuracy of the excited states

since they are linear response poles of the ground state.2,8 Other methods used for calculat-

ing excited state properties include equation-of-motion coupled cluster (EOM-CC) theory 9–11

and transition-potential density functional theory (TP-DFT).12–14 Even though EOM-CC,

particularly when used with the core-valence separation technique,15 has success in describ-

ing valence excitations for core-hole states, there are still large orbital relaxation errors up
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to 5 eV and there is a large computation cost for each excited state. TP-DFT is a com-

promise between linear-response methods and state-specific orbital optimizations, but errors

remain when assigning peak positions and intensities in x-ray absorption spectra.13,14,16 We

recently introduced a transition-potential coupled cluster (TP-CC) method that combines

the concepts of coupled cluster theory and TP-DFT in order to reduce the orbital relaxation

error present in EOM-CCSD.17,18 We also explored similarity-transformed equation of mo-

tion coupled cluster (STEOM-CC) theory, (originally proposed by Nooijen and Bartlett 19,20)

an alternative to EOM-CC theory, for excitation energies for XAS and introduced a CVS-

STEOM-CCSD+cT method that includes triple excitations only in the core ionized potential

to account for the orbital relaxation present in STEOMEE-CC methods.21 A method similar

to STEOM is Fock space coupled-cluster theory (FSCC),22–24 with the main difference being

that the final step in STEOM-CC involves solving an eigenvalue problem while the final step

in FSCC involves solving a set of nonlinear equations. It is important to note that in the limit

of a complete active space, the FSCC and STEOM-CC results become identical.20 In recent

years, STEOM-CC has been investigated and many new developments have been published.

Core-valence separation (CVS) has been applied to STEOM-CCSD25 and automatic active

space selection has also been applied to STEOM-CCSD.26 Accurate, low-scaling versions of

STEOM-CC have been developed, such as domain-based local pair natural orbital similarity

transformed equation of motion (DLPNO-STEOM)27–30 and back transformed pair natural

orbital based similarity transformed equation of motion (bt-PNO-STEOM). 31,32

In this paper we present a comparison of oscillator strengths for CVS-EOM-CCSDT,

TP-CCSD(1/2), and CVS-(ST)EOM-CCSD methods. Additionally, we present the imple-

mentation and calculation of oscillator strengths for CVS-STEOM-CCSD+cT, which has an

explicit triples contribution only for the core orbital(s).
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Theoretical Methods

The details of the CVS-STEOMEE-CCSD+cT method are available in our previous publica-

tion,21 while the theory of transition moments in similarity-transformed equation-of-motion

coupled cluster was developed by Nooijen in his original publications.20 Here we briefly recap

the important features of the core triples and their effect on the computed STEOM transition

moments.

In STEOMEE-CCSD+cT,21 the relaxation effects of the core hole are accounted for by

including triple excitations in the solution of the core ionization potential equations via CVS-

EOMIP-CCSDT.33 This results in a three-body transformation operator which is derived

from the triples amplitudes of the core EOMIP solution,

Ŝ−
3 =

1

12

∑
ijkmbc

scbmkji a
†
ma

†
ba

†
cakajai (1)

scbmkji = −
no;act∑
κλ=1

rcbkji(λ)(U−1
− )λκδκm (2)

where m and at least one of ijk must be an active core orbital. Formally, we consider

rcbkji = 0 for valence or inactive core ionized states. The addition of this transformation

operator modified the form of the twice-transformed Hamiltonian, Ĝ, and the resulting

STEOM eigenstates. In our implementation we also employ the core-valence separation15

in the diagonalization of the singles-singles block of Ĝ, but the effect of this approximation

on the energies should be very small given the lack of coupling to high-lying doubly-excited

valence determinants.

As in standard equation-of-motion coupled cluster theory, the oscillator strength for ex-

citation from state κ to state λ is computed from non-hermitian transition dipole moments10

via an expectation value formalism,

fκ→λ =
2me(ωλ − ωκ)

3h̄2

∑
α=x,y,z

⟨Ψ̃κ|µ̂α|Ψλ⟩⟨Ψ̃λ|µ̂α|Ψκ⟩ (3)
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Although our focus is on transitions from the ground state to an excited state, note that

non-Hermitian transition dipole moments are calculated using the same formalism as in (3),

where both states |Ψκ⟩ and |Ψλ⟩ are excited states. Due to the non-hermitian nature of

EOM-CC and STEOM-CC, ⟨Ψ̃κ| and |Ψκ⟩ are distinct. In CVS-STEOMEE-CCSD+cT,

these are,

⟨Ψ̃κ| = ⟨0|L̂(κ)(1 − Ŝ2)e
−T̂ (4)

|Ψκ⟩ = eT̂ (1 + Ŝ2 +
1

2
Ŝ2
2 + Ŝ−

3 )R̂(κ)|0⟩ (5)

where |0⟩ is the (usually Hartree–Fock) reference determinant. The right-hand ground eigen-

state is trivially R̂(0) = 1. The left-hand ground eigenstate is formally an eigenvector of

Ĝ, but here we use an approximation where the standard left-hand (EOM-)CC eigenstate is

used, L̂(0) = 1 + Λ̂.

The addition of the core triples in CVS-STEOMEE-CCSD+cT then leads to the addi-

tional term in the transition dipole moment between states κ and λ,

µκλ
α (cT) = ⟨0|L̂2(κ)µ̂αŜ

−
3 R̂1(λ)|0⟩ =

∑
ai

Dκλ
ai (cT)µai;α (6)

Dκλ
ai (cT) = ⟨0|L̂2(κ){a†aai}Ŝ−

3 R̂1(λ)|0⟩ (7)

= −1

2

∑
efmno

lefno(κ)safmion rem(λ) − 1

4

∑
efmno

lefno(κ)sefmnoi r
a
m(λ) (8)

Because the addition of Ŝ−
3 modifies Ĝ and hence L̂(κ) and R̂(κ), the transition moments

in CVS-STEOMEE-CCSD+cT are already different from those in CVS-STEOMEE-CCSD

without considering (6). Thus, we term the contribution arising directly from the inclusion

of Ŝ−
3 in the transition dipole moment expression in (6) as the “direct” triples contribution.

Finally, we note that while R̂(κ) consists only of single excitations (and potentially a small

contribution from the reference determinant), the left-hand eigenstate L̂(κ) formally spans

both single and double excitations. The left-hand singles amplitudes may be determined
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from the singles-singles block of Ĝ alone, but the doubles amplitudes would require a costly

diagonalization in the full singles and double space. Following Nooijen, we use a perturbative

approximation for L̂2(κ), although we opt for a simpler approximation which is consistent

through first-order,

lijab(κ) =
1 + P ai

bj

ϵi + ϵj − ϵa − ϵb + ωκ

(∑
e

lie(κ)⟨ab||ej⟩ −
∑
m

lma (κ)⟨ij||mb⟩

)
(9)

where P ai
bj exchanges the labels ai and bj in the following expression.

Computational Details

Transition energy and transition moment calculations for CVS-EOMEE-CCSDT, CVS-EOMEE-

CCSD, TP-CCSD(1/2), CVS-STEOMEE-CCSD, and CVS-STEOMEE-CCSD+cT were im-

plemented in a development version of the CFOUR program package.34 A single core orbital

was included in the CVS treatment and STEOM principal IP solution in each calculation.

The test set used and methodology are the same for transition energy and transition

moment calculations, as in previous papers.17,18,21 The test set consisted of all 1s principal

core ionizations and four vertical core excitation energies from each 1s core orbital of H2O,

CO, HCN, HF, HOF, HNO, CH2, CH4, NH3, H3CF H3COH, H2CO, H2CNH, and H2NF.

The core excitations (and oscillator strengths) were selected as those for which we could

reliably converge all methods tested, which typically consisted of the first four excitations of

dominant single excitation character. All calculations utilized the aug-cc-pCVTZ basis set

with all electrons correlated, except for H2O where aug-cc-pCVQZ was used. We have used

full CVS-EOM-CCSDT as a benchmark to avoid the complications coming from missing

relativistic effects, basis set incompleteness, and geometric effects.33,35 The rationale for

choosing the benchmark is the same as in previous work.17,18,21
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Results and Discussion

In the following discussion and in Figures 1 and 2, the “shortened” names of CVS-EOM

methods will be used, for example, STEOM-CCSD = CVS-STEOMEE-CCSD, with the

exception of TP-CCSD(1/2). The distribution of “absolute” oscillator strength deviations

from CCSDT are depicted in Figure 1. The absolute oscillator strength deviation for a

method X is calculated as f(X) − f(CCSDT ). The distribution of “relative” oscillator

strength deviations from CCSDT are depicted in Figure 2, as percentages. The relative

oscillator strength deviation is determined by normalizing each spectrum so that the most

intense transition has unit strength.

As can be seen in Fig. 1, the deviations of absolute oscillator strengths indicates an im-

provement in the TP-CCSD(1/2) and STEOM-CCSD+cT (as measured by standard devi-

ation) over EOM-CCSD and STEOM-CCSD. STEOM-CCSD exhibits a significant increase

in standard deviation and outliers (primarily overestimation of oscillator strength) com-

pared to EOM-CCSD. STEOM-CCSD+cT also exhibits a number of outliers compared to

TP-CCSD(1/2) and even to EOM-CCSD. All of the STEOM methods have difficulty de-

scribing the absolute oscillator strengths of π∗ and σ∗ core-to-valence excited states, with

STEOM-CCSD+cT overestimating by an average of ∼ 0.25×. Interestingly, the intensity

distributions for all methods have a positive skew in comparison with the EOM-CCSDT

benchmark. Direct STEOM-CCSD+cT contributions have a slight effect on the absolute

oscillator strengths, leading to a ∼ 10% reduction in standard deviation compared to the

STEOM-CCSD+cT calculation when direct core triples are excluded. The standard devia-

tion of the error is reduced by almost 40% compared to STEOM-CCSD without any inclusion

of core triples.

Normalization of each spectrum with respect to the most intense peak gives us a different

viewpoint since all spectra are “equal” while keeping the relative importance of each peak in

each spectrum. It can be seen from Fig. 2 that both “purely singles and doubles” methods,

EOM-CCSD and STEOM-CCSD, are prone to large errors in both the positive and nega-
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Figure 1. Error distributions with respect to CVS-EOM-CCSDT for absolute oscillator
strengths (intensities).
a Excluding direct core-triples contribution to oscillator strengths.
b Including direct core-triples contribution to oscillator strengths.
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Figure 2. Error distributions with respect to CVS-EOM-CCSDT for relative oscillator
strengths (intensities).
a Excluding direct core-triples contribution to oscillator strengths.
b Including direct core-triples contribution to oscillator strengths.
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tive direction, as large as 75% of the relative peak intensity. It can also be seen that the

STEOM-CCSD+cT methods have essentially the same relative intensity error distributions,

indicating an almost complete cancellation of the direct effect of core triples between differ-

ent peaks in the same spectrum. Nooijen and Bartlett19 observed a similar effect for the

“triples” contribution arising from Ŝ2
2R̂1, where there was a significant effect on the transi-

tion energy but an almost negligible effect on the oscillator strengths (from the direct triples

contribution—the indirect effect through the solution of the eigenstates was larger). For

TP-CCSD(1/2) and STEOM-CCSD+cT, significant outliers are mostly negative (oscillator

strength is underestimated). For STEOM-CCSD+cT, the significant errors are confined al-

most entirely to the F and C K-edges of H3CF and the O K-edge of H3COH. Even including

these problematic cases, STEOM-CCSD+cT results in a 2.4× reduction in standard devia-

tion compared to EOM-CCSD and over a 1.8× reduction in standard deviation compared

to STEOM-CCSD.

The large errors for π∗ and σ∗ valence states present in both EOM-CCSD and STEOM-

CCSD are almost entirely eliminated in the TP-CCSD(1/2) and STEOM-CCSD+cT, in the

latter thanks to a consistent over-estimation of both valence and Rydberg intensities in these

spectra. It is not clear why both the valence and Rydberg peaks are so consistently over-

estimated, although there could be a consistent error introduced by the left-hand ground

state eigenstate used. Also, despite the over-estimation of the valence excitation oscillator

strengths, many Rydberg absolute oscillator strengths are not significantly changed from

their EOM-CCSD values. There is not enough data yet to indicate if this indicates a link

between EOM-CCSD and the over-estimation effects seen in STEOM-CCSD. The overall im-

provement of the TP-CCSD(1/2) and STEOM-CCSD+cT intensities is due to the improved

description of the core-hole, although in differing ways—in TP-CCSD through the fractional

occupation in the core-hole which creates a cancellation of errors between the ground and

core-excited states, and in STEOM-CCSD+cT through the improved relaxation of the core

hole via the inclusion of explicit triple excitations in the core ionization potential cancella-
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tion (note that the ionized wavefunction is utilized in STEOM, and not just the improved

ionization energy). Apart from the cases mentioned above, STEOM-CCSD+cT is seen to

estimate the oscillator strengths almost as well as TP-CCSD(1/2).

Conclusions

Absolute and relative oscillator strengths were calculated for a group of small molecules us-

ing various coupled cluster methods, including CVS-EOM-CCSDT, CVS-(ST)EOM-CCSD,

TP-CCSD(1/2), and CVS-STEOM-CCSD+cT. Our previous work21 showed that the CVS-

STEOM-CCSD+cT method performed well for core-excited state energies and was compa-

rable to TP-CCSD(1/2), which has an explicit inclusion of core relaxation via the molec-

ular orbitals. Here, we investigated how well this method estimates transition moments

in comparison to full CVS-EOM-CCSDT as the benchmark. CVS-STEOM-CCSD+cT de-

creases relative errors in oscillators by over 1.8× in comparison to CVS-(ST)EOM-CCSD.

All STEOM-CCSD methods are seen to over-estimate the oscillator strengths for π∗ and σ∗

core excitations, but do so consistently, leading to an improved ratio of Rydberg intensity

to valence intensity. We recommend the use of the CVS-STEOM-CCSD+cT method for

core-hole spectroscopy calculations due to its ability to treat core and valence states on an

even footing and to accurately predict relative oscillator strengths and transition energies.
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Supplementary Material

An electronic supplementary information file is available as an Excel file (.xslx). This file

contains the raw transition energies and oscillator strengths for each orbital K-edge, as well as

the absolute and relative transition energies and the absolute and relative oscillator strengths

for each orbital K-edge.
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